|
|
@@ -9,6 +9,7 @@
|
|
|
#include <linux/elf.h>
|
|
|
#include <linux/kernel.h>
|
|
|
#include <linux/module.h>
|
|
|
+#include <linux/sort.h>
|
|
|
|
|
|
#include <asm/cache.h>
|
|
|
#include <asm/opcodes.h>
|
|
|
@@ -30,154 +31,198 @@ struct plt_entries {
|
|
|
u32 lit[PLT_ENT_COUNT];
|
|
|
};
|
|
|
|
|
|
-static bool in_init(const struct module *mod, u32 addr)
|
|
|
+u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val)
|
|
|
{
|
|
|
- return addr - (u32)mod->init_layout.base < mod->init_layout.size;
|
|
|
+ struct plt_entries *plt = (struct plt_entries *)mod->arch.plt->sh_addr;
|
|
|
+ int idx = 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Look for an existing entry pointing to 'val'. Given that the
|
|
|
+ * relocations are sorted, this will be the last entry we allocated.
|
|
|
+ * (if one exists).
|
|
|
+ */
|
|
|
+ if (mod->arch.plt_count > 0) {
|
|
|
+ plt += (mod->arch.plt_count - 1) / PLT_ENT_COUNT;
|
|
|
+ idx = (mod->arch.plt_count - 1) % PLT_ENT_COUNT;
|
|
|
+
|
|
|
+ if (plt->lit[idx] == val)
|
|
|
+ return (u32)&plt->ldr[idx];
|
|
|
+
|
|
|
+ idx = (idx + 1) % PLT_ENT_COUNT;
|
|
|
+ if (!idx)
|
|
|
+ plt++;
|
|
|
+ }
|
|
|
+
|
|
|
+ mod->arch.plt_count++;
|
|
|
+ BUG_ON(mod->arch.plt_count * PLT_ENT_SIZE > mod->arch.plt->sh_size);
|
|
|
+
|
|
|
+ if (!idx)
|
|
|
+ /* Populate a new set of entries */
|
|
|
+ *plt = (struct plt_entries){
|
|
|
+ { [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, },
|
|
|
+ { val, }
|
|
|
+ };
|
|
|
+ else
|
|
|
+ plt->lit[idx] = val;
|
|
|
+
|
|
|
+ return (u32)&plt->ldr[idx];
|
|
|
}
|
|
|
|
|
|
-u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val)
|
|
|
+#define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
|
|
|
+
|
|
|
+static int cmp_rel(const void *a, const void *b)
|
|
|
{
|
|
|
- struct plt_entries *plt, *plt_end;
|
|
|
- int c, *count;
|
|
|
-
|
|
|
- if (in_init(mod, loc)) {
|
|
|
- plt = (void *)mod->arch.init_plt->sh_addr;
|
|
|
- plt_end = (void *)plt + mod->arch.init_plt->sh_size;
|
|
|
- count = &mod->arch.init_plt_count;
|
|
|
- } else {
|
|
|
- plt = (void *)mod->arch.core_plt->sh_addr;
|
|
|
- plt_end = (void *)plt + mod->arch.core_plt->sh_size;
|
|
|
- count = &mod->arch.core_plt_count;
|
|
|
- }
|
|
|
+ const Elf32_Rel *x = a, *y = b;
|
|
|
+ int i;
|
|
|
|
|
|
- /* Look for an existing entry pointing to 'val' */
|
|
|
- for (c = *count; plt < plt_end; c -= PLT_ENT_COUNT, plt++) {
|
|
|
- int i;
|
|
|
-
|
|
|
- if (!c) {
|
|
|
- /* Populate a new set of entries */
|
|
|
- *plt = (struct plt_entries){
|
|
|
- { [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, },
|
|
|
- { val, }
|
|
|
- };
|
|
|
- ++*count;
|
|
|
- return (u32)plt->ldr;
|
|
|
- }
|
|
|
- for (i = 0; i < PLT_ENT_COUNT; i++) {
|
|
|
- if (!plt->lit[i]) {
|
|
|
- plt->lit[i] = val;
|
|
|
- ++*count;
|
|
|
- }
|
|
|
- if (plt->lit[i] == val)
|
|
|
- return (u32)&plt->ldr[i];
|
|
|
- }
|
|
|
+ /* sort by type and symbol index */
|
|
|
+ i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info));
|
|
|
+ if (i == 0)
|
|
|
+ i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info));
|
|
|
+ return i;
|
|
|
+}
|
|
|
+
|
|
|
+static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel)
|
|
|
+{
|
|
|
+ u32 *tval = (u32 *)(base + rel->r_offset);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Do a bitwise compare on the raw addend rather than fully decoding
|
|
|
+ * the offset and doing an arithmetic comparison.
|
|
|
+ * Note that a zero-addend jump/call relocation is encoded taking the
|
|
|
+ * PC bias into account, i.e., -8 for ARM and -4 for Thumb2.
|
|
|
+ */
|
|
|
+ switch (ELF32_R_TYPE(rel->r_info)) {
|
|
|
+ u16 upper, lower;
|
|
|
+
|
|
|
+ case R_ARM_THM_CALL:
|
|
|
+ case R_ARM_THM_JUMP24:
|
|
|
+ upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]);
|
|
|
+ lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]);
|
|
|
+
|
|
|
+ return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe;
|
|
|
+
|
|
|
+ case R_ARM_CALL:
|
|
|
+ case R_ARM_PC24:
|
|
|
+ case R_ARM_JUMP24:
|
|
|
+ return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe;
|
|
|
}
|
|
|
BUG();
|
|
|
}
|
|
|
|
|
|
-static int duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num,
|
|
|
- u32 mask)
|
|
|
+static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num)
|
|
|
{
|
|
|
- u32 *loc1, *loc2;
|
|
|
- int i;
|
|
|
+ const Elf32_Rel *prev;
|
|
|
|
|
|
- for (i = 0; i < num; i++) {
|
|
|
- if (rel[i].r_info != rel[num].r_info)
|
|
|
- continue;
|
|
|
+ /*
|
|
|
+ * Entries are sorted by type and symbol index. That means that,
|
|
|
+ * if a duplicate entry exists, it must be in the preceding
|
|
|
+ * slot.
|
|
|
+ */
|
|
|
+ if (!num)
|
|
|
+ return false;
|
|
|
|
|
|
- /*
|
|
|
- * Identical relocation types against identical symbols can
|
|
|
- * still result in different PLT entries if the addend in the
|
|
|
- * place is different. So resolve the target of the relocation
|
|
|
- * to compare the values.
|
|
|
- */
|
|
|
- loc1 = (u32 *)(base + rel[i].r_offset);
|
|
|
- loc2 = (u32 *)(base + rel[num].r_offset);
|
|
|
- if (((*loc1 ^ *loc2) & mask) == 0)
|
|
|
- return 1;
|
|
|
- }
|
|
|
- return 0;
|
|
|
+ prev = rel + num - 1;
|
|
|
+ return cmp_rel(rel + num, prev) == 0 &&
|
|
|
+ is_zero_addend_relocation(base, prev);
|
|
|
}
|
|
|
|
|
|
/* Count how many PLT entries we may need */
|
|
|
-static unsigned int count_plts(Elf32_Addr base, const Elf32_Rel *rel, int num)
|
|
|
+static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base,
|
|
|
+ const Elf32_Rel *rel, int num)
|
|
|
{
|
|
|
unsigned int ret = 0;
|
|
|
+ const Elf32_Sym *s;
|
|
|
int i;
|
|
|
|
|
|
- /*
|
|
|
- * Sure, this is order(n^2), but it's usually short, and not
|
|
|
- * time critical
|
|
|
- */
|
|
|
- for (i = 0; i < num; i++)
|
|
|
+ for (i = 0; i < num; i++) {
|
|
|
switch (ELF32_R_TYPE(rel[i].r_info)) {
|
|
|
case R_ARM_CALL:
|
|
|
case R_ARM_PC24:
|
|
|
case R_ARM_JUMP24:
|
|
|
- if (!duplicate_rel(base, rel, i,
|
|
|
- __opcode_to_mem_arm(0x00ffffff)))
|
|
|
- ret++;
|
|
|
- break;
|
|
|
-#ifdef CONFIG_THUMB2_KERNEL
|
|
|
case R_ARM_THM_CALL:
|
|
|
case R_ARM_THM_JUMP24:
|
|
|
- if (!duplicate_rel(base, rel, i,
|
|
|
- __opcode_to_mem_thumb32(0x07ff2fff)))
|
|
|
+ /*
|
|
|
+ * We only have to consider branch targets that resolve
|
|
|
+ * to undefined symbols. This is not simply a heuristic,
|
|
|
+ * it is a fundamental limitation, since the PLT itself
|
|
|
+ * is part of the module, and needs to be within range
|
|
|
+ * as well, so modules can never grow beyond that limit.
|
|
|
+ */
|
|
|
+ s = syms + ELF32_R_SYM(rel[i].r_info);
|
|
|
+ if (s->st_shndx != SHN_UNDEF)
|
|
|
+ break;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Jump relocations with non-zero addends against
|
|
|
+ * undefined symbols are supported by the ELF spec, but
|
|
|
+ * do not occur in practice (e.g., 'jump n bytes past
|
|
|
+ * the entry point of undefined function symbol f').
|
|
|
+ * So we need to support them, but there is no need to
|
|
|
+ * take them into consideration when trying to optimize
|
|
|
+ * this code. So let's only check for duplicates when
|
|
|
+ * the addend is zero.
|
|
|
+ */
|
|
|
+ if (!is_zero_addend_relocation(base, rel + i) ||
|
|
|
+ !duplicate_rel(base, rel, i))
|
|
|
ret++;
|
|
|
-#endif
|
|
|
}
|
|
|
+ }
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
|
|
|
char *secstrings, struct module *mod)
|
|
|
{
|
|
|
- unsigned long core_plts = 0, init_plts = 0;
|
|
|
+ unsigned long plts = 0;
|
|
|
Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum;
|
|
|
+ Elf32_Sym *syms = NULL;
|
|
|
|
|
|
/*
|
|
|
* To store the PLTs, we expand the .text section for core module code
|
|
|
- * and the .init.text section for initialization code.
|
|
|
+ * and for initialization code.
|
|
|
*/
|
|
|
- for (s = sechdrs; s < sechdrs_end; ++s)
|
|
|
- if (strcmp(".core.plt", secstrings + s->sh_name) == 0)
|
|
|
- mod->arch.core_plt = s;
|
|
|
- else if (strcmp(".init.plt", secstrings + s->sh_name) == 0)
|
|
|
- mod->arch.init_plt = s;
|
|
|
-
|
|
|
- if (!mod->arch.core_plt || !mod->arch.init_plt) {
|
|
|
- pr_err("%s: sections missing\n", mod->name);
|
|
|
+ for (s = sechdrs; s < sechdrs_end; ++s) {
|
|
|
+ if (strcmp(".plt", secstrings + s->sh_name) == 0)
|
|
|
+ mod->arch.plt = s;
|
|
|
+ else if (s->sh_type == SHT_SYMTAB)
|
|
|
+ syms = (Elf32_Sym *)s->sh_addr;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!mod->arch.plt) {
|
|
|
+ pr_err("%s: module PLT section missing\n", mod->name);
|
|
|
+ return -ENOEXEC;
|
|
|
+ }
|
|
|
+ if (!syms) {
|
|
|
+ pr_err("%s: module symtab section missing\n", mod->name);
|
|
|
return -ENOEXEC;
|
|
|
}
|
|
|
|
|
|
for (s = sechdrs + 1; s < sechdrs_end; ++s) {
|
|
|
- const Elf32_Rel *rels = (void *)ehdr + s->sh_offset;
|
|
|
+ Elf32_Rel *rels = (void *)ehdr + s->sh_offset;
|
|
|
int numrels = s->sh_size / sizeof(Elf32_Rel);
|
|
|
Elf32_Shdr *dstsec = sechdrs + s->sh_info;
|
|
|
|
|
|
if (s->sh_type != SHT_REL)
|
|
|
continue;
|
|
|
|
|
|
- if (strstr(secstrings + s->sh_name, ".init"))
|
|
|
- init_plts += count_plts(dstsec->sh_addr, rels, numrels);
|
|
|
- else
|
|
|
- core_plts += count_plts(dstsec->sh_addr, rels, numrels);
|
|
|
+ /* ignore relocations that operate on non-exec sections */
|
|
|
+ if (!(dstsec->sh_flags & SHF_EXECINSTR))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ /* sort by type and symbol index */
|
|
|
+ sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL);
|
|
|
+
|
|
|
+ plts += count_plts(syms, dstsec->sh_addr, rels, numrels);
|
|
|
}
|
|
|
|
|
|
- mod->arch.core_plt->sh_type = SHT_NOBITS;
|
|
|
- mod->arch.core_plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
|
- mod->arch.core_plt->sh_addralign = L1_CACHE_BYTES;
|
|
|
- mod->arch.core_plt->sh_size = round_up(core_plts * PLT_ENT_SIZE,
|
|
|
- sizeof(struct plt_entries));
|
|
|
- mod->arch.core_plt_count = 0;
|
|
|
-
|
|
|
- mod->arch.init_plt->sh_type = SHT_NOBITS;
|
|
|
- mod->arch.init_plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
|
- mod->arch.init_plt->sh_addralign = L1_CACHE_BYTES;
|
|
|
- mod->arch.init_plt->sh_size = round_up(init_plts * PLT_ENT_SIZE,
|
|
|
- sizeof(struct plt_entries));
|
|
|
- mod->arch.init_plt_count = 0;
|
|
|
- pr_debug("%s: core.plt=%x, init.plt=%x\n", __func__,
|
|
|
- mod->arch.core_plt->sh_size, mod->arch.init_plt->sh_size);
|
|
|
+ mod->arch.plt->sh_type = SHT_NOBITS;
|
|
|
+ mod->arch.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
|
+ mod->arch.plt->sh_addralign = L1_CACHE_BYTES;
|
|
|
+ mod->arch.plt->sh_size = round_up(plts * PLT_ENT_SIZE,
|
|
|
+ sizeof(struct plt_entries));
|
|
|
+ mod->arch.plt_count = 0;
|
|
|
+
|
|
|
+ pr_debug("%s: plt=%x\n", __func__, mod->arch.plt->sh_size);
|
|
|
return 0;
|
|
|
}
|