af_vsock.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033
  1. /*
  2. * VMware vSockets Driver
  3. *
  4. * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation version 2 and no later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. */
  15. /* Implementation notes:
  16. *
  17. * - There are two kinds of sockets: those created by user action (such as
  18. * calling socket(2)) and those created by incoming connection request packets.
  19. *
  20. * - There are two "global" tables, one for bound sockets (sockets that have
  21. * specified an address that they are responsible for) and one for connected
  22. * sockets (sockets that have established a connection with another socket).
  23. * These tables are "global" in that all sockets on the system are placed
  24. * within them. - Note, though, that the bound table contains an extra entry
  25. * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  26. * that list. The bound table is used solely for lookup of sockets when packets
  27. * are received and that's not necessary for SOCK_DGRAM sockets since we create
  28. * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
  29. * sockets out of the bound hash buckets will reduce the chance of collisions
  30. * when looking for SOCK_STREAM sockets and prevents us from having to check the
  31. * socket type in the hash table lookups.
  32. *
  33. * - Sockets created by user action will either be "client" sockets that
  34. * initiate a connection or "server" sockets that listen for connections; we do
  35. * not support simultaneous connects (two "client" sockets connecting).
  36. *
  37. * - "Server" sockets are referred to as listener sockets throughout this
  38. * implementation because they are in the TCP_LISTEN state. When a
  39. * connection request is received (the second kind of socket mentioned above),
  40. * we create a new socket and refer to it as a pending socket. These pending
  41. * sockets are placed on the pending connection list of the listener socket.
  42. * When future packets are received for the address the listener socket is
  43. * bound to, we check if the source of the packet is from one that has an
  44. * existing pending connection. If it does, we process the packet for the
  45. * pending socket. When that socket reaches the connected state, it is removed
  46. * from the listener socket's pending list and enqueued in the listener
  47. * socket's accept queue. Callers of accept(2) will accept connected sockets
  48. * from the listener socket's accept queue. If the socket cannot be accepted
  49. * for some reason then it is marked rejected. Once the connection is
  50. * accepted, it is owned by the user process and the responsibility for cleanup
  51. * falls with that user process.
  52. *
  53. * - It is possible that these pending sockets will never reach the connected
  54. * state; in fact, we may never receive another packet after the connection
  55. * request. Because of this, we must schedule a cleanup function to run in the
  56. * future, after some amount of time passes where a connection should have been
  57. * established. This function ensures that the socket is off all lists so it
  58. * cannot be retrieved, then drops all references to the socket so it is cleaned
  59. * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
  60. * function will also cleanup rejected sockets, those that reach the connected
  61. * state but leave it before they have been accepted.
  62. *
  63. * - Lock ordering for pending or accept queue sockets is:
  64. *
  65. * lock_sock(listener);
  66. * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  67. *
  68. * Using explicit nested locking keeps lockdep happy since normally only one
  69. * lock of a given class may be taken at a time.
  70. *
  71. * - Sockets created by user action will be cleaned up when the user process
  72. * calls close(2), causing our release implementation to be called. Our release
  73. * implementation will perform some cleanup then drop the last reference so our
  74. * sk_destruct implementation is invoked. Our sk_destruct implementation will
  75. * perform additional cleanup that's common for both types of sockets.
  76. *
  77. * - A socket's reference count is what ensures that the structure won't be
  78. * freed. Each entry in a list (such as the "global" bound and connected tables
  79. * and the listener socket's pending list and connected queue) ensures a
  80. * reference. When we defer work until process context and pass a socket as our
  81. * argument, we must ensure the reference count is increased to ensure the
  82. * socket isn't freed before the function is run; the deferred function will
  83. * then drop the reference.
  84. *
  85. * - sk->sk_state uses the TCP state constants because they are widely used by
  86. * other address families and exposed to userspace tools like ss(8):
  87. *
  88. * TCP_CLOSE - unconnected
  89. * TCP_SYN_SENT - connecting
  90. * TCP_ESTABLISHED - connected
  91. * TCP_CLOSING - disconnecting
  92. * TCP_LISTEN - listening
  93. */
  94. #include <linux/types.h>
  95. #include <linux/bitops.h>
  96. #include <linux/cred.h>
  97. #include <linux/init.h>
  98. #include <linux/io.h>
  99. #include <linux/kernel.h>
  100. #include <linux/sched/signal.h>
  101. #include <linux/kmod.h>
  102. #include <linux/list.h>
  103. #include <linux/miscdevice.h>
  104. #include <linux/module.h>
  105. #include <linux/mutex.h>
  106. #include <linux/net.h>
  107. #include <linux/poll.h>
  108. #include <linux/skbuff.h>
  109. #include <linux/smp.h>
  110. #include <linux/socket.h>
  111. #include <linux/stddef.h>
  112. #include <linux/unistd.h>
  113. #include <linux/wait.h>
  114. #include <linux/workqueue.h>
  115. #include <net/sock.h>
  116. #include <net/af_vsock.h>
  117. static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
  118. static void vsock_sk_destruct(struct sock *sk);
  119. static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
  120. /* Protocol family. */
  121. static struct proto vsock_proto = {
  122. .name = "AF_VSOCK",
  123. .owner = THIS_MODULE,
  124. .obj_size = sizeof(struct vsock_sock),
  125. };
  126. /* The default peer timeout indicates how long we will wait for a peer response
  127. * to a control message.
  128. */
  129. #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
  130. static const struct vsock_transport *transport;
  131. static DEFINE_MUTEX(vsock_register_mutex);
  132. /**** EXPORTS ****/
  133. /* Get the ID of the local context. This is transport dependent. */
  134. int vm_sockets_get_local_cid(void)
  135. {
  136. return transport->get_local_cid();
  137. }
  138. EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
  139. /**** UTILS ****/
  140. /* Each bound VSocket is stored in the bind hash table and each connected
  141. * VSocket is stored in the connected hash table.
  142. *
  143. * Unbound sockets are all put on the same list attached to the end of the hash
  144. * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
  145. * the bucket that their local address hashes to (vsock_bound_sockets(addr)
  146. * represents the list that addr hashes to).
  147. *
  148. * Specifically, we initialize the vsock_bind_table array to a size of
  149. * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
  150. * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
  151. * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
  152. * mods with VSOCK_HASH_SIZE to ensure this.
  153. */
  154. #define MAX_PORT_RETRIES 24
  155. #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
  156. #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
  157. #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
  158. /* XXX This can probably be implemented in a better way. */
  159. #define VSOCK_CONN_HASH(src, dst) \
  160. (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
  161. #define vsock_connected_sockets(src, dst) \
  162. (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
  163. #define vsock_connected_sockets_vsk(vsk) \
  164. vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
  165. struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
  166. EXPORT_SYMBOL_GPL(vsock_bind_table);
  167. struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
  168. EXPORT_SYMBOL_GPL(vsock_connected_table);
  169. DEFINE_SPINLOCK(vsock_table_lock);
  170. EXPORT_SYMBOL_GPL(vsock_table_lock);
  171. /* Autobind this socket to the local address if necessary. */
  172. static int vsock_auto_bind(struct vsock_sock *vsk)
  173. {
  174. struct sock *sk = sk_vsock(vsk);
  175. struct sockaddr_vm local_addr;
  176. if (vsock_addr_bound(&vsk->local_addr))
  177. return 0;
  178. vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
  179. return __vsock_bind(sk, &local_addr);
  180. }
  181. static int __init vsock_init_tables(void)
  182. {
  183. int i;
  184. for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
  185. INIT_LIST_HEAD(&vsock_bind_table[i]);
  186. for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
  187. INIT_LIST_HEAD(&vsock_connected_table[i]);
  188. return 0;
  189. }
  190. static void __vsock_insert_bound(struct list_head *list,
  191. struct vsock_sock *vsk)
  192. {
  193. sock_hold(&vsk->sk);
  194. list_add(&vsk->bound_table, list);
  195. }
  196. static void __vsock_insert_connected(struct list_head *list,
  197. struct vsock_sock *vsk)
  198. {
  199. sock_hold(&vsk->sk);
  200. list_add(&vsk->connected_table, list);
  201. }
  202. static void __vsock_remove_bound(struct vsock_sock *vsk)
  203. {
  204. list_del_init(&vsk->bound_table);
  205. sock_put(&vsk->sk);
  206. }
  207. static void __vsock_remove_connected(struct vsock_sock *vsk)
  208. {
  209. list_del_init(&vsk->connected_table);
  210. sock_put(&vsk->sk);
  211. }
  212. static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
  213. {
  214. struct vsock_sock *vsk;
  215. list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
  216. if (addr->svm_port == vsk->local_addr.svm_port)
  217. return sk_vsock(vsk);
  218. return NULL;
  219. }
  220. static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
  221. struct sockaddr_vm *dst)
  222. {
  223. struct vsock_sock *vsk;
  224. list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
  225. connected_table) {
  226. if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
  227. dst->svm_port == vsk->local_addr.svm_port) {
  228. return sk_vsock(vsk);
  229. }
  230. }
  231. return NULL;
  232. }
  233. static void vsock_insert_unbound(struct vsock_sock *vsk)
  234. {
  235. spin_lock_bh(&vsock_table_lock);
  236. __vsock_insert_bound(vsock_unbound_sockets, vsk);
  237. spin_unlock_bh(&vsock_table_lock);
  238. }
  239. void vsock_insert_connected(struct vsock_sock *vsk)
  240. {
  241. struct list_head *list = vsock_connected_sockets(
  242. &vsk->remote_addr, &vsk->local_addr);
  243. spin_lock_bh(&vsock_table_lock);
  244. __vsock_insert_connected(list, vsk);
  245. spin_unlock_bh(&vsock_table_lock);
  246. }
  247. EXPORT_SYMBOL_GPL(vsock_insert_connected);
  248. void vsock_remove_bound(struct vsock_sock *vsk)
  249. {
  250. spin_lock_bh(&vsock_table_lock);
  251. __vsock_remove_bound(vsk);
  252. spin_unlock_bh(&vsock_table_lock);
  253. }
  254. EXPORT_SYMBOL_GPL(vsock_remove_bound);
  255. void vsock_remove_connected(struct vsock_sock *vsk)
  256. {
  257. spin_lock_bh(&vsock_table_lock);
  258. __vsock_remove_connected(vsk);
  259. spin_unlock_bh(&vsock_table_lock);
  260. }
  261. EXPORT_SYMBOL_GPL(vsock_remove_connected);
  262. struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
  263. {
  264. struct sock *sk;
  265. spin_lock_bh(&vsock_table_lock);
  266. sk = __vsock_find_bound_socket(addr);
  267. if (sk)
  268. sock_hold(sk);
  269. spin_unlock_bh(&vsock_table_lock);
  270. return sk;
  271. }
  272. EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
  273. struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
  274. struct sockaddr_vm *dst)
  275. {
  276. struct sock *sk;
  277. spin_lock_bh(&vsock_table_lock);
  278. sk = __vsock_find_connected_socket(src, dst);
  279. if (sk)
  280. sock_hold(sk);
  281. spin_unlock_bh(&vsock_table_lock);
  282. return sk;
  283. }
  284. EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
  285. static bool vsock_in_bound_table(struct vsock_sock *vsk)
  286. {
  287. bool ret;
  288. spin_lock_bh(&vsock_table_lock);
  289. ret = __vsock_in_bound_table(vsk);
  290. spin_unlock_bh(&vsock_table_lock);
  291. return ret;
  292. }
  293. static bool vsock_in_connected_table(struct vsock_sock *vsk)
  294. {
  295. bool ret;
  296. spin_lock_bh(&vsock_table_lock);
  297. ret = __vsock_in_connected_table(vsk);
  298. spin_unlock_bh(&vsock_table_lock);
  299. return ret;
  300. }
  301. void vsock_remove_sock(struct vsock_sock *vsk)
  302. {
  303. if (vsock_in_bound_table(vsk))
  304. vsock_remove_bound(vsk);
  305. if (vsock_in_connected_table(vsk))
  306. vsock_remove_connected(vsk);
  307. }
  308. EXPORT_SYMBOL_GPL(vsock_remove_sock);
  309. void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
  310. {
  311. int i;
  312. spin_lock_bh(&vsock_table_lock);
  313. for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
  314. struct vsock_sock *vsk;
  315. list_for_each_entry(vsk, &vsock_connected_table[i],
  316. connected_table)
  317. fn(sk_vsock(vsk));
  318. }
  319. spin_unlock_bh(&vsock_table_lock);
  320. }
  321. EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
  322. void vsock_add_pending(struct sock *listener, struct sock *pending)
  323. {
  324. struct vsock_sock *vlistener;
  325. struct vsock_sock *vpending;
  326. vlistener = vsock_sk(listener);
  327. vpending = vsock_sk(pending);
  328. sock_hold(pending);
  329. sock_hold(listener);
  330. list_add_tail(&vpending->pending_links, &vlistener->pending_links);
  331. }
  332. EXPORT_SYMBOL_GPL(vsock_add_pending);
  333. void vsock_remove_pending(struct sock *listener, struct sock *pending)
  334. {
  335. struct vsock_sock *vpending = vsock_sk(pending);
  336. list_del_init(&vpending->pending_links);
  337. sock_put(listener);
  338. sock_put(pending);
  339. }
  340. EXPORT_SYMBOL_GPL(vsock_remove_pending);
  341. void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
  342. {
  343. struct vsock_sock *vlistener;
  344. struct vsock_sock *vconnected;
  345. vlistener = vsock_sk(listener);
  346. vconnected = vsock_sk(connected);
  347. sock_hold(connected);
  348. sock_hold(listener);
  349. list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
  350. }
  351. EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
  352. static struct sock *vsock_dequeue_accept(struct sock *listener)
  353. {
  354. struct vsock_sock *vlistener;
  355. struct vsock_sock *vconnected;
  356. vlistener = vsock_sk(listener);
  357. if (list_empty(&vlistener->accept_queue))
  358. return NULL;
  359. vconnected = list_entry(vlistener->accept_queue.next,
  360. struct vsock_sock, accept_queue);
  361. list_del_init(&vconnected->accept_queue);
  362. sock_put(listener);
  363. /* The caller will need a reference on the connected socket so we let
  364. * it call sock_put().
  365. */
  366. return sk_vsock(vconnected);
  367. }
  368. static bool vsock_is_accept_queue_empty(struct sock *sk)
  369. {
  370. struct vsock_sock *vsk = vsock_sk(sk);
  371. return list_empty(&vsk->accept_queue);
  372. }
  373. static bool vsock_is_pending(struct sock *sk)
  374. {
  375. struct vsock_sock *vsk = vsock_sk(sk);
  376. return !list_empty(&vsk->pending_links);
  377. }
  378. static int vsock_send_shutdown(struct sock *sk, int mode)
  379. {
  380. return transport->shutdown(vsock_sk(sk), mode);
  381. }
  382. static void vsock_pending_work(struct work_struct *work)
  383. {
  384. struct sock *sk;
  385. struct sock *listener;
  386. struct vsock_sock *vsk;
  387. bool cleanup;
  388. vsk = container_of(work, struct vsock_sock, pending_work.work);
  389. sk = sk_vsock(vsk);
  390. listener = vsk->listener;
  391. cleanup = true;
  392. lock_sock(listener);
  393. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  394. if (vsock_is_pending(sk)) {
  395. vsock_remove_pending(listener, sk);
  396. listener->sk_ack_backlog--;
  397. } else if (!vsk->rejected) {
  398. /* We are not on the pending list and accept() did not reject
  399. * us, so we must have been accepted by our user process. We
  400. * just need to drop our references to the sockets and be on
  401. * our way.
  402. */
  403. cleanup = false;
  404. goto out;
  405. }
  406. /* We need to remove ourself from the global connected sockets list so
  407. * incoming packets can't find this socket, and to reduce the reference
  408. * count.
  409. */
  410. if (vsock_in_connected_table(vsk))
  411. vsock_remove_connected(vsk);
  412. sk->sk_state = TCP_CLOSE;
  413. out:
  414. release_sock(sk);
  415. release_sock(listener);
  416. if (cleanup)
  417. sock_put(sk);
  418. sock_put(sk);
  419. sock_put(listener);
  420. }
  421. /**** SOCKET OPERATIONS ****/
  422. static int __vsock_bind_stream(struct vsock_sock *vsk,
  423. struct sockaddr_vm *addr)
  424. {
  425. static u32 port = LAST_RESERVED_PORT + 1;
  426. struct sockaddr_vm new_addr;
  427. vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
  428. if (addr->svm_port == VMADDR_PORT_ANY) {
  429. bool found = false;
  430. unsigned int i;
  431. for (i = 0; i < MAX_PORT_RETRIES; i++) {
  432. if (port <= LAST_RESERVED_PORT)
  433. port = LAST_RESERVED_PORT + 1;
  434. new_addr.svm_port = port++;
  435. if (!__vsock_find_bound_socket(&new_addr)) {
  436. found = true;
  437. break;
  438. }
  439. }
  440. if (!found)
  441. return -EADDRNOTAVAIL;
  442. } else {
  443. /* If port is in reserved range, ensure caller
  444. * has necessary privileges.
  445. */
  446. if (addr->svm_port <= LAST_RESERVED_PORT &&
  447. !capable(CAP_NET_BIND_SERVICE)) {
  448. return -EACCES;
  449. }
  450. if (__vsock_find_bound_socket(&new_addr))
  451. return -EADDRINUSE;
  452. }
  453. vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
  454. /* Remove stream sockets from the unbound list and add them to the hash
  455. * table for easy lookup by its address. The unbound list is simply an
  456. * extra entry at the end of the hash table, a trick used by AF_UNIX.
  457. */
  458. __vsock_remove_bound(vsk);
  459. __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
  460. return 0;
  461. }
  462. static int __vsock_bind_dgram(struct vsock_sock *vsk,
  463. struct sockaddr_vm *addr)
  464. {
  465. return transport->dgram_bind(vsk, addr);
  466. }
  467. static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
  468. {
  469. struct vsock_sock *vsk = vsock_sk(sk);
  470. u32 cid;
  471. int retval;
  472. /* First ensure this socket isn't already bound. */
  473. if (vsock_addr_bound(&vsk->local_addr))
  474. return -EINVAL;
  475. /* Now bind to the provided address or select appropriate values if
  476. * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
  477. * like AF_INET prevents binding to a non-local IP address (in most
  478. * cases), we only allow binding to the local CID.
  479. */
  480. cid = transport->get_local_cid();
  481. if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
  482. return -EADDRNOTAVAIL;
  483. switch (sk->sk_socket->type) {
  484. case SOCK_STREAM:
  485. spin_lock_bh(&vsock_table_lock);
  486. retval = __vsock_bind_stream(vsk, addr);
  487. spin_unlock_bh(&vsock_table_lock);
  488. break;
  489. case SOCK_DGRAM:
  490. retval = __vsock_bind_dgram(vsk, addr);
  491. break;
  492. default:
  493. retval = -EINVAL;
  494. break;
  495. }
  496. return retval;
  497. }
  498. static void vsock_connect_timeout(struct work_struct *work);
  499. struct sock *__vsock_create(struct net *net,
  500. struct socket *sock,
  501. struct sock *parent,
  502. gfp_t priority,
  503. unsigned short type,
  504. int kern)
  505. {
  506. struct sock *sk;
  507. struct vsock_sock *psk;
  508. struct vsock_sock *vsk;
  509. sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
  510. if (!sk)
  511. return NULL;
  512. sock_init_data(sock, sk);
  513. /* sk->sk_type is normally set in sock_init_data, but only if sock is
  514. * non-NULL. We make sure that our sockets always have a type by
  515. * setting it here if needed.
  516. */
  517. if (!sock)
  518. sk->sk_type = type;
  519. vsk = vsock_sk(sk);
  520. vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
  521. vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
  522. sk->sk_destruct = vsock_sk_destruct;
  523. sk->sk_backlog_rcv = vsock_queue_rcv_skb;
  524. sock_reset_flag(sk, SOCK_DONE);
  525. INIT_LIST_HEAD(&vsk->bound_table);
  526. INIT_LIST_HEAD(&vsk->connected_table);
  527. vsk->listener = NULL;
  528. INIT_LIST_HEAD(&vsk->pending_links);
  529. INIT_LIST_HEAD(&vsk->accept_queue);
  530. vsk->rejected = false;
  531. vsk->sent_request = false;
  532. vsk->ignore_connecting_rst = false;
  533. vsk->peer_shutdown = 0;
  534. INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
  535. INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
  536. psk = parent ? vsock_sk(parent) : NULL;
  537. if (parent) {
  538. vsk->trusted = psk->trusted;
  539. vsk->owner = get_cred(psk->owner);
  540. vsk->connect_timeout = psk->connect_timeout;
  541. } else {
  542. vsk->trusted = capable(CAP_NET_ADMIN);
  543. vsk->owner = get_current_cred();
  544. vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
  545. }
  546. if (transport->init(vsk, psk) < 0) {
  547. sk_free(sk);
  548. return NULL;
  549. }
  550. if (sock)
  551. vsock_insert_unbound(vsk);
  552. return sk;
  553. }
  554. EXPORT_SYMBOL_GPL(__vsock_create);
  555. static void __vsock_release(struct sock *sk)
  556. {
  557. if (sk) {
  558. struct sk_buff *skb;
  559. struct sock *pending;
  560. struct vsock_sock *vsk;
  561. vsk = vsock_sk(sk);
  562. pending = NULL; /* Compiler warning. */
  563. transport->release(vsk);
  564. lock_sock(sk);
  565. sock_orphan(sk);
  566. sk->sk_shutdown = SHUTDOWN_MASK;
  567. while ((skb = skb_dequeue(&sk->sk_receive_queue)))
  568. kfree_skb(skb);
  569. /* Clean up any sockets that never were accepted. */
  570. while ((pending = vsock_dequeue_accept(sk)) != NULL) {
  571. __vsock_release(pending);
  572. sock_put(pending);
  573. }
  574. release_sock(sk);
  575. sock_put(sk);
  576. }
  577. }
  578. static void vsock_sk_destruct(struct sock *sk)
  579. {
  580. struct vsock_sock *vsk = vsock_sk(sk);
  581. transport->destruct(vsk);
  582. /* When clearing these addresses, there's no need to set the family and
  583. * possibly register the address family with the kernel.
  584. */
  585. vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
  586. vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
  587. put_cred(vsk->owner);
  588. }
  589. static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  590. {
  591. int err;
  592. err = sock_queue_rcv_skb(sk, skb);
  593. if (err)
  594. kfree_skb(skb);
  595. return err;
  596. }
  597. s64 vsock_stream_has_data(struct vsock_sock *vsk)
  598. {
  599. return transport->stream_has_data(vsk);
  600. }
  601. EXPORT_SYMBOL_GPL(vsock_stream_has_data);
  602. s64 vsock_stream_has_space(struct vsock_sock *vsk)
  603. {
  604. return transport->stream_has_space(vsk);
  605. }
  606. EXPORT_SYMBOL_GPL(vsock_stream_has_space);
  607. static int vsock_release(struct socket *sock)
  608. {
  609. __vsock_release(sock->sk);
  610. sock->sk = NULL;
  611. sock->state = SS_FREE;
  612. return 0;
  613. }
  614. static int
  615. vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
  616. {
  617. int err;
  618. struct sock *sk;
  619. struct sockaddr_vm *vm_addr;
  620. sk = sock->sk;
  621. if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
  622. return -EINVAL;
  623. lock_sock(sk);
  624. err = __vsock_bind(sk, vm_addr);
  625. release_sock(sk);
  626. return err;
  627. }
  628. static int vsock_getname(struct socket *sock,
  629. struct sockaddr *addr, int peer)
  630. {
  631. int err;
  632. struct sock *sk;
  633. struct vsock_sock *vsk;
  634. struct sockaddr_vm *vm_addr;
  635. sk = sock->sk;
  636. vsk = vsock_sk(sk);
  637. err = 0;
  638. lock_sock(sk);
  639. if (peer) {
  640. if (sock->state != SS_CONNECTED) {
  641. err = -ENOTCONN;
  642. goto out;
  643. }
  644. vm_addr = &vsk->remote_addr;
  645. } else {
  646. vm_addr = &vsk->local_addr;
  647. }
  648. if (!vm_addr) {
  649. err = -EINVAL;
  650. goto out;
  651. }
  652. /* sys_getsockname() and sys_getpeername() pass us a
  653. * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
  654. * that macro is defined in socket.c instead of .h, so we hardcode its
  655. * value here.
  656. */
  657. BUILD_BUG_ON(sizeof(*vm_addr) > 128);
  658. memcpy(addr, vm_addr, sizeof(*vm_addr));
  659. err = sizeof(*vm_addr);
  660. out:
  661. release_sock(sk);
  662. return err;
  663. }
  664. static int vsock_shutdown(struct socket *sock, int mode)
  665. {
  666. int err;
  667. struct sock *sk;
  668. /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
  669. * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
  670. * here like the other address families do. Note also that the
  671. * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
  672. * which is what we want.
  673. */
  674. mode++;
  675. if ((mode & ~SHUTDOWN_MASK) || !mode)
  676. return -EINVAL;
  677. /* If this is a STREAM socket and it is not connected then bail out
  678. * immediately. If it is a DGRAM socket then we must first kick the
  679. * socket so that it wakes up from any sleeping calls, for example
  680. * recv(), and then afterwards return the error.
  681. */
  682. sk = sock->sk;
  683. if (sock->state == SS_UNCONNECTED) {
  684. err = -ENOTCONN;
  685. if (sk->sk_type == SOCK_STREAM)
  686. return err;
  687. } else {
  688. sock->state = SS_DISCONNECTING;
  689. err = 0;
  690. }
  691. /* Receive and send shutdowns are treated alike. */
  692. mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
  693. if (mode) {
  694. lock_sock(sk);
  695. sk->sk_shutdown |= mode;
  696. sk->sk_state_change(sk);
  697. release_sock(sk);
  698. if (sk->sk_type == SOCK_STREAM) {
  699. sock_reset_flag(sk, SOCK_DONE);
  700. vsock_send_shutdown(sk, mode);
  701. }
  702. }
  703. return err;
  704. }
  705. static __poll_t vsock_poll(struct file *file, struct socket *sock,
  706. poll_table *wait)
  707. {
  708. struct sock *sk;
  709. __poll_t mask;
  710. struct vsock_sock *vsk;
  711. sk = sock->sk;
  712. vsk = vsock_sk(sk);
  713. poll_wait(file, sk_sleep(sk), wait);
  714. mask = 0;
  715. if (sk->sk_err)
  716. /* Signify that there has been an error on this socket. */
  717. mask |= EPOLLERR;
  718. /* INET sockets treat local write shutdown and peer write shutdown as a
  719. * case of EPOLLHUP set.
  720. */
  721. if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
  722. ((sk->sk_shutdown & SEND_SHUTDOWN) &&
  723. (vsk->peer_shutdown & SEND_SHUTDOWN))) {
  724. mask |= EPOLLHUP;
  725. }
  726. if (sk->sk_shutdown & RCV_SHUTDOWN ||
  727. vsk->peer_shutdown & SEND_SHUTDOWN) {
  728. mask |= EPOLLRDHUP;
  729. }
  730. if (sock->type == SOCK_DGRAM) {
  731. /* For datagram sockets we can read if there is something in
  732. * the queue and write as long as the socket isn't shutdown for
  733. * sending.
  734. */
  735. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  736. (sk->sk_shutdown & RCV_SHUTDOWN)) {
  737. mask |= EPOLLIN | EPOLLRDNORM;
  738. }
  739. if (!(sk->sk_shutdown & SEND_SHUTDOWN))
  740. mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
  741. } else if (sock->type == SOCK_STREAM) {
  742. lock_sock(sk);
  743. /* Listening sockets that have connections in their accept
  744. * queue can be read.
  745. */
  746. if (sk->sk_state == TCP_LISTEN
  747. && !vsock_is_accept_queue_empty(sk))
  748. mask |= EPOLLIN | EPOLLRDNORM;
  749. /* If there is something in the queue then we can read. */
  750. if (transport->stream_is_active(vsk) &&
  751. !(sk->sk_shutdown & RCV_SHUTDOWN)) {
  752. bool data_ready_now = false;
  753. int ret = transport->notify_poll_in(
  754. vsk, 1, &data_ready_now);
  755. if (ret < 0) {
  756. mask |= EPOLLERR;
  757. } else {
  758. if (data_ready_now)
  759. mask |= EPOLLIN | EPOLLRDNORM;
  760. }
  761. }
  762. /* Sockets whose connections have been closed, reset, or
  763. * terminated should also be considered read, and we check the
  764. * shutdown flag for that.
  765. */
  766. if (sk->sk_shutdown & RCV_SHUTDOWN ||
  767. vsk->peer_shutdown & SEND_SHUTDOWN) {
  768. mask |= EPOLLIN | EPOLLRDNORM;
  769. }
  770. /* Connected sockets that can produce data can be written. */
  771. if (sk->sk_state == TCP_ESTABLISHED) {
  772. if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
  773. bool space_avail_now = false;
  774. int ret = transport->notify_poll_out(
  775. vsk, 1, &space_avail_now);
  776. if (ret < 0) {
  777. mask |= EPOLLERR;
  778. } else {
  779. if (space_avail_now)
  780. /* Remove EPOLLWRBAND since INET
  781. * sockets are not setting it.
  782. */
  783. mask |= EPOLLOUT | EPOLLWRNORM;
  784. }
  785. }
  786. }
  787. /* Simulate INET socket poll behaviors, which sets
  788. * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
  789. * but local send is not shutdown.
  790. */
  791. if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
  792. if (!(sk->sk_shutdown & SEND_SHUTDOWN))
  793. mask |= EPOLLOUT | EPOLLWRNORM;
  794. }
  795. release_sock(sk);
  796. }
  797. return mask;
  798. }
  799. static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
  800. size_t len)
  801. {
  802. int err;
  803. struct sock *sk;
  804. struct vsock_sock *vsk;
  805. struct sockaddr_vm *remote_addr;
  806. if (msg->msg_flags & MSG_OOB)
  807. return -EOPNOTSUPP;
  808. /* For now, MSG_DONTWAIT is always assumed... */
  809. err = 0;
  810. sk = sock->sk;
  811. vsk = vsock_sk(sk);
  812. lock_sock(sk);
  813. err = vsock_auto_bind(vsk);
  814. if (err)
  815. goto out;
  816. /* If the provided message contains an address, use that. Otherwise
  817. * fall back on the socket's remote handle (if it has been connected).
  818. */
  819. if (msg->msg_name &&
  820. vsock_addr_cast(msg->msg_name, msg->msg_namelen,
  821. &remote_addr) == 0) {
  822. /* Ensure this address is of the right type and is a valid
  823. * destination.
  824. */
  825. if (remote_addr->svm_cid == VMADDR_CID_ANY)
  826. remote_addr->svm_cid = transport->get_local_cid();
  827. if (!vsock_addr_bound(remote_addr)) {
  828. err = -EINVAL;
  829. goto out;
  830. }
  831. } else if (sock->state == SS_CONNECTED) {
  832. remote_addr = &vsk->remote_addr;
  833. if (remote_addr->svm_cid == VMADDR_CID_ANY)
  834. remote_addr->svm_cid = transport->get_local_cid();
  835. /* XXX Should connect() or this function ensure remote_addr is
  836. * bound?
  837. */
  838. if (!vsock_addr_bound(&vsk->remote_addr)) {
  839. err = -EINVAL;
  840. goto out;
  841. }
  842. } else {
  843. err = -EINVAL;
  844. goto out;
  845. }
  846. if (!transport->dgram_allow(remote_addr->svm_cid,
  847. remote_addr->svm_port)) {
  848. err = -EINVAL;
  849. goto out;
  850. }
  851. err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
  852. out:
  853. release_sock(sk);
  854. return err;
  855. }
  856. static int vsock_dgram_connect(struct socket *sock,
  857. struct sockaddr *addr, int addr_len, int flags)
  858. {
  859. int err;
  860. struct sock *sk;
  861. struct vsock_sock *vsk;
  862. struct sockaddr_vm *remote_addr;
  863. sk = sock->sk;
  864. vsk = vsock_sk(sk);
  865. err = vsock_addr_cast(addr, addr_len, &remote_addr);
  866. if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
  867. lock_sock(sk);
  868. vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
  869. VMADDR_PORT_ANY);
  870. sock->state = SS_UNCONNECTED;
  871. release_sock(sk);
  872. return 0;
  873. } else if (err != 0)
  874. return -EINVAL;
  875. lock_sock(sk);
  876. err = vsock_auto_bind(vsk);
  877. if (err)
  878. goto out;
  879. if (!transport->dgram_allow(remote_addr->svm_cid,
  880. remote_addr->svm_port)) {
  881. err = -EINVAL;
  882. goto out;
  883. }
  884. memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
  885. sock->state = SS_CONNECTED;
  886. out:
  887. release_sock(sk);
  888. return err;
  889. }
  890. static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
  891. size_t len, int flags)
  892. {
  893. return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
  894. }
  895. static const struct proto_ops vsock_dgram_ops = {
  896. .family = PF_VSOCK,
  897. .owner = THIS_MODULE,
  898. .release = vsock_release,
  899. .bind = vsock_bind,
  900. .connect = vsock_dgram_connect,
  901. .socketpair = sock_no_socketpair,
  902. .accept = sock_no_accept,
  903. .getname = vsock_getname,
  904. .poll = vsock_poll,
  905. .ioctl = sock_no_ioctl,
  906. .listen = sock_no_listen,
  907. .shutdown = vsock_shutdown,
  908. .setsockopt = sock_no_setsockopt,
  909. .getsockopt = sock_no_getsockopt,
  910. .sendmsg = vsock_dgram_sendmsg,
  911. .recvmsg = vsock_dgram_recvmsg,
  912. .mmap = sock_no_mmap,
  913. .sendpage = sock_no_sendpage,
  914. };
  915. static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
  916. {
  917. if (!transport->cancel_pkt)
  918. return -EOPNOTSUPP;
  919. return transport->cancel_pkt(vsk);
  920. }
  921. static void vsock_connect_timeout(struct work_struct *work)
  922. {
  923. struct sock *sk;
  924. struct vsock_sock *vsk;
  925. int cancel = 0;
  926. vsk = container_of(work, struct vsock_sock, connect_work.work);
  927. sk = sk_vsock(vsk);
  928. lock_sock(sk);
  929. if (sk->sk_state == TCP_SYN_SENT &&
  930. (sk->sk_shutdown != SHUTDOWN_MASK)) {
  931. sk->sk_state = TCP_CLOSE;
  932. sk->sk_err = ETIMEDOUT;
  933. sk->sk_error_report(sk);
  934. cancel = 1;
  935. }
  936. release_sock(sk);
  937. if (cancel)
  938. vsock_transport_cancel_pkt(vsk);
  939. sock_put(sk);
  940. }
  941. static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
  942. int addr_len, int flags)
  943. {
  944. int err;
  945. struct sock *sk;
  946. struct vsock_sock *vsk;
  947. struct sockaddr_vm *remote_addr;
  948. long timeout;
  949. DEFINE_WAIT(wait);
  950. err = 0;
  951. sk = sock->sk;
  952. vsk = vsock_sk(sk);
  953. lock_sock(sk);
  954. /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
  955. switch (sock->state) {
  956. case SS_CONNECTED:
  957. err = -EISCONN;
  958. goto out;
  959. case SS_DISCONNECTING:
  960. err = -EINVAL;
  961. goto out;
  962. case SS_CONNECTING:
  963. /* This continues on so we can move sock into the SS_CONNECTED
  964. * state once the connection has completed (at which point err
  965. * will be set to zero also). Otherwise, we will either wait
  966. * for the connection or return -EALREADY should this be a
  967. * non-blocking call.
  968. */
  969. err = -EALREADY;
  970. break;
  971. default:
  972. if ((sk->sk_state == TCP_LISTEN) ||
  973. vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
  974. err = -EINVAL;
  975. goto out;
  976. }
  977. /* The hypervisor and well-known contexts do not have socket
  978. * endpoints.
  979. */
  980. if (!transport->stream_allow(remote_addr->svm_cid,
  981. remote_addr->svm_port)) {
  982. err = -ENETUNREACH;
  983. goto out;
  984. }
  985. /* Set the remote address that we are connecting to. */
  986. memcpy(&vsk->remote_addr, remote_addr,
  987. sizeof(vsk->remote_addr));
  988. err = vsock_auto_bind(vsk);
  989. if (err)
  990. goto out;
  991. sk->sk_state = TCP_SYN_SENT;
  992. err = transport->connect(vsk);
  993. if (err < 0)
  994. goto out;
  995. /* Mark sock as connecting and set the error code to in
  996. * progress in case this is a non-blocking connect.
  997. */
  998. sock->state = SS_CONNECTING;
  999. err = -EINPROGRESS;
  1000. }
  1001. /* The receive path will handle all communication until we are able to
  1002. * enter the connected state. Here we wait for the connection to be
  1003. * completed or a notification of an error.
  1004. */
  1005. timeout = vsk->connect_timeout;
  1006. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1007. while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
  1008. if (flags & O_NONBLOCK) {
  1009. /* If we're not going to block, we schedule a timeout
  1010. * function to generate a timeout on the connection
  1011. * attempt, in case the peer doesn't respond in a
  1012. * timely manner. We hold on to the socket until the
  1013. * timeout fires.
  1014. */
  1015. sock_hold(sk);
  1016. schedule_delayed_work(&vsk->connect_work, timeout);
  1017. /* Skip ahead to preserve error code set above. */
  1018. goto out_wait;
  1019. }
  1020. release_sock(sk);
  1021. timeout = schedule_timeout(timeout);
  1022. lock_sock(sk);
  1023. if (signal_pending(current)) {
  1024. err = sock_intr_errno(timeout);
  1025. sk->sk_state = TCP_CLOSE;
  1026. sock->state = SS_UNCONNECTED;
  1027. vsock_transport_cancel_pkt(vsk);
  1028. goto out_wait;
  1029. } else if (timeout == 0) {
  1030. err = -ETIMEDOUT;
  1031. sk->sk_state = TCP_CLOSE;
  1032. sock->state = SS_UNCONNECTED;
  1033. vsock_transport_cancel_pkt(vsk);
  1034. goto out_wait;
  1035. }
  1036. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1037. }
  1038. if (sk->sk_err) {
  1039. err = -sk->sk_err;
  1040. sk->sk_state = TCP_CLOSE;
  1041. sock->state = SS_UNCONNECTED;
  1042. } else {
  1043. err = 0;
  1044. }
  1045. out_wait:
  1046. finish_wait(sk_sleep(sk), &wait);
  1047. out:
  1048. release_sock(sk);
  1049. return err;
  1050. }
  1051. static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
  1052. bool kern)
  1053. {
  1054. struct sock *listener;
  1055. int err;
  1056. struct sock *connected;
  1057. struct vsock_sock *vconnected;
  1058. long timeout;
  1059. DEFINE_WAIT(wait);
  1060. err = 0;
  1061. listener = sock->sk;
  1062. lock_sock(listener);
  1063. if (sock->type != SOCK_STREAM) {
  1064. err = -EOPNOTSUPP;
  1065. goto out;
  1066. }
  1067. if (listener->sk_state != TCP_LISTEN) {
  1068. err = -EINVAL;
  1069. goto out;
  1070. }
  1071. /* Wait for children sockets to appear; these are the new sockets
  1072. * created upon connection establishment.
  1073. */
  1074. timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
  1075. prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
  1076. while ((connected = vsock_dequeue_accept(listener)) == NULL &&
  1077. listener->sk_err == 0) {
  1078. release_sock(listener);
  1079. timeout = schedule_timeout(timeout);
  1080. finish_wait(sk_sleep(listener), &wait);
  1081. lock_sock(listener);
  1082. if (signal_pending(current)) {
  1083. err = sock_intr_errno(timeout);
  1084. goto out;
  1085. } else if (timeout == 0) {
  1086. err = -EAGAIN;
  1087. goto out;
  1088. }
  1089. prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
  1090. }
  1091. finish_wait(sk_sleep(listener), &wait);
  1092. if (listener->sk_err)
  1093. err = -listener->sk_err;
  1094. if (connected) {
  1095. listener->sk_ack_backlog--;
  1096. lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
  1097. vconnected = vsock_sk(connected);
  1098. /* If the listener socket has received an error, then we should
  1099. * reject this socket and return. Note that we simply mark the
  1100. * socket rejected, drop our reference, and let the cleanup
  1101. * function handle the cleanup; the fact that we found it in
  1102. * the listener's accept queue guarantees that the cleanup
  1103. * function hasn't run yet.
  1104. */
  1105. if (err) {
  1106. vconnected->rejected = true;
  1107. } else {
  1108. newsock->state = SS_CONNECTED;
  1109. sock_graft(connected, newsock);
  1110. }
  1111. release_sock(connected);
  1112. sock_put(connected);
  1113. }
  1114. out:
  1115. release_sock(listener);
  1116. return err;
  1117. }
  1118. static int vsock_listen(struct socket *sock, int backlog)
  1119. {
  1120. int err;
  1121. struct sock *sk;
  1122. struct vsock_sock *vsk;
  1123. sk = sock->sk;
  1124. lock_sock(sk);
  1125. if (sock->type != SOCK_STREAM) {
  1126. err = -EOPNOTSUPP;
  1127. goto out;
  1128. }
  1129. if (sock->state != SS_UNCONNECTED) {
  1130. err = -EINVAL;
  1131. goto out;
  1132. }
  1133. vsk = vsock_sk(sk);
  1134. if (!vsock_addr_bound(&vsk->local_addr)) {
  1135. err = -EINVAL;
  1136. goto out;
  1137. }
  1138. sk->sk_max_ack_backlog = backlog;
  1139. sk->sk_state = TCP_LISTEN;
  1140. err = 0;
  1141. out:
  1142. release_sock(sk);
  1143. return err;
  1144. }
  1145. static int vsock_stream_setsockopt(struct socket *sock,
  1146. int level,
  1147. int optname,
  1148. char __user *optval,
  1149. unsigned int optlen)
  1150. {
  1151. int err;
  1152. struct sock *sk;
  1153. struct vsock_sock *vsk;
  1154. u64 val;
  1155. if (level != AF_VSOCK)
  1156. return -ENOPROTOOPT;
  1157. #define COPY_IN(_v) \
  1158. do { \
  1159. if (optlen < sizeof(_v)) { \
  1160. err = -EINVAL; \
  1161. goto exit; \
  1162. } \
  1163. if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
  1164. err = -EFAULT; \
  1165. goto exit; \
  1166. } \
  1167. } while (0)
  1168. err = 0;
  1169. sk = sock->sk;
  1170. vsk = vsock_sk(sk);
  1171. lock_sock(sk);
  1172. switch (optname) {
  1173. case SO_VM_SOCKETS_BUFFER_SIZE:
  1174. COPY_IN(val);
  1175. transport->set_buffer_size(vsk, val);
  1176. break;
  1177. case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
  1178. COPY_IN(val);
  1179. transport->set_max_buffer_size(vsk, val);
  1180. break;
  1181. case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
  1182. COPY_IN(val);
  1183. transport->set_min_buffer_size(vsk, val);
  1184. break;
  1185. case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
  1186. struct timeval tv;
  1187. COPY_IN(tv);
  1188. if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
  1189. tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
  1190. vsk->connect_timeout = tv.tv_sec * HZ +
  1191. DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
  1192. if (vsk->connect_timeout == 0)
  1193. vsk->connect_timeout =
  1194. VSOCK_DEFAULT_CONNECT_TIMEOUT;
  1195. } else {
  1196. err = -ERANGE;
  1197. }
  1198. break;
  1199. }
  1200. default:
  1201. err = -ENOPROTOOPT;
  1202. break;
  1203. }
  1204. #undef COPY_IN
  1205. exit:
  1206. release_sock(sk);
  1207. return err;
  1208. }
  1209. static int vsock_stream_getsockopt(struct socket *sock,
  1210. int level, int optname,
  1211. char __user *optval,
  1212. int __user *optlen)
  1213. {
  1214. int err;
  1215. int len;
  1216. struct sock *sk;
  1217. struct vsock_sock *vsk;
  1218. u64 val;
  1219. if (level != AF_VSOCK)
  1220. return -ENOPROTOOPT;
  1221. err = get_user(len, optlen);
  1222. if (err != 0)
  1223. return err;
  1224. #define COPY_OUT(_v) \
  1225. do { \
  1226. if (len < sizeof(_v)) \
  1227. return -EINVAL; \
  1228. \
  1229. len = sizeof(_v); \
  1230. if (copy_to_user(optval, &_v, len) != 0) \
  1231. return -EFAULT; \
  1232. \
  1233. } while (0)
  1234. err = 0;
  1235. sk = sock->sk;
  1236. vsk = vsock_sk(sk);
  1237. switch (optname) {
  1238. case SO_VM_SOCKETS_BUFFER_SIZE:
  1239. val = transport->get_buffer_size(vsk);
  1240. COPY_OUT(val);
  1241. break;
  1242. case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
  1243. val = transport->get_max_buffer_size(vsk);
  1244. COPY_OUT(val);
  1245. break;
  1246. case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
  1247. val = transport->get_min_buffer_size(vsk);
  1248. COPY_OUT(val);
  1249. break;
  1250. case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
  1251. struct timeval tv;
  1252. tv.tv_sec = vsk->connect_timeout / HZ;
  1253. tv.tv_usec =
  1254. (vsk->connect_timeout -
  1255. tv.tv_sec * HZ) * (1000000 / HZ);
  1256. COPY_OUT(tv);
  1257. break;
  1258. }
  1259. default:
  1260. return -ENOPROTOOPT;
  1261. }
  1262. err = put_user(len, optlen);
  1263. if (err != 0)
  1264. return -EFAULT;
  1265. #undef COPY_OUT
  1266. return 0;
  1267. }
  1268. static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
  1269. size_t len)
  1270. {
  1271. struct sock *sk;
  1272. struct vsock_sock *vsk;
  1273. ssize_t total_written;
  1274. long timeout;
  1275. int err;
  1276. struct vsock_transport_send_notify_data send_data;
  1277. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  1278. sk = sock->sk;
  1279. vsk = vsock_sk(sk);
  1280. total_written = 0;
  1281. err = 0;
  1282. if (msg->msg_flags & MSG_OOB)
  1283. return -EOPNOTSUPP;
  1284. lock_sock(sk);
  1285. /* Callers should not provide a destination with stream sockets. */
  1286. if (msg->msg_namelen) {
  1287. err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
  1288. goto out;
  1289. }
  1290. /* Send data only if both sides are not shutdown in the direction. */
  1291. if (sk->sk_shutdown & SEND_SHUTDOWN ||
  1292. vsk->peer_shutdown & RCV_SHUTDOWN) {
  1293. err = -EPIPE;
  1294. goto out;
  1295. }
  1296. if (sk->sk_state != TCP_ESTABLISHED ||
  1297. !vsock_addr_bound(&vsk->local_addr)) {
  1298. err = -ENOTCONN;
  1299. goto out;
  1300. }
  1301. if (!vsock_addr_bound(&vsk->remote_addr)) {
  1302. err = -EDESTADDRREQ;
  1303. goto out;
  1304. }
  1305. /* Wait for room in the produce queue to enqueue our user's data. */
  1306. timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  1307. err = transport->notify_send_init(vsk, &send_data);
  1308. if (err < 0)
  1309. goto out;
  1310. while (total_written < len) {
  1311. ssize_t written;
  1312. add_wait_queue(sk_sleep(sk), &wait);
  1313. while (vsock_stream_has_space(vsk) == 0 &&
  1314. sk->sk_err == 0 &&
  1315. !(sk->sk_shutdown & SEND_SHUTDOWN) &&
  1316. !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
  1317. /* Don't wait for non-blocking sockets. */
  1318. if (timeout == 0) {
  1319. err = -EAGAIN;
  1320. remove_wait_queue(sk_sleep(sk), &wait);
  1321. goto out_err;
  1322. }
  1323. err = transport->notify_send_pre_block(vsk, &send_data);
  1324. if (err < 0) {
  1325. remove_wait_queue(sk_sleep(sk), &wait);
  1326. goto out_err;
  1327. }
  1328. release_sock(sk);
  1329. timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
  1330. lock_sock(sk);
  1331. if (signal_pending(current)) {
  1332. err = sock_intr_errno(timeout);
  1333. remove_wait_queue(sk_sleep(sk), &wait);
  1334. goto out_err;
  1335. } else if (timeout == 0) {
  1336. err = -EAGAIN;
  1337. remove_wait_queue(sk_sleep(sk), &wait);
  1338. goto out_err;
  1339. }
  1340. }
  1341. remove_wait_queue(sk_sleep(sk), &wait);
  1342. /* These checks occur both as part of and after the loop
  1343. * conditional since we need to check before and after
  1344. * sleeping.
  1345. */
  1346. if (sk->sk_err) {
  1347. err = -sk->sk_err;
  1348. goto out_err;
  1349. } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
  1350. (vsk->peer_shutdown & RCV_SHUTDOWN)) {
  1351. err = -EPIPE;
  1352. goto out_err;
  1353. }
  1354. err = transport->notify_send_pre_enqueue(vsk, &send_data);
  1355. if (err < 0)
  1356. goto out_err;
  1357. /* Note that enqueue will only write as many bytes as are free
  1358. * in the produce queue, so we don't need to ensure len is
  1359. * smaller than the queue size. It is the caller's
  1360. * responsibility to check how many bytes we were able to send.
  1361. */
  1362. written = transport->stream_enqueue(
  1363. vsk, msg,
  1364. len - total_written);
  1365. if (written < 0) {
  1366. err = -ENOMEM;
  1367. goto out_err;
  1368. }
  1369. total_written += written;
  1370. err = transport->notify_send_post_enqueue(
  1371. vsk, written, &send_data);
  1372. if (err < 0)
  1373. goto out_err;
  1374. }
  1375. out_err:
  1376. if (total_written > 0)
  1377. err = total_written;
  1378. out:
  1379. release_sock(sk);
  1380. return err;
  1381. }
  1382. static int
  1383. vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  1384. int flags)
  1385. {
  1386. struct sock *sk;
  1387. struct vsock_sock *vsk;
  1388. int err;
  1389. size_t target;
  1390. ssize_t copied;
  1391. long timeout;
  1392. struct vsock_transport_recv_notify_data recv_data;
  1393. DEFINE_WAIT(wait);
  1394. sk = sock->sk;
  1395. vsk = vsock_sk(sk);
  1396. err = 0;
  1397. lock_sock(sk);
  1398. if (sk->sk_state != TCP_ESTABLISHED) {
  1399. /* Recvmsg is supposed to return 0 if a peer performs an
  1400. * orderly shutdown. Differentiate between that case and when a
  1401. * peer has not connected or a local shutdown occured with the
  1402. * SOCK_DONE flag.
  1403. */
  1404. if (sock_flag(sk, SOCK_DONE))
  1405. err = 0;
  1406. else
  1407. err = -ENOTCONN;
  1408. goto out;
  1409. }
  1410. if (flags & MSG_OOB) {
  1411. err = -EOPNOTSUPP;
  1412. goto out;
  1413. }
  1414. /* We don't check peer_shutdown flag here since peer may actually shut
  1415. * down, but there can be data in the queue that a local socket can
  1416. * receive.
  1417. */
  1418. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1419. err = 0;
  1420. goto out;
  1421. }
  1422. /* It is valid on Linux to pass in a zero-length receive buffer. This
  1423. * is not an error. We may as well bail out now.
  1424. */
  1425. if (!len) {
  1426. err = 0;
  1427. goto out;
  1428. }
  1429. /* We must not copy less than target bytes into the user's buffer
  1430. * before returning successfully, so we wait for the consume queue to
  1431. * have that much data to consume before dequeueing. Note that this
  1432. * makes it impossible to handle cases where target is greater than the
  1433. * queue size.
  1434. */
  1435. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  1436. if (target >= transport->stream_rcvhiwat(vsk)) {
  1437. err = -ENOMEM;
  1438. goto out;
  1439. }
  1440. timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
  1441. copied = 0;
  1442. err = transport->notify_recv_init(vsk, target, &recv_data);
  1443. if (err < 0)
  1444. goto out;
  1445. while (1) {
  1446. s64 ready;
  1447. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1448. ready = vsock_stream_has_data(vsk);
  1449. if (ready == 0) {
  1450. if (sk->sk_err != 0 ||
  1451. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  1452. (vsk->peer_shutdown & SEND_SHUTDOWN)) {
  1453. finish_wait(sk_sleep(sk), &wait);
  1454. break;
  1455. }
  1456. /* Don't wait for non-blocking sockets. */
  1457. if (timeout == 0) {
  1458. err = -EAGAIN;
  1459. finish_wait(sk_sleep(sk), &wait);
  1460. break;
  1461. }
  1462. err = transport->notify_recv_pre_block(
  1463. vsk, target, &recv_data);
  1464. if (err < 0) {
  1465. finish_wait(sk_sleep(sk), &wait);
  1466. break;
  1467. }
  1468. release_sock(sk);
  1469. timeout = schedule_timeout(timeout);
  1470. lock_sock(sk);
  1471. if (signal_pending(current)) {
  1472. err = sock_intr_errno(timeout);
  1473. finish_wait(sk_sleep(sk), &wait);
  1474. break;
  1475. } else if (timeout == 0) {
  1476. err = -EAGAIN;
  1477. finish_wait(sk_sleep(sk), &wait);
  1478. break;
  1479. }
  1480. } else {
  1481. ssize_t read;
  1482. finish_wait(sk_sleep(sk), &wait);
  1483. if (ready < 0) {
  1484. /* Invalid queue pair content. XXX This should
  1485. * be changed to a connection reset in a later
  1486. * change.
  1487. */
  1488. err = -ENOMEM;
  1489. goto out;
  1490. }
  1491. err = transport->notify_recv_pre_dequeue(
  1492. vsk, target, &recv_data);
  1493. if (err < 0)
  1494. break;
  1495. read = transport->stream_dequeue(
  1496. vsk, msg,
  1497. len - copied, flags);
  1498. if (read < 0) {
  1499. err = -ENOMEM;
  1500. break;
  1501. }
  1502. copied += read;
  1503. err = transport->notify_recv_post_dequeue(
  1504. vsk, target, read,
  1505. !(flags & MSG_PEEK), &recv_data);
  1506. if (err < 0)
  1507. goto out;
  1508. if (read >= target || flags & MSG_PEEK)
  1509. break;
  1510. target -= read;
  1511. }
  1512. }
  1513. if (sk->sk_err)
  1514. err = -sk->sk_err;
  1515. else if (sk->sk_shutdown & RCV_SHUTDOWN)
  1516. err = 0;
  1517. if (copied > 0)
  1518. err = copied;
  1519. out:
  1520. release_sock(sk);
  1521. return err;
  1522. }
  1523. static const struct proto_ops vsock_stream_ops = {
  1524. .family = PF_VSOCK,
  1525. .owner = THIS_MODULE,
  1526. .release = vsock_release,
  1527. .bind = vsock_bind,
  1528. .connect = vsock_stream_connect,
  1529. .socketpair = sock_no_socketpair,
  1530. .accept = vsock_accept,
  1531. .getname = vsock_getname,
  1532. .poll = vsock_poll,
  1533. .ioctl = sock_no_ioctl,
  1534. .listen = vsock_listen,
  1535. .shutdown = vsock_shutdown,
  1536. .setsockopt = vsock_stream_setsockopt,
  1537. .getsockopt = vsock_stream_getsockopt,
  1538. .sendmsg = vsock_stream_sendmsg,
  1539. .recvmsg = vsock_stream_recvmsg,
  1540. .mmap = sock_no_mmap,
  1541. .sendpage = sock_no_sendpage,
  1542. };
  1543. static int vsock_create(struct net *net, struct socket *sock,
  1544. int protocol, int kern)
  1545. {
  1546. if (!sock)
  1547. return -EINVAL;
  1548. if (protocol && protocol != PF_VSOCK)
  1549. return -EPROTONOSUPPORT;
  1550. switch (sock->type) {
  1551. case SOCK_DGRAM:
  1552. sock->ops = &vsock_dgram_ops;
  1553. break;
  1554. case SOCK_STREAM:
  1555. sock->ops = &vsock_stream_ops;
  1556. break;
  1557. default:
  1558. return -ESOCKTNOSUPPORT;
  1559. }
  1560. sock->state = SS_UNCONNECTED;
  1561. return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
  1562. }
  1563. static const struct net_proto_family vsock_family_ops = {
  1564. .family = AF_VSOCK,
  1565. .create = vsock_create,
  1566. .owner = THIS_MODULE,
  1567. };
  1568. static long vsock_dev_do_ioctl(struct file *filp,
  1569. unsigned int cmd, void __user *ptr)
  1570. {
  1571. u32 __user *p = ptr;
  1572. int retval = 0;
  1573. switch (cmd) {
  1574. case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
  1575. if (put_user(transport->get_local_cid(), p) != 0)
  1576. retval = -EFAULT;
  1577. break;
  1578. default:
  1579. pr_err("Unknown ioctl %d\n", cmd);
  1580. retval = -EINVAL;
  1581. }
  1582. return retval;
  1583. }
  1584. static long vsock_dev_ioctl(struct file *filp,
  1585. unsigned int cmd, unsigned long arg)
  1586. {
  1587. return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
  1588. }
  1589. #ifdef CONFIG_COMPAT
  1590. static long vsock_dev_compat_ioctl(struct file *filp,
  1591. unsigned int cmd, unsigned long arg)
  1592. {
  1593. return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
  1594. }
  1595. #endif
  1596. static const struct file_operations vsock_device_ops = {
  1597. .owner = THIS_MODULE,
  1598. .unlocked_ioctl = vsock_dev_ioctl,
  1599. #ifdef CONFIG_COMPAT
  1600. .compat_ioctl = vsock_dev_compat_ioctl,
  1601. #endif
  1602. .open = nonseekable_open,
  1603. };
  1604. static struct miscdevice vsock_device = {
  1605. .name = "vsock",
  1606. .fops = &vsock_device_ops,
  1607. };
  1608. int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
  1609. {
  1610. int err = mutex_lock_interruptible(&vsock_register_mutex);
  1611. if (err)
  1612. return err;
  1613. if (transport) {
  1614. err = -EBUSY;
  1615. goto err_busy;
  1616. }
  1617. /* Transport must be the owner of the protocol so that it can't
  1618. * unload while there are open sockets.
  1619. */
  1620. vsock_proto.owner = owner;
  1621. transport = t;
  1622. vsock_device.minor = MISC_DYNAMIC_MINOR;
  1623. err = misc_register(&vsock_device);
  1624. if (err) {
  1625. pr_err("Failed to register misc device\n");
  1626. goto err_reset_transport;
  1627. }
  1628. err = proto_register(&vsock_proto, 1); /* we want our slab */
  1629. if (err) {
  1630. pr_err("Cannot register vsock protocol\n");
  1631. goto err_deregister_misc;
  1632. }
  1633. err = sock_register(&vsock_family_ops);
  1634. if (err) {
  1635. pr_err("could not register af_vsock (%d) address family: %d\n",
  1636. AF_VSOCK, err);
  1637. goto err_unregister_proto;
  1638. }
  1639. mutex_unlock(&vsock_register_mutex);
  1640. return 0;
  1641. err_unregister_proto:
  1642. proto_unregister(&vsock_proto);
  1643. err_deregister_misc:
  1644. misc_deregister(&vsock_device);
  1645. err_reset_transport:
  1646. transport = NULL;
  1647. err_busy:
  1648. mutex_unlock(&vsock_register_mutex);
  1649. return err;
  1650. }
  1651. EXPORT_SYMBOL_GPL(__vsock_core_init);
  1652. void vsock_core_exit(void)
  1653. {
  1654. mutex_lock(&vsock_register_mutex);
  1655. misc_deregister(&vsock_device);
  1656. sock_unregister(AF_VSOCK);
  1657. proto_unregister(&vsock_proto);
  1658. /* We do not want the assignment below re-ordered. */
  1659. mb();
  1660. transport = NULL;
  1661. mutex_unlock(&vsock_register_mutex);
  1662. }
  1663. EXPORT_SYMBOL_GPL(vsock_core_exit);
  1664. const struct vsock_transport *vsock_core_get_transport(void)
  1665. {
  1666. /* vsock_register_mutex not taken since only the transport uses this
  1667. * function and only while registered.
  1668. */
  1669. return transport;
  1670. }
  1671. EXPORT_SYMBOL_GPL(vsock_core_get_transport);
  1672. static void __exit vsock_exit(void)
  1673. {
  1674. /* Do nothing. This function makes this module removable. */
  1675. }
  1676. module_init(vsock_init_tables);
  1677. module_exit(vsock_exit);
  1678. MODULE_AUTHOR("VMware, Inc.");
  1679. MODULE_DESCRIPTION("VMware Virtual Socket Family");
  1680. MODULE_VERSION("1.0.2.0-k");
  1681. MODULE_LICENSE("GPL v2");