tls_sw.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017
  1. /*
  2. * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3. * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4. * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
  5. * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
  6. * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
  7. * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
  8. *
  9. * This software is available to you under a choice of one of two
  10. * licenses. You may choose to be licensed under the terms of the GNU
  11. * General Public License (GPL) Version 2, available from the file
  12. * COPYING in the main directory of this source tree, or the
  13. * OpenIB.org BSD license below:
  14. *
  15. * Redistribution and use in source and binary forms, with or
  16. * without modification, are permitted provided that the following
  17. * conditions are met:
  18. *
  19. * - Redistributions of source code must retain the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer.
  22. *
  23. * - Redistributions in binary form must reproduce the above
  24. * copyright notice, this list of conditions and the following
  25. * disclaimer in the documentation and/or other materials
  26. * provided with the distribution.
  27. *
  28. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  30. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  32. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  33. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  34. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  35. * SOFTWARE.
  36. */
  37. #include <linux/sched/signal.h>
  38. #include <linux/module.h>
  39. #include <crypto/aead.h>
  40. #include <net/strparser.h>
  41. #include <net/tls.h>
  42. #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
  43. static int __skb_nsg(struct sk_buff *skb, int offset, int len,
  44. unsigned int recursion_level)
  45. {
  46. int start = skb_headlen(skb);
  47. int i, chunk = start - offset;
  48. struct sk_buff *frag_iter;
  49. int elt = 0;
  50. if (unlikely(recursion_level >= 24))
  51. return -EMSGSIZE;
  52. if (chunk > 0) {
  53. if (chunk > len)
  54. chunk = len;
  55. elt++;
  56. len -= chunk;
  57. if (len == 0)
  58. return elt;
  59. offset += chunk;
  60. }
  61. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  62. int end;
  63. WARN_ON(start > offset + len);
  64. end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
  65. chunk = end - offset;
  66. if (chunk > 0) {
  67. if (chunk > len)
  68. chunk = len;
  69. elt++;
  70. len -= chunk;
  71. if (len == 0)
  72. return elt;
  73. offset += chunk;
  74. }
  75. start = end;
  76. }
  77. if (unlikely(skb_has_frag_list(skb))) {
  78. skb_walk_frags(skb, frag_iter) {
  79. int end, ret;
  80. WARN_ON(start > offset + len);
  81. end = start + frag_iter->len;
  82. chunk = end - offset;
  83. if (chunk > 0) {
  84. if (chunk > len)
  85. chunk = len;
  86. ret = __skb_nsg(frag_iter, offset - start, chunk,
  87. recursion_level + 1);
  88. if (unlikely(ret < 0))
  89. return ret;
  90. elt += ret;
  91. len -= chunk;
  92. if (len == 0)
  93. return elt;
  94. offset += chunk;
  95. }
  96. start = end;
  97. }
  98. }
  99. BUG_ON(len);
  100. return elt;
  101. }
  102. /* Return the number of scatterlist elements required to completely map the
  103. * skb, or -EMSGSIZE if the recursion depth is exceeded.
  104. */
  105. static int skb_nsg(struct sk_buff *skb, int offset, int len)
  106. {
  107. return __skb_nsg(skb, offset, len, 0);
  108. }
  109. static void tls_decrypt_done(struct crypto_async_request *req, int err)
  110. {
  111. struct aead_request *aead_req = (struct aead_request *)req;
  112. struct scatterlist *sgout = aead_req->dst;
  113. struct tls_sw_context_rx *ctx;
  114. struct tls_context *tls_ctx;
  115. struct scatterlist *sg;
  116. struct sk_buff *skb;
  117. unsigned int pages;
  118. int pending;
  119. skb = (struct sk_buff *)req->data;
  120. tls_ctx = tls_get_ctx(skb->sk);
  121. ctx = tls_sw_ctx_rx(tls_ctx);
  122. pending = atomic_dec_return(&ctx->decrypt_pending);
  123. /* Propagate if there was an err */
  124. if (err) {
  125. ctx->async_wait.err = err;
  126. tls_err_abort(skb->sk, err);
  127. }
  128. /* After using skb->sk to propagate sk through crypto async callback
  129. * we need to NULL it again.
  130. */
  131. skb->sk = NULL;
  132. /* Release the skb, pages and memory allocated for crypto req */
  133. kfree_skb(skb);
  134. /* Skip the first S/G entry as it points to AAD */
  135. for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
  136. if (!sg)
  137. break;
  138. put_page(sg_page(sg));
  139. }
  140. kfree(aead_req);
  141. if (!pending && READ_ONCE(ctx->async_notify))
  142. complete(&ctx->async_wait.completion);
  143. }
  144. static int tls_do_decryption(struct sock *sk,
  145. struct sk_buff *skb,
  146. struct scatterlist *sgin,
  147. struct scatterlist *sgout,
  148. char *iv_recv,
  149. size_t data_len,
  150. struct aead_request *aead_req,
  151. bool async)
  152. {
  153. struct tls_context *tls_ctx = tls_get_ctx(sk);
  154. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  155. int ret;
  156. aead_request_set_tfm(aead_req, ctx->aead_recv);
  157. aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
  158. aead_request_set_crypt(aead_req, sgin, sgout,
  159. data_len + tls_ctx->rx.tag_size,
  160. (u8 *)iv_recv);
  161. if (async) {
  162. /* Using skb->sk to push sk through to crypto async callback
  163. * handler. This allows propagating errors up to the socket
  164. * if needed. It _must_ be cleared in the async handler
  165. * before kfree_skb is called. We _know_ skb->sk is NULL
  166. * because it is a clone from strparser.
  167. */
  168. skb->sk = sk;
  169. aead_request_set_callback(aead_req,
  170. CRYPTO_TFM_REQ_MAY_BACKLOG,
  171. tls_decrypt_done, skb);
  172. atomic_inc(&ctx->decrypt_pending);
  173. } else {
  174. aead_request_set_callback(aead_req,
  175. CRYPTO_TFM_REQ_MAY_BACKLOG,
  176. crypto_req_done, &ctx->async_wait);
  177. }
  178. ret = crypto_aead_decrypt(aead_req);
  179. if (ret == -EINPROGRESS) {
  180. if (async)
  181. return ret;
  182. ret = crypto_wait_req(ret, &ctx->async_wait);
  183. }
  184. if (async)
  185. atomic_dec(&ctx->decrypt_pending);
  186. return ret;
  187. }
  188. static void tls_trim_both_msgs(struct sock *sk, int target_size)
  189. {
  190. struct tls_context *tls_ctx = tls_get_ctx(sk);
  191. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  192. struct tls_rec *rec = ctx->open_rec;
  193. sk_msg_trim(sk, &rec->msg_plaintext, target_size);
  194. if (target_size > 0)
  195. target_size += tls_ctx->tx.overhead_size;
  196. sk_msg_trim(sk, &rec->msg_encrypted, target_size);
  197. }
  198. static int tls_alloc_encrypted_msg(struct sock *sk, int len)
  199. {
  200. struct tls_context *tls_ctx = tls_get_ctx(sk);
  201. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  202. struct tls_rec *rec = ctx->open_rec;
  203. struct sk_msg *msg_en = &rec->msg_encrypted;
  204. return sk_msg_alloc(sk, msg_en, len, 0);
  205. }
  206. static int tls_clone_plaintext_msg(struct sock *sk, int required)
  207. {
  208. struct tls_context *tls_ctx = tls_get_ctx(sk);
  209. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  210. struct tls_rec *rec = ctx->open_rec;
  211. struct sk_msg *msg_pl = &rec->msg_plaintext;
  212. struct sk_msg *msg_en = &rec->msg_encrypted;
  213. int skip, len;
  214. /* We add page references worth len bytes from encrypted sg
  215. * at the end of plaintext sg. It is guaranteed that msg_en
  216. * has enough required room (ensured by caller).
  217. */
  218. len = required - msg_pl->sg.size;
  219. /* Skip initial bytes in msg_en's data to be able to use
  220. * same offset of both plain and encrypted data.
  221. */
  222. skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
  223. return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
  224. }
  225. static struct tls_rec *tls_get_rec(struct sock *sk)
  226. {
  227. struct tls_context *tls_ctx = tls_get_ctx(sk);
  228. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  229. struct sk_msg *msg_pl, *msg_en;
  230. struct tls_rec *rec;
  231. int mem_size;
  232. mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
  233. rec = kzalloc(mem_size, sk->sk_allocation);
  234. if (!rec)
  235. return NULL;
  236. msg_pl = &rec->msg_plaintext;
  237. msg_en = &rec->msg_encrypted;
  238. sk_msg_init(msg_pl);
  239. sk_msg_init(msg_en);
  240. sg_init_table(rec->sg_aead_in, 2);
  241. sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
  242. sizeof(rec->aad_space));
  243. sg_unmark_end(&rec->sg_aead_in[1]);
  244. sg_init_table(rec->sg_aead_out, 2);
  245. sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
  246. sizeof(rec->aad_space));
  247. sg_unmark_end(&rec->sg_aead_out[1]);
  248. return rec;
  249. }
  250. static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
  251. {
  252. sk_msg_free(sk, &rec->msg_encrypted);
  253. sk_msg_free(sk, &rec->msg_plaintext);
  254. kfree(rec);
  255. }
  256. static void tls_free_open_rec(struct sock *sk)
  257. {
  258. struct tls_context *tls_ctx = tls_get_ctx(sk);
  259. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  260. struct tls_rec *rec = ctx->open_rec;
  261. if (rec) {
  262. tls_free_rec(sk, rec);
  263. ctx->open_rec = NULL;
  264. }
  265. }
  266. int tls_tx_records(struct sock *sk, int flags)
  267. {
  268. struct tls_context *tls_ctx = tls_get_ctx(sk);
  269. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  270. struct tls_rec *rec, *tmp;
  271. struct sk_msg *msg_en;
  272. int tx_flags, rc = 0;
  273. if (tls_is_partially_sent_record(tls_ctx)) {
  274. rec = list_first_entry(&ctx->tx_list,
  275. struct tls_rec, list);
  276. if (flags == -1)
  277. tx_flags = rec->tx_flags;
  278. else
  279. tx_flags = flags;
  280. rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
  281. if (rc)
  282. goto tx_err;
  283. /* Full record has been transmitted.
  284. * Remove the head of tx_list
  285. */
  286. list_del(&rec->list);
  287. sk_msg_free(sk, &rec->msg_plaintext);
  288. kfree(rec);
  289. }
  290. /* Tx all ready records */
  291. list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
  292. if (READ_ONCE(rec->tx_ready)) {
  293. if (flags == -1)
  294. tx_flags = rec->tx_flags;
  295. else
  296. tx_flags = flags;
  297. msg_en = &rec->msg_encrypted;
  298. rc = tls_push_sg(sk, tls_ctx,
  299. &msg_en->sg.data[msg_en->sg.curr],
  300. 0, tx_flags);
  301. if (rc)
  302. goto tx_err;
  303. list_del(&rec->list);
  304. sk_msg_free(sk, &rec->msg_plaintext);
  305. kfree(rec);
  306. } else {
  307. break;
  308. }
  309. }
  310. tx_err:
  311. if (rc < 0 && rc != -EAGAIN)
  312. tls_err_abort(sk, EBADMSG);
  313. return rc;
  314. }
  315. static void tls_encrypt_done(struct crypto_async_request *req, int err)
  316. {
  317. struct aead_request *aead_req = (struct aead_request *)req;
  318. struct sock *sk = req->data;
  319. struct tls_context *tls_ctx = tls_get_ctx(sk);
  320. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  321. struct scatterlist *sge;
  322. struct sk_msg *msg_en;
  323. struct tls_rec *rec;
  324. bool ready = false;
  325. int pending;
  326. rec = container_of(aead_req, struct tls_rec, aead_req);
  327. msg_en = &rec->msg_encrypted;
  328. sge = sk_msg_elem(msg_en, msg_en->sg.curr);
  329. sge->offset -= tls_ctx->tx.prepend_size;
  330. sge->length += tls_ctx->tx.prepend_size;
  331. /* Check if error is previously set on socket */
  332. if (err || sk->sk_err) {
  333. rec = NULL;
  334. /* If err is already set on socket, return the same code */
  335. if (sk->sk_err) {
  336. ctx->async_wait.err = sk->sk_err;
  337. } else {
  338. ctx->async_wait.err = err;
  339. tls_err_abort(sk, err);
  340. }
  341. }
  342. if (rec) {
  343. struct tls_rec *first_rec;
  344. /* Mark the record as ready for transmission */
  345. smp_store_mb(rec->tx_ready, true);
  346. /* If received record is at head of tx_list, schedule tx */
  347. first_rec = list_first_entry(&ctx->tx_list,
  348. struct tls_rec, list);
  349. if (rec == first_rec)
  350. ready = true;
  351. }
  352. pending = atomic_dec_return(&ctx->encrypt_pending);
  353. if (!pending && READ_ONCE(ctx->async_notify))
  354. complete(&ctx->async_wait.completion);
  355. if (!ready)
  356. return;
  357. /* Schedule the transmission */
  358. if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
  359. schedule_delayed_work(&ctx->tx_work.work, 1);
  360. }
  361. static int tls_do_encryption(struct sock *sk,
  362. struct tls_context *tls_ctx,
  363. struct tls_sw_context_tx *ctx,
  364. struct aead_request *aead_req,
  365. size_t data_len, u32 start)
  366. {
  367. struct tls_rec *rec = ctx->open_rec;
  368. struct sk_msg *msg_en = &rec->msg_encrypted;
  369. struct scatterlist *sge = sk_msg_elem(msg_en, start);
  370. int rc;
  371. sge->offset += tls_ctx->tx.prepend_size;
  372. sge->length -= tls_ctx->tx.prepend_size;
  373. msg_en->sg.curr = start;
  374. aead_request_set_tfm(aead_req, ctx->aead_send);
  375. aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
  376. aead_request_set_crypt(aead_req, rec->sg_aead_in,
  377. rec->sg_aead_out,
  378. data_len, tls_ctx->tx.iv);
  379. aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  380. tls_encrypt_done, sk);
  381. /* Add the record in tx_list */
  382. list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
  383. atomic_inc(&ctx->encrypt_pending);
  384. rc = crypto_aead_encrypt(aead_req);
  385. if (!rc || rc != -EINPROGRESS) {
  386. atomic_dec(&ctx->encrypt_pending);
  387. sge->offset -= tls_ctx->tx.prepend_size;
  388. sge->length += tls_ctx->tx.prepend_size;
  389. }
  390. if (!rc) {
  391. WRITE_ONCE(rec->tx_ready, true);
  392. } else if (rc != -EINPROGRESS) {
  393. list_del(&rec->list);
  394. return rc;
  395. }
  396. /* Unhook the record from context if encryption is not failure */
  397. ctx->open_rec = NULL;
  398. tls_advance_record_sn(sk, &tls_ctx->tx);
  399. return rc;
  400. }
  401. static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
  402. struct tls_rec **to, struct sk_msg *msg_opl,
  403. struct sk_msg *msg_oen, u32 split_point,
  404. u32 tx_overhead_size, u32 *orig_end)
  405. {
  406. u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
  407. struct scatterlist *sge, *osge, *nsge;
  408. u32 orig_size = msg_opl->sg.size;
  409. struct scatterlist tmp = { };
  410. struct sk_msg *msg_npl;
  411. struct tls_rec *new;
  412. int ret;
  413. new = tls_get_rec(sk);
  414. if (!new)
  415. return -ENOMEM;
  416. ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
  417. tx_overhead_size, 0);
  418. if (ret < 0) {
  419. tls_free_rec(sk, new);
  420. return ret;
  421. }
  422. *orig_end = msg_opl->sg.end;
  423. i = msg_opl->sg.start;
  424. sge = sk_msg_elem(msg_opl, i);
  425. while (apply && sge->length) {
  426. if (sge->length > apply) {
  427. u32 len = sge->length - apply;
  428. get_page(sg_page(sge));
  429. sg_set_page(&tmp, sg_page(sge), len,
  430. sge->offset + apply);
  431. sge->length = apply;
  432. bytes += apply;
  433. apply = 0;
  434. } else {
  435. apply -= sge->length;
  436. bytes += sge->length;
  437. }
  438. sk_msg_iter_var_next(i);
  439. if (i == msg_opl->sg.end)
  440. break;
  441. sge = sk_msg_elem(msg_opl, i);
  442. }
  443. msg_opl->sg.end = i;
  444. msg_opl->sg.curr = i;
  445. msg_opl->sg.copybreak = 0;
  446. msg_opl->apply_bytes = 0;
  447. msg_opl->sg.size = bytes;
  448. msg_npl = &new->msg_plaintext;
  449. msg_npl->apply_bytes = apply;
  450. msg_npl->sg.size = orig_size - bytes;
  451. j = msg_npl->sg.start;
  452. nsge = sk_msg_elem(msg_npl, j);
  453. if (tmp.length) {
  454. memcpy(nsge, &tmp, sizeof(*nsge));
  455. sk_msg_iter_var_next(j);
  456. nsge = sk_msg_elem(msg_npl, j);
  457. }
  458. osge = sk_msg_elem(msg_opl, i);
  459. while (osge->length) {
  460. memcpy(nsge, osge, sizeof(*nsge));
  461. sg_unmark_end(nsge);
  462. sk_msg_iter_var_next(i);
  463. sk_msg_iter_var_next(j);
  464. if (i == *orig_end)
  465. break;
  466. osge = sk_msg_elem(msg_opl, i);
  467. nsge = sk_msg_elem(msg_npl, j);
  468. }
  469. msg_npl->sg.end = j;
  470. msg_npl->sg.curr = j;
  471. msg_npl->sg.copybreak = 0;
  472. *to = new;
  473. return 0;
  474. }
  475. static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
  476. struct tls_rec *from, u32 orig_end)
  477. {
  478. struct sk_msg *msg_npl = &from->msg_plaintext;
  479. struct sk_msg *msg_opl = &to->msg_plaintext;
  480. struct scatterlist *osge, *nsge;
  481. u32 i, j;
  482. i = msg_opl->sg.end;
  483. sk_msg_iter_var_prev(i);
  484. j = msg_npl->sg.start;
  485. osge = sk_msg_elem(msg_opl, i);
  486. nsge = sk_msg_elem(msg_npl, j);
  487. if (sg_page(osge) == sg_page(nsge) &&
  488. osge->offset + osge->length == nsge->offset) {
  489. osge->length += nsge->length;
  490. put_page(sg_page(nsge));
  491. }
  492. msg_opl->sg.end = orig_end;
  493. msg_opl->sg.curr = orig_end;
  494. msg_opl->sg.copybreak = 0;
  495. msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
  496. msg_opl->sg.size += msg_npl->sg.size;
  497. sk_msg_free(sk, &to->msg_encrypted);
  498. sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
  499. kfree(from);
  500. }
  501. static int tls_push_record(struct sock *sk, int flags,
  502. unsigned char record_type)
  503. {
  504. struct tls_context *tls_ctx = tls_get_ctx(sk);
  505. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  506. struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
  507. u32 i, split_point, uninitialized_var(orig_end);
  508. struct sk_msg *msg_pl, *msg_en;
  509. struct aead_request *req;
  510. bool split;
  511. int rc;
  512. if (!rec)
  513. return 0;
  514. msg_pl = &rec->msg_plaintext;
  515. msg_en = &rec->msg_encrypted;
  516. split_point = msg_pl->apply_bytes;
  517. split = split_point && split_point < msg_pl->sg.size;
  518. if (split) {
  519. rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
  520. split_point, tls_ctx->tx.overhead_size,
  521. &orig_end);
  522. if (rc < 0)
  523. return rc;
  524. sk_msg_trim(sk, msg_en, msg_pl->sg.size +
  525. tls_ctx->tx.overhead_size);
  526. }
  527. rec->tx_flags = flags;
  528. req = &rec->aead_req;
  529. i = msg_pl->sg.end;
  530. sk_msg_iter_var_prev(i);
  531. sg_mark_end(sk_msg_elem(msg_pl, i));
  532. i = msg_pl->sg.start;
  533. sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
  534. &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
  535. i = msg_en->sg.end;
  536. sk_msg_iter_var_prev(i);
  537. sg_mark_end(sk_msg_elem(msg_en, i));
  538. i = msg_en->sg.start;
  539. sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
  540. tls_make_aad(rec->aad_space, msg_pl->sg.size,
  541. tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
  542. record_type);
  543. tls_fill_prepend(tls_ctx,
  544. page_address(sg_page(&msg_en->sg.data[i])) +
  545. msg_en->sg.data[i].offset, msg_pl->sg.size,
  546. record_type);
  547. tls_ctx->pending_open_record_frags = false;
  548. rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
  549. if (rc < 0) {
  550. if (rc != -EINPROGRESS) {
  551. tls_err_abort(sk, EBADMSG);
  552. if (split) {
  553. tls_ctx->pending_open_record_frags = true;
  554. tls_merge_open_record(sk, rec, tmp, orig_end);
  555. }
  556. }
  557. return rc;
  558. } else if (split) {
  559. msg_pl = &tmp->msg_plaintext;
  560. msg_en = &tmp->msg_encrypted;
  561. sk_msg_trim(sk, msg_en, msg_pl->sg.size +
  562. tls_ctx->tx.overhead_size);
  563. tls_ctx->pending_open_record_frags = true;
  564. ctx->open_rec = tmp;
  565. }
  566. return tls_tx_records(sk, flags);
  567. }
  568. static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
  569. bool full_record, u8 record_type,
  570. size_t *copied, int flags)
  571. {
  572. struct tls_context *tls_ctx = tls_get_ctx(sk);
  573. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  574. struct sk_msg msg_redir = { };
  575. struct sk_psock *psock;
  576. struct sock *sk_redir;
  577. struct tls_rec *rec;
  578. int err = 0, send;
  579. bool enospc;
  580. psock = sk_psock_get(sk);
  581. if (!psock)
  582. return tls_push_record(sk, flags, record_type);
  583. more_data:
  584. enospc = sk_msg_full(msg);
  585. if (psock->eval == __SK_NONE)
  586. psock->eval = sk_psock_msg_verdict(sk, psock, msg);
  587. if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
  588. !enospc && !full_record) {
  589. err = -ENOSPC;
  590. goto out_err;
  591. }
  592. msg->cork_bytes = 0;
  593. send = msg->sg.size;
  594. if (msg->apply_bytes && msg->apply_bytes < send)
  595. send = msg->apply_bytes;
  596. switch (psock->eval) {
  597. case __SK_PASS:
  598. err = tls_push_record(sk, flags, record_type);
  599. if (err < 0) {
  600. *copied -= sk_msg_free(sk, msg);
  601. tls_free_open_rec(sk);
  602. goto out_err;
  603. }
  604. break;
  605. case __SK_REDIRECT:
  606. sk_redir = psock->sk_redir;
  607. memcpy(&msg_redir, msg, sizeof(*msg));
  608. if (msg->apply_bytes < send)
  609. msg->apply_bytes = 0;
  610. else
  611. msg->apply_bytes -= send;
  612. sk_msg_return_zero(sk, msg, send);
  613. msg->sg.size -= send;
  614. release_sock(sk);
  615. err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
  616. lock_sock(sk);
  617. if (err < 0) {
  618. *copied -= sk_msg_free_nocharge(sk, &msg_redir);
  619. msg->sg.size = 0;
  620. }
  621. if (msg->sg.size == 0)
  622. tls_free_open_rec(sk);
  623. break;
  624. case __SK_DROP:
  625. default:
  626. sk_msg_free_partial(sk, msg, send);
  627. if (msg->apply_bytes < send)
  628. msg->apply_bytes = 0;
  629. else
  630. msg->apply_bytes -= send;
  631. if (msg->sg.size == 0)
  632. tls_free_open_rec(sk);
  633. *copied -= send;
  634. err = -EACCES;
  635. }
  636. if (likely(!err)) {
  637. bool reset_eval = !ctx->open_rec;
  638. rec = ctx->open_rec;
  639. if (rec) {
  640. msg = &rec->msg_plaintext;
  641. if (!msg->apply_bytes)
  642. reset_eval = true;
  643. }
  644. if (reset_eval) {
  645. psock->eval = __SK_NONE;
  646. if (psock->sk_redir) {
  647. sock_put(psock->sk_redir);
  648. psock->sk_redir = NULL;
  649. }
  650. }
  651. if (rec)
  652. goto more_data;
  653. }
  654. out_err:
  655. sk_psock_put(sk, psock);
  656. return err;
  657. }
  658. static int tls_sw_push_pending_record(struct sock *sk, int flags)
  659. {
  660. struct tls_context *tls_ctx = tls_get_ctx(sk);
  661. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  662. struct tls_rec *rec = ctx->open_rec;
  663. struct sk_msg *msg_pl;
  664. size_t copied;
  665. if (!rec)
  666. return 0;
  667. msg_pl = &rec->msg_plaintext;
  668. copied = msg_pl->sg.size;
  669. if (!copied)
  670. return 0;
  671. return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
  672. &copied, flags);
  673. }
  674. int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
  675. {
  676. long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  677. struct tls_context *tls_ctx = tls_get_ctx(sk);
  678. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  679. struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
  680. bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
  681. unsigned char record_type = TLS_RECORD_TYPE_DATA;
  682. bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
  683. bool eor = !(msg->msg_flags & MSG_MORE);
  684. size_t try_to_copy, copied = 0;
  685. struct sk_msg *msg_pl, *msg_en;
  686. struct tls_rec *rec;
  687. int required_size;
  688. int num_async = 0;
  689. bool full_record;
  690. int record_room;
  691. int num_zc = 0;
  692. int orig_size;
  693. int ret = 0;
  694. if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
  695. return -ENOTSUPP;
  696. lock_sock(sk);
  697. /* Wait till there is any pending write on socket */
  698. if (unlikely(sk->sk_write_pending)) {
  699. ret = wait_on_pending_writer(sk, &timeo);
  700. if (unlikely(ret))
  701. goto send_end;
  702. }
  703. if (unlikely(msg->msg_controllen)) {
  704. ret = tls_proccess_cmsg(sk, msg, &record_type);
  705. if (ret) {
  706. if (ret == -EINPROGRESS)
  707. num_async++;
  708. else if (ret != -EAGAIN)
  709. goto send_end;
  710. }
  711. }
  712. while (msg_data_left(msg)) {
  713. if (sk->sk_err) {
  714. ret = -sk->sk_err;
  715. goto send_end;
  716. }
  717. if (ctx->open_rec)
  718. rec = ctx->open_rec;
  719. else
  720. rec = ctx->open_rec = tls_get_rec(sk);
  721. if (!rec) {
  722. ret = -ENOMEM;
  723. goto send_end;
  724. }
  725. msg_pl = &rec->msg_plaintext;
  726. msg_en = &rec->msg_encrypted;
  727. orig_size = msg_pl->sg.size;
  728. full_record = false;
  729. try_to_copy = msg_data_left(msg);
  730. record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
  731. if (try_to_copy >= record_room) {
  732. try_to_copy = record_room;
  733. full_record = true;
  734. }
  735. required_size = msg_pl->sg.size + try_to_copy +
  736. tls_ctx->tx.overhead_size;
  737. if (!sk_stream_memory_free(sk))
  738. goto wait_for_sndbuf;
  739. alloc_encrypted:
  740. ret = tls_alloc_encrypted_msg(sk, required_size);
  741. if (ret) {
  742. if (ret != -ENOSPC)
  743. goto wait_for_memory;
  744. /* Adjust try_to_copy according to the amount that was
  745. * actually allocated. The difference is due
  746. * to max sg elements limit
  747. */
  748. try_to_copy -= required_size - msg_en->sg.size;
  749. full_record = true;
  750. }
  751. if (!is_kvec && (full_record || eor) && !async_capable) {
  752. u32 first = msg_pl->sg.end;
  753. ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
  754. msg_pl, try_to_copy);
  755. if (ret)
  756. goto fallback_to_reg_send;
  757. rec->inplace_crypto = 0;
  758. num_zc++;
  759. copied += try_to_copy;
  760. sk_msg_sg_copy_set(msg_pl, first);
  761. ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
  762. record_type, &copied,
  763. msg->msg_flags);
  764. if (ret) {
  765. if (ret == -EINPROGRESS)
  766. num_async++;
  767. else if (ret == -ENOMEM)
  768. goto wait_for_memory;
  769. else if (ret == -ENOSPC)
  770. goto rollback_iter;
  771. else if (ret != -EAGAIN)
  772. goto send_end;
  773. }
  774. continue;
  775. rollback_iter:
  776. copied -= try_to_copy;
  777. sk_msg_sg_copy_clear(msg_pl, first);
  778. iov_iter_revert(&msg->msg_iter,
  779. msg_pl->sg.size - orig_size);
  780. fallback_to_reg_send:
  781. sk_msg_trim(sk, msg_pl, orig_size);
  782. }
  783. required_size = msg_pl->sg.size + try_to_copy;
  784. ret = tls_clone_plaintext_msg(sk, required_size);
  785. if (ret) {
  786. if (ret != -ENOSPC)
  787. goto send_end;
  788. /* Adjust try_to_copy according to the amount that was
  789. * actually allocated. The difference is due
  790. * to max sg elements limit
  791. */
  792. try_to_copy -= required_size - msg_pl->sg.size;
  793. full_record = true;
  794. sk_msg_trim(sk, msg_en, msg_pl->sg.size +
  795. tls_ctx->tx.overhead_size);
  796. }
  797. ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, msg_pl,
  798. try_to_copy);
  799. if (ret < 0)
  800. goto trim_sgl;
  801. /* Open records defined only if successfully copied, otherwise
  802. * we would trim the sg but not reset the open record frags.
  803. */
  804. tls_ctx->pending_open_record_frags = true;
  805. copied += try_to_copy;
  806. if (full_record || eor) {
  807. ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
  808. record_type, &copied,
  809. msg->msg_flags);
  810. if (ret) {
  811. if (ret == -EINPROGRESS)
  812. num_async++;
  813. else if (ret == -ENOMEM)
  814. goto wait_for_memory;
  815. else if (ret != -EAGAIN) {
  816. if (ret == -ENOSPC)
  817. ret = 0;
  818. goto send_end;
  819. }
  820. }
  821. }
  822. continue;
  823. wait_for_sndbuf:
  824. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  825. wait_for_memory:
  826. ret = sk_stream_wait_memory(sk, &timeo);
  827. if (ret) {
  828. trim_sgl:
  829. tls_trim_both_msgs(sk, orig_size);
  830. goto send_end;
  831. }
  832. if (msg_en->sg.size < required_size)
  833. goto alloc_encrypted;
  834. }
  835. if (!num_async) {
  836. goto send_end;
  837. } else if (num_zc) {
  838. /* Wait for pending encryptions to get completed */
  839. smp_store_mb(ctx->async_notify, true);
  840. if (atomic_read(&ctx->encrypt_pending))
  841. crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
  842. else
  843. reinit_completion(&ctx->async_wait.completion);
  844. WRITE_ONCE(ctx->async_notify, false);
  845. if (ctx->async_wait.err) {
  846. ret = ctx->async_wait.err;
  847. copied = 0;
  848. }
  849. }
  850. /* Transmit if any encryptions have completed */
  851. if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
  852. cancel_delayed_work(&ctx->tx_work.work);
  853. tls_tx_records(sk, msg->msg_flags);
  854. }
  855. send_end:
  856. ret = sk_stream_error(sk, msg->msg_flags, ret);
  857. release_sock(sk);
  858. return copied ? copied : ret;
  859. }
  860. int tls_sw_sendpage(struct sock *sk, struct page *page,
  861. int offset, size_t size, int flags)
  862. {
  863. long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
  864. struct tls_context *tls_ctx = tls_get_ctx(sk);
  865. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  866. unsigned char record_type = TLS_RECORD_TYPE_DATA;
  867. struct sk_msg *msg_pl;
  868. struct tls_rec *rec;
  869. int num_async = 0;
  870. size_t copied = 0;
  871. bool full_record;
  872. int record_room;
  873. int ret = 0;
  874. bool eor;
  875. if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
  876. MSG_SENDPAGE_NOTLAST))
  877. return -ENOTSUPP;
  878. /* No MSG_EOR from splice, only look at MSG_MORE */
  879. eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
  880. lock_sock(sk);
  881. sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  882. /* Wait till there is any pending write on socket */
  883. if (unlikely(sk->sk_write_pending)) {
  884. ret = wait_on_pending_writer(sk, &timeo);
  885. if (unlikely(ret))
  886. goto sendpage_end;
  887. }
  888. /* Call the sk_stream functions to manage the sndbuf mem. */
  889. while (size > 0) {
  890. size_t copy, required_size;
  891. if (sk->sk_err) {
  892. ret = -sk->sk_err;
  893. goto sendpage_end;
  894. }
  895. if (ctx->open_rec)
  896. rec = ctx->open_rec;
  897. else
  898. rec = ctx->open_rec = tls_get_rec(sk);
  899. if (!rec) {
  900. ret = -ENOMEM;
  901. goto sendpage_end;
  902. }
  903. msg_pl = &rec->msg_plaintext;
  904. full_record = false;
  905. record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
  906. copied = 0;
  907. copy = size;
  908. if (copy >= record_room) {
  909. copy = record_room;
  910. full_record = true;
  911. }
  912. required_size = msg_pl->sg.size + copy +
  913. tls_ctx->tx.overhead_size;
  914. if (!sk_stream_memory_free(sk))
  915. goto wait_for_sndbuf;
  916. alloc_payload:
  917. ret = tls_alloc_encrypted_msg(sk, required_size);
  918. if (ret) {
  919. if (ret != -ENOSPC)
  920. goto wait_for_memory;
  921. /* Adjust copy according to the amount that was
  922. * actually allocated. The difference is due
  923. * to max sg elements limit
  924. */
  925. copy -= required_size - msg_pl->sg.size;
  926. full_record = true;
  927. }
  928. sk_msg_page_add(msg_pl, page, copy, offset);
  929. sk_mem_charge(sk, copy);
  930. offset += copy;
  931. size -= copy;
  932. copied += copy;
  933. tls_ctx->pending_open_record_frags = true;
  934. if (full_record || eor || sk_msg_full(msg_pl)) {
  935. rec->inplace_crypto = 0;
  936. ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
  937. record_type, &copied, flags);
  938. if (ret) {
  939. if (ret == -EINPROGRESS)
  940. num_async++;
  941. else if (ret == -ENOMEM)
  942. goto wait_for_memory;
  943. else if (ret != -EAGAIN) {
  944. if (ret == -ENOSPC)
  945. ret = 0;
  946. goto sendpage_end;
  947. }
  948. }
  949. }
  950. continue;
  951. wait_for_sndbuf:
  952. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  953. wait_for_memory:
  954. ret = sk_stream_wait_memory(sk, &timeo);
  955. if (ret) {
  956. tls_trim_both_msgs(sk, msg_pl->sg.size);
  957. goto sendpage_end;
  958. }
  959. goto alloc_payload;
  960. }
  961. if (num_async) {
  962. /* Transmit if any encryptions have completed */
  963. if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
  964. cancel_delayed_work(&ctx->tx_work.work);
  965. tls_tx_records(sk, flags);
  966. }
  967. }
  968. sendpage_end:
  969. ret = sk_stream_error(sk, flags, ret);
  970. release_sock(sk);
  971. return copied ? copied : ret;
  972. }
  973. static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
  974. int flags, long timeo, int *err)
  975. {
  976. struct tls_context *tls_ctx = tls_get_ctx(sk);
  977. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  978. struct sk_buff *skb;
  979. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  980. while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
  981. if (sk->sk_err) {
  982. *err = sock_error(sk);
  983. return NULL;
  984. }
  985. if (sk->sk_shutdown & RCV_SHUTDOWN)
  986. return NULL;
  987. if (sock_flag(sk, SOCK_DONE))
  988. return NULL;
  989. if ((flags & MSG_DONTWAIT) || !timeo) {
  990. *err = -EAGAIN;
  991. return NULL;
  992. }
  993. add_wait_queue(sk_sleep(sk), &wait);
  994. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  995. sk_wait_event(sk, &timeo,
  996. ctx->recv_pkt != skb ||
  997. !sk_psock_queue_empty(psock),
  998. &wait);
  999. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1000. remove_wait_queue(sk_sleep(sk), &wait);
  1001. /* Handle signals */
  1002. if (signal_pending(current)) {
  1003. *err = sock_intr_errno(timeo);
  1004. return NULL;
  1005. }
  1006. }
  1007. return skb;
  1008. }
  1009. static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
  1010. int length, int *pages_used,
  1011. unsigned int *size_used,
  1012. struct scatterlist *to,
  1013. int to_max_pages)
  1014. {
  1015. int rc = 0, i = 0, num_elem = *pages_used, maxpages;
  1016. struct page *pages[MAX_SKB_FRAGS];
  1017. unsigned int size = *size_used;
  1018. ssize_t copied, use;
  1019. size_t offset;
  1020. while (length > 0) {
  1021. i = 0;
  1022. maxpages = to_max_pages - num_elem;
  1023. if (maxpages == 0) {
  1024. rc = -EFAULT;
  1025. goto out;
  1026. }
  1027. copied = iov_iter_get_pages(from, pages,
  1028. length,
  1029. maxpages, &offset);
  1030. if (copied <= 0) {
  1031. rc = -EFAULT;
  1032. goto out;
  1033. }
  1034. iov_iter_advance(from, copied);
  1035. length -= copied;
  1036. size += copied;
  1037. while (copied) {
  1038. use = min_t(int, copied, PAGE_SIZE - offset);
  1039. sg_set_page(&to[num_elem],
  1040. pages[i], use, offset);
  1041. sg_unmark_end(&to[num_elem]);
  1042. /* We do not uncharge memory from this API */
  1043. offset = 0;
  1044. copied -= use;
  1045. i++;
  1046. num_elem++;
  1047. }
  1048. }
  1049. /* Mark the end in the last sg entry if newly added */
  1050. if (num_elem > *pages_used)
  1051. sg_mark_end(&to[num_elem - 1]);
  1052. out:
  1053. if (rc)
  1054. iov_iter_revert(from, size - *size_used);
  1055. *size_used = size;
  1056. *pages_used = num_elem;
  1057. return rc;
  1058. }
  1059. /* This function decrypts the input skb into either out_iov or in out_sg
  1060. * or in skb buffers itself. The input parameter 'zc' indicates if
  1061. * zero-copy mode needs to be tried or not. With zero-copy mode, either
  1062. * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
  1063. * NULL, then the decryption happens inside skb buffers itself, i.e.
  1064. * zero-copy gets disabled and 'zc' is updated.
  1065. */
  1066. static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
  1067. struct iov_iter *out_iov,
  1068. struct scatterlist *out_sg,
  1069. int *chunk, bool *zc)
  1070. {
  1071. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1072. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1073. struct strp_msg *rxm = strp_msg(skb);
  1074. int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
  1075. struct aead_request *aead_req;
  1076. struct sk_buff *unused;
  1077. u8 *aad, *iv, *mem = NULL;
  1078. struct scatterlist *sgin = NULL;
  1079. struct scatterlist *sgout = NULL;
  1080. const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
  1081. if (*zc && (out_iov || out_sg)) {
  1082. if (out_iov)
  1083. n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
  1084. else
  1085. n_sgout = sg_nents(out_sg);
  1086. n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
  1087. rxm->full_len - tls_ctx->rx.prepend_size);
  1088. } else {
  1089. n_sgout = 0;
  1090. *zc = false;
  1091. n_sgin = skb_cow_data(skb, 0, &unused);
  1092. }
  1093. if (n_sgin < 1)
  1094. return -EBADMSG;
  1095. /* Increment to accommodate AAD */
  1096. n_sgin = n_sgin + 1;
  1097. nsg = n_sgin + n_sgout;
  1098. aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
  1099. mem_size = aead_size + (nsg * sizeof(struct scatterlist));
  1100. mem_size = mem_size + TLS_AAD_SPACE_SIZE;
  1101. mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
  1102. /* Allocate a single block of memory which contains
  1103. * aead_req || sgin[] || sgout[] || aad || iv.
  1104. * This order achieves correct alignment for aead_req, sgin, sgout.
  1105. */
  1106. mem = kmalloc(mem_size, sk->sk_allocation);
  1107. if (!mem)
  1108. return -ENOMEM;
  1109. /* Segment the allocated memory */
  1110. aead_req = (struct aead_request *)mem;
  1111. sgin = (struct scatterlist *)(mem + aead_size);
  1112. sgout = sgin + n_sgin;
  1113. aad = (u8 *)(sgout + n_sgout);
  1114. iv = aad + TLS_AAD_SPACE_SIZE;
  1115. /* Prepare IV */
  1116. err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
  1117. iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
  1118. tls_ctx->rx.iv_size);
  1119. if (err < 0) {
  1120. kfree(mem);
  1121. return err;
  1122. }
  1123. memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
  1124. /* Prepare AAD */
  1125. tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
  1126. tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
  1127. ctx->control);
  1128. /* Prepare sgin */
  1129. sg_init_table(sgin, n_sgin);
  1130. sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
  1131. err = skb_to_sgvec(skb, &sgin[1],
  1132. rxm->offset + tls_ctx->rx.prepend_size,
  1133. rxm->full_len - tls_ctx->rx.prepend_size);
  1134. if (err < 0) {
  1135. kfree(mem);
  1136. return err;
  1137. }
  1138. if (n_sgout) {
  1139. if (out_iov) {
  1140. sg_init_table(sgout, n_sgout);
  1141. sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
  1142. *chunk = 0;
  1143. err = tls_setup_from_iter(sk, out_iov, data_len,
  1144. &pages, chunk, &sgout[1],
  1145. (n_sgout - 1));
  1146. if (err < 0)
  1147. goto fallback_to_reg_recv;
  1148. } else if (out_sg) {
  1149. memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
  1150. } else {
  1151. goto fallback_to_reg_recv;
  1152. }
  1153. } else {
  1154. fallback_to_reg_recv:
  1155. sgout = sgin;
  1156. pages = 0;
  1157. *chunk = 0;
  1158. *zc = false;
  1159. }
  1160. /* Prepare and submit AEAD request */
  1161. err = tls_do_decryption(sk, skb, sgin, sgout, iv,
  1162. data_len, aead_req, *zc);
  1163. if (err == -EINPROGRESS)
  1164. return err;
  1165. /* Release the pages in case iov was mapped to pages */
  1166. for (; pages > 0; pages--)
  1167. put_page(sg_page(&sgout[pages]));
  1168. kfree(mem);
  1169. return err;
  1170. }
  1171. static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
  1172. struct iov_iter *dest, int *chunk, bool *zc)
  1173. {
  1174. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1175. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1176. struct strp_msg *rxm = strp_msg(skb);
  1177. int err = 0;
  1178. #ifdef CONFIG_TLS_DEVICE
  1179. err = tls_device_decrypted(sk, skb);
  1180. if (err < 0)
  1181. return err;
  1182. #endif
  1183. if (!ctx->decrypted) {
  1184. err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
  1185. if (err < 0) {
  1186. if (err == -EINPROGRESS)
  1187. tls_advance_record_sn(sk, &tls_ctx->rx);
  1188. return err;
  1189. }
  1190. } else {
  1191. *zc = false;
  1192. }
  1193. rxm->offset += tls_ctx->rx.prepend_size;
  1194. rxm->full_len -= tls_ctx->rx.overhead_size;
  1195. tls_advance_record_sn(sk, &tls_ctx->rx);
  1196. ctx->decrypted = true;
  1197. ctx->saved_data_ready(sk);
  1198. return err;
  1199. }
  1200. int decrypt_skb(struct sock *sk, struct sk_buff *skb,
  1201. struct scatterlist *sgout)
  1202. {
  1203. bool zc = true;
  1204. int chunk;
  1205. return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
  1206. }
  1207. static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
  1208. unsigned int len)
  1209. {
  1210. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1211. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1212. if (skb) {
  1213. struct strp_msg *rxm = strp_msg(skb);
  1214. if (len < rxm->full_len) {
  1215. rxm->offset += len;
  1216. rxm->full_len -= len;
  1217. return false;
  1218. }
  1219. kfree_skb(skb);
  1220. }
  1221. /* Finished with message */
  1222. ctx->recv_pkt = NULL;
  1223. __strp_unpause(&ctx->strp);
  1224. return true;
  1225. }
  1226. int tls_sw_recvmsg(struct sock *sk,
  1227. struct msghdr *msg,
  1228. size_t len,
  1229. int nonblock,
  1230. int flags,
  1231. int *addr_len)
  1232. {
  1233. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1234. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1235. struct sk_psock *psock;
  1236. unsigned char control;
  1237. struct strp_msg *rxm;
  1238. struct sk_buff *skb;
  1239. ssize_t copied = 0;
  1240. bool cmsg = false;
  1241. int target, err = 0;
  1242. long timeo;
  1243. bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
  1244. int num_async = 0;
  1245. flags |= nonblock;
  1246. if (unlikely(flags & MSG_ERRQUEUE))
  1247. return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
  1248. psock = sk_psock_get(sk);
  1249. lock_sock(sk);
  1250. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  1251. timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
  1252. do {
  1253. bool zc = false;
  1254. bool async = false;
  1255. int chunk = 0;
  1256. skb = tls_wait_data(sk, psock, flags, timeo, &err);
  1257. if (!skb) {
  1258. if (psock) {
  1259. int ret = __tcp_bpf_recvmsg(sk, psock,
  1260. msg, len, flags);
  1261. if (ret > 0) {
  1262. copied += ret;
  1263. len -= ret;
  1264. continue;
  1265. }
  1266. }
  1267. goto recv_end;
  1268. }
  1269. rxm = strp_msg(skb);
  1270. if (!cmsg) {
  1271. int cerr;
  1272. cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
  1273. sizeof(ctx->control), &ctx->control);
  1274. cmsg = true;
  1275. control = ctx->control;
  1276. if (ctx->control != TLS_RECORD_TYPE_DATA) {
  1277. if (cerr || msg->msg_flags & MSG_CTRUNC) {
  1278. err = -EIO;
  1279. goto recv_end;
  1280. }
  1281. }
  1282. } else if (control != ctx->control) {
  1283. goto recv_end;
  1284. }
  1285. if (!ctx->decrypted) {
  1286. int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
  1287. if (!is_kvec && to_copy <= len &&
  1288. likely(!(flags & MSG_PEEK)))
  1289. zc = true;
  1290. err = decrypt_skb_update(sk, skb, &msg->msg_iter,
  1291. &chunk, &zc);
  1292. if (err < 0 && err != -EINPROGRESS) {
  1293. tls_err_abort(sk, EBADMSG);
  1294. goto recv_end;
  1295. }
  1296. if (err == -EINPROGRESS) {
  1297. async = true;
  1298. num_async++;
  1299. goto pick_next_record;
  1300. }
  1301. ctx->decrypted = true;
  1302. }
  1303. if (!zc) {
  1304. chunk = min_t(unsigned int, rxm->full_len, len);
  1305. err = skb_copy_datagram_msg(skb, rxm->offset, msg,
  1306. chunk);
  1307. if (err < 0)
  1308. goto recv_end;
  1309. }
  1310. pick_next_record:
  1311. copied += chunk;
  1312. len -= chunk;
  1313. if (likely(!(flags & MSG_PEEK))) {
  1314. u8 control = ctx->control;
  1315. /* For async, drop current skb reference */
  1316. if (async)
  1317. skb = NULL;
  1318. if (tls_sw_advance_skb(sk, skb, chunk)) {
  1319. /* Return full control message to
  1320. * userspace before trying to parse
  1321. * another message type
  1322. */
  1323. msg->msg_flags |= MSG_EOR;
  1324. if (control != TLS_RECORD_TYPE_DATA)
  1325. goto recv_end;
  1326. } else {
  1327. break;
  1328. }
  1329. } else {
  1330. /* MSG_PEEK right now cannot look beyond current skb
  1331. * from strparser, meaning we cannot advance skb here
  1332. * and thus unpause strparser since we'd loose original
  1333. * one.
  1334. */
  1335. break;
  1336. }
  1337. /* If we have a new message from strparser, continue now. */
  1338. if (copied >= target && !ctx->recv_pkt)
  1339. break;
  1340. } while (len);
  1341. recv_end:
  1342. if (num_async) {
  1343. /* Wait for all previously submitted records to be decrypted */
  1344. smp_store_mb(ctx->async_notify, true);
  1345. if (atomic_read(&ctx->decrypt_pending)) {
  1346. err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
  1347. if (err) {
  1348. /* one of async decrypt failed */
  1349. tls_err_abort(sk, err);
  1350. copied = 0;
  1351. }
  1352. } else {
  1353. reinit_completion(&ctx->async_wait.completion);
  1354. }
  1355. WRITE_ONCE(ctx->async_notify, false);
  1356. }
  1357. release_sock(sk);
  1358. if (psock)
  1359. sk_psock_put(sk, psock);
  1360. return copied ? : err;
  1361. }
  1362. ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
  1363. struct pipe_inode_info *pipe,
  1364. size_t len, unsigned int flags)
  1365. {
  1366. struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
  1367. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1368. struct strp_msg *rxm = NULL;
  1369. struct sock *sk = sock->sk;
  1370. struct sk_buff *skb;
  1371. ssize_t copied = 0;
  1372. int err = 0;
  1373. long timeo;
  1374. int chunk;
  1375. bool zc = false;
  1376. lock_sock(sk);
  1377. timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
  1378. skb = tls_wait_data(sk, NULL, flags, timeo, &err);
  1379. if (!skb)
  1380. goto splice_read_end;
  1381. /* splice does not support reading control messages */
  1382. if (ctx->control != TLS_RECORD_TYPE_DATA) {
  1383. err = -ENOTSUPP;
  1384. goto splice_read_end;
  1385. }
  1386. if (!ctx->decrypted) {
  1387. err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
  1388. if (err < 0) {
  1389. tls_err_abort(sk, EBADMSG);
  1390. goto splice_read_end;
  1391. }
  1392. ctx->decrypted = true;
  1393. }
  1394. rxm = strp_msg(skb);
  1395. chunk = min_t(unsigned int, rxm->full_len, len);
  1396. copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
  1397. if (copied < 0)
  1398. goto splice_read_end;
  1399. if (likely(!(flags & MSG_PEEK)))
  1400. tls_sw_advance_skb(sk, skb, copied);
  1401. splice_read_end:
  1402. release_sock(sk);
  1403. return copied ? : err;
  1404. }
  1405. bool tls_sw_stream_read(const struct sock *sk)
  1406. {
  1407. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1408. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1409. bool ingress_empty = true;
  1410. struct sk_psock *psock;
  1411. rcu_read_lock();
  1412. psock = sk_psock(sk);
  1413. if (psock)
  1414. ingress_empty = list_empty(&psock->ingress_msg);
  1415. rcu_read_unlock();
  1416. return !ingress_empty || ctx->recv_pkt;
  1417. }
  1418. static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
  1419. {
  1420. struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
  1421. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1422. char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
  1423. struct strp_msg *rxm = strp_msg(skb);
  1424. size_t cipher_overhead;
  1425. size_t data_len = 0;
  1426. int ret;
  1427. /* Verify that we have a full TLS header, or wait for more data */
  1428. if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
  1429. return 0;
  1430. /* Sanity-check size of on-stack buffer. */
  1431. if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
  1432. ret = -EINVAL;
  1433. goto read_failure;
  1434. }
  1435. /* Linearize header to local buffer */
  1436. ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
  1437. if (ret < 0)
  1438. goto read_failure;
  1439. ctx->control = header[0];
  1440. data_len = ((header[4] & 0xFF) | (header[3] << 8));
  1441. cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
  1442. if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
  1443. ret = -EMSGSIZE;
  1444. goto read_failure;
  1445. }
  1446. if (data_len < cipher_overhead) {
  1447. ret = -EBADMSG;
  1448. goto read_failure;
  1449. }
  1450. if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
  1451. header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
  1452. ret = -EINVAL;
  1453. goto read_failure;
  1454. }
  1455. #ifdef CONFIG_TLS_DEVICE
  1456. handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
  1457. *(u64*)tls_ctx->rx.rec_seq);
  1458. #endif
  1459. return data_len + TLS_HEADER_SIZE;
  1460. read_failure:
  1461. tls_err_abort(strp->sk, ret);
  1462. return ret;
  1463. }
  1464. static void tls_queue(struct strparser *strp, struct sk_buff *skb)
  1465. {
  1466. struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
  1467. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1468. ctx->decrypted = false;
  1469. ctx->recv_pkt = skb;
  1470. strp_pause(strp);
  1471. ctx->saved_data_ready(strp->sk);
  1472. }
  1473. static void tls_data_ready(struct sock *sk)
  1474. {
  1475. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1476. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1477. struct sk_psock *psock;
  1478. strp_data_ready(&ctx->strp);
  1479. psock = sk_psock_get(sk);
  1480. if (psock && !list_empty(&psock->ingress_msg)) {
  1481. ctx->saved_data_ready(sk);
  1482. sk_psock_put(sk, psock);
  1483. }
  1484. }
  1485. void tls_sw_free_resources_tx(struct sock *sk)
  1486. {
  1487. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1488. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  1489. struct tls_rec *rec, *tmp;
  1490. /* Wait for any pending async encryptions to complete */
  1491. smp_store_mb(ctx->async_notify, true);
  1492. if (atomic_read(&ctx->encrypt_pending))
  1493. crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
  1494. cancel_delayed_work_sync(&ctx->tx_work.work);
  1495. /* Tx whatever records we can transmit and abandon the rest */
  1496. tls_tx_records(sk, -1);
  1497. /* Free up un-sent records in tx_list. First, free
  1498. * the partially sent record if any at head of tx_list.
  1499. */
  1500. if (tls_ctx->partially_sent_record) {
  1501. struct scatterlist *sg = tls_ctx->partially_sent_record;
  1502. while (1) {
  1503. put_page(sg_page(sg));
  1504. sk_mem_uncharge(sk, sg->length);
  1505. if (sg_is_last(sg))
  1506. break;
  1507. sg++;
  1508. }
  1509. tls_ctx->partially_sent_record = NULL;
  1510. rec = list_first_entry(&ctx->tx_list,
  1511. struct tls_rec, list);
  1512. list_del(&rec->list);
  1513. sk_msg_free(sk, &rec->msg_plaintext);
  1514. kfree(rec);
  1515. }
  1516. list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
  1517. list_del(&rec->list);
  1518. sk_msg_free(sk, &rec->msg_encrypted);
  1519. sk_msg_free(sk, &rec->msg_plaintext);
  1520. kfree(rec);
  1521. }
  1522. crypto_free_aead(ctx->aead_send);
  1523. tls_free_open_rec(sk);
  1524. kfree(ctx);
  1525. }
  1526. void tls_sw_release_resources_rx(struct sock *sk)
  1527. {
  1528. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1529. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1530. if (ctx->aead_recv) {
  1531. kfree_skb(ctx->recv_pkt);
  1532. ctx->recv_pkt = NULL;
  1533. crypto_free_aead(ctx->aead_recv);
  1534. strp_stop(&ctx->strp);
  1535. write_lock_bh(&sk->sk_callback_lock);
  1536. sk->sk_data_ready = ctx->saved_data_ready;
  1537. write_unlock_bh(&sk->sk_callback_lock);
  1538. release_sock(sk);
  1539. strp_done(&ctx->strp);
  1540. lock_sock(sk);
  1541. }
  1542. }
  1543. void tls_sw_free_resources_rx(struct sock *sk)
  1544. {
  1545. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1546. struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
  1547. tls_sw_release_resources_rx(sk);
  1548. kfree(ctx);
  1549. }
  1550. /* The work handler to transmitt the encrypted records in tx_list */
  1551. static void tx_work_handler(struct work_struct *work)
  1552. {
  1553. struct delayed_work *delayed_work = to_delayed_work(work);
  1554. struct tx_work *tx_work = container_of(delayed_work,
  1555. struct tx_work, work);
  1556. struct sock *sk = tx_work->sk;
  1557. struct tls_context *tls_ctx = tls_get_ctx(sk);
  1558. struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
  1559. if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
  1560. return;
  1561. lock_sock(sk);
  1562. tls_tx_records(sk, -1);
  1563. release_sock(sk);
  1564. }
  1565. int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
  1566. {
  1567. struct tls_crypto_info *crypto_info;
  1568. struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
  1569. struct tls_sw_context_tx *sw_ctx_tx = NULL;
  1570. struct tls_sw_context_rx *sw_ctx_rx = NULL;
  1571. struct cipher_context *cctx;
  1572. struct crypto_aead **aead;
  1573. struct strp_callbacks cb;
  1574. u16 nonce_size, tag_size, iv_size, rec_seq_size;
  1575. char *iv, *rec_seq;
  1576. int rc = 0;
  1577. if (!ctx) {
  1578. rc = -EINVAL;
  1579. goto out;
  1580. }
  1581. if (tx) {
  1582. if (!ctx->priv_ctx_tx) {
  1583. sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
  1584. if (!sw_ctx_tx) {
  1585. rc = -ENOMEM;
  1586. goto out;
  1587. }
  1588. ctx->priv_ctx_tx = sw_ctx_tx;
  1589. } else {
  1590. sw_ctx_tx =
  1591. (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
  1592. }
  1593. } else {
  1594. if (!ctx->priv_ctx_rx) {
  1595. sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
  1596. if (!sw_ctx_rx) {
  1597. rc = -ENOMEM;
  1598. goto out;
  1599. }
  1600. ctx->priv_ctx_rx = sw_ctx_rx;
  1601. } else {
  1602. sw_ctx_rx =
  1603. (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
  1604. }
  1605. }
  1606. if (tx) {
  1607. crypto_init_wait(&sw_ctx_tx->async_wait);
  1608. crypto_info = &ctx->crypto_send.info;
  1609. cctx = &ctx->tx;
  1610. aead = &sw_ctx_tx->aead_send;
  1611. INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
  1612. INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
  1613. sw_ctx_tx->tx_work.sk = sk;
  1614. } else {
  1615. crypto_init_wait(&sw_ctx_rx->async_wait);
  1616. crypto_info = &ctx->crypto_recv.info;
  1617. cctx = &ctx->rx;
  1618. aead = &sw_ctx_rx->aead_recv;
  1619. }
  1620. switch (crypto_info->cipher_type) {
  1621. case TLS_CIPHER_AES_GCM_128: {
  1622. nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
  1623. tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
  1624. iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
  1625. iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
  1626. rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
  1627. rec_seq =
  1628. ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
  1629. gcm_128_info =
  1630. (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
  1631. break;
  1632. }
  1633. default:
  1634. rc = -EINVAL;
  1635. goto free_priv;
  1636. }
  1637. /* Sanity-check the IV size for stack allocations. */
  1638. if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
  1639. rc = -EINVAL;
  1640. goto free_priv;
  1641. }
  1642. cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
  1643. cctx->tag_size = tag_size;
  1644. cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
  1645. cctx->iv_size = iv_size;
  1646. cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
  1647. GFP_KERNEL);
  1648. if (!cctx->iv) {
  1649. rc = -ENOMEM;
  1650. goto free_priv;
  1651. }
  1652. memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
  1653. memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
  1654. cctx->rec_seq_size = rec_seq_size;
  1655. cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
  1656. if (!cctx->rec_seq) {
  1657. rc = -ENOMEM;
  1658. goto free_iv;
  1659. }
  1660. if (!*aead) {
  1661. *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
  1662. if (IS_ERR(*aead)) {
  1663. rc = PTR_ERR(*aead);
  1664. *aead = NULL;
  1665. goto free_rec_seq;
  1666. }
  1667. }
  1668. ctx->push_pending_record = tls_sw_push_pending_record;
  1669. rc = crypto_aead_setkey(*aead, gcm_128_info->key,
  1670. TLS_CIPHER_AES_GCM_128_KEY_SIZE);
  1671. if (rc)
  1672. goto free_aead;
  1673. rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
  1674. if (rc)
  1675. goto free_aead;
  1676. if (sw_ctx_rx) {
  1677. /* Set up strparser */
  1678. memset(&cb, 0, sizeof(cb));
  1679. cb.rcv_msg = tls_queue;
  1680. cb.parse_msg = tls_read_size;
  1681. strp_init(&sw_ctx_rx->strp, sk, &cb);
  1682. write_lock_bh(&sk->sk_callback_lock);
  1683. sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
  1684. sk->sk_data_ready = tls_data_ready;
  1685. write_unlock_bh(&sk->sk_callback_lock);
  1686. strp_check_rcv(&sw_ctx_rx->strp);
  1687. }
  1688. goto out;
  1689. free_aead:
  1690. crypto_free_aead(*aead);
  1691. *aead = NULL;
  1692. free_rec_seq:
  1693. kfree(cctx->rec_seq);
  1694. cctx->rec_seq = NULL;
  1695. free_iv:
  1696. kfree(cctx->iv);
  1697. cctx->iv = NULL;
  1698. free_priv:
  1699. if (tx) {
  1700. kfree(ctx->priv_ctx_tx);
  1701. ctx->priv_ctx_tx = NULL;
  1702. } else {
  1703. kfree(ctx->priv_ctx_rx);
  1704. ctx->priv_ctx_rx = NULL;
  1705. }
  1706. out:
  1707. return rc;
  1708. }