rdma.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. /*
  2. * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/pagemap.h>
  34. #include <linux/slab.h>
  35. #include <linux/rbtree.h>
  36. #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
  37. #include "rds.h"
  38. /*
  39. * XXX
  40. * - build with sparse
  41. * - should we detect duplicate keys on a socket? hmm.
  42. * - an rdma is an mlock, apply rlimit?
  43. */
  44. /*
  45. * get the number of pages by looking at the page indices that the start and
  46. * end addresses fall in.
  47. *
  48. * Returns 0 if the vec is invalid. It is invalid if the number of bytes
  49. * causes the address to wrap or overflows an unsigned int. This comes
  50. * from being stored in the 'length' member of 'struct scatterlist'.
  51. */
  52. static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
  53. {
  54. if ((vec->addr + vec->bytes <= vec->addr) ||
  55. (vec->bytes > (u64)UINT_MAX))
  56. return 0;
  57. return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
  58. (vec->addr >> PAGE_SHIFT);
  59. }
  60. static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
  61. struct rds_mr *insert)
  62. {
  63. struct rb_node **p = &root->rb_node;
  64. struct rb_node *parent = NULL;
  65. struct rds_mr *mr;
  66. while (*p) {
  67. parent = *p;
  68. mr = rb_entry(parent, struct rds_mr, r_rb_node);
  69. if (key < mr->r_key)
  70. p = &(*p)->rb_left;
  71. else if (key > mr->r_key)
  72. p = &(*p)->rb_right;
  73. else
  74. return mr;
  75. }
  76. if (insert) {
  77. rb_link_node(&insert->r_rb_node, parent, p);
  78. rb_insert_color(&insert->r_rb_node, root);
  79. refcount_inc(&insert->r_refcount);
  80. }
  81. return NULL;
  82. }
  83. /*
  84. * Destroy the transport-specific part of a MR.
  85. */
  86. static void rds_destroy_mr(struct rds_mr *mr)
  87. {
  88. struct rds_sock *rs = mr->r_sock;
  89. void *trans_private = NULL;
  90. unsigned long flags;
  91. rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
  92. mr->r_key, refcount_read(&mr->r_refcount));
  93. if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
  94. return;
  95. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  96. if (!RB_EMPTY_NODE(&mr->r_rb_node))
  97. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  98. trans_private = mr->r_trans_private;
  99. mr->r_trans_private = NULL;
  100. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  101. if (trans_private)
  102. mr->r_trans->free_mr(trans_private, mr->r_invalidate);
  103. }
  104. void __rds_put_mr_final(struct rds_mr *mr)
  105. {
  106. rds_destroy_mr(mr);
  107. kfree(mr);
  108. }
  109. /*
  110. * By the time this is called we can't have any more ioctls called on
  111. * the socket so we don't need to worry about racing with others.
  112. */
  113. void rds_rdma_drop_keys(struct rds_sock *rs)
  114. {
  115. struct rds_mr *mr;
  116. struct rb_node *node;
  117. unsigned long flags;
  118. /* Release any MRs associated with this socket */
  119. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  120. while ((node = rb_first(&rs->rs_rdma_keys))) {
  121. mr = rb_entry(node, struct rds_mr, r_rb_node);
  122. if (mr->r_trans == rs->rs_transport)
  123. mr->r_invalidate = 0;
  124. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  125. RB_CLEAR_NODE(&mr->r_rb_node);
  126. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  127. rds_destroy_mr(mr);
  128. rds_mr_put(mr);
  129. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  130. }
  131. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  132. if (rs->rs_transport && rs->rs_transport->flush_mrs)
  133. rs->rs_transport->flush_mrs();
  134. }
  135. /*
  136. * Helper function to pin user pages.
  137. */
  138. static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
  139. struct page **pages, int write)
  140. {
  141. int ret;
  142. ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
  143. if (ret >= 0 && ret < nr_pages) {
  144. while (ret--)
  145. put_page(pages[ret]);
  146. ret = -EFAULT;
  147. }
  148. return ret;
  149. }
  150. static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
  151. u64 *cookie_ret, struct rds_mr **mr_ret,
  152. struct rds_conn_path *cp)
  153. {
  154. struct rds_mr *mr = NULL, *found;
  155. unsigned int nr_pages;
  156. struct page **pages = NULL;
  157. struct scatterlist *sg;
  158. void *trans_private;
  159. unsigned long flags;
  160. rds_rdma_cookie_t cookie;
  161. unsigned int nents;
  162. long i;
  163. int ret;
  164. if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
  165. ret = -ENOTCONN; /* XXX not a great errno */
  166. goto out;
  167. }
  168. if (!rs->rs_transport->get_mr) {
  169. ret = -EOPNOTSUPP;
  170. goto out;
  171. }
  172. nr_pages = rds_pages_in_vec(&args->vec);
  173. if (nr_pages == 0) {
  174. ret = -EINVAL;
  175. goto out;
  176. }
  177. /* Restrict the size of mr irrespective of underlying transport
  178. * To account for unaligned mr regions, subtract one from nr_pages
  179. */
  180. if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
  181. ret = -EMSGSIZE;
  182. goto out;
  183. }
  184. rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
  185. args->vec.addr, args->vec.bytes, nr_pages);
  186. /* XXX clamp nr_pages to limit the size of this alloc? */
  187. pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  188. if (!pages) {
  189. ret = -ENOMEM;
  190. goto out;
  191. }
  192. mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
  193. if (!mr) {
  194. ret = -ENOMEM;
  195. goto out;
  196. }
  197. refcount_set(&mr->r_refcount, 1);
  198. RB_CLEAR_NODE(&mr->r_rb_node);
  199. mr->r_trans = rs->rs_transport;
  200. mr->r_sock = rs;
  201. if (args->flags & RDS_RDMA_USE_ONCE)
  202. mr->r_use_once = 1;
  203. if (args->flags & RDS_RDMA_INVALIDATE)
  204. mr->r_invalidate = 1;
  205. if (args->flags & RDS_RDMA_READWRITE)
  206. mr->r_write = 1;
  207. /*
  208. * Pin the pages that make up the user buffer and transfer the page
  209. * pointers to the mr's sg array. We check to see if we've mapped
  210. * the whole region after transferring the partial page references
  211. * to the sg array so that we can have one page ref cleanup path.
  212. *
  213. * For now we have no flag that tells us whether the mapping is
  214. * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
  215. * the zero page.
  216. */
  217. ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
  218. if (ret < 0)
  219. goto out;
  220. nents = ret;
  221. sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
  222. if (!sg) {
  223. ret = -ENOMEM;
  224. goto out;
  225. }
  226. WARN_ON(!nents);
  227. sg_init_table(sg, nents);
  228. /* Stick all pages into the scatterlist */
  229. for (i = 0 ; i < nents; i++)
  230. sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
  231. rdsdebug("RDS: trans_private nents is %u\n", nents);
  232. /* Obtain a transport specific MR. If this succeeds, the
  233. * s/g list is now owned by the MR.
  234. * Note that dma_map() implies that pending writes are
  235. * flushed to RAM, so no dma_sync is needed here. */
  236. trans_private = rs->rs_transport->get_mr(sg, nents, rs,
  237. &mr->r_key,
  238. cp ? cp->cp_conn : NULL);
  239. if (IS_ERR(trans_private)) {
  240. for (i = 0 ; i < nents; i++)
  241. put_page(sg_page(&sg[i]));
  242. kfree(sg);
  243. ret = PTR_ERR(trans_private);
  244. goto out;
  245. }
  246. mr->r_trans_private = trans_private;
  247. rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
  248. mr->r_key, (void *)(unsigned long) args->cookie_addr);
  249. /* The user may pass us an unaligned address, but we can only
  250. * map page aligned regions. So we keep the offset, and build
  251. * a 64bit cookie containing <R_Key, offset> and pass that
  252. * around. */
  253. cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
  254. if (cookie_ret)
  255. *cookie_ret = cookie;
  256. if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
  257. ret = -EFAULT;
  258. goto out;
  259. }
  260. /* Inserting the new MR into the rbtree bumps its
  261. * reference count. */
  262. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  263. found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
  264. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  265. BUG_ON(found && found != mr);
  266. rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
  267. if (mr_ret) {
  268. refcount_inc(&mr->r_refcount);
  269. *mr_ret = mr;
  270. }
  271. ret = 0;
  272. out:
  273. kfree(pages);
  274. if (mr)
  275. rds_mr_put(mr);
  276. return ret;
  277. }
  278. int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
  279. {
  280. struct rds_get_mr_args args;
  281. if (optlen != sizeof(struct rds_get_mr_args))
  282. return -EINVAL;
  283. if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
  284. sizeof(struct rds_get_mr_args)))
  285. return -EFAULT;
  286. return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
  287. }
  288. int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
  289. {
  290. struct rds_get_mr_for_dest_args args;
  291. struct rds_get_mr_args new_args;
  292. if (optlen != sizeof(struct rds_get_mr_for_dest_args))
  293. return -EINVAL;
  294. if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
  295. sizeof(struct rds_get_mr_for_dest_args)))
  296. return -EFAULT;
  297. /*
  298. * Initially, just behave like get_mr().
  299. * TODO: Implement get_mr as wrapper around this
  300. * and deprecate it.
  301. */
  302. new_args.vec = args.vec;
  303. new_args.cookie_addr = args.cookie_addr;
  304. new_args.flags = args.flags;
  305. return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
  306. }
  307. /*
  308. * Free the MR indicated by the given R_Key
  309. */
  310. int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
  311. {
  312. struct rds_free_mr_args args;
  313. struct rds_mr *mr;
  314. unsigned long flags;
  315. if (optlen != sizeof(struct rds_free_mr_args))
  316. return -EINVAL;
  317. if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
  318. sizeof(struct rds_free_mr_args)))
  319. return -EFAULT;
  320. /* Special case - a null cookie means flush all unused MRs */
  321. if (args.cookie == 0) {
  322. if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
  323. return -EINVAL;
  324. rs->rs_transport->flush_mrs();
  325. return 0;
  326. }
  327. /* Look up the MR given its R_key and remove it from the rbtree
  328. * so nobody else finds it.
  329. * This should also prevent races with rds_rdma_unuse.
  330. */
  331. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  332. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
  333. if (mr) {
  334. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  335. RB_CLEAR_NODE(&mr->r_rb_node);
  336. if (args.flags & RDS_RDMA_INVALIDATE)
  337. mr->r_invalidate = 1;
  338. }
  339. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  340. if (!mr)
  341. return -EINVAL;
  342. /*
  343. * call rds_destroy_mr() ourselves so that we're sure it's done by the time
  344. * we return. If we let rds_mr_put() do it it might not happen until
  345. * someone else drops their ref.
  346. */
  347. rds_destroy_mr(mr);
  348. rds_mr_put(mr);
  349. return 0;
  350. }
  351. /*
  352. * This is called when we receive an extension header that
  353. * tells us this MR was used. It allows us to implement
  354. * use_once semantics
  355. */
  356. void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
  357. {
  358. struct rds_mr *mr;
  359. unsigned long flags;
  360. int zot_me = 0;
  361. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  362. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
  363. if (!mr) {
  364. pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
  365. r_key);
  366. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  367. return;
  368. }
  369. if (mr->r_use_once || force) {
  370. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  371. RB_CLEAR_NODE(&mr->r_rb_node);
  372. zot_me = 1;
  373. }
  374. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  375. /* May have to issue a dma_sync on this memory region.
  376. * Note we could avoid this if the operation was a RDMA READ,
  377. * but at this point we can't tell. */
  378. if (mr->r_trans->sync_mr)
  379. mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
  380. /* If the MR was marked as invalidate, this will
  381. * trigger an async flush. */
  382. if (zot_me) {
  383. rds_destroy_mr(mr);
  384. rds_mr_put(mr);
  385. }
  386. }
  387. void rds_rdma_free_op(struct rm_rdma_op *ro)
  388. {
  389. unsigned int i;
  390. for (i = 0; i < ro->op_nents; i++) {
  391. struct page *page = sg_page(&ro->op_sg[i]);
  392. /* Mark page dirty if it was possibly modified, which
  393. * is the case for a RDMA_READ which copies from remote
  394. * to local memory */
  395. if (!ro->op_write) {
  396. WARN_ON(!page->mapping && irqs_disabled());
  397. set_page_dirty(page);
  398. }
  399. put_page(page);
  400. }
  401. kfree(ro->op_notifier);
  402. ro->op_notifier = NULL;
  403. ro->op_active = 0;
  404. }
  405. void rds_atomic_free_op(struct rm_atomic_op *ao)
  406. {
  407. struct page *page = sg_page(ao->op_sg);
  408. /* Mark page dirty if it was possibly modified, which
  409. * is the case for a RDMA_READ which copies from remote
  410. * to local memory */
  411. set_page_dirty(page);
  412. put_page(page);
  413. kfree(ao->op_notifier);
  414. ao->op_notifier = NULL;
  415. ao->op_active = 0;
  416. }
  417. /*
  418. * Count the number of pages needed to describe an incoming iovec array.
  419. */
  420. static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
  421. {
  422. int tot_pages = 0;
  423. unsigned int nr_pages;
  424. unsigned int i;
  425. /* figure out the number of pages in the vector */
  426. for (i = 0; i < nr_iovecs; i++) {
  427. nr_pages = rds_pages_in_vec(&iov[i]);
  428. if (nr_pages == 0)
  429. return -EINVAL;
  430. tot_pages += nr_pages;
  431. /*
  432. * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
  433. * so tot_pages cannot overflow without first going negative.
  434. */
  435. if (tot_pages < 0)
  436. return -EINVAL;
  437. }
  438. return tot_pages;
  439. }
  440. int rds_rdma_extra_size(struct rds_rdma_args *args)
  441. {
  442. struct rds_iovec vec;
  443. struct rds_iovec __user *local_vec;
  444. int tot_pages = 0;
  445. unsigned int nr_pages;
  446. unsigned int i;
  447. local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
  448. if (args->nr_local == 0)
  449. return -EINVAL;
  450. /* figure out the number of pages in the vector */
  451. for (i = 0; i < args->nr_local; i++) {
  452. if (copy_from_user(&vec, &local_vec[i],
  453. sizeof(struct rds_iovec)))
  454. return -EFAULT;
  455. nr_pages = rds_pages_in_vec(&vec);
  456. if (nr_pages == 0)
  457. return -EINVAL;
  458. tot_pages += nr_pages;
  459. /*
  460. * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
  461. * so tot_pages cannot overflow without first going negative.
  462. */
  463. if (tot_pages < 0)
  464. return -EINVAL;
  465. }
  466. return tot_pages * sizeof(struct scatterlist);
  467. }
  468. /*
  469. * The application asks for a RDMA transfer.
  470. * Extract all arguments and set up the rdma_op
  471. */
  472. int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
  473. struct cmsghdr *cmsg)
  474. {
  475. struct rds_rdma_args *args;
  476. struct rm_rdma_op *op = &rm->rdma;
  477. int nr_pages;
  478. unsigned int nr_bytes;
  479. struct page **pages = NULL;
  480. struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack;
  481. int iov_size;
  482. unsigned int i, j;
  483. int ret = 0;
  484. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
  485. || rm->rdma.op_active)
  486. return -EINVAL;
  487. args = CMSG_DATA(cmsg);
  488. if (ipv6_addr_any(&rs->rs_bound_addr)) {
  489. ret = -ENOTCONN; /* XXX not a great errno */
  490. goto out_ret;
  491. }
  492. if (args->nr_local > UIO_MAXIOV) {
  493. ret = -EMSGSIZE;
  494. goto out_ret;
  495. }
  496. /* Check whether to allocate the iovec area */
  497. iov_size = args->nr_local * sizeof(struct rds_iovec);
  498. if (args->nr_local > UIO_FASTIOV) {
  499. iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL);
  500. if (!iovs) {
  501. ret = -ENOMEM;
  502. goto out_ret;
  503. }
  504. }
  505. if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) {
  506. ret = -EFAULT;
  507. goto out;
  508. }
  509. nr_pages = rds_rdma_pages(iovs, args->nr_local);
  510. if (nr_pages < 0) {
  511. ret = -EINVAL;
  512. goto out;
  513. }
  514. pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  515. if (!pages) {
  516. ret = -ENOMEM;
  517. goto out;
  518. }
  519. op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
  520. op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
  521. op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  522. op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
  523. op->op_active = 1;
  524. op->op_recverr = rs->rs_recverr;
  525. WARN_ON(!nr_pages);
  526. op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
  527. if (!op->op_sg) {
  528. ret = -ENOMEM;
  529. goto out;
  530. }
  531. if (op->op_notify || op->op_recverr) {
  532. /* We allocate an uninitialized notifier here, because
  533. * we don't want to do that in the completion handler. We
  534. * would have to use GFP_ATOMIC there, and don't want to deal
  535. * with failed allocations.
  536. */
  537. op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
  538. if (!op->op_notifier) {
  539. ret = -ENOMEM;
  540. goto out;
  541. }
  542. op->op_notifier->n_user_token = args->user_token;
  543. op->op_notifier->n_status = RDS_RDMA_SUCCESS;
  544. /* Enable rmda notification on data operation for composite
  545. * rds messages and make sure notification is enabled only
  546. * for the data operation which follows it so that application
  547. * gets notified only after full message gets delivered.
  548. */
  549. if (rm->data.op_sg) {
  550. rm->rdma.op_notify = 0;
  551. rm->data.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  552. }
  553. }
  554. /* The cookie contains the R_Key of the remote memory region, and
  555. * optionally an offset into it. This is how we implement RDMA into
  556. * unaligned memory.
  557. * When setting up the RDMA, we need to add that offset to the
  558. * destination address (which is really an offset into the MR)
  559. * FIXME: We may want to move this into ib_rdma.c
  560. */
  561. op->op_rkey = rds_rdma_cookie_key(args->cookie);
  562. op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
  563. nr_bytes = 0;
  564. rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
  565. (unsigned long long)args->nr_local,
  566. (unsigned long long)args->remote_vec.addr,
  567. op->op_rkey);
  568. for (i = 0; i < args->nr_local; i++) {
  569. struct rds_iovec *iov = &iovs[i];
  570. /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
  571. unsigned int nr = rds_pages_in_vec(iov);
  572. rs->rs_user_addr = iov->addr;
  573. rs->rs_user_bytes = iov->bytes;
  574. /* If it's a WRITE operation, we want to pin the pages for reading.
  575. * If it's a READ operation, we need to pin the pages for writing.
  576. */
  577. ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
  578. if (ret < 0)
  579. goto out;
  580. else
  581. ret = 0;
  582. rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
  583. nr_bytes, nr, iov->bytes, iov->addr);
  584. nr_bytes += iov->bytes;
  585. for (j = 0; j < nr; j++) {
  586. unsigned int offset = iov->addr & ~PAGE_MASK;
  587. struct scatterlist *sg;
  588. sg = &op->op_sg[op->op_nents + j];
  589. sg_set_page(sg, pages[j],
  590. min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
  591. offset);
  592. rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
  593. sg->offset, sg->length, iov->addr, iov->bytes);
  594. iov->addr += sg->length;
  595. iov->bytes -= sg->length;
  596. }
  597. op->op_nents += nr;
  598. }
  599. if (nr_bytes > args->remote_vec.bytes) {
  600. rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
  601. nr_bytes,
  602. (unsigned int) args->remote_vec.bytes);
  603. ret = -EINVAL;
  604. goto out;
  605. }
  606. op->op_bytes = nr_bytes;
  607. out:
  608. if (iovs != iovstack)
  609. sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size);
  610. kfree(pages);
  611. out_ret:
  612. if (ret)
  613. rds_rdma_free_op(op);
  614. else
  615. rds_stats_inc(s_send_rdma);
  616. return ret;
  617. }
  618. /*
  619. * The application wants us to pass an RDMA destination (aka MR)
  620. * to the remote
  621. */
  622. int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
  623. struct cmsghdr *cmsg)
  624. {
  625. unsigned long flags;
  626. struct rds_mr *mr;
  627. u32 r_key;
  628. int err = 0;
  629. if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
  630. rm->m_rdma_cookie != 0)
  631. return -EINVAL;
  632. memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
  633. /* We are reusing a previously mapped MR here. Most likely, the
  634. * application has written to the buffer, so we need to explicitly
  635. * flush those writes to RAM. Otherwise the HCA may not see them
  636. * when doing a DMA from that buffer.
  637. */
  638. r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
  639. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  640. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
  641. if (!mr)
  642. err = -EINVAL; /* invalid r_key */
  643. else
  644. refcount_inc(&mr->r_refcount);
  645. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  646. if (mr) {
  647. mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
  648. rm->rdma.op_rdma_mr = mr;
  649. }
  650. return err;
  651. }
  652. /*
  653. * The application passes us an address range it wants to enable RDMA
  654. * to/from. We map the area, and save the <R_Key,offset> pair
  655. * in rm->m_rdma_cookie. This causes it to be sent along to the peer
  656. * in an extension header.
  657. */
  658. int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
  659. struct cmsghdr *cmsg)
  660. {
  661. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
  662. rm->m_rdma_cookie != 0)
  663. return -EINVAL;
  664. return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
  665. &rm->rdma.op_rdma_mr, rm->m_conn_path);
  666. }
  667. /*
  668. * Fill in rds_message for an atomic request.
  669. */
  670. int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
  671. struct cmsghdr *cmsg)
  672. {
  673. struct page *page = NULL;
  674. struct rds_atomic_args *args;
  675. int ret = 0;
  676. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
  677. || rm->atomic.op_active)
  678. return -EINVAL;
  679. args = CMSG_DATA(cmsg);
  680. /* Nonmasked & masked cmsg ops converted to masked hw ops */
  681. switch (cmsg->cmsg_type) {
  682. case RDS_CMSG_ATOMIC_FADD:
  683. rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
  684. rm->atomic.op_m_fadd.add = args->fadd.add;
  685. rm->atomic.op_m_fadd.nocarry_mask = 0;
  686. break;
  687. case RDS_CMSG_MASKED_ATOMIC_FADD:
  688. rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
  689. rm->atomic.op_m_fadd.add = args->m_fadd.add;
  690. rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
  691. break;
  692. case RDS_CMSG_ATOMIC_CSWP:
  693. rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
  694. rm->atomic.op_m_cswp.compare = args->cswp.compare;
  695. rm->atomic.op_m_cswp.swap = args->cswp.swap;
  696. rm->atomic.op_m_cswp.compare_mask = ~0;
  697. rm->atomic.op_m_cswp.swap_mask = ~0;
  698. break;
  699. case RDS_CMSG_MASKED_ATOMIC_CSWP:
  700. rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
  701. rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
  702. rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
  703. rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
  704. rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
  705. break;
  706. default:
  707. BUG(); /* should never happen */
  708. }
  709. rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  710. rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
  711. rm->atomic.op_active = 1;
  712. rm->atomic.op_recverr = rs->rs_recverr;
  713. rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
  714. if (!rm->atomic.op_sg) {
  715. ret = -ENOMEM;
  716. goto err;
  717. }
  718. /* verify 8 byte-aligned */
  719. if (args->local_addr & 0x7) {
  720. ret = -EFAULT;
  721. goto err;
  722. }
  723. ret = rds_pin_pages(args->local_addr, 1, &page, 1);
  724. if (ret != 1)
  725. goto err;
  726. ret = 0;
  727. sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
  728. if (rm->atomic.op_notify || rm->atomic.op_recverr) {
  729. /* We allocate an uninitialized notifier here, because
  730. * we don't want to do that in the completion handler. We
  731. * would have to use GFP_ATOMIC there, and don't want to deal
  732. * with failed allocations.
  733. */
  734. rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
  735. if (!rm->atomic.op_notifier) {
  736. ret = -ENOMEM;
  737. goto err;
  738. }
  739. rm->atomic.op_notifier->n_user_token = args->user_token;
  740. rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
  741. }
  742. rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
  743. rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
  744. return ret;
  745. err:
  746. if (page)
  747. put_page(page);
  748. rm->atomic.op_active = 0;
  749. kfree(rm->atomic.op_notifier);
  750. return ret;
  751. }