af_netlink.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. * Patrick McHardy <kaber@trash.net>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. *
  13. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  14. * added netlink_proto_exit
  15. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  16. * use nlk_sk, as sk->protinfo is on a diet 8)
  17. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  18. * - inc module use count of module that owns
  19. * the kernel socket in case userspace opens
  20. * socket of same protocol
  21. * - remove all module support, since netlink is
  22. * mandatory if CONFIG_NET=y these days
  23. */
  24. #include <linux/module.h>
  25. #include <linux/capability.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/signal.h>
  29. #include <linux/sched.h>
  30. #include <linux/errno.h>
  31. #include <linux/string.h>
  32. #include <linux/stat.h>
  33. #include <linux/socket.h>
  34. #include <linux/un.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/termios.h>
  37. #include <linux/sockios.h>
  38. #include <linux/net.h>
  39. #include <linux/fs.h>
  40. #include <linux/slab.h>
  41. #include <linux/uaccess.h>
  42. #include <linux/skbuff.h>
  43. #include <linux/netdevice.h>
  44. #include <linux/rtnetlink.h>
  45. #include <linux/proc_fs.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/notifier.h>
  48. #include <linux/security.h>
  49. #include <linux/jhash.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/random.h>
  52. #include <linux/bitops.h>
  53. #include <linux/mm.h>
  54. #include <linux/types.h>
  55. #include <linux/audit.h>
  56. #include <linux/mutex.h>
  57. #include <linux/vmalloc.h>
  58. #include <linux/if_arp.h>
  59. #include <linux/rhashtable.h>
  60. #include <asm/cacheflush.h>
  61. #include <linux/hash.h>
  62. #include <linux/genetlink.h>
  63. #include <linux/net_namespace.h>
  64. #include <linux/nospec.h>
  65. #include <net/net_namespace.h>
  66. #include <net/netns/generic.h>
  67. #include <net/sock.h>
  68. #include <net/scm.h>
  69. #include <net/netlink.h>
  70. #include "af_netlink.h"
  71. struct listeners {
  72. struct rcu_head rcu;
  73. unsigned long masks[0];
  74. };
  75. /* state bits */
  76. #define NETLINK_S_CONGESTED 0x0
  77. static inline int netlink_is_kernel(struct sock *sk)
  78. {
  79. return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
  80. }
  81. struct netlink_table *nl_table __read_mostly;
  82. EXPORT_SYMBOL_GPL(nl_table);
  83. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  84. static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS];
  85. static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = {
  86. "nlk_cb_mutex-ROUTE",
  87. "nlk_cb_mutex-1",
  88. "nlk_cb_mutex-USERSOCK",
  89. "nlk_cb_mutex-FIREWALL",
  90. "nlk_cb_mutex-SOCK_DIAG",
  91. "nlk_cb_mutex-NFLOG",
  92. "nlk_cb_mutex-XFRM",
  93. "nlk_cb_mutex-SELINUX",
  94. "nlk_cb_mutex-ISCSI",
  95. "nlk_cb_mutex-AUDIT",
  96. "nlk_cb_mutex-FIB_LOOKUP",
  97. "nlk_cb_mutex-CONNECTOR",
  98. "nlk_cb_mutex-NETFILTER",
  99. "nlk_cb_mutex-IP6_FW",
  100. "nlk_cb_mutex-DNRTMSG",
  101. "nlk_cb_mutex-KOBJECT_UEVENT",
  102. "nlk_cb_mutex-GENERIC",
  103. "nlk_cb_mutex-17",
  104. "nlk_cb_mutex-SCSITRANSPORT",
  105. "nlk_cb_mutex-ECRYPTFS",
  106. "nlk_cb_mutex-RDMA",
  107. "nlk_cb_mutex-CRYPTO",
  108. "nlk_cb_mutex-SMC",
  109. "nlk_cb_mutex-23",
  110. "nlk_cb_mutex-24",
  111. "nlk_cb_mutex-25",
  112. "nlk_cb_mutex-26",
  113. "nlk_cb_mutex-27",
  114. "nlk_cb_mutex-28",
  115. "nlk_cb_mutex-29",
  116. "nlk_cb_mutex-30",
  117. "nlk_cb_mutex-31",
  118. "nlk_cb_mutex-MAX_LINKS"
  119. };
  120. static int netlink_dump(struct sock *sk);
  121. /* nl_table locking explained:
  122. * Lookup and traversal are protected with an RCU read-side lock. Insertion
  123. * and removal are protected with per bucket lock while using RCU list
  124. * modification primitives and may run in parallel to RCU protected lookups.
  125. * Destruction of the Netlink socket may only occur *after* nl_table_lock has
  126. * been acquired * either during or after the socket has been removed from
  127. * the list and after an RCU grace period.
  128. */
  129. DEFINE_RWLOCK(nl_table_lock);
  130. EXPORT_SYMBOL_GPL(nl_table_lock);
  131. static atomic_t nl_table_users = ATOMIC_INIT(0);
  132. #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
  133. static BLOCKING_NOTIFIER_HEAD(netlink_chain);
  134. static const struct rhashtable_params netlink_rhashtable_params;
  135. static inline u32 netlink_group_mask(u32 group)
  136. {
  137. return group ? 1 << (group - 1) : 0;
  138. }
  139. static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb,
  140. gfp_t gfp_mask)
  141. {
  142. unsigned int len = skb_end_offset(skb);
  143. struct sk_buff *new;
  144. new = alloc_skb(len, gfp_mask);
  145. if (new == NULL)
  146. return NULL;
  147. NETLINK_CB(new).portid = NETLINK_CB(skb).portid;
  148. NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group;
  149. NETLINK_CB(new).creds = NETLINK_CB(skb).creds;
  150. skb_put_data(new, skb->data, len);
  151. return new;
  152. }
  153. static unsigned int netlink_tap_net_id;
  154. struct netlink_tap_net {
  155. struct list_head netlink_tap_all;
  156. struct mutex netlink_tap_lock;
  157. };
  158. int netlink_add_tap(struct netlink_tap *nt)
  159. {
  160. struct net *net = dev_net(nt->dev);
  161. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  162. if (unlikely(nt->dev->type != ARPHRD_NETLINK))
  163. return -EINVAL;
  164. mutex_lock(&nn->netlink_tap_lock);
  165. list_add_rcu(&nt->list, &nn->netlink_tap_all);
  166. mutex_unlock(&nn->netlink_tap_lock);
  167. __module_get(nt->module);
  168. return 0;
  169. }
  170. EXPORT_SYMBOL_GPL(netlink_add_tap);
  171. static int __netlink_remove_tap(struct netlink_tap *nt)
  172. {
  173. struct net *net = dev_net(nt->dev);
  174. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  175. bool found = false;
  176. struct netlink_tap *tmp;
  177. mutex_lock(&nn->netlink_tap_lock);
  178. list_for_each_entry(tmp, &nn->netlink_tap_all, list) {
  179. if (nt == tmp) {
  180. list_del_rcu(&nt->list);
  181. found = true;
  182. goto out;
  183. }
  184. }
  185. pr_warn("__netlink_remove_tap: %p not found\n", nt);
  186. out:
  187. mutex_unlock(&nn->netlink_tap_lock);
  188. if (found)
  189. module_put(nt->module);
  190. return found ? 0 : -ENODEV;
  191. }
  192. int netlink_remove_tap(struct netlink_tap *nt)
  193. {
  194. int ret;
  195. ret = __netlink_remove_tap(nt);
  196. synchronize_net();
  197. return ret;
  198. }
  199. EXPORT_SYMBOL_GPL(netlink_remove_tap);
  200. static __net_init int netlink_tap_init_net(struct net *net)
  201. {
  202. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  203. INIT_LIST_HEAD(&nn->netlink_tap_all);
  204. mutex_init(&nn->netlink_tap_lock);
  205. return 0;
  206. }
  207. static void __net_exit netlink_tap_exit_net(struct net *net)
  208. {
  209. }
  210. static struct pernet_operations netlink_tap_net_ops = {
  211. .init = netlink_tap_init_net,
  212. .exit = netlink_tap_exit_net,
  213. .id = &netlink_tap_net_id,
  214. .size = sizeof(struct netlink_tap_net),
  215. };
  216. static bool netlink_filter_tap(const struct sk_buff *skb)
  217. {
  218. struct sock *sk = skb->sk;
  219. /* We take the more conservative approach and
  220. * whitelist socket protocols that may pass.
  221. */
  222. switch (sk->sk_protocol) {
  223. case NETLINK_ROUTE:
  224. case NETLINK_USERSOCK:
  225. case NETLINK_SOCK_DIAG:
  226. case NETLINK_NFLOG:
  227. case NETLINK_XFRM:
  228. case NETLINK_FIB_LOOKUP:
  229. case NETLINK_NETFILTER:
  230. case NETLINK_GENERIC:
  231. return true;
  232. }
  233. return false;
  234. }
  235. static int __netlink_deliver_tap_skb(struct sk_buff *skb,
  236. struct net_device *dev)
  237. {
  238. struct sk_buff *nskb;
  239. struct sock *sk = skb->sk;
  240. int ret = -ENOMEM;
  241. if (!net_eq(dev_net(dev), sock_net(sk)))
  242. return 0;
  243. dev_hold(dev);
  244. if (is_vmalloc_addr(skb->head))
  245. nskb = netlink_to_full_skb(skb, GFP_ATOMIC);
  246. else
  247. nskb = skb_clone(skb, GFP_ATOMIC);
  248. if (nskb) {
  249. nskb->dev = dev;
  250. nskb->protocol = htons((u16) sk->sk_protocol);
  251. nskb->pkt_type = netlink_is_kernel(sk) ?
  252. PACKET_KERNEL : PACKET_USER;
  253. skb_reset_network_header(nskb);
  254. ret = dev_queue_xmit(nskb);
  255. if (unlikely(ret > 0))
  256. ret = net_xmit_errno(ret);
  257. }
  258. dev_put(dev);
  259. return ret;
  260. }
  261. static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn)
  262. {
  263. int ret;
  264. struct netlink_tap *tmp;
  265. if (!netlink_filter_tap(skb))
  266. return;
  267. list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) {
  268. ret = __netlink_deliver_tap_skb(skb, tmp->dev);
  269. if (unlikely(ret))
  270. break;
  271. }
  272. }
  273. static void netlink_deliver_tap(struct net *net, struct sk_buff *skb)
  274. {
  275. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  276. rcu_read_lock();
  277. if (unlikely(!list_empty(&nn->netlink_tap_all)))
  278. __netlink_deliver_tap(skb, nn);
  279. rcu_read_unlock();
  280. }
  281. static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
  282. struct sk_buff *skb)
  283. {
  284. if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
  285. netlink_deliver_tap(sock_net(dst), skb);
  286. }
  287. static void netlink_overrun(struct sock *sk)
  288. {
  289. struct netlink_sock *nlk = nlk_sk(sk);
  290. if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
  291. if (!test_and_set_bit(NETLINK_S_CONGESTED,
  292. &nlk_sk(sk)->state)) {
  293. sk->sk_err = ENOBUFS;
  294. sk->sk_error_report(sk);
  295. }
  296. }
  297. atomic_inc(&sk->sk_drops);
  298. }
  299. static void netlink_rcv_wake(struct sock *sk)
  300. {
  301. struct netlink_sock *nlk = nlk_sk(sk);
  302. if (skb_queue_empty(&sk->sk_receive_queue))
  303. clear_bit(NETLINK_S_CONGESTED, &nlk->state);
  304. if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
  305. wake_up_interruptible(&nlk->wait);
  306. }
  307. static void netlink_skb_destructor(struct sk_buff *skb)
  308. {
  309. if (is_vmalloc_addr(skb->head)) {
  310. if (!skb->cloned ||
  311. !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
  312. vfree(skb->head);
  313. skb->head = NULL;
  314. }
  315. if (skb->sk != NULL)
  316. sock_rfree(skb);
  317. }
  318. static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
  319. {
  320. WARN_ON(skb->sk != NULL);
  321. skb->sk = sk;
  322. skb->destructor = netlink_skb_destructor;
  323. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  324. sk_mem_charge(sk, skb->truesize);
  325. }
  326. static void netlink_sock_destruct(struct sock *sk)
  327. {
  328. struct netlink_sock *nlk = nlk_sk(sk);
  329. if (nlk->cb_running) {
  330. if (nlk->cb.done)
  331. nlk->cb.done(&nlk->cb);
  332. module_put(nlk->cb.module);
  333. kfree_skb(nlk->cb.skb);
  334. }
  335. skb_queue_purge(&sk->sk_receive_queue);
  336. if (!sock_flag(sk, SOCK_DEAD)) {
  337. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  338. return;
  339. }
  340. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  341. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  342. WARN_ON(nlk_sk(sk)->groups);
  343. }
  344. static void netlink_sock_destruct_work(struct work_struct *work)
  345. {
  346. struct netlink_sock *nlk = container_of(work, struct netlink_sock,
  347. work);
  348. sk_free(&nlk->sk);
  349. }
  350. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  351. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  352. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  353. * this, _but_ remember, it adds useless work on UP machines.
  354. */
  355. void netlink_table_grab(void)
  356. __acquires(nl_table_lock)
  357. {
  358. might_sleep();
  359. write_lock_irq(&nl_table_lock);
  360. if (atomic_read(&nl_table_users)) {
  361. DECLARE_WAITQUEUE(wait, current);
  362. add_wait_queue_exclusive(&nl_table_wait, &wait);
  363. for (;;) {
  364. set_current_state(TASK_UNINTERRUPTIBLE);
  365. if (atomic_read(&nl_table_users) == 0)
  366. break;
  367. write_unlock_irq(&nl_table_lock);
  368. schedule();
  369. write_lock_irq(&nl_table_lock);
  370. }
  371. __set_current_state(TASK_RUNNING);
  372. remove_wait_queue(&nl_table_wait, &wait);
  373. }
  374. }
  375. void netlink_table_ungrab(void)
  376. __releases(nl_table_lock)
  377. {
  378. write_unlock_irq(&nl_table_lock);
  379. wake_up(&nl_table_wait);
  380. }
  381. static inline void
  382. netlink_lock_table(void)
  383. {
  384. /* read_lock() synchronizes us to netlink_table_grab */
  385. read_lock(&nl_table_lock);
  386. atomic_inc(&nl_table_users);
  387. read_unlock(&nl_table_lock);
  388. }
  389. static inline void
  390. netlink_unlock_table(void)
  391. {
  392. if (atomic_dec_and_test(&nl_table_users))
  393. wake_up(&nl_table_wait);
  394. }
  395. struct netlink_compare_arg
  396. {
  397. possible_net_t pnet;
  398. u32 portid;
  399. };
  400. /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
  401. #define netlink_compare_arg_len \
  402. (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
  403. static inline int netlink_compare(struct rhashtable_compare_arg *arg,
  404. const void *ptr)
  405. {
  406. const struct netlink_compare_arg *x = arg->key;
  407. const struct netlink_sock *nlk = ptr;
  408. return nlk->portid != x->portid ||
  409. !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
  410. }
  411. static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
  412. struct net *net, u32 portid)
  413. {
  414. memset(arg, 0, sizeof(*arg));
  415. write_pnet(&arg->pnet, net);
  416. arg->portid = portid;
  417. }
  418. static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
  419. struct net *net)
  420. {
  421. struct netlink_compare_arg arg;
  422. netlink_compare_arg_init(&arg, net, portid);
  423. return rhashtable_lookup_fast(&table->hash, &arg,
  424. netlink_rhashtable_params);
  425. }
  426. static int __netlink_insert(struct netlink_table *table, struct sock *sk)
  427. {
  428. struct netlink_compare_arg arg;
  429. netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
  430. return rhashtable_lookup_insert_key(&table->hash, &arg,
  431. &nlk_sk(sk)->node,
  432. netlink_rhashtable_params);
  433. }
  434. static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
  435. {
  436. struct netlink_table *table = &nl_table[protocol];
  437. struct sock *sk;
  438. rcu_read_lock();
  439. sk = __netlink_lookup(table, portid, net);
  440. if (sk)
  441. sock_hold(sk);
  442. rcu_read_unlock();
  443. return sk;
  444. }
  445. static const struct proto_ops netlink_ops;
  446. static void
  447. netlink_update_listeners(struct sock *sk)
  448. {
  449. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  450. unsigned long mask;
  451. unsigned int i;
  452. struct listeners *listeners;
  453. listeners = nl_deref_protected(tbl->listeners);
  454. if (!listeners)
  455. return;
  456. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  457. mask = 0;
  458. sk_for_each_bound(sk, &tbl->mc_list) {
  459. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  460. mask |= nlk_sk(sk)->groups[i];
  461. }
  462. listeners->masks[i] = mask;
  463. }
  464. /* this function is only called with the netlink table "grabbed", which
  465. * makes sure updates are visible before bind or setsockopt return. */
  466. }
  467. static int netlink_insert(struct sock *sk, u32 portid)
  468. {
  469. struct netlink_table *table = &nl_table[sk->sk_protocol];
  470. int err;
  471. lock_sock(sk);
  472. err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY;
  473. if (nlk_sk(sk)->bound)
  474. goto err;
  475. nlk_sk(sk)->portid = portid;
  476. sock_hold(sk);
  477. err = __netlink_insert(table, sk);
  478. if (err) {
  479. /* In case the hashtable backend returns with -EBUSY
  480. * from here, it must not escape to the caller.
  481. */
  482. if (unlikely(err == -EBUSY))
  483. err = -EOVERFLOW;
  484. if (err == -EEXIST)
  485. err = -EADDRINUSE;
  486. sock_put(sk);
  487. goto err;
  488. }
  489. /* We need to ensure that the socket is hashed and visible. */
  490. smp_wmb();
  491. nlk_sk(sk)->bound = portid;
  492. err:
  493. release_sock(sk);
  494. return err;
  495. }
  496. static void netlink_remove(struct sock *sk)
  497. {
  498. struct netlink_table *table;
  499. table = &nl_table[sk->sk_protocol];
  500. if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
  501. netlink_rhashtable_params)) {
  502. WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
  503. __sock_put(sk);
  504. }
  505. netlink_table_grab();
  506. if (nlk_sk(sk)->subscriptions) {
  507. __sk_del_bind_node(sk);
  508. netlink_update_listeners(sk);
  509. }
  510. if (sk->sk_protocol == NETLINK_GENERIC)
  511. atomic_inc(&genl_sk_destructing_cnt);
  512. netlink_table_ungrab();
  513. }
  514. static struct proto netlink_proto = {
  515. .name = "NETLINK",
  516. .owner = THIS_MODULE,
  517. .obj_size = sizeof(struct netlink_sock),
  518. };
  519. static int __netlink_create(struct net *net, struct socket *sock,
  520. struct mutex *cb_mutex, int protocol,
  521. int kern)
  522. {
  523. struct sock *sk;
  524. struct netlink_sock *nlk;
  525. sock->ops = &netlink_ops;
  526. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
  527. if (!sk)
  528. return -ENOMEM;
  529. sock_init_data(sock, sk);
  530. nlk = nlk_sk(sk);
  531. if (cb_mutex) {
  532. nlk->cb_mutex = cb_mutex;
  533. } else {
  534. nlk->cb_mutex = &nlk->cb_def_mutex;
  535. mutex_init(nlk->cb_mutex);
  536. lockdep_set_class_and_name(nlk->cb_mutex,
  537. nlk_cb_mutex_keys + protocol,
  538. nlk_cb_mutex_key_strings[protocol]);
  539. }
  540. init_waitqueue_head(&nlk->wait);
  541. sk->sk_destruct = netlink_sock_destruct;
  542. sk->sk_protocol = protocol;
  543. return 0;
  544. }
  545. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  546. int kern)
  547. {
  548. struct module *module = NULL;
  549. struct mutex *cb_mutex;
  550. struct netlink_sock *nlk;
  551. int (*bind)(struct net *net, int group);
  552. void (*unbind)(struct net *net, int group);
  553. int err = 0;
  554. sock->state = SS_UNCONNECTED;
  555. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  556. return -ESOCKTNOSUPPORT;
  557. if (protocol < 0 || protocol >= MAX_LINKS)
  558. return -EPROTONOSUPPORT;
  559. protocol = array_index_nospec(protocol, MAX_LINKS);
  560. netlink_lock_table();
  561. #ifdef CONFIG_MODULES
  562. if (!nl_table[protocol].registered) {
  563. netlink_unlock_table();
  564. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  565. netlink_lock_table();
  566. }
  567. #endif
  568. if (nl_table[protocol].registered &&
  569. try_module_get(nl_table[protocol].module))
  570. module = nl_table[protocol].module;
  571. else
  572. err = -EPROTONOSUPPORT;
  573. cb_mutex = nl_table[protocol].cb_mutex;
  574. bind = nl_table[protocol].bind;
  575. unbind = nl_table[protocol].unbind;
  576. netlink_unlock_table();
  577. if (err < 0)
  578. goto out;
  579. err = __netlink_create(net, sock, cb_mutex, protocol, kern);
  580. if (err < 0)
  581. goto out_module;
  582. local_bh_disable();
  583. sock_prot_inuse_add(net, &netlink_proto, 1);
  584. local_bh_enable();
  585. nlk = nlk_sk(sock->sk);
  586. nlk->module = module;
  587. nlk->netlink_bind = bind;
  588. nlk->netlink_unbind = unbind;
  589. out:
  590. return err;
  591. out_module:
  592. module_put(module);
  593. goto out;
  594. }
  595. static void deferred_put_nlk_sk(struct rcu_head *head)
  596. {
  597. struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
  598. struct sock *sk = &nlk->sk;
  599. kfree(nlk->groups);
  600. nlk->groups = NULL;
  601. if (!refcount_dec_and_test(&sk->sk_refcnt))
  602. return;
  603. if (nlk->cb_running && nlk->cb.done) {
  604. INIT_WORK(&nlk->work, netlink_sock_destruct_work);
  605. schedule_work(&nlk->work);
  606. return;
  607. }
  608. sk_free(sk);
  609. }
  610. static int netlink_release(struct socket *sock)
  611. {
  612. struct sock *sk = sock->sk;
  613. struct netlink_sock *nlk;
  614. if (!sk)
  615. return 0;
  616. netlink_remove(sk);
  617. sock_orphan(sk);
  618. nlk = nlk_sk(sk);
  619. /*
  620. * OK. Socket is unlinked, any packets that arrive now
  621. * will be purged.
  622. */
  623. /* must not acquire netlink_table_lock in any way again before unbind
  624. * and notifying genetlink is done as otherwise it might deadlock
  625. */
  626. if (nlk->netlink_unbind) {
  627. int i;
  628. for (i = 0; i < nlk->ngroups; i++)
  629. if (test_bit(i, nlk->groups))
  630. nlk->netlink_unbind(sock_net(sk), i + 1);
  631. }
  632. if (sk->sk_protocol == NETLINK_GENERIC &&
  633. atomic_dec_return(&genl_sk_destructing_cnt) == 0)
  634. wake_up(&genl_sk_destructing_waitq);
  635. sock->sk = NULL;
  636. wake_up_interruptible_all(&nlk->wait);
  637. skb_queue_purge(&sk->sk_write_queue);
  638. if (nlk->portid && nlk->bound) {
  639. struct netlink_notify n = {
  640. .net = sock_net(sk),
  641. .protocol = sk->sk_protocol,
  642. .portid = nlk->portid,
  643. };
  644. blocking_notifier_call_chain(&netlink_chain,
  645. NETLINK_URELEASE, &n);
  646. }
  647. module_put(nlk->module);
  648. if (netlink_is_kernel(sk)) {
  649. netlink_table_grab();
  650. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  651. if (--nl_table[sk->sk_protocol].registered == 0) {
  652. struct listeners *old;
  653. old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
  654. RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
  655. kfree_rcu(old, rcu);
  656. nl_table[sk->sk_protocol].module = NULL;
  657. nl_table[sk->sk_protocol].bind = NULL;
  658. nl_table[sk->sk_protocol].unbind = NULL;
  659. nl_table[sk->sk_protocol].flags = 0;
  660. nl_table[sk->sk_protocol].registered = 0;
  661. }
  662. netlink_table_ungrab();
  663. }
  664. local_bh_disable();
  665. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  666. local_bh_enable();
  667. call_rcu(&nlk->rcu, deferred_put_nlk_sk);
  668. return 0;
  669. }
  670. static int netlink_autobind(struct socket *sock)
  671. {
  672. struct sock *sk = sock->sk;
  673. struct net *net = sock_net(sk);
  674. struct netlink_table *table = &nl_table[sk->sk_protocol];
  675. s32 portid = task_tgid_vnr(current);
  676. int err;
  677. s32 rover = -4096;
  678. bool ok;
  679. retry:
  680. cond_resched();
  681. rcu_read_lock();
  682. ok = !__netlink_lookup(table, portid, net);
  683. rcu_read_unlock();
  684. if (!ok) {
  685. /* Bind collision, search negative portid values. */
  686. if (rover == -4096)
  687. /* rover will be in range [S32_MIN, -4097] */
  688. rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
  689. else if (rover >= -4096)
  690. rover = -4097;
  691. portid = rover--;
  692. goto retry;
  693. }
  694. err = netlink_insert(sk, portid);
  695. if (err == -EADDRINUSE)
  696. goto retry;
  697. /* If 2 threads race to autobind, that is fine. */
  698. if (err == -EBUSY)
  699. err = 0;
  700. return err;
  701. }
  702. /**
  703. * __netlink_ns_capable - General netlink message capability test
  704. * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
  705. * @user_ns: The user namespace of the capability to use
  706. * @cap: The capability to use
  707. *
  708. * Test to see if the opener of the socket we received the message
  709. * from had when the netlink socket was created and the sender of the
  710. * message has has the capability @cap in the user namespace @user_ns.
  711. */
  712. bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
  713. struct user_namespace *user_ns, int cap)
  714. {
  715. return ((nsp->flags & NETLINK_SKB_DST) ||
  716. file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
  717. ns_capable(user_ns, cap);
  718. }
  719. EXPORT_SYMBOL(__netlink_ns_capable);
  720. /**
  721. * netlink_ns_capable - General netlink message capability test
  722. * @skb: socket buffer holding a netlink command from userspace
  723. * @user_ns: The user namespace of the capability to use
  724. * @cap: The capability to use
  725. *
  726. * Test to see if the opener of the socket we received the message
  727. * from had when the netlink socket was created and the sender of the
  728. * message has has the capability @cap in the user namespace @user_ns.
  729. */
  730. bool netlink_ns_capable(const struct sk_buff *skb,
  731. struct user_namespace *user_ns, int cap)
  732. {
  733. return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
  734. }
  735. EXPORT_SYMBOL(netlink_ns_capable);
  736. /**
  737. * netlink_capable - Netlink global message capability test
  738. * @skb: socket buffer holding a netlink command from userspace
  739. * @cap: The capability to use
  740. *
  741. * Test to see if the opener of the socket we received the message
  742. * from had when the netlink socket was created and the sender of the
  743. * message has has the capability @cap in all user namespaces.
  744. */
  745. bool netlink_capable(const struct sk_buff *skb, int cap)
  746. {
  747. return netlink_ns_capable(skb, &init_user_ns, cap);
  748. }
  749. EXPORT_SYMBOL(netlink_capable);
  750. /**
  751. * netlink_net_capable - Netlink network namespace message capability test
  752. * @skb: socket buffer holding a netlink command from userspace
  753. * @cap: The capability to use
  754. *
  755. * Test to see if the opener of the socket we received the message
  756. * from had when the netlink socket was created and the sender of the
  757. * message has has the capability @cap over the network namespace of
  758. * the socket we received the message from.
  759. */
  760. bool netlink_net_capable(const struct sk_buff *skb, int cap)
  761. {
  762. return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
  763. }
  764. EXPORT_SYMBOL(netlink_net_capable);
  765. static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
  766. {
  767. return (nl_table[sock->sk->sk_protocol].flags & flag) ||
  768. ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
  769. }
  770. static void
  771. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  772. {
  773. struct netlink_sock *nlk = nlk_sk(sk);
  774. if (nlk->subscriptions && !subscriptions)
  775. __sk_del_bind_node(sk);
  776. else if (!nlk->subscriptions && subscriptions)
  777. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  778. nlk->subscriptions = subscriptions;
  779. }
  780. static int netlink_realloc_groups(struct sock *sk)
  781. {
  782. struct netlink_sock *nlk = nlk_sk(sk);
  783. unsigned int groups;
  784. unsigned long *new_groups;
  785. int err = 0;
  786. netlink_table_grab();
  787. groups = nl_table[sk->sk_protocol].groups;
  788. if (!nl_table[sk->sk_protocol].registered) {
  789. err = -ENOENT;
  790. goto out_unlock;
  791. }
  792. if (nlk->ngroups >= groups)
  793. goto out_unlock;
  794. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  795. if (new_groups == NULL) {
  796. err = -ENOMEM;
  797. goto out_unlock;
  798. }
  799. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  800. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  801. nlk->groups = new_groups;
  802. nlk->ngroups = groups;
  803. out_unlock:
  804. netlink_table_ungrab();
  805. return err;
  806. }
  807. static void netlink_undo_bind(int group, long unsigned int groups,
  808. struct sock *sk)
  809. {
  810. struct netlink_sock *nlk = nlk_sk(sk);
  811. int undo;
  812. if (!nlk->netlink_unbind)
  813. return;
  814. for (undo = 0; undo < group; undo++)
  815. if (test_bit(undo, &groups))
  816. nlk->netlink_unbind(sock_net(sk), undo + 1);
  817. }
  818. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  819. int addr_len)
  820. {
  821. struct sock *sk = sock->sk;
  822. struct net *net = sock_net(sk);
  823. struct netlink_sock *nlk = nlk_sk(sk);
  824. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  825. int err = 0;
  826. unsigned long groups = nladdr->nl_groups;
  827. bool bound;
  828. if (addr_len < sizeof(struct sockaddr_nl))
  829. return -EINVAL;
  830. if (nladdr->nl_family != AF_NETLINK)
  831. return -EINVAL;
  832. /* Only superuser is allowed to listen multicasts */
  833. if (groups) {
  834. if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
  835. return -EPERM;
  836. err = netlink_realloc_groups(sk);
  837. if (err)
  838. return err;
  839. }
  840. if (nlk->ngroups < BITS_PER_LONG)
  841. groups &= (1UL << nlk->ngroups) - 1;
  842. bound = nlk->bound;
  843. if (bound) {
  844. /* Ensure nlk->portid is up-to-date. */
  845. smp_rmb();
  846. if (nladdr->nl_pid != nlk->portid)
  847. return -EINVAL;
  848. }
  849. netlink_lock_table();
  850. if (nlk->netlink_bind && groups) {
  851. int group;
  852. for (group = 0; group < nlk->ngroups; group++) {
  853. if (!test_bit(group, &groups))
  854. continue;
  855. err = nlk->netlink_bind(net, group + 1);
  856. if (!err)
  857. continue;
  858. netlink_undo_bind(group, groups, sk);
  859. goto unlock;
  860. }
  861. }
  862. /* No need for barriers here as we return to user-space without
  863. * using any of the bound attributes.
  864. */
  865. if (!bound) {
  866. err = nladdr->nl_pid ?
  867. netlink_insert(sk, nladdr->nl_pid) :
  868. netlink_autobind(sock);
  869. if (err) {
  870. netlink_undo_bind(nlk->ngroups, groups, sk);
  871. goto unlock;
  872. }
  873. }
  874. if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  875. goto unlock;
  876. netlink_unlock_table();
  877. netlink_table_grab();
  878. netlink_update_subscriptions(sk, nlk->subscriptions +
  879. hweight32(groups) -
  880. hweight32(nlk->groups[0]));
  881. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
  882. netlink_update_listeners(sk);
  883. netlink_table_ungrab();
  884. return 0;
  885. unlock:
  886. netlink_unlock_table();
  887. return err;
  888. }
  889. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  890. int alen, int flags)
  891. {
  892. int err = 0;
  893. struct sock *sk = sock->sk;
  894. struct netlink_sock *nlk = nlk_sk(sk);
  895. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  896. if (alen < sizeof(addr->sa_family))
  897. return -EINVAL;
  898. if (addr->sa_family == AF_UNSPEC) {
  899. sk->sk_state = NETLINK_UNCONNECTED;
  900. nlk->dst_portid = 0;
  901. nlk->dst_group = 0;
  902. return 0;
  903. }
  904. if (addr->sa_family != AF_NETLINK)
  905. return -EINVAL;
  906. if (alen < sizeof(struct sockaddr_nl))
  907. return -EINVAL;
  908. if ((nladdr->nl_groups || nladdr->nl_pid) &&
  909. !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
  910. return -EPERM;
  911. /* No need for barriers here as we return to user-space without
  912. * using any of the bound attributes.
  913. */
  914. if (!nlk->bound)
  915. err = netlink_autobind(sock);
  916. if (err == 0) {
  917. sk->sk_state = NETLINK_CONNECTED;
  918. nlk->dst_portid = nladdr->nl_pid;
  919. nlk->dst_group = ffs(nladdr->nl_groups);
  920. }
  921. return err;
  922. }
  923. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  924. int peer)
  925. {
  926. struct sock *sk = sock->sk;
  927. struct netlink_sock *nlk = nlk_sk(sk);
  928. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  929. nladdr->nl_family = AF_NETLINK;
  930. nladdr->nl_pad = 0;
  931. if (peer) {
  932. nladdr->nl_pid = nlk->dst_portid;
  933. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  934. } else {
  935. nladdr->nl_pid = nlk->portid;
  936. netlink_lock_table();
  937. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  938. netlink_unlock_table();
  939. }
  940. return sizeof(*nladdr);
  941. }
  942. static int netlink_ioctl(struct socket *sock, unsigned int cmd,
  943. unsigned long arg)
  944. {
  945. /* try to hand this ioctl down to the NIC drivers.
  946. */
  947. return -ENOIOCTLCMD;
  948. }
  949. static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
  950. {
  951. struct sock *sock;
  952. struct netlink_sock *nlk;
  953. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
  954. if (!sock)
  955. return ERR_PTR(-ECONNREFUSED);
  956. /* Don't bother queuing skb if kernel socket has no input function */
  957. nlk = nlk_sk(sock);
  958. if (sock->sk_state == NETLINK_CONNECTED &&
  959. nlk->dst_portid != nlk_sk(ssk)->portid) {
  960. sock_put(sock);
  961. return ERR_PTR(-ECONNREFUSED);
  962. }
  963. return sock;
  964. }
  965. struct sock *netlink_getsockbyfilp(struct file *filp)
  966. {
  967. struct inode *inode = file_inode(filp);
  968. struct sock *sock;
  969. if (!S_ISSOCK(inode->i_mode))
  970. return ERR_PTR(-ENOTSOCK);
  971. sock = SOCKET_I(inode)->sk;
  972. if (sock->sk_family != AF_NETLINK)
  973. return ERR_PTR(-EINVAL);
  974. sock_hold(sock);
  975. return sock;
  976. }
  977. static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
  978. int broadcast)
  979. {
  980. struct sk_buff *skb;
  981. void *data;
  982. if (size <= NLMSG_GOODSIZE || broadcast)
  983. return alloc_skb(size, GFP_KERNEL);
  984. size = SKB_DATA_ALIGN(size) +
  985. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  986. data = vmalloc(size);
  987. if (data == NULL)
  988. return NULL;
  989. skb = __build_skb(data, size);
  990. if (skb == NULL)
  991. vfree(data);
  992. else
  993. skb->destructor = netlink_skb_destructor;
  994. return skb;
  995. }
  996. /*
  997. * Attach a skb to a netlink socket.
  998. * The caller must hold a reference to the destination socket. On error, the
  999. * reference is dropped. The skb is not send to the destination, just all
  1000. * all error checks are performed and memory in the queue is reserved.
  1001. * Return values:
  1002. * < 0: error. skb freed, reference to sock dropped.
  1003. * 0: continue
  1004. * 1: repeat lookup - reference dropped while waiting for socket memory.
  1005. */
  1006. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  1007. long *timeo, struct sock *ssk)
  1008. {
  1009. struct netlink_sock *nlk;
  1010. nlk = nlk_sk(sk);
  1011. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1012. test_bit(NETLINK_S_CONGESTED, &nlk->state))) {
  1013. DECLARE_WAITQUEUE(wait, current);
  1014. if (!*timeo) {
  1015. if (!ssk || netlink_is_kernel(ssk))
  1016. netlink_overrun(sk);
  1017. sock_put(sk);
  1018. kfree_skb(skb);
  1019. return -EAGAIN;
  1020. }
  1021. __set_current_state(TASK_INTERRUPTIBLE);
  1022. add_wait_queue(&nlk->wait, &wait);
  1023. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1024. test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
  1025. !sock_flag(sk, SOCK_DEAD))
  1026. *timeo = schedule_timeout(*timeo);
  1027. __set_current_state(TASK_RUNNING);
  1028. remove_wait_queue(&nlk->wait, &wait);
  1029. sock_put(sk);
  1030. if (signal_pending(current)) {
  1031. kfree_skb(skb);
  1032. return sock_intr_errno(*timeo);
  1033. }
  1034. return 1;
  1035. }
  1036. netlink_skb_set_owner_r(skb, sk);
  1037. return 0;
  1038. }
  1039. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1040. {
  1041. int len = skb->len;
  1042. netlink_deliver_tap(sock_net(sk), skb);
  1043. skb_queue_tail(&sk->sk_receive_queue, skb);
  1044. sk->sk_data_ready(sk);
  1045. return len;
  1046. }
  1047. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1048. {
  1049. int len = __netlink_sendskb(sk, skb);
  1050. sock_put(sk);
  1051. return len;
  1052. }
  1053. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  1054. {
  1055. kfree_skb(skb);
  1056. sock_put(sk);
  1057. }
  1058. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  1059. {
  1060. int delta;
  1061. WARN_ON(skb->sk != NULL);
  1062. delta = skb->end - skb->tail;
  1063. if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
  1064. return skb;
  1065. if (skb_shared(skb)) {
  1066. struct sk_buff *nskb = skb_clone(skb, allocation);
  1067. if (!nskb)
  1068. return skb;
  1069. consume_skb(skb);
  1070. skb = nskb;
  1071. }
  1072. pskb_expand_head(skb, 0, -delta,
  1073. (allocation & ~__GFP_DIRECT_RECLAIM) |
  1074. __GFP_NOWARN | __GFP_NORETRY);
  1075. return skb;
  1076. }
  1077. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
  1078. struct sock *ssk)
  1079. {
  1080. int ret;
  1081. struct netlink_sock *nlk = nlk_sk(sk);
  1082. ret = -ECONNREFUSED;
  1083. if (nlk->netlink_rcv != NULL) {
  1084. ret = skb->len;
  1085. netlink_skb_set_owner_r(skb, sk);
  1086. NETLINK_CB(skb).sk = ssk;
  1087. netlink_deliver_tap_kernel(sk, ssk, skb);
  1088. nlk->netlink_rcv(skb);
  1089. consume_skb(skb);
  1090. } else {
  1091. kfree_skb(skb);
  1092. }
  1093. sock_put(sk);
  1094. return ret;
  1095. }
  1096. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  1097. u32 portid, int nonblock)
  1098. {
  1099. struct sock *sk;
  1100. int err;
  1101. long timeo;
  1102. skb = netlink_trim(skb, gfp_any());
  1103. timeo = sock_sndtimeo(ssk, nonblock);
  1104. retry:
  1105. sk = netlink_getsockbyportid(ssk, portid);
  1106. if (IS_ERR(sk)) {
  1107. kfree_skb(skb);
  1108. return PTR_ERR(sk);
  1109. }
  1110. if (netlink_is_kernel(sk))
  1111. return netlink_unicast_kernel(sk, skb, ssk);
  1112. if (sk_filter(sk, skb)) {
  1113. err = skb->len;
  1114. kfree_skb(skb);
  1115. sock_put(sk);
  1116. return err;
  1117. }
  1118. err = netlink_attachskb(sk, skb, &timeo, ssk);
  1119. if (err == 1)
  1120. goto retry;
  1121. if (err)
  1122. return err;
  1123. return netlink_sendskb(sk, skb);
  1124. }
  1125. EXPORT_SYMBOL(netlink_unicast);
  1126. int netlink_has_listeners(struct sock *sk, unsigned int group)
  1127. {
  1128. int res = 0;
  1129. struct listeners *listeners;
  1130. BUG_ON(!netlink_is_kernel(sk));
  1131. rcu_read_lock();
  1132. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  1133. if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
  1134. res = test_bit(group - 1, listeners->masks);
  1135. rcu_read_unlock();
  1136. return res;
  1137. }
  1138. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  1139. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  1140. {
  1141. struct netlink_sock *nlk = nlk_sk(sk);
  1142. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  1143. !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
  1144. netlink_skb_set_owner_r(skb, sk);
  1145. __netlink_sendskb(sk, skb);
  1146. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  1147. }
  1148. return -1;
  1149. }
  1150. struct netlink_broadcast_data {
  1151. struct sock *exclude_sk;
  1152. struct net *net;
  1153. u32 portid;
  1154. u32 group;
  1155. int failure;
  1156. int delivery_failure;
  1157. int congested;
  1158. int delivered;
  1159. gfp_t allocation;
  1160. struct sk_buff *skb, *skb2;
  1161. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  1162. void *tx_data;
  1163. };
  1164. static void do_one_broadcast(struct sock *sk,
  1165. struct netlink_broadcast_data *p)
  1166. {
  1167. struct netlink_sock *nlk = nlk_sk(sk);
  1168. int val;
  1169. if (p->exclude_sk == sk)
  1170. return;
  1171. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1172. !test_bit(p->group - 1, nlk->groups))
  1173. return;
  1174. if (!net_eq(sock_net(sk), p->net)) {
  1175. if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
  1176. return;
  1177. if (!peernet_has_id(sock_net(sk), p->net))
  1178. return;
  1179. if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
  1180. CAP_NET_BROADCAST))
  1181. return;
  1182. }
  1183. if (p->failure) {
  1184. netlink_overrun(sk);
  1185. return;
  1186. }
  1187. sock_hold(sk);
  1188. if (p->skb2 == NULL) {
  1189. if (skb_shared(p->skb)) {
  1190. p->skb2 = skb_clone(p->skb, p->allocation);
  1191. } else {
  1192. p->skb2 = skb_get(p->skb);
  1193. /*
  1194. * skb ownership may have been set when
  1195. * delivered to a previous socket.
  1196. */
  1197. skb_orphan(p->skb2);
  1198. }
  1199. }
  1200. if (p->skb2 == NULL) {
  1201. netlink_overrun(sk);
  1202. /* Clone failed. Notify ALL listeners. */
  1203. p->failure = 1;
  1204. if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
  1205. p->delivery_failure = 1;
  1206. goto out;
  1207. }
  1208. if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  1209. kfree_skb(p->skb2);
  1210. p->skb2 = NULL;
  1211. goto out;
  1212. }
  1213. if (sk_filter(sk, p->skb2)) {
  1214. kfree_skb(p->skb2);
  1215. p->skb2 = NULL;
  1216. goto out;
  1217. }
  1218. NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
  1219. if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED)
  1220. NETLINK_CB(p->skb2).nsid_is_set = true;
  1221. val = netlink_broadcast_deliver(sk, p->skb2);
  1222. if (val < 0) {
  1223. netlink_overrun(sk);
  1224. if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
  1225. p->delivery_failure = 1;
  1226. } else {
  1227. p->congested |= val;
  1228. p->delivered = 1;
  1229. p->skb2 = NULL;
  1230. }
  1231. out:
  1232. sock_put(sk);
  1233. }
  1234. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1235. u32 group, gfp_t allocation,
  1236. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  1237. void *filter_data)
  1238. {
  1239. struct net *net = sock_net(ssk);
  1240. struct netlink_broadcast_data info;
  1241. struct sock *sk;
  1242. skb = netlink_trim(skb, allocation);
  1243. info.exclude_sk = ssk;
  1244. info.net = net;
  1245. info.portid = portid;
  1246. info.group = group;
  1247. info.failure = 0;
  1248. info.delivery_failure = 0;
  1249. info.congested = 0;
  1250. info.delivered = 0;
  1251. info.allocation = allocation;
  1252. info.skb = skb;
  1253. info.skb2 = NULL;
  1254. info.tx_filter = filter;
  1255. info.tx_data = filter_data;
  1256. /* While we sleep in clone, do not allow to change socket list */
  1257. netlink_lock_table();
  1258. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1259. do_one_broadcast(sk, &info);
  1260. consume_skb(skb);
  1261. netlink_unlock_table();
  1262. if (info.delivery_failure) {
  1263. kfree_skb(info.skb2);
  1264. return -ENOBUFS;
  1265. }
  1266. consume_skb(info.skb2);
  1267. if (info.delivered) {
  1268. if (info.congested && gfpflags_allow_blocking(allocation))
  1269. yield();
  1270. return 0;
  1271. }
  1272. return -ESRCH;
  1273. }
  1274. EXPORT_SYMBOL(netlink_broadcast_filtered);
  1275. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1276. u32 group, gfp_t allocation)
  1277. {
  1278. return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
  1279. NULL, NULL);
  1280. }
  1281. EXPORT_SYMBOL(netlink_broadcast);
  1282. struct netlink_set_err_data {
  1283. struct sock *exclude_sk;
  1284. u32 portid;
  1285. u32 group;
  1286. int code;
  1287. };
  1288. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  1289. {
  1290. struct netlink_sock *nlk = nlk_sk(sk);
  1291. int ret = 0;
  1292. if (sk == p->exclude_sk)
  1293. goto out;
  1294. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  1295. goto out;
  1296. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1297. !test_bit(p->group - 1, nlk->groups))
  1298. goto out;
  1299. if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
  1300. ret = 1;
  1301. goto out;
  1302. }
  1303. sk->sk_err = p->code;
  1304. sk->sk_error_report(sk);
  1305. out:
  1306. return ret;
  1307. }
  1308. /**
  1309. * netlink_set_err - report error to broadcast listeners
  1310. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  1311. * @portid: the PORTID of a process that we want to skip (if any)
  1312. * @group: the broadcast group that will notice the error
  1313. * @code: error code, must be negative (as usual in kernelspace)
  1314. *
  1315. * This function returns the number of broadcast listeners that have set the
  1316. * NETLINK_NO_ENOBUFS socket option.
  1317. */
  1318. int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
  1319. {
  1320. struct netlink_set_err_data info;
  1321. struct sock *sk;
  1322. int ret = 0;
  1323. info.exclude_sk = ssk;
  1324. info.portid = portid;
  1325. info.group = group;
  1326. /* sk->sk_err wants a positive error value */
  1327. info.code = -code;
  1328. read_lock(&nl_table_lock);
  1329. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1330. ret += do_one_set_err(sk, &info);
  1331. read_unlock(&nl_table_lock);
  1332. return ret;
  1333. }
  1334. EXPORT_SYMBOL(netlink_set_err);
  1335. /* must be called with netlink table grabbed */
  1336. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  1337. unsigned int group,
  1338. int is_new)
  1339. {
  1340. int old, new = !!is_new, subscriptions;
  1341. old = test_bit(group - 1, nlk->groups);
  1342. subscriptions = nlk->subscriptions - old + new;
  1343. if (new)
  1344. __set_bit(group - 1, nlk->groups);
  1345. else
  1346. __clear_bit(group - 1, nlk->groups);
  1347. netlink_update_subscriptions(&nlk->sk, subscriptions);
  1348. netlink_update_listeners(&nlk->sk);
  1349. }
  1350. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  1351. char __user *optval, unsigned int optlen)
  1352. {
  1353. struct sock *sk = sock->sk;
  1354. struct netlink_sock *nlk = nlk_sk(sk);
  1355. unsigned int val = 0;
  1356. int err;
  1357. if (level != SOL_NETLINK)
  1358. return -ENOPROTOOPT;
  1359. if (optlen >= sizeof(int) &&
  1360. get_user(val, (unsigned int __user *)optval))
  1361. return -EFAULT;
  1362. switch (optname) {
  1363. case NETLINK_PKTINFO:
  1364. if (val)
  1365. nlk->flags |= NETLINK_F_RECV_PKTINFO;
  1366. else
  1367. nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
  1368. err = 0;
  1369. break;
  1370. case NETLINK_ADD_MEMBERSHIP:
  1371. case NETLINK_DROP_MEMBERSHIP: {
  1372. if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
  1373. return -EPERM;
  1374. err = netlink_realloc_groups(sk);
  1375. if (err)
  1376. return err;
  1377. if (!val || val - 1 >= nlk->ngroups)
  1378. return -EINVAL;
  1379. if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
  1380. err = nlk->netlink_bind(sock_net(sk), val);
  1381. if (err)
  1382. return err;
  1383. }
  1384. netlink_table_grab();
  1385. netlink_update_socket_mc(nlk, val,
  1386. optname == NETLINK_ADD_MEMBERSHIP);
  1387. netlink_table_ungrab();
  1388. if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
  1389. nlk->netlink_unbind(sock_net(sk), val);
  1390. err = 0;
  1391. break;
  1392. }
  1393. case NETLINK_BROADCAST_ERROR:
  1394. if (val)
  1395. nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
  1396. else
  1397. nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
  1398. err = 0;
  1399. break;
  1400. case NETLINK_NO_ENOBUFS:
  1401. if (val) {
  1402. nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
  1403. clear_bit(NETLINK_S_CONGESTED, &nlk->state);
  1404. wake_up_interruptible(&nlk->wait);
  1405. } else {
  1406. nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
  1407. }
  1408. err = 0;
  1409. break;
  1410. case NETLINK_LISTEN_ALL_NSID:
  1411. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
  1412. return -EPERM;
  1413. if (val)
  1414. nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
  1415. else
  1416. nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
  1417. err = 0;
  1418. break;
  1419. case NETLINK_CAP_ACK:
  1420. if (val)
  1421. nlk->flags |= NETLINK_F_CAP_ACK;
  1422. else
  1423. nlk->flags &= ~NETLINK_F_CAP_ACK;
  1424. err = 0;
  1425. break;
  1426. case NETLINK_EXT_ACK:
  1427. if (val)
  1428. nlk->flags |= NETLINK_F_EXT_ACK;
  1429. else
  1430. nlk->flags &= ~NETLINK_F_EXT_ACK;
  1431. err = 0;
  1432. break;
  1433. case NETLINK_DUMP_STRICT_CHK:
  1434. if (val)
  1435. nlk->flags |= NETLINK_F_STRICT_CHK;
  1436. else
  1437. nlk->flags &= ~NETLINK_F_STRICT_CHK;
  1438. err = 0;
  1439. break;
  1440. default:
  1441. err = -ENOPROTOOPT;
  1442. }
  1443. return err;
  1444. }
  1445. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1446. char __user *optval, int __user *optlen)
  1447. {
  1448. struct sock *sk = sock->sk;
  1449. struct netlink_sock *nlk = nlk_sk(sk);
  1450. int len, val, err;
  1451. if (level != SOL_NETLINK)
  1452. return -ENOPROTOOPT;
  1453. if (get_user(len, optlen))
  1454. return -EFAULT;
  1455. if (len < 0)
  1456. return -EINVAL;
  1457. switch (optname) {
  1458. case NETLINK_PKTINFO:
  1459. if (len < sizeof(int))
  1460. return -EINVAL;
  1461. len = sizeof(int);
  1462. val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
  1463. if (put_user(len, optlen) ||
  1464. put_user(val, optval))
  1465. return -EFAULT;
  1466. err = 0;
  1467. break;
  1468. case NETLINK_BROADCAST_ERROR:
  1469. if (len < sizeof(int))
  1470. return -EINVAL;
  1471. len = sizeof(int);
  1472. val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
  1473. if (put_user(len, optlen) ||
  1474. put_user(val, optval))
  1475. return -EFAULT;
  1476. err = 0;
  1477. break;
  1478. case NETLINK_NO_ENOBUFS:
  1479. if (len < sizeof(int))
  1480. return -EINVAL;
  1481. len = sizeof(int);
  1482. val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
  1483. if (put_user(len, optlen) ||
  1484. put_user(val, optval))
  1485. return -EFAULT;
  1486. err = 0;
  1487. break;
  1488. case NETLINK_LIST_MEMBERSHIPS: {
  1489. int pos, idx, shift;
  1490. err = 0;
  1491. netlink_lock_table();
  1492. for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
  1493. if (len - pos < sizeof(u32))
  1494. break;
  1495. idx = pos / sizeof(unsigned long);
  1496. shift = (pos % sizeof(unsigned long)) * 8;
  1497. if (put_user((u32)(nlk->groups[idx] >> shift),
  1498. (u32 __user *)(optval + pos))) {
  1499. err = -EFAULT;
  1500. break;
  1501. }
  1502. }
  1503. if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
  1504. err = -EFAULT;
  1505. netlink_unlock_table();
  1506. break;
  1507. }
  1508. case NETLINK_CAP_ACK:
  1509. if (len < sizeof(int))
  1510. return -EINVAL;
  1511. len = sizeof(int);
  1512. val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
  1513. if (put_user(len, optlen) ||
  1514. put_user(val, optval))
  1515. return -EFAULT;
  1516. err = 0;
  1517. break;
  1518. case NETLINK_EXT_ACK:
  1519. if (len < sizeof(int))
  1520. return -EINVAL;
  1521. len = sizeof(int);
  1522. val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0;
  1523. if (put_user(len, optlen) || put_user(val, optval))
  1524. return -EFAULT;
  1525. err = 0;
  1526. break;
  1527. case NETLINK_DUMP_STRICT_CHK:
  1528. if (len < sizeof(int))
  1529. return -EINVAL;
  1530. len = sizeof(int);
  1531. val = nlk->flags & NETLINK_F_STRICT_CHK ? 1 : 0;
  1532. if (put_user(len, optlen) || put_user(val, optval))
  1533. return -EFAULT;
  1534. err = 0;
  1535. break;
  1536. default:
  1537. err = -ENOPROTOOPT;
  1538. }
  1539. return err;
  1540. }
  1541. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1542. {
  1543. struct nl_pktinfo info;
  1544. info.group = NETLINK_CB(skb).dst_group;
  1545. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1546. }
  1547. static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
  1548. struct sk_buff *skb)
  1549. {
  1550. if (!NETLINK_CB(skb).nsid_is_set)
  1551. return;
  1552. put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
  1553. &NETLINK_CB(skb).nsid);
  1554. }
  1555. static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  1556. {
  1557. struct sock *sk = sock->sk;
  1558. struct netlink_sock *nlk = nlk_sk(sk);
  1559. DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
  1560. u32 dst_portid;
  1561. u32 dst_group;
  1562. struct sk_buff *skb;
  1563. int err;
  1564. struct scm_cookie scm;
  1565. u32 netlink_skb_flags = 0;
  1566. if (msg->msg_flags&MSG_OOB)
  1567. return -EOPNOTSUPP;
  1568. err = scm_send(sock, msg, &scm, true);
  1569. if (err < 0)
  1570. return err;
  1571. if (msg->msg_namelen) {
  1572. err = -EINVAL;
  1573. if (msg->msg_namelen < sizeof(struct sockaddr_nl))
  1574. goto out;
  1575. if (addr->nl_family != AF_NETLINK)
  1576. goto out;
  1577. dst_portid = addr->nl_pid;
  1578. dst_group = ffs(addr->nl_groups);
  1579. err = -EPERM;
  1580. if ((dst_group || dst_portid) &&
  1581. !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
  1582. goto out;
  1583. netlink_skb_flags |= NETLINK_SKB_DST;
  1584. } else {
  1585. dst_portid = nlk->dst_portid;
  1586. dst_group = nlk->dst_group;
  1587. }
  1588. if (!nlk->bound) {
  1589. err = netlink_autobind(sock);
  1590. if (err)
  1591. goto out;
  1592. } else {
  1593. /* Ensure nlk is hashed and visible. */
  1594. smp_rmb();
  1595. }
  1596. err = -EMSGSIZE;
  1597. if (len > sk->sk_sndbuf - 32)
  1598. goto out;
  1599. err = -ENOBUFS;
  1600. skb = netlink_alloc_large_skb(len, dst_group);
  1601. if (skb == NULL)
  1602. goto out;
  1603. NETLINK_CB(skb).portid = nlk->portid;
  1604. NETLINK_CB(skb).dst_group = dst_group;
  1605. NETLINK_CB(skb).creds = scm.creds;
  1606. NETLINK_CB(skb).flags = netlink_skb_flags;
  1607. err = -EFAULT;
  1608. if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
  1609. kfree_skb(skb);
  1610. goto out;
  1611. }
  1612. err = security_netlink_send(sk, skb);
  1613. if (err) {
  1614. kfree_skb(skb);
  1615. goto out;
  1616. }
  1617. if (dst_group) {
  1618. refcount_inc(&skb->users);
  1619. netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
  1620. }
  1621. err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
  1622. out:
  1623. scm_destroy(&scm);
  1624. return err;
  1625. }
  1626. static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  1627. int flags)
  1628. {
  1629. struct scm_cookie scm;
  1630. struct sock *sk = sock->sk;
  1631. struct netlink_sock *nlk = nlk_sk(sk);
  1632. int noblock = flags&MSG_DONTWAIT;
  1633. size_t copied;
  1634. struct sk_buff *skb, *data_skb;
  1635. int err, ret;
  1636. if (flags&MSG_OOB)
  1637. return -EOPNOTSUPP;
  1638. copied = 0;
  1639. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1640. if (skb == NULL)
  1641. goto out;
  1642. data_skb = skb;
  1643. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1644. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1645. /*
  1646. * If this skb has a frag_list, then here that means that we
  1647. * will have to use the frag_list skb's data for compat tasks
  1648. * and the regular skb's data for normal (non-compat) tasks.
  1649. *
  1650. * If we need to send the compat skb, assign it to the
  1651. * 'data_skb' variable so that it will be used below for data
  1652. * copying. We keep 'skb' for everything else, including
  1653. * freeing both later.
  1654. */
  1655. if (flags & MSG_CMSG_COMPAT)
  1656. data_skb = skb_shinfo(skb)->frag_list;
  1657. }
  1658. #endif
  1659. /* Record the max length of recvmsg() calls for future allocations */
  1660. nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
  1661. nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
  1662. SKB_WITH_OVERHEAD(32768));
  1663. copied = data_skb->len;
  1664. if (len < copied) {
  1665. msg->msg_flags |= MSG_TRUNC;
  1666. copied = len;
  1667. }
  1668. skb_reset_transport_header(data_skb);
  1669. err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
  1670. if (msg->msg_name) {
  1671. DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
  1672. addr->nl_family = AF_NETLINK;
  1673. addr->nl_pad = 0;
  1674. addr->nl_pid = NETLINK_CB(skb).portid;
  1675. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1676. msg->msg_namelen = sizeof(*addr);
  1677. }
  1678. if (nlk->flags & NETLINK_F_RECV_PKTINFO)
  1679. netlink_cmsg_recv_pktinfo(msg, skb);
  1680. if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
  1681. netlink_cmsg_listen_all_nsid(sk, msg, skb);
  1682. memset(&scm, 0, sizeof(scm));
  1683. scm.creds = *NETLINK_CREDS(skb);
  1684. if (flags & MSG_TRUNC)
  1685. copied = data_skb->len;
  1686. skb_free_datagram(sk, skb);
  1687. if (nlk->cb_running &&
  1688. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1689. ret = netlink_dump(sk);
  1690. if (ret) {
  1691. sk->sk_err = -ret;
  1692. sk->sk_error_report(sk);
  1693. }
  1694. }
  1695. scm_recv(sock, msg, &scm, flags);
  1696. out:
  1697. netlink_rcv_wake(sk);
  1698. return err ? : copied;
  1699. }
  1700. static void netlink_data_ready(struct sock *sk)
  1701. {
  1702. BUG();
  1703. }
  1704. /*
  1705. * We export these functions to other modules. They provide a
  1706. * complete set of kernel non-blocking support for message
  1707. * queueing.
  1708. */
  1709. struct sock *
  1710. __netlink_kernel_create(struct net *net, int unit, struct module *module,
  1711. struct netlink_kernel_cfg *cfg)
  1712. {
  1713. struct socket *sock;
  1714. struct sock *sk;
  1715. struct netlink_sock *nlk;
  1716. struct listeners *listeners = NULL;
  1717. struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
  1718. unsigned int groups;
  1719. BUG_ON(!nl_table);
  1720. if (unit < 0 || unit >= MAX_LINKS)
  1721. return NULL;
  1722. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1723. return NULL;
  1724. if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
  1725. goto out_sock_release_nosk;
  1726. sk = sock->sk;
  1727. if (!cfg || cfg->groups < 32)
  1728. groups = 32;
  1729. else
  1730. groups = cfg->groups;
  1731. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1732. if (!listeners)
  1733. goto out_sock_release;
  1734. sk->sk_data_ready = netlink_data_ready;
  1735. if (cfg && cfg->input)
  1736. nlk_sk(sk)->netlink_rcv = cfg->input;
  1737. if (netlink_insert(sk, 0))
  1738. goto out_sock_release;
  1739. nlk = nlk_sk(sk);
  1740. nlk->flags |= NETLINK_F_KERNEL_SOCKET;
  1741. netlink_table_grab();
  1742. if (!nl_table[unit].registered) {
  1743. nl_table[unit].groups = groups;
  1744. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  1745. nl_table[unit].cb_mutex = cb_mutex;
  1746. nl_table[unit].module = module;
  1747. if (cfg) {
  1748. nl_table[unit].bind = cfg->bind;
  1749. nl_table[unit].unbind = cfg->unbind;
  1750. nl_table[unit].flags = cfg->flags;
  1751. if (cfg->compare)
  1752. nl_table[unit].compare = cfg->compare;
  1753. }
  1754. nl_table[unit].registered = 1;
  1755. } else {
  1756. kfree(listeners);
  1757. nl_table[unit].registered++;
  1758. }
  1759. netlink_table_ungrab();
  1760. return sk;
  1761. out_sock_release:
  1762. kfree(listeners);
  1763. netlink_kernel_release(sk);
  1764. return NULL;
  1765. out_sock_release_nosk:
  1766. sock_release(sock);
  1767. return NULL;
  1768. }
  1769. EXPORT_SYMBOL(__netlink_kernel_create);
  1770. void
  1771. netlink_kernel_release(struct sock *sk)
  1772. {
  1773. if (sk == NULL || sk->sk_socket == NULL)
  1774. return;
  1775. sock_release(sk->sk_socket);
  1776. }
  1777. EXPORT_SYMBOL(netlink_kernel_release);
  1778. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1779. {
  1780. struct listeners *new, *old;
  1781. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  1782. if (groups < 32)
  1783. groups = 32;
  1784. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  1785. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  1786. if (!new)
  1787. return -ENOMEM;
  1788. old = nl_deref_protected(tbl->listeners);
  1789. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  1790. rcu_assign_pointer(tbl->listeners, new);
  1791. kfree_rcu(old, rcu);
  1792. }
  1793. tbl->groups = groups;
  1794. return 0;
  1795. }
  1796. /**
  1797. * netlink_change_ngroups - change number of multicast groups
  1798. *
  1799. * This changes the number of multicast groups that are available
  1800. * on a certain netlink family. Note that it is not possible to
  1801. * change the number of groups to below 32. Also note that it does
  1802. * not implicitly call netlink_clear_multicast_users() when the
  1803. * number of groups is reduced.
  1804. *
  1805. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  1806. * @groups: The new number of groups.
  1807. */
  1808. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1809. {
  1810. int err;
  1811. netlink_table_grab();
  1812. err = __netlink_change_ngroups(sk, groups);
  1813. netlink_table_ungrab();
  1814. return err;
  1815. }
  1816. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1817. {
  1818. struct sock *sk;
  1819. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  1820. sk_for_each_bound(sk, &tbl->mc_list)
  1821. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  1822. }
  1823. struct nlmsghdr *
  1824. __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
  1825. {
  1826. struct nlmsghdr *nlh;
  1827. int size = nlmsg_msg_size(len);
  1828. nlh = skb_put(skb, NLMSG_ALIGN(size));
  1829. nlh->nlmsg_type = type;
  1830. nlh->nlmsg_len = size;
  1831. nlh->nlmsg_flags = flags;
  1832. nlh->nlmsg_pid = portid;
  1833. nlh->nlmsg_seq = seq;
  1834. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  1835. memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  1836. return nlh;
  1837. }
  1838. EXPORT_SYMBOL(__nlmsg_put);
  1839. /*
  1840. * It looks a bit ugly.
  1841. * It would be better to create kernel thread.
  1842. */
  1843. static int netlink_dump(struct sock *sk)
  1844. {
  1845. struct netlink_sock *nlk = nlk_sk(sk);
  1846. struct netlink_ext_ack extack = {};
  1847. struct netlink_callback *cb;
  1848. struct sk_buff *skb = NULL;
  1849. struct nlmsghdr *nlh;
  1850. struct module *module;
  1851. int err = -ENOBUFS;
  1852. int alloc_min_size;
  1853. int alloc_size;
  1854. mutex_lock(nlk->cb_mutex);
  1855. if (!nlk->cb_running) {
  1856. err = -EINVAL;
  1857. goto errout_skb;
  1858. }
  1859. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  1860. goto errout_skb;
  1861. /* NLMSG_GOODSIZE is small to avoid high order allocations being
  1862. * required, but it makes sense to _attempt_ a 16K bytes allocation
  1863. * to reduce number of system calls on dump operations, if user
  1864. * ever provided a big enough buffer.
  1865. */
  1866. cb = &nlk->cb;
  1867. alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  1868. if (alloc_min_size < nlk->max_recvmsg_len) {
  1869. alloc_size = nlk->max_recvmsg_len;
  1870. skb = alloc_skb(alloc_size,
  1871. (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) |
  1872. __GFP_NOWARN | __GFP_NORETRY);
  1873. }
  1874. if (!skb) {
  1875. alloc_size = alloc_min_size;
  1876. skb = alloc_skb(alloc_size, GFP_KERNEL);
  1877. }
  1878. if (!skb)
  1879. goto errout_skb;
  1880. /* Trim skb to allocated size. User is expected to provide buffer as
  1881. * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at
  1882. * netlink_recvmsg())). dump will pack as many smaller messages as
  1883. * could fit within the allocated skb. skb is typically allocated
  1884. * with larger space than required (could be as much as near 2x the
  1885. * requested size with align to next power of 2 approach). Allowing
  1886. * dump to use the excess space makes it difficult for a user to have a
  1887. * reasonable static buffer based on the expected largest dump of a
  1888. * single netdev. The outcome is MSG_TRUNC error.
  1889. */
  1890. skb_reserve(skb, skb_tailroom(skb) - alloc_size);
  1891. netlink_skb_set_owner_r(skb, sk);
  1892. if (nlk->dump_done_errno > 0) {
  1893. cb->extack = &extack;
  1894. nlk->dump_done_errno = cb->dump(skb, cb);
  1895. cb->extack = NULL;
  1896. }
  1897. if (nlk->dump_done_errno > 0 ||
  1898. skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) {
  1899. mutex_unlock(nlk->cb_mutex);
  1900. if (sk_filter(sk, skb))
  1901. kfree_skb(skb);
  1902. else
  1903. __netlink_sendskb(sk, skb);
  1904. return 0;
  1905. }
  1906. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE,
  1907. sizeof(nlk->dump_done_errno),
  1908. NLM_F_MULTI | cb->answer_flags);
  1909. if (WARN_ON(!nlh))
  1910. goto errout_skb;
  1911. nl_dump_check_consistent(cb, nlh);
  1912. memcpy(nlmsg_data(nlh), &nlk->dump_done_errno,
  1913. sizeof(nlk->dump_done_errno));
  1914. if (extack._msg && nlk->flags & NETLINK_F_EXT_ACK) {
  1915. nlh->nlmsg_flags |= NLM_F_ACK_TLVS;
  1916. if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack._msg))
  1917. nlmsg_end(skb, nlh);
  1918. }
  1919. if (sk_filter(sk, skb))
  1920. kfree_skb(skb);
  1921. else
  1922. __netlink_sendskb(sk, skb);
  1923. if (cb->done)
  1924. cb->done(cb);
  1925. nlk->cb_running = false;
  1926. module = cb->module;
  1927. skb = cb->skb;
  1928. mutex_unlock(nlk->cb_mutex);
  1929. module_put(module);
  1930. consume_skb(skb);
  1931. return 0;
  1932. errout_skb:
  1933. mutex_unlock(nlk->cb_mutex);
  1934. kfree_skb(skb);
  1935. return err;
  1936. }
  1937. int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1938. const struct nlmsghdr *nlh,
  1939. struct netlink_dump_control *control)
  1940. {
  1941. struct netlink_sock *nlk, *nlk2;
  1942. struct netlink_callback *cb;
  1943. struct sock *sk;
  1944. int ret;
  1945. refcount_inc(&skb->users);
  1946. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
  1947. if (sk == NULL) {
  1948. ret = -ECONNREFUSED;
  1949. goto error_free;
  1950. }
  1951. nlk = nlk_sk(sk);
  1952. mutex_lock(nlk->cb_mutex);
  1953. /* A dump is in progress... */
  1954. if (nlk->cb_running) {
  1955. ret = -EBUSY;
  1956. goto error_unlock;
  1957. }
  1958. /* add reference of module which cb->dump belongs to */
  1959. if (!try_module_get(control->module)) {
  1960. ret = -EPROTONOSUPPORT;
  1961. goto error_unlock;
  1962. }
  1963. cb = &nlk->cb;
  1964. memset(cb, 0, sizeof(*cb));
  1965. cb->dump = control->dump;
  1966. cb->done = control->done;
  1967. cb->nlh = nlh;
  1968. cb->data = control->data;
  1969. cb->module = control->module;
  1970. cb->min_dump_alloc = control->min_dump_alloc;
  1971. cb->skb = skb;
  1972. nlk2 = nlk_sk(NETLINK_CB(skb).sk);
  1973. cb->strict_check = !!(nlk2->flags & NETLINK_F_STRICT_CHK);
  1974. if (control->start) {
  1975. ret = control->start(cb);
  1976. if (ret)
  1977. goto error_put;
  1978. }
  1979. nlk->cb_running = true;
  1980. nlk->dump_done_errno = INT_MAX;
  1981. mutex_unlock(nlk->cb_mutex);
  1982. ret = netlink_dump(sk);
  1983. sock_put(sk);
  1984. if (ret)
  1985. return ret;
  1986. /* We successfully started a dump, by returning -EINTR we
  1987. * signal not to send ACK even if it was requested.
  1988. */
  1989. return -EINTR;
  1990. error_put:
  1991. module_put(control->module);
  1992. error_unlock:
  1993. sock_put(sk);
  1994. mutex_unlock(nlk->cb_mutex);
  1995. error_free:
  1996. kfree_skb(skb);
  1997. return ret;
  1998. }
  1999. EXPORT_SYMBOL(__netlink_dump_start);
  2000. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err,
  2001. const struct netlink_ext_ack *extack)
  2002. {
  2003. struct sk_buff *skb;
  2004. struct nlmsghdr *rep;
  2005. struct nlmsgerr *errmsg;
  2006. size_t payload = sizeof(*errmsg);
  2007. size_t tlvlen = 0;
  2008. struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
  2009. unsigned int flags = 0;
  2010. bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK;
  2011. /* Error messages get the original request appened, unless the user
  2012. * requests to cap the error message, and get extra error data if
  2013. * requested.
  2014. */
  2015. if (nlk_has_extack && extack && extack->_msg)
  2016. tlvlen += nla_total_size(strlen(extack->_msg) + 1);
  2017. if (err) {
  2018. if (!(nlk->flags & NETLINK_F_CAP_ACK))
  2019. payload += nlmsg_len(nlh);
  2020. else
  2021. flags |= NLM_F_CAPPED;
  2022. if (nlk_has_extack && extack && extack->bad_attr)
  2023. tlvlen += nla_total_size(sizeof(u32));
  2024. } else {
  2025. flags |= NLM_F_CAPPED;
  2026. if (nlk_has_extack && extack && extack->cookie_len)
  2027. tlvlen += nla_total_size(extack->cookie_len);
  2028. }
  2029. if (tlvlen)
  2030. flags |= NLM_F_ACK_TLVS;
  2031. skb = nlmsg_new(payload + tlvlen, GFP_KERNEL);
  2032. if (!skb) {
  2033. NETLINK_CB(in_skb).sk->sk_err = ENOBUFS;
  2034. NETLINK_CB(in_skb).sk->sk_error_report(NETLINK_CB(in_skb).sk);
  2035. return;
  2036. }
  2037. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
  2038. NLMSG_ERROR, payload, flags);
  2039. errmsg = nlmsg_data(rep);
  2040. errmsg->error = err;
  2041. memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
  2042. if (nlk_has_extack && extack) {
  2043. if (extack->_msg) {
  2044. WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG,
  2045. extack->_msg));
  2046. }
  2047. if (err) {
  2048. if (extack->bad_attr &&
  2049. !WARN_ON((u8 *)extack->bad_attr < in_skb->data ||
  2050. (u8 *)extack->bad_attr >= in_skb->data +
  2051. in_skb->len))
  2052. WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS,
  2053. (u8 *)extack->bad_attr -
  2054. in_skb->data));
  2055. } else {
  2056. if (extack->cookie_len)
  2057. WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE,
  2058. extack->cookie_len,
  2059. extack->cookie));
  2060. }
  2061. }
  2062. nlmsg_end(skb, rep);
  2063. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
  2064. }
  2065. EXPORT_SYMBOL(netlink_ack);
  2066. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  2067. struct nlmsghdr *,
  2068. struct netlink_ext_ack *))
  2069. {
  2070. struct netlink_ext_ack extack;
  2071. struct nlmsghdr *nlh;
  2072. int err;
  2073. while (skb->len >= nlmsg_total_size(0)) {
  2074. int msglen;
  2075. memset(&extack, 0, sizeof(extack));
  2076. nlh = nlmsg_hdr(skb);
  2077. err = 0;
  2078. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  2079. return 0;
  2080. /* Only requests are handled by the kernel */
  2081. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  2082. goto ack;
  2083. /* Skip control messages */
  2084. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  2085. goto ack;
  2086. err = cb(skb, nlh, &extack);
  2087. if (err == -EINTR)
  2088. goto skip;
  2089. ack:
  2090. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  2091. netlink_ack(skb, nlh, err, &extack);
  2092. skip:
  2093. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  2094. if (msglen > skb->len)
  2095. msglen = skb->len;
  2096. skb_pull(skb, msglen);
  2097. }
  2098. return 0;
  2099. }
  2100. EXPORT_SYMBOL(netlink_rcv_skb);
  2101. /**
  2102. * nlmsg_notify - send a notification netlink message
  2103. * @sk: netlink socket to use
  2104. * @skb: notification message
  2105. * @portid: destination netlink portid for reports or 0
  2106. * @group: destination multicast group or 0
  2107. * @report: 1 to report back, 0 to disable
  2108. * @flags: allocation flags
  2109. */
  2110. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
  2111. unsigned int group, int report, gfp_t flags)
  2112. {
  2113. int err = 0;
  2114. if (group) {
  2115. int exclude_portid = 0;
  2116. if (report) {
  2117. refcount_inc(&skb->users);
  2118. exclude_portid = portid;
  2119. }
  2120. /* errors reported via destination sk->sk_err, but propagate
  2121. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  2122. err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
  2123. }
  2124. if (report) {
  2125. int err2;
  2126. err2 = nlmsg_unicast(sk, skb, portid);
  2127. if (!err || err == -ESRCH)
  2128. err = err2;
  2129. }
  2130. return err;
  2131. }
  2132. EXPORT_SYMBOL(nlmsg_notify);
  2133. #ifdef CONFIG_PROC_FS
  2134. struct nl_seq_iter {
  2135. struct seq_net_private p;
  2136. struct rhashtable_iter hti;
  2137. int link;
  2138. };
  2139. static int netlink_walk_start(struct nl_seq_iter *iter)
  2140. {
  2141. int err;
  2142. err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti,
  2143. GFP_KERNEL);
  2144. if (err) {
  2145. iter->link = MAX_LINKS;
  2146. return err;
  2147. }
  2148. rhashtable_walk_start(&iter->hti);
  2149. return 0;
  2150. }
  2151. static void netlink_walk_stop(struct nl_seq_iter *iter)
  2152. {
  2153. rhashtable_walk_stop(&iter->hti);
  2154. rhashtable_walk_exit(&iter->hti);
  2155. }
  2156. static void *__netlink_seq_next(struct seq_file *seq)
  2157. {
  2158. struct nl_seq_iter *iter = seq->private;
  2159. struct netlink_sock *nlk;
  2160. do {
  2161. for (;;) {
  2162. int err;
  2163. nlk = rhashtable_walk_next(&iter->hti);
  2164. if (IS_ERR(nlk)) {
  2165. if (PTR_ERR(nlk) == -EAGAIN)
  2166. continue;
  2167. return nlk;
  2168. }
  2169. if (nlk)
  2170. break;
  2171. netlink_walk_stop(iter);
  2172. if (++iter->link >= MAX_LINKS)
  2173. return NULL;
  2174. err = netlink_walk_start(iter);
  2175. if (err)
  2176. return ERR_PTR(err);
  2177. }
  2178. } while (sock_net(&nlk->sk) != seq_file_net(seq));
  2179. return nlk;
  2180. }
  2181. static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
  2182. {
  2183. struct nl_seq_iter *iter = seq->private;
  2184. void *obj = SEQ_START_TOKEN;
  2185. loff_t pos;
  2186. int err;
  2187. iter->link = 0;
  2188. err = netlink_walk_start(iter);
  2189. if (err)
  2190. return ERR_PTR(err);
  2191. for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
  2192. obj = __netlink_seq_next(seq);
  2193. return obj;
  2194. }
  2195. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2196. {
  2197. ++*pos;
  2198. return __netlink_seq_next(seq);
  2199. }
  2200. static void netlink_seq_stop(struct seq_file *seq, void *v)
  2201. {
  2202. struct nl_seq_iter *iter = seq->private;
  2203. if (iter->link >= MAX_LINKS)
  2204. return;
  2205. netlink_walk_stop(iter);
  2206. }
  2207. static int netlink_seq_show(struct seq_file *seq, void *v)
  2208. {
  2209. if (v == SEQ_START_TOKEN) {
  2210. seq_puts(seq,
  2211. "sk Eth Pid Groups "
  2212. "Rmem Wmem Dump Locks Drops Inode\n");
  2213. } else {
  2214. struct sock *s = v;
  2215. struct netlink_sock *nlk = nlk_sk(s);
  2216. seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8d %-8lu\n",
  2217. s,
  2218. s->sk_protocol,
  2219. nlk->portid,
  2220. nlk->groups ? (u32)nlk->groups[0] : 0,
  2221. sk_rmem_alloc_get(s),
  2222. sk_wmem_alloc_get(s),
  2223. nlk->cb_running,
  2224. refcount_read(&s->sk_refcnt),
  2225. atomic_read(&s->sk_drops),
  2226. sock_i_ino(s)
  2227. );
  2228. }
  2229. return 0;
  2230. }
  2231. static const struct seq_operations netlink_seq_ops = {
  2232. .start = netlink_seq_start,
  2233. .next = netlink_seq_next,
  2234. .stop = netlink_seq_stop,
  2235. .show = netlink_seq_show,
  2236. };
  2237. #endif
  2238. int netlink_register_notifier(struct notifier_block *nb)
  2239. {
  2240. return blocking_notifier_chain_register(&netlink_chain, nb);
  2241. }
  2242. EXPORT_SYMBOL(netlink_register_notifier);
  2243. int netlink_unregister_notifier(struct notifier_block *nb)
  2244. {
  2245. return blocking_notifier_chain_unregister(&netlink_chain, nb);
  2246. }
  2247. EXPORT_SYMBOL(netlink_unregister_notifier);
  2248. static const struct proto_ops netlink_ops = {
  2249. .family = PF_NETLINK,
  2250. .owner = THIS_MODULE,
  2251. .release = netlink_release,
  2252. .bind = netlink_bind,
  2253. .connect = netlink_connect,
  2254. .socketpair = sock_no_socketpair,
  2255. .accept = sock_no_accept,
  2256. .getname = netlink_getname,
  2257. .poll = datagram_poll,
  2258. .ioctl = netlink_ioctl,
  2259. .listen = sock_no_listen,
  2260. .shutdown = sock_no_shutdown,
  2261. .setsockopt = netlink_setsockopt,
  2262. .getsockopt = netlink_getsockopt,
  2263. .sendmsg = netlink_sendmsg,
  2264. .recvmsg = netlink_recvmsg,
  2265. .mmap = sock_no_mmap,
  2266. .sendpage = sock_no_sendpage,
  2267. };
  2268. static const struct net_proto_family netlink_family_ops = {
  2269. .family = PF_NETLINK,
  2270. .create = netlink_create,
  2271. .owner = THIS_MODULE, /* for consistency 8) */
  2272. };
  2273. static int __net_init netlink_net_init(struct net *net)
  2274. {
  2275. #ifdef CONFIG_PROC_FS
  2276. if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops,
  2277. sizeof(struct nl_seq_iter)))
  2278. return -ENOMEM;
  2279. #endif
  2280. return 0;
  2281. }
  2282. static void __net_exit netlink_net_exit(struct net *net)
  2283. {
  2284. #ifdef CONFIG_PROC_FS
  2285. remove_proc_entry("netlink", net->proc_net);
  2286. #endif
  2287. }
  2288. static void __init netlink_add_usersock_entry(void)
  2289. {
  2290. struct listeners *listeners;
  2291. int groups = 32;
  2292. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  2293. if (!listeners)
  2294. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  2295. netlink_table_grab();
  2296. nl_table[NETLINK_USERSOCK].groups = groups;
  2297. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  2298. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  2299. nl_table[NETLINK_USERSOCK].registered = 1;
  2300. nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
  2301. netlink_table_ungrab();
  2302. }
  2303. static struct pernet_operations __net_initdata netlink_net_ops = {
  2304. .init = netlink_net_init,
  2305. .exit = netlink_net_exit,
  2306. };
  2307. static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
  2308. {
  2309. const struct netlink_sock *nlk = data;
  2310. struct netlink_compare_arg arg;
  2311. netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
  2312. return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
  2313. }
  2314. static const struct rhashtable_params netlink_rhashtable_params = {
  2315. .head_offset = offsetof(struct netlink_sock, node),
  2316. .key_len = netlink_compare_arg_len,
  2317. .obj_hashfn = netlink_hash,
  2318. .obj_cmpfn = netlink_compare,
  2319. .automatic_shrinking = true,
  2320. };
  2321. static int __init netlink_proto_init(void)
  2322. {
  2323. int i;
  2324. int err = proto_register(&netlink_proto, 0);
  2325. if (err != 0)
  2326. goto out;
  2327. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
  2328. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  2329. if (!nl_table)
  2330. goto panic;
  2331. for (i = 0; i < MAX_LINKS; i++) {
  2332. if (rhashtable_init(&nl_table[i].hash,
  2333. &netlink_rhashtable_params) < 0) {
  2334. while (--i > 0)
  2335. rhashtable_destroy(&nl_table[i].hash);
  2336. kfree(nl_table);
  2337. goto panic;
  2338. }
  2339. }
  2340. netlink_add_usersock_entry();
  2341. sock_register(&netlink_family_ops);
  2342. register_pernet_subsys(&netlink_net_ops);
  2343. register_pernet_subsys(&netlink_tap_net_ops);
  2344. /* The netlink device handler may be needed early. */
  2345. rtnetlink_init();
  2346. out:
  2347. return err;
  2348. panic:
  2349. panic("netlink_init: Cannot allocate nl_table\n");
  2350. }
  2351. core_initcall(netlink_proto_init);