af_iucv.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched/signal.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <linux/security.h>
  24. #include <net/sock.h>
  25. #include <asm/ebcdic.h>
  26. #include <asm/cpcmd.h>
  27. #include <linux/kmod.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.2"
  30. static char iucv_userid[80];
  31. static const struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. static struct iucv_interface *pr_iucv;
  38. /* special AF_IUCV IPRM messages */
  39. static const u8 iprm_shutdown[8] =
  40. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  41. #define TRGCLS_SIZE FIELD_SIZEOF(struct iucv_message, class)
  42. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  43. do { \
  44. DEFINE_WAIT(__wait); \
  45. long __timeo = timeo; \
  46. ret = 0; \
  47. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  48. while (!(condition)) { \
  49. if (!__timeo) { \
  50. ret = -EAGAIN; \
  51. break; \
  52. } \
  53. if (signal_pending(current)) { \
  54. ret = sock_intr_errno(__timeo); \
  55. break; \
  56. } \
  57. release_sock(sk); \
  58. __timeo = schedule_timeout(__timeo); \
  59. lock_sock(sk); \
  60. ret = sock_error(sk); \
  61. if (ret) \
  62. break; \
  63. } \
  64. finish_wait(sk_sleep(sk), &__wait); \
  65. } while (0)
  66. #define iucv_sock_wait(sk, condition, timeo) \
  67. ({ \
  68. int __ret = 0; \
  69. if (!(condition)) \
  70. __iucv_sock_wait(sk, condition, timeo, __ret); \
  71. __ret; \
  72. })
  73. static void iucv_sock_kill(struct sock *sk);
  74. static void iucv_sock_close(struct sock *sk);
  75. static void iucv_sever_path(struct sock *, int);
  76. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  77. struct packet_type *pt, struct net_device *orig_dev);
  78. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  79. struct sk_buff *skb, u8 flags);
  80. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  81. /* Call Back functions */
  82. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  83. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  84. static void iucv_callback_connack(struct iucv_path *, u8 *);
  85. static int iucv_callback_connreq(struct iucv_path *, u8 *, u8 *);
  86. static void iucv_callback_connrej(struct iucv_path *, u8 *);
  87. static void iucv_callback_shutdown(struct iucv_path *, u8 *);
  88. static struct iucv_sock_list iucv_sk_list = {
  89. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  90. .autobind_name = ATOMIC_INIT(0)
  91. };
  92. static struct iucv_handler af_iucv_handler = {
  93. .path_pending = iucv_callback_connreq,
  94. .path_complete = iucv_callback_connack,
  95. .path_severed = iucv_callback_connrej,
  96. .message_pending = iucv_callback_rx,
  97. .message_complete = iucv_callback_txdone,
  98. .path_quiesced = iucv_callback_shutdown,
  99. };
  100. static inline void high_nmcpy(unsigned char *dst, char *src)
  101. {
  102. memcpy(dst, src, 8);
  103. }
  104. static inline void low_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(&dst[8], src, 8);
  107. }
  108. static int afiucv_pm_prepare(struct device *dev)
  109. {
  110. #ifdef CONFIG_PM_DEBUG
  111. printk(KERN_WARNING "afiucv_pm_prepare\n");
  112. #endif
  113. return 0;
  114. }
  115. static void afiucv_pm_complete(struct device *dev)
  116. {
  117. #ifdef CONFIG_PM_DEBUG
  118. printk(KERN_WARNING "afiucv_pm_complete\n");
  119. #endif
  120. }
  121. /**
  122. * afiucv_pm_freeze() - Freeze PM callback
  123. * @dev: AFIUCV dummy device
  124. *
  125. * Sever all established IUCV communication pathes
  126. */
  127. static int afiucv_pm_freeze(struct device *dev)
  128. {
  129. struct iucv_sock *iucv;
  130. struct sock *sk;
  131. #ifdef CONFIG_PM_DEBUG
  132. printk(KERN_WARNING "afiucv_pm_freeze\n");
  133. #endif
  134. read_lock(&iucv_sk_list.lock);
  135. sk_for_each(sk, &iucv_sk_list.head) {
  136. iucv = iucv_sk(sk);
  137. switch (sk->sk_state) {
  138. case IUCV_DISCONN:
  139. case IUCV_CLOSING:
  140. case IUCV_CONNECTED:
  141. iucv_sever_path(sk, 0);
  142. break;
  143. case IUCV_OPEN:
  144. case IUCV_BOUND:
  145. case IUCV_LISTEN:
  146. case IUCV_CLOSED:
  147. default:
  148. break;
  149. }
  150. skb_queue_purge(&iucv->send_skb_q);
  151. skb_queue_purge(&iucv->backlog_skb_q);
  152. }
  153. read_unlock(&iucv_sk_list.lock);
  154. return 0;
  155. }
  156. /**
  157. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  158. * @dev: AFIUCV dummy device
  159. *
  160. * socket clean up after freeze
  161. */
  162. static int afiucv_pm_restore_thaw(struct device *dev)
  163. {
  164. struct sock *sk;
  165. #ifdef CONFIG_PM_DEBUG
  166. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  167. #endif
  168. read_lock(&iucv_sk_list.lock);
  169. sk_for_each(sk, &iucv_sk_list.head) {
  170. switch (sk->sk_state) {
  171. case IUCV_CONNECTED:
  172. sk->sk_err = EPIPE;
  173. sk->sk_state = IUCV_DISCONN;
  174. sk->sk_state_change(sk);
  175. break;
  176. case IUCV_DISCONN:
  177. case IUCV_CLOSING:
  178. case IUCV_LISTEN:
  179. case IUCV_BOUND:
  180. case IUCV_OPEN:
  181. default:
  182. break;
  183. }
  184. }
  185. read_unlock(&iucv_sk_list.lock);
  186. return 0;
  187. }
  188. static const struct dev_pm_ops afiucv_pm_ops = {
  189. .prepare = afiucv_pm_prepare,
  190. .complete = afiucv_pm_complete,
  191. .freeze = afiucv_pm_freeze,
  192. .thaw = afiucv_pm_restore_thaw,
  193. .restore = afiucv_pm_restore_thaw,
  194. };
  195. static struct device_driver af_iucv_driver = {
  196. .owner = THIS_MODULE,
  197. .name = "afiucv",
  198. .bus = NULL,
  199. .pm = &afiucv_pm_ops,
  200. };
  201. /* dummy device used as trigger for PM functions */
  202. static struct device *af_iucv_dev;
  203. /**
  204. * iucv_msg_length() - Returns the length of an iucv message.
  205. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  206. *
  207. * The function returns the length of the specified iucv message @msg of data
  208. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  209. *
  210. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  211. * data:
  212. * PRMDATA[0..6] socket data (max 7 bytes);
  213. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  214. *
  215. * The socket data length is computed by subtracting the socket data length
  216. * value from 0xFF.
  217. * If the socket data len is greater 7, then PRMDATA can be used for special
  218. * notifications (see iucv_sock_shutdown); and further,
  219. * if the socket data len is > 7, the function returns 8.
  220. *
  221. * Use this function to allocate socket buffers to store iucv message data.
  222. */
  223. static inline size_t iucv_msg_length(struct iucv_message *msg)
  224. {
  225. size_t datalen;
  226. if (msg->flags & IUCV_IPRMDATA) {
  227. datalen = 0xff - msg->rmmsg[7];
  228. return (datalen < 8) ? datalen : 8;
  229. }
  230. return msg->length;
  231. }
  232. /**
  233. * iucv_sock_in_state() - check for specific states
  234. * @sk: sock structure
  235. * @state: first iucv sk state
  236. * @state: second iucv sk state
  237. *
  238. * Returns true if the socket in either in the first or second state.
  239. */
  240. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  241. {
  242. return (sk->sk_state == state || sk->sk_state == state2);
  243. }
  244. /**
  245. * iucv_below_msglim() - function to check if messages can be sent
  246. * @sk: sock structure
  247. *
  248. * Returns true if the send queue length is lower than the message limit.
  249. * Always returns true if the socket is not connected (no iucv path for
  250. * checking the message limit).
  251. */
  252. static inline int iucv_below_msglim(struct sock *sk)
  253. {
  254. struct iucv_sock *iucv = iucv_sk(sk);
  255. if (sk->sk_state != IUCV_CONNECTED)
  256. return 1;
  257. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  258. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  259. else
  260. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  261. (atomic_read(&iucv->pendings) <= 0));
  262. }
  263. /**
  264. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  265. */
  266. static void iucv_sock_wake_msglim(struct sock *sk)
  267. {
  268. struct socket_wq *wq;
  269. rcu_read_lock();
  270. wq = rcu_dereference(sk->sk_wq);
  271. if (skwq_has_sleeper(wq))
  272. wake_up_interruptible_all(&wq->wait);
  273. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  274. rcu_read_unlock();
  275. }
  276. /**
  277. * afiucv_hs_send() - send a message through HiperSockets transport
  278. */
  279. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  280. struct sk_buff *skb, u8 flags)
  281. {
  282. struct iucv_sock *iucv = iucv_sk(sock);
  283. struct af_iucv_trans_hdr *phs_hdr;
  284. struct sk_buff *nskb;
  285. int err, confirm_recv = 0;
  286. phs_hdr = skb_push(skb, sizeof(*phs_hdr));
  287. memset(phs_hdr, 0, sizeof(*phs_hdr));
  288. skb_reset_network_header(skb);
  289. phs_hdr->magic = ETH_P_AF_IUCV;
  290. phs_hdr->version = 1;
  291. phs_hdr->flags = flags;
  292. if (flags == AF_IUCV_FLAG_SYN)
  293. phs_hdr->window = iucv->msglimit;
  294. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  295. confirm_recv = atomic_read(&iucv->msg_recv);
  296. phs_hdr->window = confirm_recv;
  297. if (confirm_recv)
  298. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  299. }
  300. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  301. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  302. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  303. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  304. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  305. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  306. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  307. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  308. if (imsg)
  309. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  310. skb_push(skb, ETH_HLEN);
  311. memset(skb->data, 0, ETH_HLEN);
  312. skb->dev = iucv->hs_dev;
  313. if (!skb->dev) {
  314. err = -ENODEV;
  315. goto err_free;
  316. }
  317. if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev)) {
  318. err = -ENETDOWN;
  319. goto err_free;
  320. }
  321. if (skb->len > skb->dev->mtu) {
  322. if (sock->sk_type == SOCK_SEQPACKET) {
  323. err = -EMSGSIZE;
  324. goto err_free;
  325. }
  326. skb_trim(skb, skb->dev->mtu);
  327. }
  328. skb->protocol = cpu_to_be16(ETH_P_AF_IUCV);
  329. nskb = skb_clone(skb, GFP_ATOMIC);
  330. if (!nskb) {
  331. err = -ENOMEM;
  332. goto err_free;
  333. }
  334. skb_queue_tail(&iucv->send_skb_q, nskb);
  335. err = dev_queue_xmit(skb);
  336. if (net_xmit_eval(err)) {
  337. skb_unlink(nskb, &iucv->send_skb_q);
  338. kfree_skb(nskb);
  339. } else {
  340. atomic_sub(confirm_recv, &iucv->msg_recv);
  341. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  342. }
  343. return net_xmit_eval(err);
  344. err_free:
  345. kfree_skb(skb);
  346. return err;
  347. }
  348. static struct sock *__iucv_get_sock_by_name(char *nm)
  349. {
  350. struct sock *sk;
  351. sk_for_each(sk, &iucv_sk_list.head)
  352. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  353. return sk;
  354. return NULL;
  355. }
  356. static void iucv_sock_destruct(struct sock *sk)
  357. {
  358. skb_queue_purge(&sk->sk_receive_queue);
  359. skb_queue_purge(&sk->sk_error_queue);
  360. sk_mem_reclaim(sk);
  361. if (!sock_flag(sk, SOCK_DEAD)) {
  362. pr_err("Attempt to release alive iucv socket %p\n", sk);
  363. return;
  364. }
  365. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  366. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  367. WARN_ON(sk->sk_wmem_queued);
  368. WARN_ON(sk->sk_forward_alloc);
  369. }
  370. /* Cleanup Listen */
  371. static void iucv_sock_cleanup_listen(struct sock *parent)
  372. {
  373. struct sock *sk;
  374. /* Close non-accepted connections */
  375. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  376. iucv_sock_close(sk);
  377. iucv_sock_kill(sk);
  378. }
  379. parent->sk_state = IUCV_CLOSED;
  380. }
  381. /* Kill socket (only if zapped and orphaned) */
  382. static void iucv_sock_kill(struct sock *sk)
  383. {
  384. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  385. return;
  386. iucv_sock_unlink(&iucv_sk_list, sk);
  387. sock_set_flag(sk, SOCK_DEAD);
  388. sock_put(sk);
  389. }
  390. /* Terminate an IUCV path */
  391. static void iucv_sever_path(struct sock *sk, int with_user_data)
  392. {
  393. unsigned char user_data[16];
  394. struct iucv_sock *iucv = iucv_sk(sk);
  395. struct iucv_path *path = iucv->path;
  396. if (iucv->path) {
  397. iucv->path = NULL;
  398. if (with_user_data) {
  399. low_nmcpy(user_data, iucv->src_name);
  400. high_nmcpy(user_data, iucv->dst_name);
  401. ASCEBC(user_data, sizeof(user_data));
  402. pr_iucv->path_sever(path, user_data);
  403. } else
  404. pr_iucv->path_sever(path, NULL);
  405. iucv_path_free(path);
  406. }
  407. }
  408. /* Send controlling flags through an IUCV socket for HIPER transport */
  409. static int iucv_send_ctrl(struct sock *sk, u8 flags)
  410. {
  411. int err = 0;
  412. int blen;
  413. struct sk_buff *skb;
  414. u8 shutdown = 0;
  415. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  416. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  417. /* controlling flags should be sent anyway */
  418. shutdown = sk->sk_shutdown;
  419. sk->sk_shutdown &= RCV_SHUTDOWN;
  420. }
  421. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  422. if (skb) {
  423. skb_reserve(skb, blen);
  424. err = afiucv_hs_send(NULL, sk, skb, flags);
  425. }
  426. if (shutdown)
  427. sk->sk_shutdown = shutdown;
  428. return err;
  429. }
  430. /* Close an IUCV socket */
  431. static void iucv_sock_close(struct sock *sk)
  432. {
  433. struct iucv_sock *iucv = iucv_sk(sk);
  434. unsigned long timeo;
  435. int err = 0;
  436. lock_sock(sk);
  437. switch (sk->sk_state) {
  438. case IUCV_LISTEN:
  439. iucv_sock_cleanup_listen(sk);
  440. break;
  441. case IUCV_CONNECTED:
  442. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  443. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  444. sk->sk_state = IUCV_DISCONN;
  445. sk->sk_state_change(sk);
  446. }
  447. case IUCV_DISCONN: /* fall through */
  448. sk->sk_state = IUCV_CLOSING;
  449. sk->sk_state_change(sk);
  450. if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
  451. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  452. timeo = sk->sk_lingertime;
  453. else
  454. timeo = IUCV_DISCONN_TIMEOUT;
  455. iucv_sock_wait(sk,
  456. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  457. timeo);
  458. }
  459. case IUCV_CLOSING: /* fall through */
  460. sk->sk_state = IUCV_CLOSED;
  461. sk->sk_state_change(sk);
  462. sk->sk_err = ECONNRESET;
  463. sk->sk_state_change(sk);
  464. skb_queue_purge(&iucv->send_skb_q);
  465. skb_queue_purge(&iucv->backlog_skb_q);
  466. default: /* fall through */
  467. iucv_sever_path(sk, 1);
  468. }
  469. if (iucv->hs_dev) {
  470. dev_put(iucv->hs_dev);
  471. iucv->hs_dev = NULL;
  472. sk->sk_bound_dev_if = 0;
  473. }
  474. /* mark socket for deletion by iucv_sock_kill() */
  475. sock_set_flag(sk, SOCK_ZAPPED);
  476. release_sock(sk);
  477. }
  478. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  479. {
  480. if (parent) {
  481. sk->sk_type = parent->sk_type;
  482. security_sk_clone(parent, sk);
  483. }
  484. }
  485. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern)
  486. {
  487. struct sock *sk;
  488. struct iucv_sock *iucv;
  489. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern);
  490. if (!sk)
  491. return NULL;
  492. iucv = iucv_sk(sk);
  493. sock_init_data(sock, sk);
  494. INIT_LIST_HEAD(&iucv->accept_q);
  495. spin_lock_init(&iucv->accept_q_lock);
  496. skb_queue_head_init(&iucv->send_skb_q);
  497. INIT_LIST_HEAD(&iucv->message_q.list);
  498. spin_lock_init(&iucv->message_q.lock);
  499. skb_queue_head_init(&iucv->backlog_skb_q);
  500. iucv->send_tag = 0;
  501. atomic_set(&iucv->pendings, 0);
  502. iucv->flags = 0;
  503. iucv->msglimit = 0;
  504. atomic_set(&iucv->msg_sent, 0);
  505. atomic_set(&iucv->msg_recv, 0);
  506. iucv->path = NULL;
  507. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  508. memset(&iucv->src_user_id , 0, 32);
  509. if (pr_iucv)
  510. iucv->transport = AF_IUCV_TRANS_IUCV;
  511. else
  512. iucv->transport = AF_IUCV_TRANS_HIPER;
  513. sk->sk_destruct = iucv_sock_destruct;
  514. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  515. sk->sk_allocation = GFP_DMA;
  516. sock_reset_flag(sk, SOCK_ZAPPED);
  517. sk->sk_protocol = proto;
  518. sk->sk_state = IUCV_OPEN;
  519. iucv_sock_link(&iucv_sk_list, sk);
  520. return sk;
  521. }
  522. /* Create an IUCV socket */
  523. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  524. int kern)
  525. {
  526. struct sock *sk;
  527. if (protocol && protocol != PF_IUCV)
  528. return -EPROTONOSUPPORT;
  529. sock->state = SS_UNCONNECTED;
  530. switch (sock->type) {
  531. case SOCK_STREAM:
  532. sock->ops = &iucv_sock_ops;
  533. break;
  534. case SOCK_SEQPACKET:
  535. /* currently, proto ops can handle both sk types */
  536. sock->ops = &iucv_sock_ops;
  537. break;
  538. default:
  539. return -ESOCKTNOSUPPORT;
  540. }
  541. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern);
  542. if (!sk)
  543. return -ENOMEM;
  544. iucv_sock_init(sk, NULL);
  545. return 0;
  546. }
  547. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  548. {
  549. write_lock_bh(&l->lock);
  550. sk_add_node(sk, &l->head);
  551. write_unlock_bh(&l->lock);
  552. }
  553. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  554. {
  555. write_lock_bh(&l->lock);
  556. sk_del_node_init(sk);
  557. write_unlock_bh(&l->lock);
  558. }
  559. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  560. {
  561. unsigned long flags;
  562. struct iucv_sock *par = iucv_sk(parent);
  563. sock_hold(sk);
  564. spin_lock_irqsave(&par->accept_q_lock, flags);
  565. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  566. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  567. iucv_sk(sk)->parent = parent;
  568. sk_acceptq_added(parent);
  569. }
  570. void iucv_accept_unlink(struct sock *sk)
  571. {
  572. unsigned long flags;
  573. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  574. spin_lock_irqsave(&par->accept_q_lock, flags);
  575. list_del_init(&iucv_sk(sk)->accept_q);
  576. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  577. sk_acceptq_removed(iucv_sk(sk)->parent);
  578. iucv_sk(sk)->parent = NULL;
  579. sock_put(sk);
  580. }
  581. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  582. {
  583. struct iucv_sock *isk, *n;
  584. struct sock *sk;
  585. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  586. sk = (struct sock *) isk;
  587. lock_sock(sk);
  588. if (sk->sk_state == IUCV_CLOSED) {
  589. iucv_accept_unlink(sk);
  590. release_sock(sk);
  591. continue;
  592. }
  593. if (sk->sk_state == IUCV_CONNECTED ||
  594. sk->sk_state == IUCV_DISCONN ||
  595. !newsock) {
  596. iucv_accept_unlink(sk);
  597. if (newsock)
  598. sock_graft(sk, newsock);
  599. release_sock(sk);
  600. return sk;
  601. }
  602. release_sock(sk);
  603. }
  604. return NULL;
  605. }
  606. static void __iucv_auto_name(struct iucv_sock *iucv)
  607. {
  608. char name[12];
  609. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  610. while (__iucv_get_sock_by_name(name)) {
  611. sprintf(name, "%08x",
  612. atomic_inc_return(&iucv_sk_list.autobind_name));
  613. }
  614. memcpy(iucv->src_name, name, 8);
  615. }
  616. /* Bind an unbound socket */
  617. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  618. int addr_len)
  619. {
  620. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  621. struct sock *sk = sock->sk;
  622. struct iucv_sock *iucv;
  623. int err = 0;
  624. struct net_device *dev;
  625. char uid[9];
  626. /* Verify the input sockaddr */
  627. if (addr_len < sizeof(struct sockaddr_iucv) ||
  628. addr->sa_family != AF_IUCV)
  629. return -EINVAL;
  630. lock_sock(sk);
  631. if (sk->sk_state != IUCV_OPEN) {
  632. err = -EBADFD;
  633. goto done;
  634. }
  635. write_lock_bh(&iucv_sk_list.lock);
  636. iucv = iucv_sk(sk);
  637. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  638. err = -EADDRINUSE;
  639. goto done_unlock;
  640. }
  641. if (iucv->path)
  642. goto done_unlock;
  643. /* Bind the socket */
  644. if (pr_iucv)
  645. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  646. goto vm_bind; /* VM IUCV transport */
  647. /* try hiper transport */
  648. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  649. ASCEBC(uid, 8);
  650. rcu_read_lock();
  651. for_each_netdev_rcu(&init_net, dev) {
  652. if (!memcmp(dev->perm_addr, uid, 8)) {
  653. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  654. /* Check for unitialized siucv_name */
  655. if (strncmp(sa->siucv_name, " ", 8) == 0)
  656. __iucv_auto_name(iucv);
  657. else
  658. memcpy(iucv->src_name, sa->siucv_name, 8);
  659. sk->sk_bound_dev_if = dev->ifindex;
  660. iucv->hs_dev = dev;
  661. dev_hold(dev);
  662. sk->sk_state = IUCV_BOUND;
  663. iucv->transport = AF_IUCV_TRANS_HIPER;
  664. if (!iucv->msglimit)
  665. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  666. rcu_read_unlock();
  667. goto done_unlock;
  668. }
  669. }
  670. rcu_read_unlock();
  671. vm_bind:
  672. if (pr_iucv) {
  673. /* use local userid for backward compat */
  674. memcpy(iucv->src_name, sa->siucv_name, 8);
  675. memcpy(iucv->src_user_id, iucv_userid, 8);
  676. sk->sk_state = IUCV_BOUND;
  677. iucv->transport = AF_IUCV_TRANS_IUCV;
  678. if (!iucv->msglimit)
  679. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  680. goto done_unlock;
  681. }
  682. /* found no dev to bind */
  683. err = -ENODEV;
  684. done_unlock:
  685. /* Release the socket list lock */
  686. write_unlock_bh(&iucv_sk_list.lock);
  687. done:
  688. release_sock(sk);
  689. return err;
  690. }
  691. /* Automatically bind an unbound socket */
  692. static int iucv_sock_autobind(struct sock *sk)
  693. {
  694. struct iucv_sock *iucv = iucv_sk(sk);
  695. int err = 0;
  696. if (unlikely(!pr_iucv))
  697. return -EPROTO;
  698. memcpy(iucv->src_user_id, iucv_userid, 8);
  699. write_lock_bh(&iucv_sk_list.lock);
  700. __iucv_auto_name(iucv);
  701. write_unlock_bh(&iucv_sk_list.lock);
  702. if (!iucv->msglimit)
  703. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  704. return err;
  705. }
  706. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  707. {
  708. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  709. struct sock *sk = sock->sk;
  710. struct iucv_sock *iucv = iucv_sk(sk);
  711. unsigned char user_data[16];
  712. int err;
  713. high_nmcpy(user_data, sa->siucv_name);
  714. low_nmcpy(user_data, iucv->src_name);
  715. ASCEBC(user_data, sizeof(user_data));
  716. /* Create path. */
  717. iucv->path = iucv_path_alloc(iucv->msglimit,
  718. IUCV_IPRMDATA, GFP_KERNEL);
  719. if (!iucv->path) {
  720. err = -ENOMEM;
  721. goto done;
  722. }
  723. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  724. sa->siucv_user_id, NULL, user_data,
  725. sk);
  726. if (err) {
  727. iucv_path_free(iucv->path);
  728. iucv->path = NULL;
  729. switch (err) {
  730. case 0x0b: /* Target communicator is not logged on */
  731. err = -ENETUNREACH;
  732. break;
  733. case 0x0d: /* Max connections for this guest exceeded */
  734. case 0x0e: /* Max connections for target guest exceeded */
  735. err = -EAGAIN;
  736. break;
  737. case 0x0f: /* Missing IUCV authorization */
  738. err = -EACCES;
  739. break;
  740. default:
  741. err = -ECONNREFUSED;
  742. break;
  743. }
  744. }
  745. done:
  746. return err;
  747. }
  748. /* Connect an unconnected socket */
  749. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  750. int alen, int flags)
  751. {
  752. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  753. struct sock *sk = sock->sk;
  754. struct iucv_sock *iucv = iucv_sk(sk);
  755. int err;
  756. if (alen < sizeof(struct sockaddr_iucv) || addr->sa_family != AF_IUCV)
  757. return -EINVAL;
  758. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  759. return -EBADFD;
  760. if (sk->sk_state == IUCV_OPEN &&
  761. iucv->transport == AF_IUCV_TRANS_HIPER)
  762. return -EBADFD; /* explicit bind required */
  763. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  764. return -EINVAL;
  765. if (sk->sk_state == IUCV_OPEN) {
  766. err = iucv_sock_autobind(sk);
  767. if (unlikely(err))
  768. return err;
  769. }
  770. lock_sock(sk);
  771. /* Set the destination information */
  772. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  773. memcpy(iucv->dst_name, sa->siucv_name, 8);
  774. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  775. err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
  776. else
  777. err = afiucv_path_connect(sock, addr);
  778. if (err)
  779. goto done;
  780. if (sk->sk_state != IUCV_CONNECTED)
  781. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  782. IUCV_DISCONN),
  783. sock_sndtimeo(sk, flags & O_NONBLOCK));
  784. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  785. err = -ECONNREFUSED;
  786. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  787. iucv_sever_path(sk, 0);
  788. done:
  789. release_sock(sk);
  790. return err;
  791. }
  792. /* Move a socket into listening state. */
  793. static int iucv_sock_listen(struct socket *sock, int backlog)
  794. {
  795. struct sock *sk = sock->sk;
  796. int err;
  797. lock_sock(sk);
  798. err = -EINVAL;
  799. if (sk->sk_state != IUCV_BOUND)
  800. goto done;
  801. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  802. goto done;
  803. sk->sk_max_ack_backlog = backlog;
  804. sk->sk_ack_backlog = 0;
  805. sk->sk_state = IUCV_LISTEN;
  806. err = 0;
  807. done:
  808. release_sock(sk);
  809. return err;
  810. }
  811. /* Accept a pending connection */
  812. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  813. int flags, bool kern)
  814. {
  815. DECLARE_WAITQUEUE(wait, current);
  816. struct sock *sk = sock->sk, *nsk;
  817. long timeo;
  818. int err = 0;
  819. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  820. if (sk->sk_state != IUCV_LISTEN) {
  821. err = -EBADFD;
  822. goto done;
  823. }
  824. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  825. /* Wait for an incoming connection */
  826. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  827. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  828. set_current_state(TASK_INTERRUPTIBLE);
  829. if (!timeo) {
  830. err = -EAGAIN;
  831. break;
  832. }
  833. release_sock(sk);
  834. timeo = schedule_timeout(timeo);
  835. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  836. if (sk->sk_state != IUCV_LISTEN) {
  837. err = -EBADFD;
  838. break;
  839. }
  840. if (signal_pending(current)) {
  841. err = sock_intr_errno(timeo);
  842. break;
  843. }
  844. }
  845. set_current_state(TASK_RUNNING);
  846. remove_wait_queue(sk_sleep(sk), &wait);
  847. if (err)
  848. goto done;
  849. newsock->state = SS_CONNECTED;
  850. done:
  851. release_sock(sk);
  852. return err;
  853. }
  854. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  855. int peer)
  856. {
  857. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  858. struct sock *sk = sock->sk;
  859. struct iucv_sock *iucv = iucv_sk(sk);
  860. addr->sa_family = AF_IUCV;
  861. if (peer) {
  862. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  863. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  864. } else {
  865. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  866. memcpy(siucv->siucv_name, iucv->src_name, 8);
  867. }
  868. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  869. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  870. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  871. return sizeof(struct sockaddr_iucv);
  872. }
  873. /**
  874. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  875. * @path: IUCV path
  876. * @msg: Pointer to a struct iucv_message
  877. * @skb: The socket data to send, skb->len MUST BE <= 7
  878. *
  879. * Send the socket data in the parameter list in the iucv message
  880. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  881. * list and the socket data len at index 7 (last byte).
  882. * See also iucv_msg_length().
  883. *
  884. * Returns the error code from the iucv_message_send() call.
  885. */
  886. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  887. struct sk_buff *skb)
  888. {
  889. u8 prmdata[8];
  890. memcpy(prmdata, (void *) skb->data, skb->len);
  891. prmdata[7] = 0xff - (u8) skb->len;
  892. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  893. (void *) prmdata, 8);
  894. }
  895. static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg,
  896. size_t len)
  897. {
  898. struct sock *sk = sock->sk;
  899. struct iucv_sock *iucv = iucv_sk(sk);
  900. size_t headroom = 0;
  901. size_t linear;
  902. struct sk_buff *skb;
  903. struct iucv_message txmsg = {0};
  904. struct cmsghdr *cmsg;
  905. int cmsg_done;
  906. long timeo;
  907. char user_id[9];
  908. char appl_id[9];
  909. int err;
  910. int noblock = msg->msg_flags & MSG_DONTWAIT;
  911. err = sock_error(sk);
  912. if (err)
  913. return err;
  914. if (msg->msg_flags & MSG_OOB)
  915. return -EOPNOTSUPP;
  916. /* SOCK_SEQPACKET: we do not support segmented records */
  917. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  918. return -EOPNOTSUPP;
  919. lock_sock(sk);
  920. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  921. err = -EPIPE;
  922. goto out;
  923. }
  924. /* Return if the socket is not in connected state */
  925. if (sk->sk_state != IUCV_CONNECTED) {
  926. err = -ENOTCONN;
  927. goto out;
  928. }
  929. /* initialize defaults */
  930. cmsg_done = 0; /* check for duplicate headers */
  931. txmsg.class = 0;
  932. /* iterate over control messages */
  933. for_each_cmsghdr(cmsg, msg) {
  934. if (!CMSG_OK(msg, cmsg)) {
  935. err = -EINVAL;
  936. goto out;
  937. }
  938. if (cmsg->cmsg_level != SOL_IUCV)
  939. continue;
  940. if (cmsg->cmsg_type & cmsg_done) {
  941. err = -EINVAL;
  942. goto out;
  943. }
  944. cmsg_done |= cmsg->cmsg_type;
  945. switch (cmsg->cmsg_type) {
  946. case SCM_IUCV_TRGCLS:
  947. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  948. err = -EINVAL;
  949. goto out;
  950. }
  951. /* set iucv message target class */
  952. memcpy(&txmsg.class,
  953. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  954. break;
  955. default:
  956. err = -EINVAL;
  957. goto out;
  958. }
  959. }
  960. /* allocate one skb for each iucv message:
  961. * this is fine for SOCK_SEQPACKET (unless we want to support
  962. * segmented records using the MSG_EOR flag), but
  963. * for SOCK_STREAM we might want to improve it in future */
  964. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  965. headroom = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  966. linear = len;
  967. } else {
  968. if (len < PAGE_SIZE) {
  969. linear = len;
  970. } else {
  971. /* In nonlinear "classic" iucv skb,
  972. * reserve space for iucv_array
  973. */
  974. headroom = sizeof(struct iucv_array) *
  975. (MAX_SKB_FRAGS + 1);
  976. linear = PAGE_SIZE - headroom;
  977. }
  978. }
  979. skb = sock_alloc_send_pskb(sk, headroom + linear, len - linear,
  980. noblock, &err, 0);
  981. if (!skb)
  982. goto out;
  983. if (headroom)
  984. skb_reserve(skb, headroom);
  985. skb_put(skb, linear);
  986. skb->len = len;
  987. skb->data_len = len - linear;
  988. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
  989. if (err)
  990. goto fail;
  991. /* wait if outstanding messages for iucv path has reached */
  992. timeo = sock_sndtimeo(sk, noblock);
  993. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  994. if (err)
  995. goto fail;
  996. /* return -ECONNRESET if the socket is no longer connected */
  997. if (sk->sk_state != IUCV_CONNECTED) {
  998. err = -ECONNRESET;
  999. goto fail;
  1000. }
  1001. /* increment and save iucv message tag for msg_completion cbk */
  1002. txmsg.tag = iucv->send_tag++;
  1003. IUCV_SKB_CB(skb)->tag = txmsg.tag;
  1004. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1005. atomic_inc(&iucv->msg_sent);
  1006. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  1007. if (err) {
  1008. atomic_dec(&iucv->msg_sent);
  1009. goto out;
  1010. }
  1011. } else { /* Classic VM IUCV transport */
  1012. skb_queue_tail(&iucv->send_skb_q, skb);
  1013. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags) &&
  1014. skb->len <= 7) {
  1015. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  1016. /* on success: there is no message_complete callback */
  1017. /* for an IPRMDATA msg; remove skb from send queue */
  1018. if (err == 0) {
  1019. skb_unlink(skb, &iucv->send_skb_q);
  1020. kfree_skb(skb);
  1021. }
  1022. /* this error should never happen since the */
  1023. /* IUCV_IPRMDATA path flag is set... sever path */
  1024. if (err == 0x15) {
  1025. pr_iucv->path_sever(iucv->path, NULL);
  1026. skb_unlink(skb, &iucv->send_skb_q);
  1027. err = -EPIPE;
  1028. goto fail;
  1029. }
  1030. } else if (skb_is_nonlinear(skb)) {
  1031. struct iucv_array *iba = (struct iucv_array *)skb->head;
  1032. int i;
  1033. /* skip iucv_array lying in the headroom */
  1034. iba[0].address = (u32)(addr_t)skb->data;
  1035. iba[0].length = (u32)skb_headlen(skb);
  1036. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1037. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1038. iba[i + 1].address =
  1039. (u32)(addr_t)skb_frag_address(frag);
  1040. iba[i + 1].length = (u32)skb_frag_size(frag);
  1041. }
  1042. err = pr_iucv->message_send(iucv->path, &txmsg,
  1043. IUCV_IPBUFLST, 0,
  1044. (void *)iba, skb->len);
  1045. } else { /* non-IPRM Linear skb */
  1046. err = pr_iucv->message_send(iucv->path, &txmsg,
  1047. 0, 0, (void *)skb->data, skb->len);
  1048. }
  1049. if (err) {
  1050. if (err == 3) {
  1051. user_id[8] = 0;
  1052. memcpy(user_id, iucv->dst_user_id, 8);
  1053. appl_id[8] = 0;
  1054. memcpy(appl_id, iucv->dst_name, 8);
  1055. pr_err(
  1056. "Application %s on z/VM guest %s exceeds message limit\n",
  1057. appl_id, user_id);
  1058. err = -EAGAIN;
  1059. } else {
  1060. err = -EPIPE;
  1061. }
  1062. skb_unlink(skb, &iucv->send_skb_q);
  1063. goto fail;
  1064. }
  1065. }
  1066. release_sock(sk);
  1067. return len;
  1068. fail:
  1069. kfree_skb(skb);
  1070. out:
  1071. release_sock(sk);
  1072. return err;
  1073. }
  1074. static struct sk_buff *alloc_iucv_recv_skb(unsigned long len)
  1075. {
  1076. size_t headroom, linear;
  1077. struct sk_buff *skb;
  1078. int err;
  1079. if (len < PAGE_SIZE) {
  1080. headroom = 0;
  1081. linear = len;
  1082. } else {
  1083. headroom = sizeof(struct iucv_array) * (MAX_SKB_FRAGS + 1);
  1084. linear = PAGE_SIZE - headroom;
  1085. }
  1086. skb = alloc_skb_with_frags(headroom + linear, len - linear,
  1087. 0, &err, GFP_ATOMIC | GFP_DMA);
  1088. WARN_ONCE(!skb,
  1089. "alloc of recv iucv skb len=%lu failed with errcode=%d\n",
  1090. len, err);
  1091. if (skb) {
  1092. if (headroom)
  1093. skb_reserve(skb, headroom);
  1094. skb_put(skb, linear);
  1095. skb->len = len;
  1096. skb->data_len = len - linear;
  1097. }
  1098. return skb;
  1099. }
  1100. /* iucv_process_message() - Receive a single outstanding IUCV message
  1101. *
  1102. * Locking: must be called with message_q.lock held
  1103. */
  1104. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1105. struct iucv_path *path,
  1106. struct iucv_message *msg)
  1107. {
  1108. int rc;
  1109. unsigned int len;
  1110. len = iucv_msg_length(msg);
  1111. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1112. /* Note: the first 4 bytes are reserved for msg tag */
  1113. IUCV_SKB_CB(skb)->class = msg->class;
  1114. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1115. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1116. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1117. skb->data = NULL;
  1118. skb->len = 0;
  1119. }
  1120. } else {
  1121. if (skb_is_nonlinear(skb)) {
  1122. struct iucv_array *iba = (struct iucv_array *)skb->head;
  1123. int i;
  1124. iba[0].address = (u32)(addr_t)skb->data;
  1125. iba[0].length = (u32)skb_headlen(skb);
  1126. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1127. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1128. iba[i + 1].address =
  1129. (u32)(addr_t)skb_frag_address(frag);
  1130. iba[i + 1].length = (u32)skb_frag_size(frag);
  1131. }
  1132. rc = pr_iucv->message_receive(path, msg,
  1133. IUCV_IPBUFLST,
  1134. (void *)iba, len, NULL);
  1135. } else {
  1136. rc = pr_iucv->message_receive(path, msg,
  1137. msg->flags & IUCV_IPRMDATA,
  1138. skb->data, len, NULL);
  1139. }
  1140. if (rc) {
  1141. kfree_skb(skb);
  1142. return;
  1143. }
  1144. WARN_ON_ONCE(skb->len != len);
  1145. }
  1146. IUCV_SKB_CB(skb)->offset = 0;
  1147. if (sk_filter(sk, skb)) {
  1148. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1149. kfree_skb(skb);
  1150. return;
  1151. }
  1152. if (__sock_queue_rcv_skb(sk, skb)) /* handle rcv queue full */
  1153. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1154. }
  1155. /* iucv_process_message_q() - Process outstanding IUCV messages
  1156. *
  1157. * Locking: must be called with message_q.lock held
  1158. */
  1159. static void iucv_process_message_q(struct sock *sk)
  1160. {
  1161. struct iucv_sock *iucv = iucv_sk(sk);
  1162. struct sk_buff *skb;
  1163. struct sock_msg_q *p, *n;
  1164. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1165. skb = alloc_iucv_recv_skb(iucv_msg_length(&p->msg));
  1166. if (!skb)
  1167. break;
  1168. iucv_process_message(sk, skb, p->path, &p->msg);
  1169. list_del(&p->list);
  1170. kfree(p);
  1171. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1172. break;
  1173. }
  1174. }
  1175. static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg,
  1176. size_t len, int flags)
  1177. {
  1178. int noblock = flags & MSG_DONTWAIT;
  1179. struct sock *sk = sock->sk;
  1180. struct iucv_sock *iucv = iucv_sk(sk);
  1181. unsigned int copied, rlen;
  1182. struct sk_buff *skb, *rskb, *cskb;
  1183. int err = 0;
  1184. u32 offset;
  1185. if ((sk->sk_state == IUCV_DISCONN) &&
  1186. skb_queue_empty(&iucv->backlog_skb_q) &&
  1187. skb_queue_empty(&sk->sk_receive_queue) &&
  1188. list_empty(&iucv->message_q.list))
  1189. return 0;
  1190. if (flags & (MSG_OOB))
  1191. return -EOPNOTSUPP;
  1192. /* receive/dequeue next skb:
  1193. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1194. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1195. if (!skb) {
  1196. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1197. return 0;
  1198. return err;
  1199. }
  1200. offset = IUCV_SKB_CB(skb)->offset;
  1201. rlen = skb->len - offset; /* real length of skb */
  1202. copied = min_t(unsigned int, rlen, len);
  1203. if (!rlen)
  1204. sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
  1205. cskb = skb;
  1206. if (skb_copy_datagram_msg(cskb, offset, msg, copied)) {
  1207. if (!(flags & MSG_PEEK))
  1208. skb_queue_head(&sk->sk_receive_queue, skb);
  1209. return -EFAULT;
  1210. }
  1211. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1212. if (sk->sk_type == SOCK_SEQPACKET) {
  1213. if (copied < rlen)
  1214. msg->msg_flags |= MSG_TRUNC;
  1215. /* each iucv message contains a complete record */
  1216. msg->msg_flags |= MSG_EOR;
  1217. }
  1218. /* create control message to store iucv msg target class:
  1219. * get the trgcls from the control buffer of the skb due to
  1220. * fragmentation of original iucv message. */
  1221. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1222. sizeof(IUCV_SKB_CB(skb)->class),
  1223. (void *)&IUCV_SKB_CB(skb)->class);
  1224. if (err) {
  1225. if (!(flags & MSG_PEEK))
  1226. skb_queue_head(&sk->sk_receive_queue, skb);
  1227. return err;
  1228. }
  1229. /* Mark read part of skb as used */
  1230. if (!(flags & MSG_PEEK)) {
  1231. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1232. if (sk->sk_type == SOCK_STREAM) {
  1233. if (copied < rlen) {
  1234. IUCV_SKB_CB(skb)->offset = offset + copied;
  1235. skb_queue_head(&sk->sk_receive_queue, skb);
  1236. goto done;
  1237. }
  1238. }
  1239. kfree_skb(skb);
  1240. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1241. atomic_inc(&iucv->msg_recv);
  1242. if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
  1243. WARN_ON(1);
  1244. iucv_sock_close(sk);
  1245. return -EFAULT;
  1246. }
  1247. }
  1248. /* Queue backlog skbs */
  1249. spin_lock_bh(&iucv->message_q.lock);
  1250. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1251. while (rskb) {
  1252. IUCV_SKB_CB(rskb)->offset = 0;
  1253. if (__sock_queue_rcv_skb(sk, rskb)) {
  1254. /* handle rcv queue full */
  1255. skb_queue_head(&iucv->backlog_skb_q,
  1256. rskb);
  1257. break;
  1258. }
  1259. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1260. }
  1261. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1262. if (!list_empty(&iucv->message_q.list))
  1263. iucv_process_message_q(sk);
  1264. if (atomic_read(&iucv->msg_recv) >=
  1265. iucv->msglimit / 2) {
  1266. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
  1267. if (err) {
  1268. sk->sk_state = IUCV_DISCONN;
  1269. sk->sk_state_change(sk);
  1270. }
  1271. }
  1272. }
  1273. spin_unlock_bh(&iucv->message_q.lock);
  1274. }
  1275. done:
  1276. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1277. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1278. copied = rlen;
  1279. return copied;
  1280. }
  1281. static inline __poll_t iucv_accept_poll(struct sock *parent)
  1282. {
  1283. struct iucv_sock *isk, *n;
  1284. struct sock *sk;
  1285. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1286. sk = (struct sock *) isk;
  1287. if (sk->sk_state == IUCV_CONNECTED)
  1288. return EPOLLIN | EPOLLRDNORM;
  1289. }
  1290. return 0;
  1291. }
  1292. __poll_t iucv_sock_poll(struct file *file, struct socket *sock,
  1293. poll_table *wait)
  1294. {
  1295. struct sock *sk = sock->sk;
  1296. __poll_t mask = 0;
  1297. sock_poll_wait(file, sock, wait);
  1298. if (sk->sk_state == IUCV_LISTEN)
  1299. return iucv_accept_poll(sk);
  1300. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1301. mask |= EPOLLERR |
  1302. (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
  1303. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1304. mask |= EPOLLRDHUP;
  1305. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1306. mask |= EPOLLHUP;
  1307. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1308. (sk->sk_shutdown & RCV_SHUTDOWN))
  1309. mask |= EPOLLIN | EPOLLRDNORM;
  1310. if (sk->sk_state == IUCV_CLOSED)
  1311. mask |= EPOLLHUP;
  1312. if (sk->sk_state == IUCV_DISCONN)
  1313. mask |= EPOLLIN;
  1314. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1315. mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
  1316. else
  1317. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1318. return mask;
  1319. }
  1320. static int iucv_sock_shutdown(struct socket *sock, int how)
  1321. {
  1322. struct sock *sk = sock->sk;
  1323. struct iucv_sock *iucv = iucv_sk(sk);
  1324. struct iucv_message txmsg;
  1325. int err = 0;
  1326. how++;
  1327. if ((how & ~SHUTDOWN_MASK) || !how)
  1328. return -EINVAL;
  1329. lock_sock(sk);
  1330. switch (sk->sk_state) {
  1331. case IUCV_LISTEN:
  1332. case IUCV_DISCONN:
  1333. case IUCV_CLOSING:
  1334. case IUCV_CLOSED:
  1335. err = -ENOTCONN;
  1336. goto fail;
  1337. default:
  1338. break;
  1339. }
  1340. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1341. if (iucv->transport == AF_IUCV_TRANS_IUCV) {
  1342. txmsg.class = 0;
  1343. txmsg.tag = 0;
  1344. err = pr_iucv->message_send(iucv->path, &txmsg,
  1345. IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
  1346. if (err) {
  1347. switch (err) {
  1348. case 1:
  1349. err = -ENOTCONN;
  1350. break;
  1351. case 2:
  1352. err = -ECONNRESET;
  1353. break;
  1354. default:
  1355. err = -ENOTCONN;
  1356. break;
  1357. }
  1358. }
  1359. } else
  1360. iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
  1361. }
  1362. sk->sk_shutdown |= how;
  1363. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1364. if ((iucv->transport == AF_IUCV_TRANS_IUCV) &&
  1365. iucv->path) {
  1366. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1367. if (err)
  1368. err = -ENOTCONN;
  1369. /* skb_queue_purge(&sk->sk_receive_queue); */
  1370. }
  1371. skb_queue_purge(&sk->sk_receive_queue);
  1372. }
  1373. /* Wake up anyone sleeping in poll */
  1374. sk->sk_state_change(sk);
  1375. fail:
  1376. release_sock(sk);
  1377. return err;
  1378. }
  1379. static int iucv_sock_release(struct socket *sock)
  1380. {
  1381. struct sock *sk = sock->sk;
  1382. int err = 0;
  1383. if (!sk)
  1384. return 0;
  1385. iucv_sock_close(sk);
  1386. sock_orphan(sk);
  1387. iucv_sock_kill(sk);
  1388. return err;
  1389. }
  1390. /* getsockopt and setsockopt */
  1391. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1392. char __user *optval, unsigned int optlen)
  1393. {
  1394. struct sock *sk = sock->sk;
  1395. struct iucv_sock *iucv = iucv_sk(sk);
  1396. int val;
  1397. int rc;
  1398. if (level != SOL_IUCV)
  1399. return -ENOPROTOOPT;
  1400. if (optlen < sizeof(int))
  1401. return -EINVAL;
  1402. if (get_user(val, (int __user *) optval))
  1403. return -EFAULT;
  1404. rc = 0;
  1405. lock_sock(sk);
  1406. switch (optname) {
  1407. case SO_IPRMDATA_MSG:
  1408. if (val)
  1409. iucv->flags |= IUCV_IPRMDATA;
  1410. else
  1411. iucv->flags &= ~IUCV_IPRMDATA;
  1412. break;
  1413. case SO_MSGLIMIT:
  1414. switch (sk->sk_state) {
  1415. case IUCV_OPEN:
  1416. case IUCV_BOUND:
  1417. if (val < 1 || val > (u16)(~0))
  1418. rc = -EINVAL;
  1419. else
  1420. iucv->msglimit = val;
  1421. break;
  1422. default:
  1423. rc = -EINVAL;
  1424. break;
  1425. }
  1426. break;
  1427. default:
  1428. rc = -ENOPROTOOPT;
  1429. break;
  1430. }
  1431. release_sock(sk);
  1432. return rc;
  1433. }
  1434. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1435. char __user *optval, int __user *optlen)
  1436. {
  1437. struct sock *sk = sock->sk;
  1438. struct iucv_sock *iucv = iucv_sk(sk);
  1439. unsigned int val;
  1440. int len;
  1441. if (level != SOL_IUCV)
  1442. return -ENOPROTOOPT;
  1443. if (get_user(len, optlen))
  1444. return -EFAULT;
  1445. if (len < 0)
  1446. return -EINVAL;
  1447. len = min_t(unsigned int, len, sizeof(int));
  1448. switch (optname) {
  1449. case SO_IPRMDATA_MSG:
  1450. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1451. break;
  1452. case SO_MSGLIMIT:
  1453. lock_sock(sk);
  1454. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1455. : iucv->msglimit; /* default */
  1456. release_sock(sk);
  1457. break;
  1458. case SO_MSGSIZE:
  1459. if (sk->sk_state == IUCV_OPEN)
  1460. return -EBADFD;
  1461. val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
  1462. sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
  1463. 0x7fffffff;
  1464. break;
  1465. default:
  1466. return -ENOPROTOOPT;
  1467. }
  1468. if (put_user(len, optlen))
  1469. return -EFAULT;
  1470. if (copy_to_user(optval, &val, len))
  1471. return -EFAULT;
  1472. return 0;
  1473. }
  1474. /* Callback wrappers - called from iucv base support */
  1475. static int iucv_callback_connreq(struct iucv_path *path,
  1476. u8 ipvmid[8], u8 ipuser[16])
  1477. {
  1478. unsigned char user_data[16];
  1479. unsigned char nuser_data[16];
  1480. unsigned char src_name[8];
  1481. struct sock *sk, *nsk;
  1482. struct iucv_sock *iucv, *niucv;
  1483. int err;
  1484. memcpy(src_name, ipuser, 8);
  1485. EBCASC(src_name, 8);
  1486. /* Find out if this path belongs to af_iucv. */
  1487. read_lock(&iucv_sk_list.lock);
  1488. iucv = NULL;
  1489. sk = NULL;
  1490. sk_for_each(sk, &iucv_sk_list.head)
  1491. if (sk->sk_state == IUCV_LISTEN &&
  1492. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1493. /*
  1494. * Found a listening socket with
  1495. * src_name == ipuser[0-7].
  1496. */
  1497. iucv = iucv_sk(sk);
  1498. break;
  1499. }
  1500. read_unlock(&iucv_sk_list.lock);
  1501. if (!iucv)
  1502. /* No socket found, not one of our paths. */
  1503. return -EINVAL;
  1504. bh_lock_sock(sk);
  1505. /* Check if parent socket is listening */
  1506. low_nmcpy(user_data, iucv->src_name);
  1507. high_nmcpy(user_data, iucv->dst_name);
  1508. ASCEBC(user_data, sizeof(user_data));
  1509. if (sk->sk_state != IUCV_LISTEN) {
  1510. err = pr_iucv->path_sever(path, user_data);
  1511. iucv_path_free(path);
  1512. goto fail;
  1513. }
  1514. /* Check for backlog size */
  1515. if (sk_acceptq_is_full(sk)) {
  1516. err = pr_iucv->path_sever(path, user_data);
  1517. iucv_path_free(path);
  1518. goto fail;
  1519. }
  1520. /* Create the new socket */
  1521. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1522. if (!nsk) {
  1523. err = pr_iucv->path_sever(path, user_data);
  1524. iucv_path_free(path);
  1525. goto fail;
  1526. }
  1527. niucv = iucv_sk(nsk);
  1528. iucv_sock_init(nsk, sk);
  1529. /* Set the new iucv_sock */
  1530. memcpy(niucv->dst_name, ipuser + 8, 8);
  1531. EBCASC(niucv->dst_name, 8);
  1532. memcpy(niucv->dst_user_id, ipvmid, 8);
  1533. memcpy(niucv->src_name, iucv->src_name, 8);
  1534. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1535. niucv->path = path;
  1536. /* Call iucv_accept */
  1537. high_nmcpy(nuser_data, ipuser + 8);
  1538. memcpy(nuser_data + 8, niucv->src_name, 8);
  1539. ASCEBC(nuser_data + 8, 8);
  1540. /* set message limit for path based on msglimit of accepting socket */
  1541. niucv->msglimit = iucv->msglimit;
  1542. path->msglim = iucv->msglimit;
  1543. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1544. if (err) {
  1545. iucv_sever_path(nsk, 1);
  1546. iucv_sock_kill(nsk);
  1547. goto fail;
  1548. }
  1549. iucv_accept_enqueue(sk, nsk);
  1550. /* Wake up accept */
  1551. nsk->sk_state = IUCV_CONNECTED;
  1552. sk->sk_data_ready(sk);
  1553. err = 0;
  1554. fail:
  1555. bh_unlock_sock(sk);
  1556. return 0;
  1557. }
  1558. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1559. {
  1560. struct sock *sk = path->private;
  1561. sk->sk_state = IUCV_CONNECTED;
  1562. sk->sk_state_change(sk);
  1563. }
  1564. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1565. {
  1566. struct sock *sk = path->private;
  1567. struct iucv_sock *iucv = iucv_sk(sk);
  1568. struct sk_buff *skb;
  1569. struct sock_msg_q *save_msg;
  1570. int len;
  1571. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1572. pr_iucv->message_reject(path, msg);
  1573. return;
  1574. }
  1575. spin_lock(&iucv->message_q.lock);
  1576. if (!list_empty(&iucv->message_q.list) ||
  1577. !skb_queue_empty(&iucv->backlog_skb_q))
  1578. goto save_message;
  1579. len = atomic_read(&sk->sk_rmem_alloc);
  1580. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1581. if (len > sk->sk_rcvbuf)
  1582. goto save_message;
  1583. skb = alloc_iucv_recv_skb(iucv_msg_length(msg));
  1584. if (!skb)
  1585. goto save_message;
  1586. iucv_process_message(sk, skb, path, msg);
  1587. goto out_unlock;
  1588. save_message:
  1589. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1590. if (!save_msg)
  1591. goto out_unlock;
  1592. save_msg->path = path;
  1593. save_msg->msg = *msg;
  1594. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1595. out_unlock:
  1596. spin_unlock(&iucv->message_q.lock);
  1597. }
  1598. static void iucv_callback_txdone(struct iucv_path *path,
  1599. struct iucv_message *msg)
  1600. {
  1601. struct sock *sk = path->private;
  1602. struct sk_buff *this = NULL;
  1603. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1604. struct sk_buff *list_skb = list->next;
  1605. unsigned long flags;
  1606. bh_lock_sock(sk);
  1607. if (!skb_queue_empty(list)) {
  1608. spin_lock_irqsave(&list->lock, flags);
  1609. while (list_skb != (struct sk_buff *)list) {
  1610. if (msg->tag == IUCV_SKB_CB(list_skb)->tag) {
  1611. this = list_skb;
  1612. break;
  1613. }
  1614. list_skb = list_skb->next;
  1615. }
  1616. if (this)
  1617. __skb_unlink(this, list);
  1618. spin_unlock_irqrestore(&list->lock, flags);
  1619. if (this) {
  1620. kfree_skb(this);
  1621. /* wake up any process waiting for sending */
  1622. iucv_sock_wake_msglim(sk);
  1623. }
  1624. }
  1625. if (sk->sk_state == IUCV_CLOSING) {
  1626. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1627. sk->sk_state = IUCV_CLOSED;
  1628. sk->sk_state_change(sk);
  1629. }
  1630. }
  1631. bh_unlock_sock(sk);
  1632. }
  1633. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1634. {
  1635. struct sock *sk = path->private;
  1636. if (sk->sk_state == IUCV_CLOSED)
  1637. return;
  1638. bh_lock_sock(sk);
  1639. iucv_sever_path(sk, 1);
  1640. sk->sk_state = IUCV_DISCONN;
  1641. sk->sk_state_change(sk);
  1642. bh_unlock_sock(sk);
  1643. }
  1644. /* called if the other communication side shuts down its RECV direction;
  1645. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1646. */
  1647. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1648. {
  1649. struct sock *sk = path->private;
  1650. bh_lock_sock(sk);
  1651. if (sk->sk_state != IUCV_CLOSED) {
  1652. sk->sk_shutdown |= SEND_SHUTDOWN;
  1653. sk->sk_state_change(sk);
  1654. }
  1655. bh_unlock_sock(sk);
  1656. }
  1657. /***************** HiperSockets transport callbacks ********************/
  1658. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1659. {
  1660. struct af_iucv_trans_hdr *trans_hdr = iucv_trans_hdr(skb);
  1661. char tmpID[8];
  1662. char tmpName[8];
  1663. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1664. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1665. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1666. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1667. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1668. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1669. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1670. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1671. memcpy(trans_hdr->destUserID, tmpID, 8);
  1672. memcpy(trans_hdr->destAppName, tmpName, 8);
  1673. skb_push(skb, ETH_HLEN);
  1674. memset(skb->data, 0, ETH_HLEN);
  1675. }
  1676. /**
  1677. * afiucv_hs_callback_syn - react on received SYN
  1678. **/
  1679. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1680. {
  1681. struct af_iucv_trans_hdr *trans_hdr = iucv_trans_hdr(skb);
  1682. struct sock *nsk;
  1683. struct iucv_sock *iucv, *niucv;
  1684. int err;
  1685. iucv = iucv_sk(sk);
  1686. if (!iucv) {
  1687. /* no sock - connection refused */
  1688. afiucv_swap_src_dest(skb);
  1689. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1690. err = dev_queue_xmit(skb);
  1691. goto out;
  1692. }
  1693. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1694. bh_lock_sock(sk);
  1695. if ((sk->sk_state != IUCV_LISTEN) ||
  1696. sk_acceptq_is_full(sk) ||
  1697. !nsk) {
  1698. /* error on server socket - connection refused */
  1699. afiucv_swap_src_dest(skb);
  1700. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1701. err = dev_queue_xmit(skb);
  1702. iucv_sock_kill(nsk);
  1703. bh_unlock_sock(sk);
  1704. goto out;
  1705. }
  1706. niucv = iucv_sk(nsk);
  1707. iucv_sock_init(nsk, sk);
  1708. niucv->transport = AF_IUCV_TRANS_HIPER;
  1709. niucv->msglimit = iucv->msglimit;
  1710. if (!trans_hdr->window)
  1711. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1712. else
  1713. niucv->msglimit_peer = trans_hdr->window;
  1714. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1715. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1716. memcpy(niucv->src_name, iucv->src_name, 8);
  1717. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1718. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1719. niucv->hs_dev = iucv->hs_dev;
  1720. dev_hold(niucv->hs_dev);
  1721. afiucv_swap_src_dest(skb);
  1722. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1723. trans_hdr->window = niucv->msglimit;
  1724. /* if receiver acks the xmit connection is established */
  1725. err = dev_queue_xmit(skb);
  1726. if (!err) {
  1727. iucv_accept_enqueue(sk, nsk);
  1728. nsk->sk_state = IUCV_CONNECTED;
  1729. sk->sk_data_ready(sk);
  1730. } else
  1731. iucv_sock_kill(nsk);
  1732. bh_unlock_sock(sk);
  1733. out:
  1734. return NET_RX_SUCCESS;
  1735. }
  1736. /**
  1737. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1738. **/
  1739. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1740. {
  1741. struct iucv_sock *iucv = iucv_sk(sk);
  1742. if (!iucv)
  1743. goto out;
  1744. if (sk->sk_state != IUCV_BOUND)
  1745. goto out;
  1746. bh_lock_sock(sk);
  1747. iucv->msglimit_peer = iucv_trans_hdr(skb)->window;
  1748. sk->sk_state = IUCV_CONNECTED;
  1749. sk->sk_state_change(sk);
  1750. bh_unlock_sock(sk);
  1751. out:
  1752. kfree_skb(skb);
  1753. return NET_RX_SUCCESS;
  1754. }
  1755. /**
  1756. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1757. **/
  1758. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1759. {
  1760. struct iucv_sock *iucv = iucv_sk(sk);
  1761. if (!iucv)
  1762. goto out;
  1763. if (sk->sk_state != IUCV_BOUND)
  1764. goto out;
  1765. bh_lock_sock(sk);
  1766. sk->sk_state = IUCV_DISCONN;
  1767. sk->sk_state_change(sk);
  1768. bh_unlock_sock(sk);
  1769. out:
  1770. kfree_skb(skb);
  1771. return NET_RX_SUCCESS;
  1772. }
  1773. /**
  1774. * afiucv_hs_callback_fin() - react on received FIN
  1775. **/
  1776. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1777. {
  1778. struct iucv_sock *iucv = iucv_sk(sk);
  1779. /* other end of connection closed */
  1780. if (!iucv)
  1781. goto out;
  1782. bh_lock_sock(sk);
  1783. if (sk->sk_state == IUCV_CONNECTED) {
  1784. sk->sk_state = IUCV_DISCONN;
  1785. sk->sk_state_change(sk);
  1786. }
  1787. bh_unlock_sock(sk);
  1788. out:
  1789. kfree_skb(skb);
  1790. return NET_RX_SUCCESS;
  1791. }
  1792. /**
  1793. * afiucv_hs_callback_win() - react on received WIN
  1794. **/
  1795. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1796. {
  1797. struct iucv_sock *iucv = iucv_sk(sk);
  1798. if (!iucv)
  1799. return NET_RX_SUCCESS;
  1800. if (sk->sk_state != IUCV_CONNECTED)
  1801. return NET_RX_SUCCESS;
  1802. atomic_sub(iucv_trans_hdr(skb)->window, &iucv->msg_sent);
  1803. iucv_sock_wake_msglim(sk);
  1804. return NET_RX_SUCCESS;
  1805. }
  1806. /**
  1807. * afiucv_hs_callback_rx() - react on received data
  1808. **/
  1809. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1810. {
  1811. struct iucv_sock *iucv = iucv_sk(sk);
  1812. if (!iucv) {
  1813. kfree_skb(skb);
  1814. return NET_RX_SUCCESS;
  1815. }
  1816. if (sk->sk_state != IUCV_CONNECTED) {
  1817. kfree_skb(skb);
  1818. return NET_RX_SUCCESS;
  1819. }
  1820. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1821. kfree_skb(skb);
  1822. return NET_RX_SUCCESS;
  1823. }
  1824. /* write stuff from iucv_msg to skb cb */
  1825. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1826. skb_reset_transport_header(skb);
  1827. skb_reset_network_header(skb);
  1828. IUCV_SKB_CB(skb)->offset = 0;
  1829. if (sk_filter(sk, skb)) {
  1830. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1831. kfree_skb(skb);
  1832. return NET_RX_SUCCESS;
  1833. }
  1834. spin_lock(&iucv->message_q.lock);
  1835. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1836. if (__sock_queue_rcv_skb(sk, skb))
  1837. /* handle rcv queue full */
  1838. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1839. } else
  1840. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1841. spin_unlock(&iucv->message_q.lock);
  1842. return NET_RX_SUCCESS;
  1843. }
  1844. /**
  1845. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1846. * transport
  1847. * called from netif RX softirq
  1848. **/
  1849. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1850. struct packet_type *pt, struct net_device *orig_dev)
  1851. {
  1852. struct sock *sk;
  1853. struct iucv_sock *iucv;
  1854. struct af_iucv_trans_hdr *trans_hdr;
  1855. int err = NET_RX_SUCCESS;
  1856. char nullstring[8];
  1857. if (!pskb_may_pull(skb, sizeof(*trans_hdr))) {
  1858. WARN_ONCE(1, "AF_IUCV failed to receive skb, len=%u", skb->len);
  1859. kfree_skb(skb);
  1860. return NET_RX_SUCCESS;
  1861. }
  1862. trans_hdr = iucv_trans_hdr(skb);
  1863. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1864. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1865. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1866. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1867. memset(nullstring, 0, sizeof(nullstring));
  1868. iucv = NULL;
  1869. sk = NULL;
  1870. read_lock(&iucv_sk_list.lock);
  1871. sk_for_each(sk, &iucv_sk_list.head) {
  1872. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1873. if ((!memcmp(&iucv_sk(sk)->src_name,
  1874. trans_hdr->destAppName, 8)) &&
  1875. (!memcmp(&iucv_sk(sk)->src_user_id,
  1876. trans_hdr->destUserID, 8)) &&
  1877. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1878. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1879. nullstring, 8))) {
  1880. iucv = iucv_sk(sk);
  1881. break;
  1882. }
  1883. } else {
  1884. if ((!memcmp(&iucv_sk(sk)->src_name,
  1885. trans_hdr->destAppName, 8)) &&
  1886. (!memcmp(&iucv_sk(sk)->src_user_id,
  1887. trans_hdr->destUserID, 8)) &&
  1888. (!memcmp(&iucv_sk(sk)->dst_name,
  1889. trans_hdr->srcAppName, 8)) &&
  1890. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1891. trans_hdr->srcUserID, 8))) {
  1892. iucv = iucv_sk(sk);
  1893. break;
  1894. }
  1895. }
  1896. }
  1897. read_unlock(&iucv_sk_list.lock);
  1898. if (!iucv)
  1899. sk = NULL;
  1900. /* no sock
  1901. how should we send with no sock
  1902. 1) send without sock no send rc checking?
  1903. 2) introduce default sock to handle this cases
  1904. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1905. data -> send FIN
  1906. SYN|ACK, SYN|FIN, FIN -> no action? */
  1907. switch (trans_hdr->flags) {
  1908. case AF_IUCV_FLAG_SYN:
  1909. /* connect request */
  1910. err = afiucv_hs_callback_syn(sk, skb);
  1911. break;
  1912. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1913. /* connect request confirmed */
  1914. err = afiucv_hs_callback_synack(sk, skb);
  1915. break;
  1916. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1917. /* connect request refused */
  1918. err = afiucv_hs_callback_synfin(sk, skb);
  1919. break;
  1920. case (AF_IUCV_FLAG_FIN):
  1921. /* close request */
  1922. err = afiucv_hs_callback_fin(sk, skb);
  1923. break;
  1924. case (AF_IUCV_FLAG_WIN):
  1925. err = afiucv_hs_callback_win(sk, skb);
  1926. if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
  1927. kfree_skb(skb);
  1928. break;
  1929. }
  1930. /* fall through and receive non-zero length data */
  1931. case (AF_IUCV_FLAG_SHT):
  1932. /* shutdown request */
  1933. /* fall through and receive zero length data */
  1934. case 0:
  1935. /* plain data frame */
  1936. IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class;
  1937. err = afiucv_hs_callback_rx(sk, skb);
  1938. break;
  1939. default:
  1940. kfree_skb(skb);
  1941. }
  1942. return err;
  1943. }
  1944. /**
  1945. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1946. * transport
  1947. **/
  1948. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1949. enum iucv_tx_notify n)
  1950. {
  1951. struct sock *isk = skb->sk;
  1952. struct sock *sk = NULL;
  1953. struct iucv_sock *iucv = NULL;
  1954. struct sk_buff_head *list;
  1955. struct sk_buff *list_skb;
  1956. struct sk_buff *nskb;
  1957. unsigned long flags;
  1958. read_lock_irqsave(&iucv_sk_list.lock, flags);
  1959. sk_for_each(sk, &iucv_sk_list.head)
  1960. if (sk == isk) {
  1961. iucv = iucv_sk(sk);
  1962. break;
  1963. }
  1964. read_unlock_irqrestore(&iucv_sk_list.lock, flags);
  1965. if (!iucv || sock_flag(sk, SOCK_ZAPPED))
  1966. return;
  1967. list = &iucv->send_skb_q;
  1968. spin_lock_irqsave(&list->lock, flags);
  1969. if (skb_queue_empty(list))
  1970. goto out_unlock;
  1971. list_skb = list->next;
  1972. nskb = list_skb->next;
  1973. while (list_skb != (struct sk_buff *)list) {
  1974. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1975. switch (n) {
  1976. case TX_NOTIFY_OK:
  1977. __skb_unlink(list_skb, list);
  1978. kfree_skb(list_skb);
  1979. iucv_sock_wake_msglim(sk);
  1980. break;
  1981. case TX_NOTIFY_PENDING:
  1982. atomic_inc(&iucv->pendings);
  1983. break;
  1984. case TX_NOTIFY_DELAYED_OK:
  1985. __skb_unlink(list_skb, list);
  1986. atomic_dec(&iucv->pendings);
  1987. if (atomic_read(&iucv->pendings) <= 0)
  1988. iucv_sock_wake_msglim(sk);
  1989. kfree_skb(list_skb);
  1990. break;
  1991. case TX_NOTIFY_UNREACHABLE:
  1992. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1993. case TX_NOTIFY_TPQFULL: /* not yet used */
  1994. case TX_NOTIFY_GENERALERROR:
  1995. case TX_NOTIFY_DELAYED_GENERALERROR:
  1996. __skb_unlink(list_skb, list);
  1997. kfree_skb(list_skb);
  1998. if (sk->sk_state == IUCV_CONNECTED) {
  1999. sk->sk_state = IUCV_DISCONN;
  2000. sk->sk_state_change(sk);
  2001. }
  2002. break;
  2003. }
  2004. break;
  2005. }
  2006. list_skb = nskb;
  2007. nskb = nskb->next;
  2008. }
  2009. out_unlock:
  2010. spin_unlock_irqrestore(&list->lock, flags);
  2011. if (sk->sk_state == IUCV_CLOSING) {
  2012. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  2013. sk->sk_state = IUCV_CLOSED;
  2014. sk->sk_state_change(sk);
  2015. }
  2016. }
  2017. }
  2018. /*
  2019. * afiucv_netdev_event: handle netdev notifier chain events
  2020. */
  2021. static int afiucv_netdev_event(struct notifier_block *this,
  2022. unsigned long event, void *ptr)
  2023. {
  2024. struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
  2025. struct sock *sk;
  2026. struct iucv_sock *iucv;
  2027. switch (event) {
  2028. case NETDEV_REBOOT:
  2029. case NETDEV_GOING_DOWN:
  2030. sk_for_each(sk, &iucv_sk_list.head) {
  2031. iucv = iucv_sk(sk);
  2032. if ((iucv->hs_dev == event_dev) &&
  2033. (sk->sk_state == IUCV_CONNECTED)) {
  2034. if (event == NETDEV_GOING_DOWN)
  2035. iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  2036. sk->sk_state = IUCV_DISCONN;
  2037. sk->sk_state_change(sk);
  2038. }
  2039. }
  2040. break;
  2041. case NETDEV_DOWN:
  2042. case NETDEV_UNREGISTER:
  2043. default:
  2044. break;
  2045. }
  2046. return NOTIFY_DONE;
  2047. }
  2048. static struct notifier_block afiucv_netdev_notifier = {
  2049. .notifier_call = afiucv_netdev_event,
  2050. };
  2051. static const struct proto_ops iucv_sock_ops = {
  2052. .family = PF_IUCV,
  2053. .owner = THIS_MODULE,
  2054. .release = iucv_sock_release,
  2055. .bind = iucv_sock_bind,
  2056. .connect = iucv_sock_connect,
  2057. .listen = iucv_sock_listen,
  2058. .accept = iucv_sock_accept,
  2059. .getname = iucv_sock_getname,
  2060. .sendmsg = iucv_sock_sendmsg,
  2061. .recvmsg = iucv_sock_recvmsg,
  2062. .poll = iucv_sock_poll,
  2063. .ioctl = sock_no_ioctl,
  2064. .mmap = sock_no_mmap,
  2065. .socketpair = sock_no_socketpair,
  2066. .shutdown = iucv_sock_shutdown,
  2067. .setsockopt = iucv_sock_setsockopt,
  2068. .getsockopt = iucv_sock_getsockopt,
  2069. };
  2070. static const struct net_proto_family iucv_sock_family_ops = {
  2071. .family = AF_IUCV,
  2072. .owner = THIS_MODULE,
  2073. .create = iucv_sock_create,
  2074. };
  2075. static struct packet_type iucv_packet_type = {
  2076. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2077. .func = afiucv_hs_rcv,
  2078. };
  2079. static int afiucv_iucv_init(void)
  2080. {
  2081. int err;
  2082. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2083. if (err)
  2084. goto out;
  2085. /* establish dummy device */
  2086. af_iucv_driver.bus = pr_iucv->bus;
  2087. err = driver_register(&af_iucv_driver);
  2088. if (err)
  2089. goto out_iucv;
  2090. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2091. if (!af_iucv_dev) {
  2092. err = -ENOMEM;
  2093. goto out_driver;
  2094. }
  2095. dev_set_name(af_iucv_dev, "af_iucv");
  2096. af_iucv_dev->bus = pr_iucv->bus;
  2097. af_iucv_dev->parent = pr_iucv->root;
  2098. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2099. af_iucv_dev->driver = &af_iucv_driver;
  2100. err = device_register(af_iucv_dev);
  2101. if (err)
  2102. goto out_iucv_dev;
  2103. return 0;
  2104. out_iucv_dev:
  2105. put_device(af_iucv_dev);
  2106. out_driver:
  2107. driver_unregister(&af_iucv_driver);
  2108. out_iucv:
  2109. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2110. out:
  2111. return err;
  2112. }
  2113. static int __init afiucv_init(void)
  2114. {
  2115. int err;
  2116. if (MACHINE_IS_VM) {
  2117. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2118. if (unlikely(err)) {
  2119. WARN_ON(err);
  2120. err = -EPROTONOSUPPORT;
  2121. goto out;
  2122. }
  2123. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2124. if (!pr_iucv) {
  2125. printk(KERN_WARNING "iucv_if lookup failed\n");
  2126. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2127. }
  2128. } else {
  2129. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2130. pr_iucv = NULL;
  2131. }
  2132. err = proto_register(&iucv_proto, 0);
  2133. if (err)
  2134. goto out;
  2135. err = sock_register(&iucv_sock_family_ops);
  2136. if (err)
  2137. goto out_proto;
  2138. if (pr_iucv) {
  2139. err = afiucv_iucv_init();
  2140. if (err)
  2141. goto out_sock;
  2142. } else
  2143. register_netdevice_notifier(&afiucv_netdev_notifier);
  2144. dev_add_pack(&iucv_packet_type);
  2145. return 0;
  2146. out_sock:
  2147. sock_unregister(PF_IUCV);
  2148. out_proto:
  2149. proto_unregister(&iucv_proto);
  2150. out:
  2151. if (pr_iucv)
  2152. symbol_put(iucv_if);
  2153. return err;
  2154. }
  2155. static void __exit afiucv_exit(void)
  2156. {
  2157. if (pr_iucv) {
  2158. device_unregister(af_iucv_dev);
  2159. driver_unregister(&af_iucv_driver);
  2160. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2161. symbol_put(iucv_if);
  2162. } else
  2163. unregister_netdevice_notifier(&afiucv_netdev_notifier);
  2164. dev_remove_pack(&iucv_packet_type);
  2165. sock_unregister(PF_IUCV);
  2166. proto_unregister(&iucv_proto);
  2167. }
  2168. module_init(afiucv_init);
  2169. module_exit(afiucv_exit);
  2170. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2171. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2172. MODULE_VERSION(VERSION);
  2173. MODULE_LICENSE("GPL");
  2174. MODULE_ALIAS_NETPROTO(PF_IUCV);