xfs_aops.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4. * Copyright (c) 2016-2018 Christoph Hellwig.
  5. * All Rights Reserved.
  6. */
  7. #include "xfs.h"
  8. #include "xfs_shared.h"
  9. #include "xfs_format.h"
  10. #include "xfs_log_format.h"
  11. #include "xfs_trans_resv.h"
  12. #include "xfs_mount.h"
  13. #include "xfs_inode.h"
  14. #include "xfs_trans.h"
  15. #include "xfs_inode_item.h"
  16. #include "xfs_alloc.h"
  17. #include "xfs_error.h"
  18. #include "xfs_iomap.h"
  19. #include "xfs_trace.h"
  20. #include "xfs_bmap.h"
  21. #include "xfs_bmap_util.h"
  22. #include "xfs_bmap_btree.h"
  23. #include "xfs_reflink.h"
  24. #include <linux/writeback.h>
  25. /*
  26. * structure owned by writepages passed to individual writepage calls
  27. */
  28. struct xfs_writepage_ctx {
  29. struct xfs_bmbt_irec imap;
  30. unsigned int io_type;
  31. unsigned int cow_seq;
  32. struct xfs_ioend *ioend;
  33. };
  34. struct block_device *
  35. xfs_find_bdev_for_inode(
  36. struct inode *inode)
  37. {
  38. struct xfs_inode *ip = XFS_I(inode);
  39. struct xfs_mount *mp = ip->i_mount;
  40. if (XFS_IS_REALTIME_INODE(ip))
  41. return mp->m_rtdev_targp->bt_bdev;
  42. else
  43. return mp->m_ddev_targp->bt_bdev;
  44. }
  45. struct dax_device *
  46. xfs_find_daxdev_for_inode(
  47. struct inode *inode)
  48. {
  49. struct xfs_inode *ip = XFS_I(inode);
  50. struct xfs_mount *mp = ip->i_mount;
  51. if (XFS_IS_REALTIME_INODE(ip))
  52. return mp->m_rtdev_targp->bt_daxdev;
  53. else
  54. return mp->m_ddev_targp->bt_daxdev;
  55. }
  56. static void
  57. xfs_finish_page_writeback(
  58. struct inode *inode,
  59. struct bio_vec *bvec,
  60. int error)
  61. {
  62. struct iomap_page *iop = to_iomap_page(bvec->bv_page);
  63. if (error) {
  64. SetPageError(bvec->bv_page);
  65. mapping_set_error(inode->i_mapping, -EIO);
  66. }
  67. ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
  68. ASSERT(!iop || atomic_read(&iop->write_count) > 0);
  69. if (!iop || atomic_dec_and_test(&iop->write_count))
  70. end_page_writeback(bvec->bv_page);
  71. }
  72. /*
  73. * We're now finished for good with this ioend structure. Update the page
  74. * state, release holds on bios, and finally free up memory. Do not use the
  75. * ioend after this.
  76. */
  77. STATIC void
  78. xfs_destroy_ioend(
  79. struct xfs_ioend *ioend,
  80. int error)
  81. {
  82. struct inode *inode = ioend->io_inode;
  83. struct bio *bio = &ioend->io_inline_bio;
  84. struct bio *last = ioend->io_bio, *next;
  85. u64 start = bio->bi_iter.bi_sector;
  86. bool quiet = bio_flagged(bio, BIO_QUIET);
  87. for (bio = &ioend->io_inline_bio; bio; bio = next) {
  88. struct bio_vec *bvec;
  89. int i;
  90. /*
  91. * For the last bio, bi_private points to the ioend, so we
  92. * need to explicitly end the iteration here.
  93. */
  94. if (bio == last)
  95. next = NULL;
  96. else
  97. next = bio->bi_private;
  98. /* walk each page on bio, ending page IO on them */
  99. bio_for_each_segment_all(bvec, bio, i)
  100. xfs_finish_page_writeback(inode, bvec, error);
  101. bio_put(bio);
  102. }
  103. if (unlikely(error && !quiet)) {
  104. xfs_err_ratelimited(XFS_I(inode)->i_mount,
  105. "writeback error on sector %llu", start);
  106. }
  107. }
  108. /*
  109. * Fast and loose check if this write could update the on-disk inode size.
  110. */
  111. static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
  112. {
  113. return ioend->io_offset + ioend->io_size >
  114. XFS_I(ioend->io_inode)->i_d.di_size;
  115. }
  116. STATIC int
  117. xfs_setfilesize_trans_alloc(
  118. struct xfs_ioend *ioend)
  119. {
  120. struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
  121. struct xfs_trans *tp;
  122. int error;
  123. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
  124. XFS_TRANS_NOFS, &tp);
  125. if (error)
  126. return error;
  127. ioend->io_append_trans = tp;
  128. /*
  129. * We may pass freeze protection with a transaction. So tell lockdep
  130. * we released it.
  131. */
  132. __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
  133. /*
  134. * We hand off the transaction to the completion thread now, so
  135. * clear the flag here.
  136. */
  137. current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
  138. return 0;
  139. }
  140. /*
  141. * Update on-disk file size now that data has been written to disk.
  142. */
  143. STATIC int
  144. __xfs_setfilesize(
  145. struct xfs_inode *ip,
  146. struct xfs_trans *tp,
  147. xfs_off_t offset,
  148. size_t size)
  149. {
  150. xfs_fsize_t isize;
  151. xfs_ilock(ip, XFS_ILOCK_EXCL);
  152. isize = xfs_new_eof(ip, offset + size);
  153. if (!isize) {
  154. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  155. xfs_trans_cancel(tp);
  156. return 0;
  157. }
  158. trace_xfs_setfilesize(ip, offset, size);
  159. ip->i_d.di_size = isize;
  160. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  161. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  162. return xfs_trans_commit(tp);
  163. }
  164. int
  165. xfs_setfilesize(
  166. struct xfs_inode *ip,
  167. xfs_off_t offset,
  168. size_t size)
  169. {
  170. struct xfs_mount *mp = ip->i_mount;
  171. struct xfs_trans *tp;
  172. int error;
  173. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
  174. if (error)
  175. return error;
  176. return __xfs_setfilesize(ip, tp, offset, size);
  177. }
  178. STATIC int
  179. xfs_setfilesize_ioend(
  180. struct xfs_ioend *ioend,
  181. int error)
  182. {
  183. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  184. struct xfs_trans *tp = ioend->io_append_trans;
  185. /*
  186. * The transaction may have been allocated in the I/O submission thread,
  187. * thus we need to mark ourselves as being in a transaction manually.
  188. * Similarly for freeze protection.
  189. */
  190. current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
  191. __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
  192. /* we abort the update if there was an IO error */
  193. if (error) {
  194. xfs_trans_cancel(tp);
  195. return error;
  196. }
  197. return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
  198. }
  199. /*
  200. * IO write completion.
  201. */
  202. STATIC void
  203. xfs_end_io(
  204. struct work_struct *work)
  205. {
  206. struct xfs_ioend *ioend =
  207. container_of(work, struct xfs_ioend, io_work);
  208. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  209. xfs_off_t offset = ioend->io_offset;
  210. size_t size = ioend->io_size;
  211. int error;
  212. /*
  213. * Just clean up the in-memory strutures if the fs has been shut down.
  214. */
  215. if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  216. error = -EIO;
  217. goto done;
  218. }
  219. /*
  220. * Clean up any COW blocks on an I/O error.
  221. */
  222. error = blk_status_to_errno(ioend->io_bio->bi_status);
  223. if (unlikely(error)) {
  224. switch (ioend->io_type) {
  225. case XFS_IO_COW:
  226. xfs_reflink_cancel_cow_range(ip, offset, size, true);
  227. break;
  228. }
  229. goto done;
  230. }
  231. /*
  232. * Success: commit the COW or unwritten blocks if needed.
  233. */
  234. switch (ioend->io_type) {
  235. case XFS_IO_COW:
  236. error = xfs_reflink_end_cow(ip, offset, size);
  237. break;
  238. case XFS_IO_UNWRITTEN:
  239. /* writeback should never update isize */
  240. error = xfs_iomap_write_unwritten(ip, offset, size, false);
  241. break;
  242. default:
  243. ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
  244. break;
  245. }
  246. done:
  247. if (ioend->io_append_trans)
  248. error = xfs_setfilesize_ioend(ioend, error);
  249. xfs_destroy_ioend(ioend, error);
  250. }
  251. STATIC void
  252. xfs_end_bio(
  253. struct bio *bio)
  254. {
  255. struct xfs_ioend *ioend = bio->bi_private;
  256. struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
  257. if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
  258. queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
  259. else if (ioend->io_append_trans)
  260. queue_work(mp->m_data_workqueue, &ioend->io_work);
  261. else
  262. xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
  263. }
  264. STATIC int
  265. xfs_map_blocks(
  266. struct xfs_writepage_ctx *wpc,
  267. struct inode *inode,
  268. loff_t offset)
  269. {
  270. struct xfs_inode *ip = XFS_I(inode);
  271. struct xfs_mount *mp = ip->i_mount;
  272. ssize_t count = i_blocksize(inode);
  273. xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
  274. xfs_fileoff_t cow_fsb = NULLFILEOFF;
  275. struct xfs_bmbt_irec imap;
  276. int whichfork = XFS_DATA_FORK;
  277. struct xfs_iext_cursor icur;
  278. bool imap_valid;
  279. int error = 0;
  280. /*
  281. * We have to make sure the cached mapping is within EOF to protect
  282. * against eofblocks trimming on file release leaving us with a stale
  283. * mapping. Otherwise, a page for a subsequent file extending buffered
  284. * write could get picked up by this writeback cycle and written to the
  285. * wrong blocks.
  286. *
  287. * Note that what we really want here is a generic mapping invalidation
  288. * mechanism to protect us from arbitrary extent modifying contexts, not
  289. * just eofblocks.
  290. */
  291. xfs_trim_extent_eof(&wpc->imap, ip);
  292. /*
  293. * COW fork blocks can overlap data fork blocks even if the blocks
  294. * aren't shared. COW I/O always takes precedent, so we must always
  295. * check for overlap on reflink inodes unless the mapping is already a
  296. * COW one, or the COW fork hasn't changed from the last time we looked
  297. * at it.
  298. *
  299. * It's safe to check the COW fork if_seq here without the ILOCK because
  300. * we've indirectly protected against concurrent updates: writeback has
  301. * the page locked, which prevents concurrent invalidations by reflink
  302. * and directio and prevents concurrent buffered writes to the same
  303. * page. Changes to if_seq always happen under i_lock, which protects
  304. * against concurrent updates and provides a memory barrier on the way
  305. * out that ensures that we always see the current value.
  306. */
  307. imap_valid = offset_fsb >= wpc->imap.br_startoff &&
  308. offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
  309. if (imap_valid &&
  310. (!xfs_inode_has_cow_data(ip) ||
  311. wpc->io_type == XFS_IO_COW ||
  312. wpc->cow_seq == READ_ONCE(ip->i_cowfp->if_seq)))
  313. return 0;
  314. if (XFS_FORCED_SHUTDOWN(mp))
  315. return -EIO;
  316. /*
  317. * If we don't have a valid map, now it's time to get a new one for this
  318. * offset. This will convert delayed allocations (including COW ones)
  319. * into real extents. If we return without a valid map, it means we
  320. * landed in a hole and we skip the block.
  321. */
  322. xfs_ilock(ip, XFS_ILOCK_SHARED);
  323. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  324. (ip->i_df.if_flags & XFS_IFEXTENTS));
  325. ASSERT(offset <= mp->m_super->s_maxbytes);
  326. if (offset > mp->m_super->s_maxbytes - count)
  327. count = mp->m_super->s_maxbytes - offset;
  328. end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
  329. /*
  330. * Check if this is offset is covered by a COW extents, and if yes use
  331. * it directly instead of looking up anything in the data fork.
  332. */
  333. if (xfs_inode_has_cow_data(ip) &&
  334. xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
  335. cow_fsb = imap.br_startoff;
  336. if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
  337. wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
  338. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  339. /*
  340. * Truncate can race with writeback since writeback doesn't
  341. * take the iolock and truncate decreases the file size before
  342. * it starts truncating the pages between new_size and old_size.
  343. * Therefore, we can end up in the situation where writeback
  344. * gets a CoW fork mapping but the truncate makes the mapping
  345. * invalid and we end up in here trying to get a new mapping.
  346. * bail out here so that we simply never get a valid mapping
  347. * and so we drop the write altogether. The page truncation
  348. * will kill the contents anyway.
  349. */
  350. if (offset > i_size_read(inode)) {
  351. wpc->io_type = XFS_IO_HOLE;
  352. return 0;
  353. }
  354. whichfork = XFS_COW_FORK;
  355. wpc->io_type = XFS_IO_COW;
  356. goto allocate_blocks;
  357. }
  358. /*
  359. * Map valid and no COW extent in the way? We're done.
  360. */
  361. if (imap_valid) {
  362. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  363. return 0;
  364. }
  365. /*
  366. * If we don't have a valid map, now it's time to get a new one for this
  367. * offset. This will convert delayed allocations (including COW ones)
  368. * into real extents.
  369. */
  370. if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
  371. imap.br_startoff = end_fsb; /* fake a hole past EOF */
  372. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  373. if (imap.br_startoff > offset_fsb) {
  374. /* landed in a hole or beyond EOF */
  375. imap.br_blockcount = imap.br_startoff - offset_fsb;
  376. imap.br_startoff = offset_fsb;
  377. imap.br_startblock = HOLESTARTBLOCK;
  378. wpc->io_type = XFS_IO_HOLE;
  379. } else {
  380. /*
  381. * Truncate to the next COW extent if there is one. This is the
  382. * only opportunity to do this because we can skip COW fork
  383. * lookups for the subsequent blocks in the mapping; however,
  384. * the requirement to treat the COW range separately remains.
  385. */
  386. if (cow_fsb != NULLFILEOFF &&
  387. cow_fsb < imap.br_startoff + imap.br_blockcount)
  388. imap.br_blockcount = cow_fsb - imap.br_startoff;
  389. if (isnullstartblock(imap.br_startblock)) {
  390. /* got a delalloc extent */
  391. wpc->io_type = XFS_IO_DELALLOC;
  392. goto allocate_blocks;
  393. }
  394. if (imap.br_state == XFS_EXT_UNWRITTEN)
  395. wpc->io_type = XFS_IO_UNWRITTEN;
  396. else
  397. wpc->io_type = XFS_IO_OVERWRITE;
  398. }
  399. wpc->imap = imap;
  400. trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
  401. return 0;
  402. allocate_blocks:
  403. error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap,
  404. &wpc->cow_seq);
  405. if (error)
  406. return error;
  407. ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF ||
  408. imap.br_startoff + imap.br_blockcount <= cow_fsb);
  409. wpc->imap = imap;
  410. trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
  411. return 0;
  412. }
  413. /*
  414. * Submit the bio for an ioend. We are passed an ioend with a bio attached to
  415. * it, and we submit that bio. The ioend may be used for multiple bio
  416. * submissions, so we only want to allocate an append transaction for the ioend
  417. * once. In the case of multiple bio submission, each bio will take an IO
  418. * reference to the ioend to ensure that the ioend completion is only done once
  419. * all bios have been submitted and the ioend is really done.
  420. *
  421. * If @fail is non-zero, it means that we have a situation where some part of
  422. * the submission process has failed after we have marked paged for writeback
  423. * and unlocked them. In this situation, we need to fail the bio and ioend
  424. * rather than submit it to IO. This typically only happens on a filesystem
  425. * shutdown.
  426. */
  427. STATIC int
  428. xfs_submit_ioend(
  429. struct writeback_control *wbc,
  430. struct xfs_ioend *ioend,
  431. int status)
  432. {
  433. /* Convert CoW extents to regular */
  434. if (!status && ioend->io_type == XFS_IO_COW) {
  435. /*
  436. * Yuk. This can do memory allocation, but is not a
  437. * transactional operation so everything is done in GFP_KERNEL
  438. * context. That can deadlock, because we hold pages in
  439. * writeback state and GFP_KERNEL allocations can block on them.
  440. * Hence we must operate in nofs conditions here.
  441. */
  442. unsigned nofs_flag;
  443. nofs_flag = memalloc_nofs_save();
  444. status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
  445. ioend->io_offset, ioend->io_size);
  446. memalloc_nofs_restore(nofs_flag);
  447. }
  448. /* Reserve log space if we might write beyond the on-disk inode size. */
  449. if (!status &&
  450. ioend->io_type != XFS_IO_UNWRITTEN &&
  451. xfs_ioend_is_append(ioend) &&
  452. !ioend->io_append_trans)
  453. status = xfs_setfilesize_trans_alloc(ioend);
  454. ioend->io_bio->bi_private = ioend;
  455. ioend->io_bio->bi_end_io = xfs_end_bio;
  456. ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
  457. /*
  458. * If we are failing the IO now, just mark the ioend with an
  459. * error and finish it. This will run IO completion immediately
  460. * as there is only one reference to the ioend at this point in
  461. * time.
  462. */
  463. if (status) {
  464. ioend->io_bio->bi_status = errno_to_blk_status(status);
  465. bio_endio(ioend->io_bio);
  466. return status;
  467. }
  468. ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
  469. submit_bio(ioend->io_bio);
  470. return 0;
  471. }
  472. static struct xfs_ioend *
  473. xfs_alloc_ioend(
  474. struct inode *inode,
  475. unsigned int type,
  476. xfs_off_t offset,
  477. struct block_device *bdev,
  478. sector_t sector)
  479. {
  480. struct xfs_ioend *ioend;
  481. struct bio *bio;
  482. bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
  483. bio_set_dev(bio, bdev);
  484. bio->bi_iter.bi_sector = sector;
  485. ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
  486. INIT_LIST_HEAD(&ioend->io_list);
  487. ioend->io_type = type;
  488. ioend->io_inode = inode;
  489. ioend->io_size = 0;
  490. ioend->io_offset = offset;
  491. INIT_WORK(&ioend->io_work, xfs_end_io);
  492. ioend->io_append_trans = NULL;
  493. ioend->io_bio = bio;
  494. return ioend;
  495. }
  496. /*
  497. * Allocate a new bio, and chain the old bio to the new one.
  498. *
  499. * Note that we have to do perform the chaining in this unintuitive order
  500. * so that the bi_private linkage is set up in the right direction for the
  501. * traversal in xfs_destroy_ioend().
  502. */
  503. static void
  504. xfs_chain_bio(
  505. struct xfs_ioend *ioend,
  506. struct writeback_control *wbc,
  507. struct block_device *bdev,
  508. sector_t sector)
  509. {
  510. struct bio *new;
  511. new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
  512. bio_set_dev(new, bdev);
  513. new->bi_iter.bi_sector = sector;
  514. bio_chain(ioend->io_bio, new);
  515. bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
  516. ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
  517. ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
  518. submit_bio(ioend->io_bio);
  519. ioend->io_bio = new;
  520. }
  521. /*
  522. * Test to see if we have an existing ioend structure that we could append to
  523. * first, otherwise finish off the current ioend and start another.
  524. */
  525. STATIC void
  526. xfs_add_to_ioend(
  527. struct inode *inode,
  528. xfs_off_t offset,
  529. struct page *page,
  530. struct iomap_page *iop,
  531. struct xfs_writepage_ctx *wpc,
  532. struct writeback_control *wbc,
  533. struct list_head *iolist)
  534. {
  535. struct xfs_inode *ip = XFS_I(inode);
  536. struct xfs_mount *mp = ip->i_mount;
  537. struct block_device *bdev = xfs_find_bdev_for_inode(inode);
  538. unsigned len = i_blocksize(inode);
  539. unsigned poff = offset & (PAGE_SIZE - 1);
  540. sector_t sector;
  541. sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
  542. ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
  543. if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
  544. sector != bio_end_sector(wpc->ioend->io_bio) ||
  545. offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
  546. if (wpc->ioend)
  547. list_add(&wpc->ioend->io_list, iolist);
  548. wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset,
  549. bdev, sector);
  550. }
  551. if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
  552. if (iop)
  553. atomic_inc(&iop->write_count);
  554. if (bio_full(wpc->ioend->io_bio))
  555. xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
  556. __bio_add_page(wpc->ioend->io_bio, page, len, poff);
  557. }
  558. wpc->ioend->io_size += len;
  559. }
  560. STATIC void
  561. xfs_vm_invalidatepage(
  562. struct page *page,
  563. unsigned int offset,
  564. unsigned int length)
  565. {
  566. trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
  567. iomap_invalidatepage(page, offset, length);
  568. }
  569. /*
  570. * If the page has delalloc blocks on it, we need to punch them out before we
  571. * invalidate the page. If we don't, we leave a stale delalloc mapping on the
  572. * inode that can trip up a later direct I/O read operation on the same region.
  573. *
  574. * We prevent this by truncating away the delalloc regions on the page. Because
  575. * they are delalloc, we can do this without needing a transaction. Indeed - if
  576. * we get ENOSPC errors, we have to be able to do this truncation without a
  577. * transaction as there is no space left for block reservation (typically why we
  578. * see a ENOSPC in writeback).
  579. */
  580. STATIC void
  581. xfs_aops_discard_page(
  582. struct page *page)
  583. {
  584. struct inode *inode = page->mapping->host;
  585. struct xfs_inode *ip = XFS_I(inode);
  586. struct xfs_mount *mp = ip->i_mount;
  587. loff_t offset = page_offset(page);
  588. xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
  589. int error;
  590. if (XFS_FORCED_SHUTDOWN(mp))
  591. goto out_invalidate;
  592. xfs_alert(mp,
  593. "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
  594. page, ip->i_ino, offset);
  595. error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
  596. PAGE_SIZE / i_blocksize(inode));
  597. if (error && !XFS_FORCED_SHUTDOWN(mp))
  598. xfs_alert(mp, "page discard unable to remove delalloc mapping.");
  599. out_invalidate:
  600. xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
  601. }
  602. /*
  603. * We implement an immediate ioend submission policy here to avoid needing to
  604. * chain multiple ioends and hence nest mempool allocations which can violate
  605. * forward progress guarantees we need to provide. The current ioend we are
  606. * adding blocks to is cached on the writepage context, and if the new block
  607. * does not append to the cached ioend it will create a new ioend and cache that
  608. * instead.
  609. *
  610. * If a new ioend is created and cached, the old ioend is returned and queued
  611. * locally for submission once the entire page is processed or an error has been
  612. * detected. While ioends are submitted immediately after they are completed,
  613. * batching optimisations are provided by higher level block plugging.
  614. *
  615. * At the end of a writeback pass, there will be a cached ioend remaining on the
  616. * writepage context that the caller will need to submit.
  617. */
  618. static int
  619. xfs_writepage_map(
  620. struct xfs_writepage_ctx *wpc,
  621. struct writeback_control *wbc,
  622. struct inode *inode,
  623. struct page *page,
  624. uint64_t end_offset)
  625. {
  626. LIST_HEAD(submit_list);
  627. struct iomap_page *iop = to_iomap_page(page);
  628. unsigned len = i_blocksize(inode);
  629. struct xfs_ioend *ioend, *next;
  630. uint64_t file_offset; /* file offset of page */
  631. int error = 0, count = 0, i;
  632. ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
  633. ASSERT(!iop || atomic_read(&iop->write_count) == 0);
  634. /*
  635. * Walk through the page to find areas to write back. If we run off the
  636. * end of the current map or find the current map invalid, grab a new
  637. * one.
  638. */
  639. for (i = 0, file_offset = page_offset(page);
  640. i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
  641. i++, file_offset += len) {
  642. if (iop && !test_bit(i, iop->uptodate))
  643. continue;
  644. error = xfs_map_blocks(wpc, inode, file_offset);
  645. if (error)
  646. break;
  647. if (wpc->io_type == XFS_IO_HOLE)
  648. continue;
  649. xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
  650. &submit_list);
  651. count++;
  652. }
  653. ASSERT(wpc->ioend || list_empty(&submit_list));
  654. ASSERT(PageLocked(page));
  655. ASSERT(!PageWriteback(page));
  656. /*
  657. * On error, we have to fail the ioend here because we may have set
  658. * pages under writeback, we have to make sure we run IO completion to
  659. * mark the error state of the IO appropriately, so we can't cancel the
  660. * ioend directly here. That means we have to mark this page as under
  661. * writeback if we included any blocks from it in the ioend chain so
  662. * that completion treats it correctly.
  663. *
  664. * If we didn't include the page in the ioend, the on error we can
  665. * simply discard and unlock it as there are no other users of the page
  666. * now. The caller will still need to trigger submission of outstanding
  667. * ioends on the writepage context so they are treated correctly on
  668. * error.
  669. */
  670. if (unlikely(error)) {
  671. if (!count) {
  672. xfs_aops_discard_page(page);
  673. ClearPageUptodate(page);
  674. unlock_page(page);
  675. goto done;
  676. }
  677. /*
  678. * If the page was not fully cleaned, we need to ensure that the
  679. * higher layers come back to it correctly. That means we need
  680. * to keep the page dirty, and for WB_SYNC_ALL writeback we need
  681. * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
  682. * so another attempt to write this page in this writeback sweep
  683. * will be made.
  684. */
  685. set_page_writeback_keepwrite(page);
  686. } else {
  687. clear_page_dirty_for_io(page);
  688. set_page_writeback(page);
  689. }
  690. unlock_page(page);
  691. /*
  692. * Preserve the original error if there was one, otherwise catch
  693. * submission errors here and propagate into subsequent ioend
  694. * submissions.
  695. */
  696. list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
  697. int error2;
  698. list_del_init(&ioend->io_list);
  699. error2 = xfs_submit_ioend(wbc, ioend, error);
  700. if (error2 && !error)
  701. error = error2;
  702. }
  703. /*
  704. * We can end up here with no error and nothing to write only if we race
  705. * with a partial page truncate on a sub-page block sized filesystem.
  706. */
  707. if (!count)
  708. end_page_writeback(page);
  709. done:
  710. mapping_set_error(page->mapping, error);
  711. return error;
  712. }
  713. /*
  714. * Write out a dirty page.
  715. *
  716. * For delalloc space on the page we need to allocate space and flush it.
  717. * For unwritten space on the page we need to start the conversion to
  718. * regular allocated space.
  719. */
  720. STATIC int
  721. xfs_do_writepage(
  722. struct page *page,
  723. struct writeback_control *wbc,
  724. void *data)
  725. {
  726. struct xfs_writepage_ctx *wpc = data;
  727. struct inode *inode = page->mapping->host;
  728. loff_t offset;
  729. uint64_t end_offset;
  730. pgoff_t end_index;
  731. trace_xfs_writepage(inode, page, 0, 0);
  732. /*
  733. * Refuse to write the page out if we are called from reclaim context.
  734. *
  735. * This avoids stack overflows when called from deeply used stacks in
  736. * random callers for direct reclaim or memcg reclaim. We explicitly
  737. * allow reclaim from kswapd as the stack usage there is relatively low.
  738. *
  739. * This should never happen except in the case of a VM regression so
  740. * warn about it.
  741. */
  742. if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
  743. PF_MEMALLOC))
  744. goto redirty;
  745. /*
  746. * Given that we do not allow direct reclaim to call us, we should
  747. * never be called while in a filesystem transaction.
  748. */
  749. if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
  750. goto redirty;
  751. /*
  752. * Is this page beyond the end of the file?
  753. *
  754. * The page index is less than the end_index, adjust the end_offset
  755. * to the highest offset that this page should represent.
  756. * -----------------------------------------------------
  757. * | file mapping | <EOF> |
  758. * -----------------------------------------------------
  759. * | Page ... | Page N-2 | Page N-1 | Page N | |
  760. * ^--------------------------------^----------|--------
  761. * | desired writeback range | see else |
  762. * ---------------------------------^------------------|
  763. */
  764. offset = i_size_read(inode);
  765. end_index = offset >> PAGE_SHIFT;
  766. if (page->index < end_index)
  767. end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
  768. else {
  769. /*
  770. * Check whether the page to write out is beyond or straddles
  771. * i_size or not.
  772. * -------------------------------------------------------
  773. * | file mapping | <EOF> |
  774. * -------------------------------------------------------
  775. * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
  776. * ^--------------------------------^-----------|---------
  777. * | | Straddles |
  778. * ---------------------------------^-----------|--------|
  779. */
  780. unsigned offset_into_page = offset & (PAGE_SIZE - 1);
  781. /*
  782. * Skip the page if it is fully outside i_size, e.g. due to a
  783. * truncate operation that is in progress. We must redirty the
  784. * page so that reclaim stops reclaiming it. Otherwise
  785. * xfs_vm_releasepage() is called on it and gets confused.
  786. *
  787. * Note that the end_index is unsigned long, it would overflow
  788. * if the given offset is greater than 16TB on 32-bit system
  789. * and if we do check the page is fully outside i_size or not
  790. * via "if (page->index >= end_index + 1)" as "end_index + 1"
  791. * will be evaluated to 0. Hence this page will be redirtied
  792. * and be written out repeatedly which would result in an
  793. * infinite loop, the user program that perform this operation
  794. * will hang. Instead, we can verify this situation by checking
  795. * if the page to write is totally beyond the i_size or if it's
  796. * offset is just equal to the EOF.
  797. */
  798. if (page->index > end_index ||
  799. (page->index == end_index && offset_into_page == 0))
  800. goto redirty;
  801. /*
  802. * The page straddles i_size. It must be zeroed out on each
  803. * and every writepage invocation because it may be mmapped.
  804. * "A file is mapped in multiples of the page size. For a file
  805. * that is not a multiple of the page size, the remaining
  806. * memory is zeroed when mapped, and writes to that region are
  807. * not written out to the file."
  808. */
  809. zero_user_segment(page, offset_into_page, PAGE_SIZE);
  810. /* Adjust the end_offset to the end of file */
  811. end_offset = offset;
  812. }
  813. return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
  814. redirty:
  815. redirty_page_for_writepage(wbc, page);
  816. unlock_page(page);
  817. return 0;
  818. }
  819. STATIC int
  820. xfs_vm_writepage(
  821. struct page *page,
  822. struct writeback_control *wbc)
  823. {
  824. struct xfs_writepage_ctx wpc = {
  825. .io_type = XFS_IO_HOLE,
  826. };
  827. int ret;
  828. ret = xfs_do_writepage(page, wbc, &wpc);
  829. if (wpc.ioend)
  830. ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
  831. return ret;
  832. }
  833. STATIC int
  834. xfs_vm_writepages(
  835. struct address_space *mapping,
  836. struct writeback_control *wbc)
  837. {
  838. struct xfs_writepage_ctx wpc = {
  839. .io_type = XFS_IO_HOLE,
  840. };
  841. int ret;
  842. xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
  843. ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
  844. if (wpc.ioend)
  845. ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
  846. return ret;
  847. }
  848. STATIC int
  849. xfs_dax_writepages(
  850. struct address_space *mapping,
  851. struct writeback_control *wbc)
  852. {
  853. xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
  854. return dax_writeback_mapping_range(mapping,
  855. xfs_find_bdev_for_inode(mapping->host), wbc);
  856. }
  857. STATIC int
  858. xfs_vm_releasepage(
  859. struct page *page,
  860. gfp_t gfp_mask)
  861. {
  862. trace_xfs_releasepage(page->mapping->host, page, 0, 0);
  863. return iomap_releasepage(page, gfp_mask);
  864. }
  865. STATIC sector_t
  866. xfs_vm_bmap(
  867. struct address_space *mapping,
  868. sector_t block)
  869. {
  870. struct xfs_inode *ip = XFS_I(mapping->host);
  871. trace_xfs_vm_bmap(ip);
  872. /*
  873. * The swap code (ab-)uses ->bmap to get a block mapping and then
  874. * bypasses the file system for actual I/O. We really can't allow
  875. * that on reflinks inodes, so we have to skip out here. And yes,
  876. * 0 is the magic code for a bmap error.
  877. *
  878. * Since we don't pass back blockdev info, we can't return bmap
  879. * information for rt files either.
  880. */
  881. if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
  882. return 0;
  883. return iomap_bmap(mapping, block, &xfs_iomap_ops);
  884. }
  885. STATIC int
  886. xfs_vm_readpage(
  887. struct file *unused,
  888. struct page *page)
  889. {
  890. trace_xfs_vm_readpage(page->mapping->host, 1);
  891. return iomap_readpage(page, &xfs_iomap_ops);
  892. }
  893. STATIC int
  894. xfs_vm_readpages(
  895. struct file *unused,
  896. struct address_space *mapping,
  897. struct list_head *pages,
  898. unsigned nr_pages)
  899. {
  900. trace_xfs_vm_readpages(mapping->host, nr_pages);
  901. return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
  902. }
  903. static int
  904. xfs_iomap_swapfile_activate(
  905. struct swap_info_struct *sis,
  906. struct file *swap_file,
  907. sector_t *span)
  908. {
  909. sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
  910. return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
  911. }
  912. const struct address_space_operations xfs_address_space_operations = {
  913. .readpage = xfs_vm_readpage,
  914. .readpages = xfs_vm_readpages,
  915. .writepage = xfs_vm_writepage,
  916. .writepages = xfs_vm_writepages,
  917. .set_page_dirty = iomap_set_page_dirty,
  918. .releasepage = xfs_vm_releasepage,
  919. .invalidatepage = xfs_vm_invalidatepage,
  920. .bmap = xfs_vm_bmap,
  921. .direct_IO = noop_direct_IO,
  922. .migratepage = iomap_migrate_page,
  923. .is_partially_uptodate = iomap_is_partially_uptodate,
  924. .error_remove_page = generic_error_remove_page,
  925. .swap_activate = xfs_iomap_swapfile_activate,
  926. };
  927. const struct address_space_operations xfs_dax_aops = {
  928. .writepages = xfs_dax_writepages,
  929. .direct_IO = noop_direct_IO,
  930. .set_page_dirty = noop_set_page_dirty,
  931. .invalidatepage = noop_invalidatepage,
  932. .swap_activate = xfs_iomap_swapfile_activate,
  933. };