recovery.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fs/f2fs/recovery.c
  4. *
  5. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com/
  7. */
  8. #include <linux/fs.h>
  9. #include <linux/f2fs_fs.h>
  10. #include "f2fs.h"
  11. #include "node.h"
  12. #include "segment.h"
  13. /*
  14. * Roll forward recovery scenarios.
  15. *
  16. * [Term] F: fsync_mark, D: dentry_mark
  17. *
  18. * 1. inode(x) | CP | inode(x) | dnode(F)
  19. * -> Update the latest inode(x).
  20. *
  21. * 2. inode(x) | CP | inode(F) | dnode(F)
  22. * -> No problem.
  23. *
  24. * 3. inode(x) | CP | dnode(F) | inode(x)
  25. * -> Recover to the latest dnode(F), and drop the last inode(x)
  26. *
  27. * 4. inode(x) | CP | dnode(F) | inode(F)
  28. * -> No problem.
  29. *
  30. * 5. CP | inode(x) | dnode(F)
  31. * -> The inode(DF) was missing. Should drop this dnode(F).
  32. *
  33. * 6. CP | inode(DF) | dnode(F)
  34. * -> No problem.
  35. *
  36. * 7. CP | dnode(F) | inode(DF)
  37. * -> If f2fs_iget fails, then goto next to find inode(DF).
  38. *
  39. * 8. CP | dnode(F) | inode(x)
  40. * -> If f2fs_iget fails, then goto next to find inode(DF).
  41. * But it will fail due to no inode(DF).
  42. */
  43. static struct kmem_cache *fsync_entry_slab;
  44. bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi)
  45. {
  46. s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
  47. if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
  48. return false;
  49. return true;
  50. }
  51. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  52. nid_t ino)
  53. {
  54. struct fsync_inode_entry *entry;
  55. list_for_each_entry(entry, head, list)
  56. if (entry->inode->i_ino == ino)
  57. return entry;
  58. return NULL;
  59. }
  60. static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi,
  61. struct list_head *head, nid_t ino, bool quota_inode)
  62. {
  63. struct inode *inode;
  64. struct fsync_inode_entry *entry;
  65. int err;
  66. inode = f2fs_iget_retry(sbi->sb, ino);
  67. if (IS_ERR(inode))
  68. return ERR_CAST(inode);
  69. err = dquot_initialize(inode);
  70. if (err)
  71. goto err_out;
  72. if (quota_inode) {
  73. err = dquot_alloc_inode(inode);
  74. if (err)
  75. goto err_out;
  76. }
  77. entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
  78. entry->inode = inode;
  79. list_add_tail(&entry->list, head);
  80. return entry;
  81. err_out:
  82. iput(inode);
  83. return ERR_PTR(err);
  84. }
  85. static void del_fsync_inode(struct fsync_inode_entry *entry, int drop)
  86. {
  87. if (drop) {
  88. /* inode should not be recovered, drop it */
  89. f2fs_inode_synced(entry->inode);
  90. }
  91. iput(entry->inode);
  92. list_del(&entry->list);
  93. kmem_cache_free(fsync_entry_slab, entry);
  94. }
  95. static int recover_dentry(struct inode *inode, struct page *ipage,
  96. struct list_head *dir_list)
  97. {
  98. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  99. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  100. struct f2fs_dir_entry *de;
  101. struct fscrypt_name fname;
  102. struct page *page;
  103. struct inode *dir, *einode;
  104. struct fsync_inode_entry *entry;
  105. int err = 0;
  106. char *name;
  107. entry = get_fsync_inode(dir_list, pino);
  108. if (!entry) {
  109. entry = add_fsync_inode(F2FS_I_SB(inode), dir_list,
  110. pino, false);
  111. if (IS_ERR(entry)) {
  112. dir = ERR_CAST(entry);
  113. err = PTR_ERR(entry);
  114. goto out;
  115. }
  116. }
  117. dir = entry->inode;
  118. memset(&fname, 0, sizeof(struct fscrypt_name));
  119. fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen);
  120. fname.disk_name.name = raw_inode->i_name;
  121. if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) {
  122. WARN_ON(1);
  123. err = -ENAMETOOLONG;
  124. goto out;
  125. }
  126. retry:
  127. de = __f2fs_find_entry(dir, &fname, &page);
  128. if (de && inode->i_ino == le32_to_cpu(de->ino))
  129. goto out_put;
  130. if (de) {
  131. einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino));
  132. if (IS_ERR(einode)) {
  133. WARN_ON(1);
  134. err = PTR_ERR(einode);
  135. if (err == -ENOENT)
  136. err = -EEXIST;
  137. goto out_put;
  138. }
  139. err = dquot_initialize(einode);
  140. if (err) {
  141. iput(einode);
  142. goto out_put;
  143. }
  144. err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode));
  145. if (err) {
  146. iput(einode);
  147. goto out_put;
  148. }
  149. f2fs_delete_entry(de, page, dir, einode);
  150. iput(einode);
  151. goto retry;
  152. } else if (IS_ERR(page)) {
  153. err = PTR_ERR(page);
  154. } else {
  155. err = f2fs_add_dentry(dir, &fname, inode,
  156. inode->i_ino, inode->i_mode);
  157. }
  158. if (err == -ENOMEM)
  159. goto retry;
  160. goto out;
  161. out_put:
  162. f2fs_put_page(page, 0);
  163. out:
  164. if (file_enc_name(inode))
  165. name = "<encrypted>";
  166. else
  167. name = raw_inode->i_name;
  168. f2fs_msg(inode->i_sb, KERN_NOTICE,
  169. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  170. __func__, ino_of_node(ipage), name,
  171. IS_ERR(dir) ? 0 : dir->i_ino, err);
  172. return err;
  173. }
  174. static int recover_quota_data(struct inode *inode, struct page *page)
  175. {
  176. struct f2fs_inode *raw = F2FS_INODE(page);
  177. struct iattr attr;
  178. uid_t i_uid = le32_to_cpu(raw->i_uid);
  179. gid_t i_gid = le32_to_cpu(raw->i_gid);
  180. int err;
  181. memset(&attr, 0, sizeof(attr));
  182. attr.ia_uid = make_kuid(inode->i_sb->s_user_ns, i_uid);
  183. attr.ia_gid = make_kgid(inode->i_sb->s_user_ns, i_gid);
  184. if (!uid_eq(attr.ia_uid, inode->i_uid))
  185. attr.ia_valid |= ATTR_UID;
  186. if (!gid_eq(attr.ia_gid, inode->i_gid))
  187. attr.ia_valid |= ATTR_GID;
  188. if (!attr.ia_valid)
  189. return 0;
  190. err = dquot_transfer(inode, &attr);
  191. if (err)
  192. set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR);
  193. return err;
  194. }
  195. static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri)
  196. {
  197. if (ri->i_inline & F2FS_PIN_FILE)
  198. set_inode_flag(inode, FI_PIN_FILE);
  199. else
  200. clear_inode_flag(inode, FI_PIN_FILE);
  201. if (ri->i_inline & F2FS_DATA_EXIST)
  202. set_inode_flag(inode, FI_DATA_EXIST);
  203. else
  204. clear_inode_flag(inode, FI_DATA_EXIST);
  205. }
  206. static int recover_inode(struct inode *inode, struct page *page)
  207. {
  208. struct f2fs_inode *raw = F2FS_INODE(page);
  209. char *name;
  210. int err;
  211. inode->i_mode = le16_to_cpu(raw->i_mode);
  212. err = recover_quota_data(inode, page);
  213. if (err)
  214. return err;
  215. i_uid_write(inode, le32_to_cpu(raw->i_uid));
  216. i_gid_write(inode, le32_to_cpu(raw->i_gid));
  217. if (raw->i_inline & F2FS_EXTRA_ATTR) {
  218. if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)->sb) &&
  219. F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize),
  220. i_projid)) {
  221. projid_t i_projid;
  222. kprojid_t kprojid;
  223. i_projid = (projid_t)le32_to_cpu(raw->i_projid);
  224. kprojid = make_kprojid(&init_user_ns, i_projid);
  225. if (!projid_eq(kprojid, F2FS_I(inode)->i_projid)) {
  226. err = f2fs_transfer_project_quota(inode,
  227. kprojid);
  228. if (err)
  229. return err;
  230. F2FS_I(inode)->i_projid = kprojid;
  231. }
  232. }
  233. }
  234. f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
  235. inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime);
  236. inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
  237. inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
  238. inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec);
  239. inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
  240. inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  241. F2FS_I(inode)->i_advise = raw->i_advise;
  242. F2FS_I(inode)->i_flags = le32_to_cpu(raw->i_flags);
  243. f2fs_set_inode_flags(inode);
  244. F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] =
  245. le16_to_cpu(raw->i_gc_failures);
  246. recover_inline_flags(inode, raw);
  247. f2fs_mark_inode_dirty_sync(inode, true);
  248. if (file_enc_name(inode))
  249. name = "<encrypted>";
  250. else
  251. name = F2FS_INODE(page)->i_name;
  252. f2fs_msg(inode->i_sb, KERN_NOTICE,
  253. "recover_inode: ino = %x, name = %s, inline = %x",
  254. ino_of_node(page), name, raw->i_inline);
  255. return 0;
  256. }
  257. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head,
  258. bool check_only)
  259. {
  260. struct curseg_info *curseg;
  261. struct page *page = NULL;
  262. block_t blkaddr;
  263. unsigned int loop_cnt = 0;
  264. unsigned int free_blocks = MAIN_SEGS(sbi) * sbi->blocks_per_seg -
  265. valid_user_blocks(sbi);
  266. int err = 0;
  267. /* get node pages in the current segment */
  268. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  269. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  270. while (1) {
  271. struct fsync_inode_entry *entry;
  272. if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
  273. return 0;
  274. page = f2fs_get_tmp_page(sbi, blkaddr);
  275. if (IS_ERR(page)) {
  276. err = PTR_ERR(page);
  277. break;
  278. }
  279. if (!is_recoverable_dnode(page))
  280. break;
  281. if (!is_fsync_dnode(page))
  282. goto next;
  283. entry = get_fsync_inode(head, ino_of_node(page));
  284. if (!entry) {
  285. bool quota_inode = false;
  286. if (!check_only &&
  287. IS_INODE(page) && is_dent_dnode(page)) {
  288. err = f2fs_recover_inode_page(sbi, page);
  289. if (err)
  290. break;
  291. quota_inode = true;
  292. }
  293. /*
  294. * CP | dnode(F) | inode(DF)
  295. * For this case, we should not give up now.
  296. */
  297. entry = add_fsync_inode(sbi, head, ino_of_node(page),
  298. quota_inode);
  299. if (IS_ERR(entry)) {
  300. err = PTR_ERR(entry);
  301. if (err == -ENOENT) {
  302. err = 0;
  303. goto next;
  304. }
  305. break;
  306. }
  307. }
  308. entry->blkaddr = blkaddr;
  309. if (IS_INODE(page) && is_dent_dnode(page))
  310. entry->last_dentry = blkaddr;
  311. next:
  312. /* sanity check in order to detect looped node chain */
  313. if (++loop_cnt >= free_blocks ||
  314. blkaddr == next_blkaddr_of_node(page)) {
  315. f2fs_msg(sbi->sb, KERN_NOTICE,
  316. "%s: detect looped node chain, "
  317. "blkaddr:%u, next:%u",
  318. __func__, blkaddr, next_blkaddr_of_node(page));
  319. err = -EINVAL;
  320. break;
  321. }
  322. /* check next segment */
  323. blkaddr = next_blkaddr_of_node(page);
  324. f2fs_put_page(page, 1);
  325. f2fs_ra_meta_pages_cond(sbi, blkaddr);
  326. }
  327. f2fs_put_page(page, 1);
  328. return err;
  329. }
  330. static void destroy_fsync_dnodes(struct list_head *head, int drop)
  331. {
  332. struct fsync_inode_entry *entry, *tmp;
  333. list_for_each_entry_safe(entry, tmp, head, list)
  334. del_fsync_inode(entry, drop);
  335. }
  336. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  337. block_t blkaddr, struct dnode_of_data *dn)
  338. {
  339. struct seg_entry *sentry;
  340. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  341. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  342. struct f2fs_summary_block *sum_node;
  343. struct f2fs_summary sum;
  344. struct page *sum_page, *node_page;
  345. struct dnode_of_data tdn = *dn;
  346. nid_t ino, nid;
  347. struct inode *inode;
  348. unsigned int offset;
  349. block_t bidx;
  350. int i;
  351. sentry = get_seg_entry(sbi, segno);
  352. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  353. return 0;
  354. /* Get the previous summary */
  355. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  356. struct curseg_info *curseg = CURSEG_I(sbi, i);
  357. if (curseg->segno == segno) {
  358. sum = curseg->sum_blk->entries[blkoff];
  359. goto got_it;
  360. }
  361. }
  362. sum_page = f2fs_get_sum_page(sbi, segno);
  363. if (IS_ERR(sum_page))
  364. return PTR_ERR(sum_page);
  365. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  366. sum = sum_node->entries[blkoff];
  367. f2fs_put_page(sum_page, 1);
  368. got_it:
  369. /* Use the locked dnode page and inode */
  370. nid = le32_to_cpu(sum.nid);
  371. if (dn->inode->i_ino == nid) {
  372. tdn.nid = nid;
  373. if (!dn->inode_page_locked)
  374. lock_page(dn->inode_page);
  375. tdn.node_page = dn->inode_page;
  376. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  377. goto truncate_out;
  378. } else if (dn->nid == nid) {
  379. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  380. goto truncate_out;
  381. }
  382. /* Get the node page */
  383. node_page = f2fs_get_node_page(sbi, nid);
  384. if (IS_ERR(node_page))
  385. return PTR_ERR(node_page);
  386. offset = ofs_of_node(node_page);
  387. ino = ino_of_node(node_page);
  388. f2fs_put_page(node_page, 1);
  389. if (ino != dn->inode->i_ino) {
  390. int ret;
  391. /* Deallocate previous index in the node page */
  392. inode = f2fs_iget_retry(sbi->sb, ino);
  393. if (IS_ERR(inode))
  394. return PTR_ERR(inode);
  395. ret = dquot_initialize(inode);
  396. if (ret) {
  397. iput(inode);
  398. return ret;
  399. }
  400. } else {
  401. inode = dn->inode;
  402. }
  403. bidx = f2fs_start_bidx_of_node(offset, inode) +
  404. le16_to_cpu(sum.ofs_in_node);
  405. /*
  406. * if inode page is locked, unlock temporarily, but its reference
  407. * count keeps alive.
  408. */
  409. if (ino == dn->inode->i_ino && dn->inode_page_locked)
  410. unlock_page(dn->inode_page);
  411. set_new_dnode(&tdn, inode, NULL, NULL, 0);
  412. if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
  413. goto out;
  414. if (tdn.data_blkaddr == blkaddr)
  415. f2fs_truncate_data_blocks_range(&tdn, 1);
  416. f2fs_put_dnode(&tdn);
  417. out:
  418. if (ino != dn->inode->i_ino)
  419. iput(inode);
  420. else if (dn->inode_page_locked)
  421. lock_page(dn->inode_page);
  422. return 0;
  423. truncate_out:
  424. if (datablock_addr(tdn.inode, tdn.node_page,
  425. tdn.ofs_in_node) == blkaddr)
  426. f2fs_truncate_data_blocks_range(&tdn, 1);
  427. if (dn->inode->i_ino == nid && !dn->inode_page_locked)
  428. unlock_page(dn->inode_page);
  429. return 0;
  430. }
  431. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  432. struct page *page)
  433. {
  434. struct dnode_of_data dn;
  435. struct node_info ni;
  436. unsigned int start, end;
  437. int err = 0, recovered = 0;
  438. /* step 1: recover xattr */
  439. if (IS_INODE(page)) {
  440. f2fs_recover_inline_xattr(inode, page);
  441. } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
  442. err = f2fs_recover_xattr_data(inode, page);
  443. if (!err)
  444. recovered++;
  445. goto out;
  446. }
  447. /* step 2: recover inline data */
  448. if (f2fs_recover_inline_data(inode, page))
  449. goto out;
  450. /* step 3: recover data indices */
  451. start = f2fs_start_bidx_of_node(ofs_of_node(page), inode);
  452. end = start + ADDRS_PER_PAGE(page, inode);
  453. set_new_dnode(&dn, inode, NULL, NULL, 0);
  454. retry_dn:
  455. err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE);
  456. if (err) {
  457. if (err == -ENOMEM) {
  458. congestion_wait(BLK_RW_ASYNC, HZ/50);
  459. goto retry_dn;
  460. }
  461. goto out;
  462. }
  463. f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
  464. err = f2fs_get_node_info(sbi, dn.nid, &ni);
  465. if (err)
  466. goto err;
  467. f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
  468. f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
  469. for (; start < end; start++, dn.ofs_in_node++) {
  470. block_t src, dest;
  471. src = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
  472. dest = datablock_addr(dn.inode, page, dn.ofs_in_node);
  473. /* skip recovering if dest is the same as src */
  474. if (src == dest)
  475. continue;
  476. /* dest is invalid, just invalidate src block */
  477. if (dest == NULL_ADDR) {
  478. f2fs_truncate_data_blocks_range(&dn, 1);
  479. continue;
  480. }
  481. if (!file_keep_isize(inode) &&
  482. (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT)))
  483. f2fs_i_size_write(inode,
  484. (loff_t)(start + 1) << PAGE_SHIFT);
  485. /*
  486. * dest is reserved block, invalidate src block
  487. * and then reserve one new block in dnode page.
  488. */
  489. if (dest == NEW_ADDR) {
  490. f2fs_truncate_data_blocks_range(&dn, 1);
  491. f2fs_reserve_new_block(&dn);
  492. continue;
  493. }
  494. /* dest is valid block, try to recover from src to dest */
  495. if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) {
  496. if (src == NULL_ADDR) {
  497. err = f2fs_reserve_new_block(&dn);
  498. while (err &&
  499. IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION))
  500. err = f2fs_reserve_new_block(&dn);
  501. /* We should not get -ENOSPC */
  502. f2fs_bug_on(sbi, err);
  503. if (err)
  504. goto err;
  505. }
  506. retry_prev:
  507. /* Check the previous node page having this index */
  508. err = check_index_in_prev_nodes(sbi, dest, &dn);
  509. if (err) {
  510. if (err == -ENOMEM) {
  511. congestion_wait(BLK_RW_ASYNC, HZ/50);
  512. goto retry_prev;
  513. }
  514. goto err;
  515. }
  516. /* write dummy data page */
  517. f2fs_replace_block(sbi, &dn, src, dest,
  518. ni.version, false, false);
  519. recovered++;
  520. }
  521. }
  522. copy_node_footer(dn.node_page, page);
  523. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  524. ofs_of_node(page), false);
  525. set_page_dirty(dn.node_page);
  526. err:
  527. f2fs_put_dnode(&dn);
  528. out:
  529. f2fs_msg(sbi->sb, KERN_NOTICE,
  530. "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d",
  531. inode->i_ino,
  532. file_keep_isize(inode) ? "keep" : "recover",
  533. recovered, err);
  534. return err;
  535. }
  536. static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
  537. struct list_head *tmp_inode_list, struct list_head *dir_list)
  538. {
  539. struct curseg_info *curseg;
  540. struct page *page = NULL;
  541. int err = 0;
  542. block_t blkaddr;
  543. /* get node pages in the current segment */
  544. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  545. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  546. while (1) {
  547. struct fsync_inode_entry *entry;
  548. if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
  549. break;
  550. f2fs_ra_meta_pages_cond(sbi, blkaddr);
  551. page = f2fs_get_tmp_page(sbi, blkaddr);
  552. if (IS_ERR(page)) {
  553. err = PTR_ERR(page);
  554. break;
  555. }
  556. if (!is_recoverable_dnode(page)) {
  557. f2fs_put_page(page, 1);
  558. break;
  559. }
  560. entry = get_fsync_inode(inode_list, ino_of_node(page));
  561. if (!entry)
  562. goto next;
  563. /*
  564. * inode(x) | CP | inode(x) | dnode(F)
  565. * In this case, we can lose the latest inode(x).
  566. * So, call recover_inode for the inode update.
  567. */
  568. if (IS_INODE(page)) {
  569. err = recover_inode(entry->inode, page);
  570. if (err)
  571. break;
  572. }
  573. if (entry->last_dentry == blkaddr) {
  574. err = recover_dentry(entry->inode, page, dir_list);
  575. if (err) {
  576. f2fs_put_page(page, 1);
  577. break;
  578. }
  579. }
  580. err = do_recover_data(sbi, entry->inode, page);
  581. if (err) {
  582. f2fs_put_page(page, 1);
  583. break;
  584. }
  585. if (entry->blkaddr == blkaddr)
  586. list_move_tail(&entry->list, tmp_inode_list);
  587. next:
  588. /* check next segment */
  589. blkaddr = next_blkaddr_of_node(page);
  590. f2fs_put_page(page, 1);
  591. }
  592. if (!err)
  593. f2fs_allocate_new_segments(sbi);
  594. return err;
  595. }
  596. int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
  597. {
  598. struct list_head inode_list, tmp_inode_list;
  599. struct list_head dir_list;
  600. int err;
  601. int ret = 0;
  602. unsigned long s_flags = sbi->sb->s_flags;
  603. bool need_writecp = false;
  604. #ifdef CONFIG_QUOTA
  605. int quota_enabled;
  606. #endif
  607. if (s_flags & SB_RDONLY) {
  608. f2fs_msg(sbi->sb, KERN_INFO,
  609. "recover fsync data on readonly fs");
  610. sbi->sb->s_flags &= ~SB_RDONLY;
  611. }
  612. #ifdef CONFIG_QUOTA
  613. /* Needed for iput() to work correctly and not trash data */
  614. sbi->sb->s_flags |= SB_ACTIVE;
  615. /* Turn on quotas so that they are updated correctly */
  616. quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
  617. #endif
  618. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  619. sizeof(struct fsync_inode_entry));
  620. if (!fsync_entry_slab) {
  621. err = -ENOMEM;
  622. goto out;
  623. }
  624. INIT_LIST_HEAD(&inode_list);
  625. INIT_LIST_HEAD(&tmp_inode_list);
  626. INIT_LIST_HEAD(&dir_list);
  627. /* prevent checkpoint */
  628. mutex_lock(&sbi->cp_mutex);
  629. /* step #1: find fsynced inode numbers */
  630. err = find_fsync_dnodes(sbi, &inode_list, check_only);
  631. if (err || list_empty(&inode_list))
  632. goto skip;
  633. if (check_only) {
  634. ret = 1;
  635. goto skip;
  636. }
  637. need_writecp = true;
  638. /* step #2: recover data */
  639. err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list);
  640. if (!err)
  641. f2fs_bug_on(sbi, !list_empty(&inode_list));
  642. else {
  643. /* restore s_flags to let iput() trash data */
  644. sbi->sb->s_flags = s_flags;
  645. }
  646. skip:
  647. destroy_fsync_dnodes(&inode_list, err);
  648. destroy_fsync_dnodes(&tmp_inode_list, err);
  649. /* truncate meta pages to be used by the recovery */
  650. truncate_inode_pages_range(META_MAPPING(sbi),
  651. (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
  652. if (err) {
  653. truncate_inode_pages_final(NODE_MAPPING(sbi));
  654. truncate_inode_pages_final(META_MAPPING(sbi));
  655. } else {
  656. clear_sbi_flag(sbi, SBI_POR_DOING);
  657. }
  658. mutex_unlock(&sbi->cp_mutex);
  659. /* let's drop all the directory inodes for clean checkpoint */
  660. destroy_fsync_dnodes(&dir_list, err);
  661. if (need_writecp) {
  662. set_sbi_flag(sbi, SBI_IS_RECOVERED);
  663. if (!err) {
  664. struct cp_control cpc = {
  665. .reason = CP_RECOVERY,
  666. };
  667. err = f2fs_write_checkpoint(sbi, &cpc);
  668. }
  669. }
  670. kmem_cache_destroy(fsync_entry_slab);
  671. out:
  672. #ifdef CONFIG_QUOTA
  673. /* Turn quotas off */
  674. if (quota_enabled)
  675. f2fs_quota_off_umount(sbi->sb);
  676. #endif
  677. sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
  678. return ret ? ret: err;
  679. }