relocation.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2009 Oracle. All rights reserved.
  4. */
  5. #include <linux/sched.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/writeback.h>
  8. #include <linux/blkdev.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/slab.h>
  11. #include "ctree.h"
  12. #include "disk-io.h"
  13. #include "transaction.h"
  14. #include "volumes.h"
  15. #include "locking.h"
  16. #include "btrfs_inode.h"
  17. #include "async-thread.h"
  18. #include "free-space-cache.h"
  19. #include "inode-map.h"
  20. #include "qgroup.h"
  21. #include "print-tree.h"
  22. /*
  23. * backref_node, mapping_node and tree_block start with this
  24. */
  25. struct tree_entry {
  26. struct rb_node rb_node;
  27. u64 bytenr;
  28. };
  29. /*
  30. * present a tree block in the backref cache
  31. */
  32. struct backref_node {
  33. struct rb_node rb_node;
  34. u64 bytenr;
  35. u64 new_bytenr;
  36. /* objectid of tree block owner, can be not uptodate */
  37. u64 owner;
  38. /* link to pending, changed or detached list */
  39. struct list_head list;
  40. /* list of upper level blocks reference this block */
  41. struct list_head upper;
  42. /* list of child blocks in the cache */
  43. struct list_head lower;
  44. /* NULL if this node is not tree root */
  45. struct btrfs_root *root;
  46. /* extent buffer got by COW the block */
  47. struct extent_buffer *eb;
  48. /* level of tree block */
  49. unsigned int level:8;
  50. /* is the block in non-reference counted tree */
  51. unsigned int cowonly:1;
  52. /* 1 if no child node in the cache */
  53. unsigned int lowest:1;
  54. /* is the extent buffer locked */
  55. unsigned int locked:1;
  56. /* has the block been processed */
  57. unsigned int processed:1;
  58. /* have backrefs of this block been checked */
  59. unsigned int checked:1;
  60. /*
  61. * 1 if corresponding block has been cowed but some upper
  62. * level block pointers may not point to the new location
  63. */
  64. unsigned int pending:1;
  65. /*
  66. * 1 if the backref node isn't connected to any other
  67. * backref node.
  68. */
  69. unsigned int detached:1;
  70. };
  71. /*
  72. * present a block pointer in the backref cache
  73. */
  74. struct backref_edge {
  75. struct list_head list[2];
  76. struct backref_node *node[2];
  77. };
  78. #define LOWER 0
  79. #define UPPER 1
  80. #define RELOCATION_RESERVED_NODES 256
  81. struct backref_cache {
  82. /* red black tree of all backref nodes in the cache */
  83. struct rb_root rb_root;
  84. /* for passing backref nodes to btrfs_reloc_cow_block */
  85. struct backref_node *path[BTRFS_MAX_LEVEL];
  86. /*
  87. * list of blocks that have been cowed but some block
  88. * pointers in upper level blocks may not reflect the
  89. * new location
  90. */
  91. struct list_head pending[BTRFS_MAX_LEVEL];
  92. /* list of backref nodes with no child node */
  93. struct list_head leaves;
  94. /* list of blocks that have been cowed in current transaction */
  95. struct list_head changed;
  96. /* list of detached backref node. */
  97. struct list_head detached;
  98. u64 last_trans;
  99. int nr_nodes;
  100. int nr_edges;
  101. };
  102. /*
  103. * map address of tree root to tree
  104. */
  105. struct mapping_node {
  106. struct rb_node rb_node;
  107. u64 bytenr;
  108. void *data;
  109. };
  110. struct mapping_tree {
  111. struct rb_root rb_root;
  112. spinlock_t lock;
  113. };
  114. /*
  115. * present a tree block to process
  116. */
  117. struct tree_block {
  118. struct rb_node rb_node;
  119. u64 bytenr;
  120. struct btrfs_key key;
  121. unsigned int level:8;
  122. unsigned int key_ready:1;
  123. };
  124. #define MAX_EXTENTS 128
  125. struct file_extent_cluster {
  126. u64 start;
  127. u64 end;
  128. u64 boundary[MAX_EXTENTS];
  129. unsigned int nr;
  130. };
  131. struct reloc_control {
  132. /* block group to relocate */
  133. struct btrfs_block_group_cache *block_group;
  134. /* extent tree */
  135. struct btrfs_root *extent_root;
  136. /* inode for moving data */
  137. struct inode *data_inode;
  138. struct btrfs_block_rsv *block_rsv;
  139. struct backref_cache backref_cache;
  140. struct file_extent_cluster cluster;
  141. /* tree blocks have been processed */
  142. struct extent_io_tree processed_blocks;
  143. /* map start of tree root to corresponding reloc tree */
  144. struct mapping_tree reloc_root_tree;
  145. /* list of reloc trees */
  146. struct list_head reloc_roots;
  147. /* size of metadata reservation for merging reloc trees */
  148. u64 merging_rsv_size;
  149. /* size of relocated tree nodes */
  150. u64 nodes_relocated;
  151. /* reserved size for block group relocation*/
  152. u64 reserved_bytes;
  153. u64 search_start;
  154. u64 extents_found;
  155. unsigned int stage:8;
  156. unsigned int create_reloc_tree:1;
  157. unsigned int merge_reloc_tree:1;
  158. unsigned int found_file_extent:1;
  159. };
  160. /* stages of data relocation */
  161. #define MOVE_DATA_EXTENTS 0
  162. #define UPDATE_DATA_PTRS 1
  163. static void remove_backref_node(struct backref_cache *cache,
  164. struct backref_node *node);
  165. static void __mark_block_processed(struct reloc_control *rc,
  166. struct backref_node *node);
  167. static void mapping_tree_init(struct mapping_tree *tree)
  168. {
  169. tree->rb_root = RB_ROOT;
  170. spin_lock_init(&tree->lock);
  171. }
  172. static void backref_cache_init(struct backref_cache *cache)
  173. {
  174. int i;
  175. cache->rb_root = RB_ROOT;
  176. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  177. INIT_LIST_HEAD(&cache->pending[i]);
  178. INIT_LIST_HEAD(&cache->changed);
  179. INIT_LIST_HEAD(&cache->detached);
  180. INIT_LIST_HEAD(&cache->leaves);
  181. }
  182. static void backref_cache_cleanup(struct backref_cache *cache)
  183. {
  184. struct backref_node *node;
  185. int i;
  186. while (!list_empty(&cache->detached)) {
  187. node = list_entry(cache->detached.next,
  188. struct backref_node, list);
  189. remove_backref_node(cache, node);
  190. }
  191. while (!list_empty(&cache->leaves)) {
  192. node = list_entry(cache->leaves.next,
  193. struct backref_node, lower);
  194. remove_backref_node(cache, node);
  195. }
  196. cache->last_trans = 0;
  197. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  198. ASSERT(list_empty(&cache->pending[i]));
  199. ASSERT(list_empty(&cache->changed));
  200. ASSERT(list_empty(&cache->detached));
  201. ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
  202. ASSERT(!cache->nr_nodes);
  203. ASSERT(!cache->nr_edges);
  204. }
  205. static struct backref_node *alloc_backref_node(struct backref_cache *cache)
  206. {
  207. struct backref_node *node;
  208. node = kzalloc(sizeof(*node), GFP_NOFS);
  209. if (node) {
  210. INIT_LIST_HEAD(&node->list);
  211. INIT_LIST_HEAD(&node->upper);
  212. INIT_LIST_HEAD(&node->lower);
  213. RB_CLEAR_NODE(&node->rb_node);
  214. cache->nr_nodes++;
  215. }
  216. return node;
  217. }
  218. static void free_backref_node(struct backref_cache *cache,
  219. struct backref_node *node)
  220. {
  221. if (node) {
  222. cache->nr_nodes--;
  223. kfree(node);
  224. }
  225. }
  226. static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
  227. {
  228. struct backref_edge *edge;
  229. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  230. if (edge)
  231. cache->nr_edges++;
  232. return edge;
  233. }
  234. static void free_backref_edge(struct backref_cache *cache,
  235. struct backref_edge *edge)
  236. {
  237. if (edge) {
  238. cache->nr_edges--;
  239. kfree(edge);
  240. }
  241. }
  242. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  243. struct rb_node *node)
  244. {
  245. struct rb_node **p = &root->rb_node;
  246. struct rb_node *parent = NULL;
  247. struct tree_entry *entry;
  248. while (*p) {
  249. parent = *p;
  250. entry = rb_entry(parent, struct tree_entry, rb_node);
  251. if (bytenr < entry->bytenr)
  252. p = &(*p)->rb_left;
  253. else if (bytenr > entry->bytenr)
  254. p = &(*p)->rb_right;
  255. else
  256. return parent;
  257. }
  258. rb_link_node(node, parent, p);
  259. rb_insert_color(node, root);
  260. return NULL;
  261. }
  262. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  263. {
  264. struct rb_node *n = root->rb_node;
  265. struct tree_entry *entry;
  266. while (n) {
  267. entry = rb_entry(n, struct tree_entry, rb_node);
  268. if (bytenr < entry->bytenr)
  269. n = n->rb_left;
  270. else if (bytenr > entry->bytenr)
  271. n = n->rb_right;
  272. else
  273. return n;
  274. }
  275. return NULL;
  276. }
  277. static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
  278. {
  279. struct btrfs_fs_info *fs_info = NULL;
  280. struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
  281. rb_node);
  282. if (bnode->root)
  283. fs_info = bnode->root->fs_info;
  284. btrfs_panic(fs_info, errno,
  285. "Inconsistency in backref cache found at offset %llu",
  286. bytenr);
  287. }
  288. /*
  289. * walk up backref nodes until reach node presents tree root
  290. */
  291. static struct backref_node *walk_up_backref(struct backref_node *node,
  292. struct backref_edge *edges[],
  293. int *index)
  294. {
  295. struct backref_edge *edge;
  296. int idx = *index;
  297. while (!list_empty(&node->upper)) {
  298. edge = list_entry(node->upper.next,
  299. struct backref_edge, list[LOWER]);
  300. edges[idx++] = edge;
  301. node = edge->node[UPPER];
  302. }
  303. BUG_ON(node->detached);
  304. *index = idx;
  305. return node;
  306. }
  307. /*
  308. * walk down backref nodes to find start of next reference path
  309. */
  310. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  311. int *index)
  312. {
  313. struct backref_edge *edge;
  314. struct backref_node *lower;
  315. int idx = *index;
  316. while (idx > 0) {
  317. edge = edges[idx - 1];
  318. lower = edge->node[LOWER];
  319. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  320. idx--;
  321. continue;
  322. }
  323. edge = list_entry(edge->list[LOWER].next,
  324. struct backref_edge, list[LOWER]);
  325. edges[idx - 1] = edge;
  326. *index = idx;
  327. return edge->node[UPPER];
  328. }
  329. *index = 0;
  330. return NULL;
  331. }
  332. static void unlock_node_buffer(struct backref_node *node)
  333. {
  334. if (node->locked) {
  335. btrfs_tree_unlock(node->eb);
  336. node->locked = 0;
  337. }
  338. }
  339. static void drop_node_buffer(struct backref_node *node)
  340. {
  341. if (node->eb) {
  342. unlock_node_buffer(node);
  343. free_extent_buffer(node->eb);
  344. node->eb = NULL;
  345. }
  346. }
  347. static void drop_backref_node(struct backref_cache *tree,
  348. struct backref_node *node)
  349. {
  350. BUG_ON(!list_empty(&node->upper));
  351. drop_node_buffer(node);
  352. list_del(&node->list);
  353. list_del(&node->lower);
  354. if (!RB_EMPTY_NODE(&node->rb_node))
  355. rb_erase(&node->rb_node, &tree->rb_root);
  356. free_backref_node(tree, node);
  357. }
  358. /*
  359. * remove a backref node from the backref cache
  360. */
  361. static void remove_backref_node(struct backref_cache *cache,
  362. struct backref_node *node)
  363. {
  364. struct backref_node *upper;
  365. struct backref_edge *edge;
  366. if (!node)
  367. return;
  368. BUG_ON(!node->lowest && !node->detached);
  369. while (!list_empty(&node->upper)) {
  370. edge = list_entry(node->upper.next, struct backref_edge,
  371. list[LOWER]);
  372. upper = edge->node[UPPER];
  373. list_del(&edge->list[LOWER]);
  374. list_del(&edge->list[UPPER]);
  375. free_backref_edge(cache, edge);
  376. if (RB_EMPTY_NODE(&upper->rb_node)) {
  377. BUG_ON(!list_empty(&node->upper));
  378. drop_backref_node(cache, node);
  379. node = upper;
  380. node->lowest = 1;
  381. continue;
  382. }
  383. /*
  384. * add the node to leaf node list if no other
  385. * child block cached.
  386. */
  387. if (list_empty(&upper->lower)) {
  388. list_add_tail(&upper->lower, &cache->leaves);
  389. upper->lowest = 1;
  390. }
  391. }
  392. drop_backref_node(cache, node);
  393. }
  394. static void update_backref_node(struct backref_cache *cache,
  395. struct backref_node *node, u64 bytenr)
  396. {
  397. struct rb_node *rb_node;
  398. rb_erase(&node->rb_node, &cache->rb_root);
  399. node->bytenr = bytenr;
  400. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  401. if (rb_node)
  402. backref_tree_panic(rb_node, -EEXIST, bytenr);
  403. }
  404. /*
  405. * update backref cache after a transaction commit
  406. */
  407. static int update_backref_cache(struct btrfs_trans_handle *trans,
  408. struct backref_cache *cache)
  409. {
  410. struct backref_node *node;
  411. int level = 0;
  412. if (cache->last_trans == 0) {
  413. cache->last_trans = trans->transid;
  414. return 0;
  415. }
  416. if (cache->last_trans == trans->transid)
  417. return 0;
  418. /*
  419. * detached nodes are used to avoid unnecessary backref
  420. * lookup. transaction commit changes the extent tree.
  421. * so the detached nodes are no longer useful.
  422. */
  423. while (!list_empty(&cache->detached)) {
  424. node = list_entry(cache->detached.next,
  425. struct backref_node, list);
  426. remove_backref_node(cache, node);
  427. }
  428. while (!list_empty(&cache->changed)) {
  429. node = list_entry(cache->changed.next,
  430. struct backref_node, list);
  431. list_del_init(&node->list);
  432. BUG_ON(node->pending);
  433. update_backref_node(cache, node, node->new_bytenr);
  434. }
  435. /*
  436. * some nodes can be left in the pending list if there were
  437. * errors during processing the pending nodes.
  438. */
  439. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  440. list_for_each_entry(node, &cache->pending[level], list) {
  441. BUG_ON(!node->pending);
  442. if (node->bytenr == node->new_bytenr)
  443. continue;
  444. update_backref_node(cache, node, node->new_bytenr);
  445. }
  446. }
  447. cache->last_trans = 0;
  448. return 1;
  449. }
  450. static int should_ignore_root(struct btrfs_root *root)
  451. {
  452. struct btrfs_root *reloc_root;
  453. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  454. return 0;
  455. reloc_root = root->reloc_root;
  456. if (!reloc_root)
  457. return 0;
  458. if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
  459. root->fs_info->running_transaction->transid - 1)
  460. return 0;
  461. /*
  462. * if there is reloc tree and it was created in previous
  463. * transaction backref lookup can find the reloc tree,
  464. * so backref node for the fs tree root is useless for
  465. * relocation.
  466. */
  467. return 1;
  468. }
  469. /*
  470. * find reloc tree by address of tree root
  471. */
  472. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  473. u64 bytenr)
  474. {
  475. struct rb_node *rb_node;
  476. struct mapping_node *node;
  477. struct btrfs_root *root = NULL;
  478. spin_lock(&rc->reloc_root_tree.lock);
  479. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  480. if (rb_node) {
  481. node = rb_entry(rb_node, struct mapping_node, rb_node);
  482. root = (struct btrfs_root *)node->data;
  483. }
  484. spin_unlock(&rc->reloc_root_tree.lock);
  485. return root;
  486. }
  487. static int is_cowonly_root(u64 root_objectid)
  488. {
  489. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  490. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  491. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  492. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  493. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  494. root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
  495. root_objectid == BTRFS_UUID_TREE_OBJECTID ||
  496. root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
  497. root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  498. return 1;
  499. return 0;
  500. }
  501. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  502. u64 root_objectid)
  503. {
  504. struct btrfs_key key;
  505. key.objectid = root_objectid;
  506. key.type = BTRFS_ROOT_ITEM_KEY;
  507. if (is_cowonly_root(root_objectid))
  508. key.offset = 0;
  509. else
  510. key.offset = (u64)-1;
  511. return btrfs_get_fs_root(fs_info, &key, false);
  512. }
  513. static noinline_for_stack
  514. int find_inline_backref(struct extent_buffer *leaf, int slot,
  515. unsigned long *ptr, unsigned long *end)
  516. {
  517. struct btrfs_key key;
  518. struct btrfs_extent_item *ei;
  519. struct btrfs_tree_block_info *bi;
  520. u32 item_size;
  521. btrfs_item_key_to_cpu(leaf, &key, slot);
  522. item_size = btrfs_item_size_nr(leaf, slot);
  523. if (item_size < sizeof(*ei)) {
  524. btrfs_print_v0_err(leaf->fs_info);
  525. btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
  526. return 1;
  527. }
  528. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  529. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  530. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  531. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  532. item_size <= sizeof(*ei) + sizeof(*bi)) {
  533. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  534. return 1;
  535. }
  536. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  537. item_size <= sizeof(*ei)) {
  538. WARN_ON(item_size < sizeof(*ei));
  539. return 1;
  540. }
  541. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  542. bi = (struct btrfs_tree_block_info *)(ei + 1);
  543. *ptr = (unsigned long)(bi + 1);
  544. } else {
  545. *ptr = (unsigned long)(ei + 1);
  546. }
  547. *end = (unsigned long)ei + item_size;
  548. return 0;
  549. }
  550. /*
  551. * build backref tree for a given tree block. root of the backref tree
  552. * corresponds the tree block, leaves of the backref tree correspond
  553. * roots of b-trees that reference the tree block.
  554. *
  555. * the basic idea of this function is check backrefs of a given block
  556. * to find upper level blocks that reference the block, and then check
  557. * backrefs of these upper level blocks recursively. the recursion stop
  558. * when tree root is reached or backrefs for the block is cached.
  559. *
  560. * NOTE: if we find backrefs for a block are cached, we know backrefs
  561. * for all upper level blocks that directly/indirectly reference the
  562. * block are also cached.
  563. */
  564. static noinline_for_stack
  565. struct backref_node *build_backref_tree(struct reloc_control *rc,
  566. struct btrfs_key *node_key,
  567. int level, u64 bytenr)
  568. {
  569. struct backref_cache *cache = &rc->backref_cache;
  570. struct btrfs_path *path1; /* For searching extent root */
  571. struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
  572. struct extent_buffer *eb;
  573. struct btrfs_root *root;
  574. struct backref_node *cur;
  575. struct backref_node *upper;
  576. struct backref_node *lower;
  577. struct backref_node *node = NULL;
  578. struct backref_node *exist = NULL;
  579. struct backref_edge *edge;
  580. struct rb_node *rb_node;
  581. struct btrfs_key key;
  582. unsigned long end;
  583. unsigned long ptr;
  584. LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
  585. LIST_HEAD(useless);
  586. int cowonly;
  587. int ret;
  588. int err = 0;
  589. bool need_check = true;
  590. path1 = btrfs_alloc_path();
  591. path2 = btrfs_alloc_path();
  592. if (!path1 || !path2) {
  593. err = -ENOMEM;
  594. goto out;
  595. }
  596. path1->reada = READA_FORWARD;
  597. path2->reada = READA_FORWARD;
  598. node = alloc_backref_node(cache);
  599. if (!node) {
  600. err = -ENOMEM;
  601. goto out;
  602. }
  603. node->bytenr = bytenr;
  604. node->level = level;
  605. node->lowest = 1;
  606. cur = node;
  607. again:
  608. end = 0;
  609. ptr = 0;
  610. key.objectid = cur->bytenr;
  611. key.type = BTRFS_METADATA_ITEM_KEY;
  612. key.offset = (u64)-1;
  613. path1->search_commit_root = 1;
  614. path1->skip_locking = 1;
  615. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  616. 0, 0);
  617. if (ret < 0) {
  618. err = ret;
  619. goto out;
  620. }
  621. ASSERT(ret);
  622. ASSERT(path1->slots[0]);
  623. path1->slots[0]--;
  624. WARN_ON(cur->checked);
  625. if (!list_empty(&cur->upper)) {
  626. /*
  627. * the backref was added previously when processing
  628. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  629. */
  630. ASSERT(list_is_singular(&cur->upper));
  631. edge = list_entry(cur->upper.next, struct backref_edge,
  632. list[LOWER]);
  633. ASSERT(list_empty(&edge->list[UPPER]));
  634. exist = edge->node[UPPER];
  635. /*
  636. * add the upper level block to pending list if we need
  637. * check its backrefs
  638. */
  639. if (!exist->checked)
  640. list_add_tail(&edge->list[UPPER], &list);
  641. } else {
  642. exist = NULL;
  643. }
  644. while (1) {
  645. cond_resched();
  646. eb = path1->nodes[0];
  647. if (ptr >= end) {
  648. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  649. ret = btrfs_next_leaf(rc->extent_root, path1);
  650. if (ret < 0) {
  651. err = ret;
  652. goto out;
  653. }
  654. if (ret > 0)
  655. break;
  656. eb = path1->nodes[0];
  657. }
  658. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  659. if (key.objectid != cur->bytenr) {
  660. WARN_ON(exist);
  661. break;
  662. }
  663. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  664. key.type == BTRFS_METADATA_ITEM_KEY) {
  665. ret = find_inline_backref(eb, path1->slots[0],
  666. &ptr, &end);
  667. if (ret)
  668. goto next;
  669. }
  670. }
  671. if (ptr < end) {
  672. /* update key for inline back ref */
  673. struct btrfs_extent_inline_ref *iref;
  674. int type;
  675. iref = (struct btrfs_extent_inline_ref *)ptr;
  676. type = btrfs_get_extent_inline_ref_type(eb, iref,
  677. BTRFS_REF_TYPE_BLOCK);
  678. if (type == BTRFS_REF_TYPE_INVALID) {
  679. err = -EUCLEAN;
  680. goto out;
  681. }
  682. key.type = type;
  683. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  684. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  685. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  686. }
  687. /*
  688. * Parent node found and matches current inline ref, no need to
  689. * rebuild this node for this inline ref.
  690. */
  691. if (exist &&
  692. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  693. exist->owner == key.offset) ||
  694. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  695. exist->bytenr == key.offset))) {
  696. exist = NULL;
  697. goto next;
  698. }
  699. /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
  700. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  701. if (key.objectid == key.offset) {
  702. /*
  703. * Only root blocks of reloc trees use backref
  704. * pointing to itself.
  705. */
  706. root = find_reloc_root(rc, cur->bytenr);
  707. ASSERT(root);
  708. cur->root = root;
  709. break;
  710. }
  711. edge = alloc_backref_edge(cache);
  712. if (!edge) {
  713. err = -ENOMEM;
  714. goto out;
  715. }
  716. rb_node = tree_search(&cache->rb_root, key.offset);
  717. if (!rb_node) {
  718. upper = alloc_backref_node(cache);
  719. if (!upper) {
  720. free_backref_edge(cache, edge);
  721. err = -ENOMEM;
  722. goto out;
  723. }
  724. upper->bytenr = key.offset;
  725. upper->level = cur->level + 1;
  726. /*
  727. * backrefs for the upper level block isn't
  728. * cached, add the block to pending list
  729. */
  730. list_add_tail(&edge->list[UPPER], &list);
  731. } else {
  732. upper = rb_entry(rb_node, struct backref_node,
  733. rb_node);
  734. ASSERT(upper->checked);
  735. INIT_LIST_HEAD(&edge->list[UPPER]);
  736. }
  737. list_add_tail(&edge->list[LOWER], &cur->upper);
  738. edge->node[LOWER] = cur;
  739. edge->node[UPPER] = upper;
  740. goto next;
  741. } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
  742. err = -EINVAL;
  743. btrfs_print_v0_err(rc->extent_root->fs_info);
  744. btrfs_handle_fs_error(rc->extent_root->fs_info, err,
  745. NULL);
  746. goto out;
  747. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  748. goto next;
  749. }
  750. /*
  751. * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
  752. * means the root objectid. We need to search the tree to get
  753. * its parent bytenr.
  754. */
  755. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  756. if (IS_ERR(root)) {
  757. err = PTR_ERR(root);
  758. goto out;
  759. }
  760. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  761. cur->cowonly = 1;
  762. if (btrfs_root_level(&root->root_item) == cur->level) {
  763. /* tree root */
  764. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  765. cur->bytenr);
  766. if (should_ignore_root(root))
  767. list_add(&cur->list, &useless);
  768. else
  769. cur->root = root;
  770. break;
  771. }
  772. level = cur->level + 1;
  773. /* Search the tree to find parent blocks referring the block. */
  774. path2->search_commit_root = 1;
  775. path2->skip_locking = 1;
  776. path2->lowest_level = level;
  777. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  778. path2->lowest_level = 0;
  779. if (ret < 0) {
  780. err = ret;
  781. goto out;
  782. }
  783. if (ret > 0 && path2->slots[level] > 0)
  784. path2->slots[level]--;
  785. eb = path2->nodes[level];
  786. if (btrfs_node_blockptr(eb, path2->slots[level]) !=
  787. cur->bytenr) {
  788. btrfs_err(root->fs_info,
  789. "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
  790. cur->bytenr, level - 1,
  791. root->root_key.objectid,
  792. node_key->objectid, node_key->type,
  793. node_key->offset);
  794. err = -ENOENT;
  795. goto out;
  796. }
  797. lower = cur;
  798. need_check = true;
  799. /* Add all nodes and edges in the path */
  800. for (; level < BTRFS_MAX_LEVEL; level++) {
  801. if (!path2->nodes[level]) {
  802. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  803. lower->bytenr);
  804. if (should_ignore_root(root))
  805. list_add(&lower->list, &useless);
  806. else
  807. lower->root = root;
  808. break;
  809. }
  810. edge = alloc_backref_edge(cache);
  811. if (!edge) {
  812. err = -ENOMEM;
  813. goto out;
  814. }
  815. eb = path2->nodes[level];
  816. rb_node = tree_search(&cache->rb_root, eb->start);
  817. if (!rb_node) {
  818. upper = alloc_backref_node(cache);
  819. if (!upper) {
  820. free_backref_edge(cache, edge);
  821. err = -ENOMEM;
  822. goto out;
  823. }
  824. upper->bytenr = eb->start;
  825. upper->owner = btrfs_header_owner(eb);
  826. upper->level = lower->level + 1;
  827. if (!test_bit(BTRFS_ROOT_REF_COWS,
  828. &root->state))
  829. upper->cowonly = 1;
  830. /*
  831. * if we know the block isn't shared
  832. * we can void checking its backrefs.
  833. */
  834. if (btrfs_block_can_be_shared(root, eb))
  835. upper->checked = 0;
  836. else
  837. upper->checked = 1;
  838. /*
  839. * add the block to pending list if we
  840. * need check its backrefs, we only do this once
  841. * while walking up a tree as we will catch
  842. * anything else later on.
  843. */
  844. if (!upper->checked && need_check) {
  845. need_check = false;
  846. list_add_tail(&edge->list[UPPER],
  847. &list);
  848. } else {
  849. if (upper->checked)
  850. need_check = true;
  851. INIT_LIST_HEAD(&edge->list[UPPER]);
  852. }
  853. } else {
  854. upper = rb_entry(rb_node, struct backref_node,
  855. rb_node);
  856. ASSERT(upper->checked);
  857. INIT_LIST_HEAD(&edge->list[UPPER]);
  858. if (!upper->owner)
  859. upper->owner = btrfs_header_owner(eb);
  860. }
  861. list_add_tail(&edge->list[LOWER], &lower->upper);
  862. edge->node[LOWER] = lower;
  863. edge->node[UPPER] = upper;
  864. if (rb_node)
  865. break;
  866. lower = upper;
  867. upper = NULL;
  868. }
  869. btrfs_release_path(path2);
  870. next:
  871. if (ptr < end) {
  872. ptr += btrfs_extent_inline_ref_size(key.type);
  873. if (ptr >= end) {
  874. WARN_ON(ptr > end);
  875. ptr = 0;
  876. end = 0;
  877. }
  878. }
  879. if (ptr >= end)
  880. path1->slots[0]++;
  881. }
  882. btrfs_release_path(path1);
  883. cur->checked = 1;
  884. WARN_ON(exist);
  885. /* the pending list isn't empty, take the first block to process */
  886. if (!list_empty(&list)) {
  887. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  888. list_del_init(&edge->list[UPPER]);
  889. cur = edge->node[UPPER];
  890. goto again;
  891. }
  892. /*
  893. * everything goes well, connect backref nodes and insert backref nodes
  894. * into the cache.
  895. */
  896. ASSERT(node->checked);
  897. cowonly = node->cowonly;
  898. if (!cowonly) {
  899. rb_node = tree_insert(&cache->rb_root, node->bytenr,
  900. &node->rb_node);
  901. if (rb_node)
  902. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  903. list_add_tail(&node->lower, &cache->leaves);
  904. }
  905. list_for_each_entry(edge, &node->upper, list[LOWER])
  906. list_add_tail(&edge->list[UPPER], &list);
  907. while (!list_empty(&list)) {
  908. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  909. list_del_init(&edge->list[UPPER]);
  910. upper = edge->node[UPPER];
  911. if (upper->detached) {
  912. list_del(&edge->list[LOWER]);
  913. lower = edge->node[LOWER];
  914. free_backref_edge(cache, edge);
  915. if (list_empty(&lower->upper))
  916. list_add(&lower->list, &useless);
  917. continue;
  918. }
  919. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  920. if (upper->lowest) {
  921. list_del_init(&upper->lower);
  922. upper->lowest = 0;
  923. }
  924. list_add_tail(&edge->list[UPPER], &upper->lower);
  925. continue;
  926. }
  927. if (!upper->checked) {
  928. /*
  929. * Still want to blow up for developers since this is a
  930. * logic bug.
  931. */
  932. ASSERT(0);
  933. err = -EINVAL;
  934. goto out;
  935. }
  936. if (cowonly != upper->cowonly) {
  937. ASSERT(0);
  938. err = -EINVAL;
  939. goto out;
  940. }
  941. if (!cowonly) {
  942. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  943. &upper->rb_node);
  944. if (rb_node)
  945. backref_tree_panic(rb_node, -EEXIST,
  946. upper->bytenr);
  947. }
  948. list_add_tail(&edge->list[UPPER], &upper->lower);
  949. list_for_each_entry(edge, &upper->upper, list[LOWER])
  950. list_add_tail(&edge->list[UPPER], &list);
  951. }
  952. /*
  953. * process useless backref nodes. backref nodes for tree leaves
  954. * are deleted from the cache. backref nodes for upper level
  955. * tree blocks are left in the cache to avoid unnecessary backref
  956. * lookup.
  957. */
  958. while (!list_empty(&useless)) {
  959. upper = list_entry(useless.next, struct backref_node, list);
  960. list_del_init(&upper->list);
  961. ASSERT(list_empty(&upper->upper));
  962. if (upper == node)
  963. node = NULL;
  964. if (upper->lowest) {
  965. list_del_init(&upper->lower);
  966. upper->lowest = 0;
  967. }
  968. while (!list_empty(&upper->lower)) {
  969. edge = list_entry(upper->lower.next,
  970. struct backref_edge, list[UPPER]);
  971. list_del(&edge->list[UPPER]);
  972. list_del(&edge->list[LOWER]);
  973. lower = edge->node[LOWER];
  974. free_backref_edge(cache, edge);
  975. if (list_empty(&lower->upper))
  976. list_add(&lower->list, &useless);
  977. }
  978. __mark_block_processed(rc, upper);
  979. if (upper->level > 0) {
  980. list_add(&upper->list, &cache->detached);
  981. upper->detached = 1;
  982. } else {
  983. rb_erase(&upper->rb_node, &cache->rb_root);
  984. free_backref_node(cache, upper);
  985. }
  986. }
  987. out:
  988. btrfs_free_path(path1);
  989. btrfs_free_path(path2);
  990. if (err) {
  991. while (!list_empty(&useless)) {
  992. lower = list_entry(useless.next,
  993. struct backref_node, list);
  994. list_del_init(&lower->list);
  995. }
  996. while (!list_empty(&list)) {
  997. edge = list_first_entry(&list, struct backref_edge,
  998. list[UPPER]);
  999. list_del(&edge->list[UPPER]);
  1000. list_del(&edge->list[LOWER]);
  1001. lower = edge->node[LOWER];
  1002. upper = edge->node[UPPER];
  1003. free_backref_edge(cache, edge);
  1004. /*
  1005. * Lower is no longer linked to any upper backref nodes
  1006. * and isn't in the cache, we can free it ourselves.
  1007. */
  1008. if (list_empty(&lower->upper) &&
  1009. RB_EMPTY_NODE(&lower->rb_node))
  1010. list_add(&lower->list, &useless);
  1011. if (!RB_EMPTY_NODE(&upper->rb_node))
  1012. continue;
  1013. /* Add this guy's upper edges to the list to process */
  1014. list_for_each_entry(edge, &upper->upper, list[LOWER])
  1015. list_add_tail(&edge->list[UPPER], &list);
  1016. if (list_empty(&upper->upper))
  1017. list_add(&upper->list, &useless);
  1018. }
  1019. while (!list_empty(&useless)) {
  1020. lower = list_entry(useless.next,
  1021. struct backref_node, list);
  1022. list_del_init(&lower->list);
  1023. if (lower == node)
  1024. node = NULL;
  1025. free_backref_node(cache, lower);
  1026. }
  1027. free_backref_node(cache, node);
  1028. return ERR_PTR(err);
  1029. }
  1030. ASSERT(!node || !node->detached);
  1031. return node;
  1032. }
  1033. /*
  1034. * helper to add backref node for the newly created snapshot.
  1035. * the backref node is created by cloning backref node that
  1036. * corresponds to root of source tree
  1037. */
  1038. static int clone_backref_node(struct btrfs_trans_handle *trans,
  1039. struct reloc_control *rc,
  1040. struct btrfs_root *src,
  1041. struct btrfs_root *dest)
  1042. {
  1043. struct btrfs_root *reloc_root = src->reloc_root;
  1044. struct backref_cache *cache = &rc->backref_cache;
  1045. struct backref_node *node = NULL;
  1046. struct backref_node *new_node;
  1047. struct backref_edge *edge;
  1048. struct backref_edge *new_edge;
  1049. struct rb_node *rb_node;
  1050. if (cache->last_trans > 0)
  1051. update_backref_cache(trans, cache);
  1052. rb_node = tree_search(&cache->rb_root, src->commit_root->start);
  1053. if (rb_node) {
  1054. node = rb_entry(rb_node, struct backref_node, rb_node);
  1055. if (node->detached)
  1056. node = NULL;
  1057. else
  1058. BUG_ON(node->new_bytenr != reloc_root->node->start);
  1059. }
  1060. if (!node) {
  1061. rb_node = tree_search(&cache->rb_root,
  1062. reloc_root->commit_root->start);
  1063. if (rb_node) {
  1064. node = rb_entry(rb_node, struct backref_node,
  1065. rb_node);
  1066. BUG_ON(node->detached);
  1067. }
  1068. }
  1069. if (!node)
  1070. return 0;
  1071. new_node = alloc_backref_node(cache);
  1072. if (!new_node)
  1073. return -ENOMEM;
  1074. new_node->bytenr = dest->node->start;
  1075. new_node->level = node->level;
  1076. new_node->lowest = node->lowest;
  1077. new_node->checked = 1;
  1078. new_node->root = dest;
  1079. if (!node->lowest) {
  1080. list_for_each_entry(edge, &node->lower, list[UPPER]) {
  1081. new_edge = alloc_backref_edge(cache);
  1082. if (!new_edge)
  1083. goto fail;
  1084. new_edge->node[UPPER] = new_node;
  1085. new_edge->node[LOWER] = edge->node[LOWER];
  1086. list_add_tail(&new_edge->list[UPPER],
  1087. &new_node->lower);
  1088. }
  1089. } else {
  1090. list_add_tail(&new_node->lower, &cache->leaves);
  1091. }
  1092. rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
  1093. &new_node->rb_node);
  1094. if (rb_node)
  1095. backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
  1096. if (!new_node->lowest) {
  1097. list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
  1098. list_add_tail(&new_edge->list[LOWER],
  1099. &new_edge->node[LOWER]->upper);
  1100. }
  1101. }
  1102. return 0;
  1103. fail:
  1104. while (!list_empty(&new_node->lower)) {
  1105. new_edge = list_entry(new_node->lower.next,
  1106. struct backref_edge, list[UPPER]);
  1107. list_del(&new_edge->list[UPPER]);
  1108. free_backref_edge(cache, new_edge);
  1109. }
  1110. free_backref_node(cache, new_node);
  1111. return -ENOMEM;
  1112. }
  1113. /*
  1114. * helper to add 'address of tree root -> reloc tree' mapping
  1115. */
  1116. static int __must_check __add_reloc_root(struct btrfs_root *root)
  1117. {
  1118. struct btrfs_fs_info *fs_info = root->fs_info;
  1119. struct rb_node *rb_node;
  1120. struct mapping_node *node;
  1121. struct reloc_control *rc = fs_info->reloc_ctl;
  1122. node = kmalloc(sizeof(*node), GFP_NOFS);
  1123. if (!node)
  1124. return -ENOMEM;
  1125. node->bytenr = root->node->start;
  1126. node->data = root;
  1127. spin_lock(&rc->reloc_root_tree.lock);
  1128. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1129. node->bytenr, &node->rb_node);
  1130. spin_unlock(&rc->reloc_root_tree.lock);
  1131. if (rb_node) {
  1132. btrfs_panic(fs_info, -EEXIST,
  1133. "Duplicate root found for start=%llu while inserting into relocation tree",
  1134. node->bytenr);
  1135. }
  1136. list_add_tail(&root->root_list, &rc->reloc_roots);
  1137. return 0;
  1138. }
  1139. /*
  1140. * helper to delete the 'address of tree root -> reloc tree'
  1141. * mapping
  1142. */
  1143. static void __del_reloc_root(struct btrfs_root *root)
  1144. {
  1145. struct btrfs_fs_info *fs_info = root->fs_info;
  1146. struct rb_node *rb_node;
  1147. struct mapping_node *node = NULL;
  1148. struct reloc_control *rc = fs_info->reloc_ctl;
  1149. if (rc && root->node) {
  1150. spin_lock(&rc->reloc_root_tree.lock);
  1151. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1152. root->node->start);
  1153. if (rb_node) {
  1154. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1155. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1156. }
  1157. spin_unlock(&rc->reloc_root_tree.lock);
  1158. if (!node)
  1159. return;
  1160. BUG_ON((struct btrfs_root *)node->data != root);
  1161. }
  1162. spin_lock(&fs_info->trans_lock);
  1163. list_del_init(&root->root_list);
  1164. spin_unlock(&fs_info->trans_lock);
  1165. kfree(node);
  1166. }
  1167. /*
  1168. * helper to update the 'address of tree root -> reloc tree'
  1169. * mapping
  1170. */
  1171. static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
  1172. {
  1173. struct btrfs_fs_info *fs_info = root->fs_info;
  1174. struct rb_node *rb_node;
  1175. struct mapping_node *node = NULL;
  1176. struct reloc_control *rc = fs_info->reloc_ctl;
  1177. spin_lock(&rc->reloc_root_tree.lock);
  1178. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1179. root->node->start);
  1180. if (rb_node) {
  1181. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1182. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1183. }
  1184. spin_unlock(&rc->reloc_root_tree.lock);
  1185. if (!node)
  1186. return 0;
  1187. BUG_ON((struct btrfs_root *)node->data != root);
  1188. spin_lock(&rc->reloc_root_tree.lock);
  1189. node->bytenr = new_bytenr;
  1190. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1191. node->bytenr, &node->rb_node);
  1192. spin_unlock(&rc->reloc_root_tree.lock);
  1193. if (rb_node)
  1194. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  1195. return 0;
  1196. }
  1197. static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
  1198. struct btrfs_root *root, u64 objectid)
  1199. {
  1200. struct btrfs_fs_info *fs_info = root->fs_info;
  1201. struct btrfs_root *reloc_root;
  1202. struct extent_buffer *eb;
  1203. struct btrfs_root_item *root_item;
  1204. struct btrfs_key root_key;
  1205. int ret;
  1206. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  1207. BUG_ON(!root_item);
  1208. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  1209. root_key.type = BTRFS_ROOT_ITEM_KEY;
  1210. root_key.offset = objectid;
  1211. if (root->root_key.objectid == objectid) {
  1212. u64 commit_root_gen;
  1213. /* called by btrfs_init_reloc_root */
  1214. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  1215. BTRFS_TREE_RELOC_OBJECTID);
  1216. BUG_ON(ret);
  1217. /*
  1218. * Set the last_snapshot field to the generation of the commit
  1219. * root - like this ctree.c:btrfs_block_can_be_shared() behaves
  1220. * correctly (returns true) when the relocation root is created
  1221. * either inside the critical section of a transaction commit
  1222. * (through transaction.c:qgroup_account_snapshot()) and when
  1223. * it's created before the transaction commit is started.
  1224. */
  1225. commit_root_gen = btrfs_header_generation(root->commit_root);
  1226. btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
  1227. } else {
  1228. /*
  1229. * called by btrfs_reloc_post_snapshot_hook.
  1230. * the source tree is a reloc tree, all tree blocks
  1231. * modified after it was created have RELOC flag
  1232. * set in their headers. so it's OK to not update
  1233. * the 'last_snapshot'.
  1234. */
  1235. ret = btrfs_copy_root(trans, root, root->node, &eb,
  1236. BTRFS_TREE_RELOC_OBJECTID);
  1237. BUG_ON(ret);
  1238. }
  1239. memcpy(root_item, &root->root_item, sizeof(*root_item));
  1240. btrfs_set_root_bytenr(root_item, eb->start);
  1241. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  1242. btrfs_set_root_generation(root_item, trans->transid);
  1243. if (root->root_key.objectid == objectid) {
  1244. btrfs_set_root_refs(root_item, 0);
  1245. memset(&root_item->drop_progress, 0,
  1246. sizeof(struct btrfs_disk_key));
  1247. root_item->drop_level = 0;
  1248. }
  1249. btrfs_tree_unlock(eb);
  1250. free_extent_buffer(eb);
  1251. ret = btrfs_insert_root(trans, fs_info->tree_root,
  1252. &root_key, root_item);
  1253. BUG_ON(ret);
  1254. kfree(root_item);
  1255. reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
  1256. BUG_ON(IS_ERR(reloc_root));
  1257. reloc_root->last_trans = trans->transid;
  1258. return reloc_root;
  1259. }
  1260. /*
  1261. * create reloc tree for a given fs tree. reloc tree is just a
  1262. * snapshot of the fs tree with special root objectid.
  1263. */
  1264. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  1265. struct btrfs_root *root)
  1266. {
  1267. struct btrfs_fs_info *fs_info = root->fs_info;
  1268. struct btrfs_root *reloc_root;
  1269. struct reloc_control *rc = fs_info->reloc_ctl;
  1270. struct btrfs_block_rsv *rsv;
  1271. int clear_rsv = 0;
  1272. int ret;
  1273. if (root->reloc_root) {
  1274. reloc_root = root->reloc_root;
  1275. reloc_root->last_trans = trans->transid;
  1276. return 0;
  1277. }
  1278. if (!rc || !rc->create_reloc_tree ||
  1279. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1280. return 0;
  1281. if (!trans->reloc_reserved) {
  1282. rsv = trans->block_rsv;
  1283. trans->block_rsv = rc->block_rsv;
  1284. clear_rsv = 1;
  1285. }
  1286. reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
  1287. if (clear_rsv)
  1288. trans->block_rsv = rsv;
  1289. ret = __add_reloc_root(reloc_root);
  1290. BUG_ON(ret < 0);
  1291. root->reloc_root = reloc_root;
  1292. return 0;
  1293. }
  1294. /*
  1295. * update root item of reloc tree
  1296. */
  1297. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  1298. struct btrfs_root *root)
  1299. {
  1300. struct btrfs_fs_info *fs_info = root->fs_info;
  1301. struct btrfs_root *reloc_root;
  1302. struct btrfs_root_item *root_item;
  1303. int ret;
  1304. if (!root->reloc_root)
  1305. goto out;
  1306. reloc_root = root->reloc_root;
  1307. root_item = &reloc_root->root_item;
  1308. if (fs_info->reloc_ctl->merge_reloc_tree &&
  1309. btrfs_root_refs(root_item) == 0) {
  1310. root->reloc_root = NULL;
  1311. __del_reloc_root(reloc_root);
  1312. }
  1313. if (reloc_root->commit_root != reloc_root->node) {
  1314. btrfs_set_root_node(root_item, reloc_root->node);
  1315. free_extent_buffer(reloc_root->commit_root);
  1316. reloc_root->commit_root = btrfs_root_node(reloc_root);
  1317. }
  1318. ret = btrfs_update_root(trans, fs_info->tree_root,
  1319. &reloc_root->root_key, root_item);
  1320. BUG_ON(ret);
  1321. out:
  1322. return 0;
  1323. }
  1324. /*
  1325. * helper to find first cached inode with inode number >= objectid
  1326. * in a subvolume
  1327. */
  1328. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  1329. {
  1330. struct rb_node *node;
  1331. struct rb_node *prev;
  1332. struct btrfs_inode *entry;
  1333. struct inode *inode;
  1334. spin_lock(&root->inode_lock);
  1335. again:
  1336. node = root->inode_tree.rb_node;
  1337. prev = NULL;
  1338. while (node) {
  1339. prev = node;
  1340. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1341. if (objectid < btrfs_ino(entry))
  1342. node = node->rb_left;
  1343. else if (objectid > btrfs_ino(entry))
  1344. node = node->rb_right;
  1345. else
  1346. break;
  1347. }
  1348. if (!node) {
  1349. while (prev) {
  1350. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  1351. if (objectid <= btrfs_ino(entry)) {
  1352. node = prev;
  1353. break;
  1354. }
  1355. prev = rb_next(prev);
  1356. }
  1357. }
  1358. while (node) {
  1359. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1360. inode = igrab(&entry->vfs_inode);
  1361. if (inode) {
  1362. spin_unlock(&root->inode_lock);
  1363. return inode;
  1364. }
  1365. objectid = btrfs_ino(entry) + 1;
  1366. if (cond_resched_lock(&root->inode_lock))
  1367. goto again;
  1368. node = rb_next(node);
  1369. }
  1370. spin_unlock(&root->inode_lock);
  1371. return NULL;
  1372. }
  1373. static int in_block_group(u64 bytenr,
  1374. struct btrfs_block_group_cache *block_group)
  1375. {
  1376. if (bytenr >= block_group->key.objectid &&
  1377. bytenr < block_group->key.objectid + block_group->key.offset)
  1378. return 1;
  1379. return 0;
  1380. }
  1381. /*
  1382. * get new location of data
  1383. */
  1384. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  1385. u64 bytenr, u64 num_bytes)
  1386. {
  1387. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  1388. struct btrfs_path *path;
  1389. struct btrfs_file_extent_item *fi;
  1390. struct extent_buffer *leaf;
  1391. int ret;
  1392. path = btrfs_alloc_path();
  1393. if (!path)
  1394. return -ENOMEM;
  1395. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  1396. ret = btrfs_lookup_file_extent(NULL, root, path,
  1397. btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
  1398. if (ret < 0)
  1399. goto out;
  1400. if (ret > 0) {
  1401. ret = -ENOENT;
  1402. goto out;
  1403. }
  1404. leaf = path->nodes[0];
  1405. fi = btrfs_item_ptr(leaf, path->slots[0],
  1406. struct btrfs_file_extent_item);
  1407. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  1408. btrfs_file_extent_compression(leaf, fi) ||
  1409. btrfs_file_extent_encryption(leaf, fi) ||
  1410. btrfs_file_extent_other_encoding(leaf, fi));
  1411. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  1412. ret = -EINVAL;
  1413. goto out;
  1414. }
  1415. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1416. ret = 0;
  1417. out:
  1418. btrfs_free_path(path);
  1419. return ret;
  1420. }
  1421. /*
  1422. * update file extent items in the tree leaf to point to
  1423. * the new locations.
  1424. */
  1425. static noinline_for_stack
  1426. int replace_file_extents(struct btrfs_trans_handle *trans,
  1427. struct reloc_control *rc,
  1428. struct btrfs_root *root,
  1429. struct extent_buffer *leaf)
  1430. {
  1431. struct btrfs_fs_info *fs_info = root->fs_info;
  1432. struct btrfs_key key;
  1433. struct btrfs_file_extent_item *fi;
  1434. struct inode *inode = NULL;
  1435. u64 parent;
  1436. u64 bytenr;
  1437. u64 new_bytenr = 0;
  1438. u64 num_bytes;
  1439. u64 end;
  1440. u32 nritems;
  1441. u32 i;
  1442. int ret = 0;
  1443. int first = 1;
  1444. int dirty = 0;
  1445. if (rc->stage != UPDATE_DATA_PTRS)
  1446. return 0;
  1447. /* reloc trees always use full backref */
  1448. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1449. parent = leaf->start;
  1450. else
  1451. parent = 0;
  1452. nritems = btrfs_header_nritems(leaf);
  1453. for (i = 0; i < nritems; i++) {
  1454. cond_resched();
  1455. btrfs_item_key_to_cpu(leaf, &key, i);
  1456. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1457. continue;
  1458. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1459. if (btrfs_file_extent_type(leaf, fi) ==
  1460. BTRFS_FILE_EXTENT_INLINE)
  1461. continue;
  1462. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1463. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1464. if (bytenr == 0)
  1465. continue;
  1466. if (!in_block_group(bytenr, rc->block_group))
  1467. continue;
  1468. /*
  1469. * if we are modifying block in fs tree, wait for readpage
  1470. * to complete and drop the extent cache
  1471. */
  1472. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1473. if (first) {
  1474. inode = find_next_inode(root, key.objectid);
  1475. first = 0;
  1476. } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
  1477. btrfs_add_delayed_iput(inode);
  1478. inode = find_next_inode(root, key.objectid);
  1479. }
  1480. if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
  1481. end = key.offset +
  1482. btrfs_file_extent_num_bytes(leaf, fi);
  1483. WARN_ON(!IS_ALIGNED(key.offset,
  1484. fs_info->sectorsize));
  1485. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1486. end--;
  1487. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1488. key.offset, end);
  1489. if (!ret)
  1490. continue;
  1491. btrfs_drop_extent_cache(BTRFS_I(inode),
  1492. key.offset, end, 1);
  1493. unlock_extent(&BTRFS_I(inode)->io_tree,
  1494. key.offset, end);
  1495. }
  1496. }
  1497. ret = get_new_location(rc->data_inode, &new_bytenr,
  1498. bytenr, num_bytes);
  1499. if (ret) {
  1500. /*
  1501. * Don't have to abort since we've not changed anything
  1502. * in the file extent yet.
  1503. */
  1504. break;
  1505. }
  1506. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1507. dirty = 1;
  1508. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1509. ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
  1510. num_bytes, parent,
  1511. btrfs_header_owner(leaf),
  1512. key.objectid, key.offset);
  1513. if (ret) {
  1514. btrfs_abort_transaction(trans, ret);
  1515. break;
  1516. }
  1517. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1518. parent, btrfs_header_owner(leaf),
  1519. key.objectid, key.offset);
  1520. if (ret) {
  1521. btrfs_abort_transaction(trans, ret);
  1522. break;
  1523. }
  1524. }
  1525. if (dirty)
  1526. btrfs_mark_buffer_dirty(leaf);
  1527. if (inode)
  1528. btrfs_add_delayed_iput(inode);
  1529. return ret;
  1530. }
  1531. static noinline_for_stack
  1532. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1533. struct btrfs_path *path, int level)
  1534. {
  1535. struct btrfs_disk_key key1;
  1536. struct btrfs_disk_key key2;
  1537. btrfs_node_key(eb, &key1, slot);
  1538. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1539. return memcmp(&key1, &key2, sizeof(key1));
  1540. }
  1541. /*
  1542. * try to replace tree blocks in fs tree with the new blocks
  1543. * in reloc tree. tree blocks haven't been modified since the
  1544. * reloc tree was create can be replaced.
  1545. *
  1546. * if a block was replaced, level of the block + 1 is returned.
  1547. * if no block got replaced, 0 is returned. if there are other
  1548. * errors, a negative error number is returned.
  1549. */
  1550. static noinline_for_stack
  1551. int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
  1552. struct btrfs_root *dest, struct btrfs_root *src,
  1553. struct btrfs_path *path, struct btrfs_key *next_key,
  1554. int lowest_level, int max_level)
  1555. {
  1556. struct btrfs_fs_info *fs_info = dest->fs_info;
  1557. struct extent_buffer *eb;
  1558. struct extent_buffer *parent;
  1559. struct btrfs_key key;
  1560. u64 old_bytenr;
  1561. u64 new_bytenr;
  1562. u64 old_ptr_gen;
  1563. u64 new_ptr_gen;
  1564. u64 last_snapshot;
  1565. u32 blocksize;
  1566. int cow = 0;
  1567. int level;
  1568. int ret;
  1569. int slot;
  1570. BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1571. BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1572. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1573. again:
  1574. slot = path->slots[lowest_level];
  1575. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1576. eb = btrfs_lock_root_node(dest);
  1577. btrfs_set_lock_blocking(eb);
  1578. level = btrfs_header_level(eb);
  1579. if (level < lowest_level) {
  1580. btrfs_tree_unlock(eb);
  1581. free_extent_buffer(eb);
  1582. return 0;
  1583. }
  1584. if (cow) {
  1585. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1586. BUG_ON(ret);
  1587. }
  1588. btrfs_set_lock_blocking(eb);
  1589. if (next_key) {
  1590. next_key->objectid = (u64)-1;
  1591. next_key->type = (u8)-1;
  1592. next_key->offset = (u64)-1;
  1593. }
  1594. parent = eb;
  1595. while (1) {
  1596. struct btrfs_key first_key;
  1597. level = btrfs_header_level(parent);
  1598. BUG_ON(level < lowest_level);
  1599. ret = btrfs_bin_search(parent, &key, level, &slot);
  1600. if (ret && slot > 0)
  1601. slot--;
  1602. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1603. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1604. old_bytenr = btrfs_node_blockptr(parent, slot);
  1605. blocksize = fs_info->nodesize;
  1606. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1607. btrfs_node_key_to_cpu(parent, &first_key, slot);
  1608. if (level <= max_level) {
  1609. eb = path->nodes[level];
  1610. new_bytenr = btrfs_node_blockptr(eb,
  1611. path->slots[level]);
  1612. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1613. path->slots[level]);
  1614. } else {
  1615. new_bytenr = 0;
  1616. new_ptr_gen = 0;
  1617. }
  1618. if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
  1619. ret = level;
  1620. break;
  1621. }
  1622. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1623. memcmp_node_keys(parent, slot, path, level)) {
  1624. if (level <= lowest_level) {
  1625. ret = 0;
  1626. break;
  1627. }
  1628. eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
  1629. level - 1, &first_key);
  1630. if (IS_ERR(eb)) {
  1631. ret = PTR_ERR(eb);
  1632. break;
  1633. } else if (!extent_buffer_uptodate(eb)) {
  1634. ret = -EIO;
  1635. free_extent_buffer(eb);
  1636. break;
  1637. }
  1638. btrfs_tree_lock(eb);
  1639. if (cow) {
  1640. ret = btrfs_cow_block(trans, dest, eb, parent,
  1641. slot, &eb);
  1642. BUG_ON(ret);
  1643. }
  1644. btrfs_set_lock_blocking(eb);
  1645. btrfs_tree_unlock(parent);
  1646. free_extent_buffer(parent);
  1647. parent = eb;
  1648. continue;
  1649. }
  1650. if (!cow) {
  1651. btrfs_tree_unlock(parent);
  1652. free_extent_buffer(parent);
  1653. cow = 1;
  1654. goto again;
  1655. }
  1656. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1657. path->slots[level]);
  1658. btrfs_release_path(path);
  1659. path->lowest_level = level;
  1660. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1661. path->lowest_level = 0;
  1662. BUG_ON(ret);
  1663. /*
  1664. * Info qgroup to trace both subtrees.
  1665. *
  1666. * We must trace both trees.
  1667. * 1) Tree reloc subtree
  1668. * If not traced, we will leak data numbers
  1669. * 2) Fs subtree
  1670. * If not traced, we will double count old data
  1671. * and tree block numbers, if current trans doesn't free
  1672. * data reloc tree inode.
  1673. */
  1674. ret = btrfs_qgroup_trace_subtree_swap(trans, rc->block_group,
  1675. parent, slot, path->nodes[level],
  1676. path->slots[level], last_snapshot);
  1677. if (ret < 0)
  1678. break;
  1679. /*
  1680. * swap blocks in fs tree and reloc tree.
  1681. */
  1682. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1683. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1684. btrfs_mark_buffer_dirty(parent);
  1685. btrfs_set_node_blockptr(path->nodes[level],
  1686. path->slots[level], old_bytenr);
  1687. btrfs_set_node_ptr_generation(path->nodes[level],
  1688. path->slots[level], old_ptr_gen);
  1689. btrfs_mark_buffer_dirty(path->nodes[level]);
  1690. ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
  1691. blocksize, path->nodes[level]->start,
  1692. src->root_key.objectid, level - 1, 0);
  1693. BUG_ON(ret);
  1694. ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
  1695. blocksize, 0, dest->root_key.objectid,
  1696. level - 1, 0);
  1697. BUG_ON(ret);
  1698. ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
  1699. path->nodes[level]->start,
  1700. src->root_key.objectid, level - 1, 0);
  1701. BUG_ON(ret);
  1702. ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
  1703. 0, dest->root_key.objectid, level - 1,
  1704. 0);
  1705. BUG_ON(ret);
  1706. btrfs_unlock_up_safe(path, 0);
  1707. ret = level;
  1708. break;
  1709. }
  1710. btrfs_tree_unlock(parent);
  1711. free_extent_buffer(parent);
  1712. return ret;
  1713. }
  1714. /*
  1715. * helper to find next relocated block in reloc tree
  1716. */
  1717. static noinline_for_stack
  1718. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1719. int *level)
  1720. {
  1721. struct extent_buffer *eb;
  1722. int i;
  1723. u64 last_snapshot;
  1724. u32 nritems;
  1725. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1726. for (i = 0; i < *level; i++) {
  1727. free_extent_buffer(path->nodes[i]);
  1728. path->nodes[i] = NULL;
  1729. }
  1730. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1731. eb = path->nodes[i];
  1732. nritems = btrfs_header_nritems(eb);
  1733. while (path->slots[i] + 1 < nritems) {
  1734. path->slots[i]++;
  1735. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1736. last_snapshot)
  1737. continue;
  1738. *level = i;
  1739. return 0;
  1740. }
  1741. free_extent_buffer(path->nodes[i]);
  1742. path->nodes[i] = NULL;
  1743. }
  1744. return 1;
  1745. }
  1746. /*
  1747. * walk down reloc tree to find relocated block of lowest level
  1748. */
  1749. static noinline_for_stack
  1750. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1751. int *level)
  1752. {
  1753. struct btrfs_fs_info *fs_info = root->fs_info;
  1754. struct extent_buffer *eb = NULL;
  1755. int i;
  1756. u64 bytenr;
  1757. u64 ptr_gen = 0;
  1758. u64 last_snapshot;
  1759. u32 nritems;
  1760. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1761. for (i = *level; i > 0; i--) {
  1762. struct btrfs_key first_key;
  1763. eb = path->nodes[i];
  1764. nritems = btrfs_header_nritems(eb);
  1765. while (path->slots[i] < nritems) {
  1766. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1767. if (ptr_gen > last_snapshot)
  1768. break;
  1769. path->slots[i]++;
  1770. }
  1771. if (path->slots[i] >= nritems) {
  1772. if (i == *level)
  1773. break;
  1774. *level = i + 1;
  1775. return 0;
  1776. }
  1777. if (i == 1) {
  1778. *level = i;
  1779. return 0;
  1780. }
  1781. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1782. btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
  1783. eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
  1784. &first_key);
  1785. if (IS_ERR(eb)) {
  1786. return PTR_ERR(eb);
  1787. } else if (!extent_buffer_uptodate(eb)) {
  1788. free_extent_buffer(eb);
  1789. return -EIO;
  1790. }
  1791. BUG_ON(btrfs_header_level(eb) != i - 1);
  1792. path->nodes[i - 1] = eb;
  1793. path->slots[i - 1] = 0;
  1794. }
  1795. return 1;
  1796. }
  1797. /*
  1798. * invalidate extent cache for file extents whose key in range of
  1799. * [min_key, max_key)
  1800. */
  1801. static int invalidate_extent_cache(struct btrfs_root *root,
  1802. struct btrfs_key *min_key,
  1803. struct btrfs_key *max_key)
  1804. {
  1805. struct btrfs_fs_info *fs_info = root->fs_info;
  1806. struct inode *inode = NULL;
  1807. u64 objectid;
  1808. u64 start, end;
  1809. u64 ino;
  1810. objectid = min_key->objectid;
  1811. while (1) {
  1812. cond_resched();
  1813. iput(inode);
  1814. if (objectid > max_key->objectid)
  1815. break;
  1816. inode = find_next_inode(root, objectid);
  1817. if (!inode)
  1818. break;
  1819. ino = btrfs_ino(BTRFS_I(inode));
  1820. if (ino > max_key->objectid) {
  1821. iput(inode);
  1822. break;
  1823. }
  1824. objectid = ino + 1;
  1825. if (!S_ISREG(inode->i_mode))
  1826. continue;
  1827. if (unlikely(min_key->objectid == ino)) {
  1828. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1829. continue;
  1830. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1831. start = 0;
  1832. else {
  1833. start = min_key->offset;
  1834. WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
  1835. }
  1836. } else {
  1837. start = 0;
  1838. }
  1839. if (unlikely(max_key->objectid == ino)) {
  1840. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1841. continue;
  1842. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1843. end = (u64)-1;
  1844. } else {
  1845. if (max_key->offset == 0)
  1846. continue;
  1847. end = max_key->offset;
  1848. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1849. end--;
  1850. }
  1851. } else {
  1852. end = (u64)-1;
  1853. }
  1854. /* the lock_extent waits for readpage to complete */
  1855. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1856. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
  1857. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1858. }
  1859. return 0;
  1860. }
  1861. static int find_next_key(struct btrfs_path *path, int level,
  1862. struct btrfs_key *key)
  1863. {
  1864. while (level < BTRFS_MAX_LEVEL) {
  1865. if (!path->nodes[level])
  1866. break;
  1867. if (path->slots[level] + 1 <
  1868. btrfs_header_nritems(path->nodes[level])) {
  1869. btrfs_node_key_to_cpu(path->nodes[level], key,
  1870. path->slots[level] + 1);
  1871. return 0;
  1872. }
  1873. level++;
  1874. }
  1875. return 1;
  1876. }
  1877. /*
  1878. * merge the relocated tree blocks in reloc tree with corresponding
  1879. * fs tree.
  1880. */
  1881. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1882. struct btrfs_root *root)
  1883. {
  1884. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  1885. LIST_HEAD(inode_list);
  1886. struct btrfs_key key;
  1887. struct btrfs_key next_key;
  1888. struct btrfs_trans_handle *trans = NULL;
  1889. struct btrfs_root *reloc_root;
  1890. struct btrfs_root_item *root_item;
  1891. struct btrfs_path *path;
  1892. struct extent_buffer *leaf;
  1893. int level;
  1894. int max_level;
  1895. int replaced = 0;
  1896. int ret;
  1897. int err = 0;
  1898. u32 min_reserved;
  1899. path = btrfs_alloc_path();
  1900. if (!path)
  1901. return -ENOMEM;
  1902. path->reada = READA_FORWARD;
  1903. reloc_root = root->reloc_root;
  1904. root_item = &reloc_root->root_item;
  1905. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1906. level = btrfs_root_level(root_item);
  1907. extent_buffer_get(reloc_root->node);
  1908. path->nodes[level] = reloc_root->node;
  1909. path->slots[level] = 0;
  1910. } else {
  1911. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1912. level = root_item->drop_level;
  1913. BUG_ON(level == 0);
  1914. path->lowest_level = level;
  1915. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1916. path->lowest_level = 0;
  1917. if (ret < 0) {
  1918. btrfs_free_path(path);
  1919. return ret;
  1920. }
  1921. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1922. path->slots[level]);
  1923. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1924. btrfs_unlock_up_safe(path, 0);
  1925. }
  1926. min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  1927. memset(&next_key, 0, sizeof(next_key));
  1928. while (1) {
  1929. ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
  1930. BTRFS_RESERVE_FLUSH_ALL);
  1931. if (ret) {
  1932. err = ret;
  1933. goto out;
  1934. }
  1935. trans = btrfs_start_transaction(root, 0);
  1936. if (IS_ERR(trans)) {
  1937. err = PTR_ERR(trans);
  1938. trans = NULL;
  1939. goto out;
  1940. }
  1941. trans->block_rsv = rc->block_rsv;
  1942. replaced = 0;
  1943. max_level = level;
  1944. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1945. if (ret < 0) {
  1946. err = ret;
  1947. goto out;
  1948. }
  1949. if (ret > 0)
  1950. break;
  1951. if (!find_next_key(path, level, &key) &&
  1952. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1953. ret = 0;
  1954. } else {
  1955. ret = replace_path(trans, rc, root, reloc_root, path,
  1956. &next_key, level, max_level);
  1957. }
  1958. if (ret < 0) {
  1959. err = ret;
  1960. goto out;
  1961. }
  1962. if (ret > 0) {
  1963. level = ret;
  1964. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1965. path->slots[level]);
  1966. replaced = 1;
  1967. }
  1968. ret = walk_up_reloc_tree(reloc_root, path, &level);
  1969. if (ret > 0)
  1970. break;
  1971. BUG_ON(level == 0);
  1972. /*
  1973. * save the merging progress in the drop_progress.
  1974. * this is OK since root refs == 1 in this case.
  1975. */
  1976. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  1977. path->slots[level]);
  1978. root_item->drop_level = level;
  1979. btrfs_end_transaction_throttle(trans);
  1980. trans = NULL;
  1981. btrfs_btree_balance_dirty(fs_info);
  1982. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  1983. invalidate_extent_cache(root, &key, &next_key);
  1984. }
  1985. /*
  1986. * handle the case only one block in the fs tree need to be
  1987. * relocated and the block is tree root.
  1988. */
  1989. leaf = btrfs_lock_root_node(root);
  1990. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  1991. btrfs_tree_unlock(leaf);
  1992. free_extent_buffer(leaf);
  1993. if (ret < 0)
  1994. err = ret;
  1995. out:
  1996. btrfs_free_path(path);
  1997. if (err == 0) {
  1998. memset(&root_item->drop_progress, 0,
  1999. sizeof(root_item->drop_progress));
  2000. root_item->drop_level = 0;
  2001. btrfs_set_root_refs(root_item, 0);
  2002. btrfs_update_reloc_root(trans, root);
  2003. }
  2004. if (trans)
  2005. btrfs_end_transaction_throttle(trans);
  2006. btrfs_btree_balance_dirty(fs_info);
  2007. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2008. invalidate_extent_cache(root, &key, &next_key);
  2009. return err;
  2010. }
  2011. static noinline_for_stack
  2012. int prepare_to_merge(struct reloc_control *rc, int err)
  2013. {
  2014. struct btrfs_root *root = rc->extent_root;
  2015. struct btrfs_fs_info *fs_info = root->fs_info;
  2016. struct btrfs_root *reloc_root;
  2017. struct btrfs_trans_handle *trans;
  2018. LIST_HEAD(reloc_roots);
  2019. u64 num_bytes = 0;
  2020. int ret;
  2021. mutex_lock(&fs_info->reloc_mutex);
  2022. rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  2023. rc->merging_rsv_size += rc->nodes_relocated * 2;
  2024. mutex_unlock(&fs_info->reloc_mutex);
  2025. again:
  2026. if (!err) {
  2027. num_bytes = rc->merging_rsv_size;
  2028. ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
  2029. BTRFS_RESERVE_FLUSH_ALL);
  2030. if (ret)
  2031. err = ret;
  2032. }
  2033. trans = btrfs_join_transaction(rc->extent_root);
  2034. if (IS_ERR(trans)) {
  2035. if (!err)
  2036. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2037. num_bytes);
  2038. return PTR_ERR(trans);
  2039. }
  2040. if (!err) {
  2041. if (num_bytes != rc->merging_rsv_size) {
  2042. btrfs_end_transaction(trans);
  2043. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2044. num_bytes);
  2045. goto again;
  2046. }
  2047. }
  2048. rc->merge_reloc_tree = 1;
  2049. while (!list_empty(&rc->reloc_roots)) {
  2050. reloc_root = list_entry(rc->reloc_roots.next,
  2051. struct btrfs_root, root_list);
  2052. list_del_init(&reloc_root->root_list);
  2053. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2054. BUG_ON(IS_ERR(root));
  2055. BUG_ON(root->reloc_root != reloc_root);
  2056. /*
  2057. * set reference count to 1, so btrfs_recover_relocation
  2058. * knows it should resumes merging
  2059. */
  2060. if (!err)
  2061. btrfs_set_root_refs(&reloc_root->root_item, 1);
  2062. btrfs_update_reloc_root(trans, root);
  2063. list_add(&reloc_root->root_list, &reloc_roots);
  2064. }
  2065. list_splice(&reloc_roots, &rc->reloc_roots);
  2066. if (!err)
  2067. btrfs_commit_transaction(trans);
  2068. else
  2069. btrfs_end_transaction(trans);
  2070. return err;
  2071. }
  2072. static noinline_for_stack
  2073. void free_reloc_roots(struct list_head *list)
  2074. {
  2075. struct btrfs_root *reloc_root;
  2076. while (!list_empty(list)) {
  2077. reloc_root = list_entry(list->next, struct btrfs_root,
  2078. root_list);
  2079. __del_reloc_root(reloc_root);
  2080. free_extent_buffer(reloc_root->node);
  2081. free_extent_buffer(reloc_root->commit_root);
  2082. reloc_root->node = NULL;
  2083. reloc_root->commit_root = NULL;
  2084. }
  2085. }
  2086. static noinline_for_stack
  2087. void merge_reloc_roots(struct reloc_control *rc)
  2088. {
  2089. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2090. struct btrfs_root *root;
  2091. struct btrfs_root *reloc_root;
  2092. LIST_HEAD(reloc_roots);
  2093. int found = 0;
  2094. int ret = 0;
  2095. again:
  2096. root = rc->extent_root;
  2097. /*
  2098. * this serializes us with btrfs_record_root_in_transaction,
  2099. * we have to make sure nobody is in the middle of
  2100. * adding their roots to the list while we are
  2101. * doing this splice
  2102. */
  2103. mutex_lock(&fs_info->reloc_mutex);
  2104. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2105. mutex_unlock(&fs_info->reloc_mutex);
  2106. while (!list_empty(&reloc_roots)) {
  2107. found = 1;
  2108. reloc_root = list_entry(reloc_roots.next,
  2109. struct btrfs_root, root_list);
  2110. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  2111. root = read_fs_root(fs_info,
  2112. reloc_root->root_key.offset);
  2113. BUG_ON(IS_ERR(root));
  2114. BUG_ON(root->reloc_root != reloc_root);
  2115. ret = merge_reloc_root(rc, root);
  2116. if (ret) {
  2117. if (list_empty(&reloc_root->root_list))
  2118. list_add_tail(&reloc_root->root_list,
  2119. &reloc_roots);
  2120. goto out;
  2121. }
  2122. } else {
  2123. list_del_init(&reloc_root->root_list);
  2124. }
  2125. ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
  2126. if (ret < 0) {
  2127. if (list_empty(&reloc_root->root_list))
  2128. list_add_tail(&reloc_root->root_list,
  2129. &reloc_roots);
  2130. goto out;
  2131. }
  2132. }
  2133. if (found) {
  2134. found = 0;
  2135. goto again;
  2136. }
  2137. out:
  2138. if (ret) {
  2139. btrfs_handle_fs_error(fs_info, ret, NULL);
  2140. if (!list_empty(&reloc_roots))
  2141. free_reloc_roots(&reloc_roots);
  2142. /* new reloc root may be added */
  2143. mutex_lock(&fs_info->reloc_mutex);
  2144. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2145. mutex_unlock(&fs_info->reloc_mutex);
  2146. if (!list_empty(&reloc_roots))
  2147. free_reloc_roots(&reloc_roots);
  2148. }
  2149. BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  2150. }
  2151. static void free_block_list(struct rb_root *blocks)
  2152. {
  2153. struct tree_block *block;
  2154. struct rb_node *rb_node;
  2155. while ((rb_node = rb_first(blocks))) {
  2156. block = rb_entry(rb_node, struct tree_block, rb_node);
  2157. rb_erase(rb_node, blocks);
  2158. kfree(block);
  2159. }
  2160. }
  2161. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  2162. struct btrfs_root *reloc_root)
  2163. {
  2164. struct btrfs_fs_info *fs_info = reloc_root->fs_info;
  2165. struct btrfs_root *root;
  2166. if (reloc_root->last_trans == trans->transid)
  2167. return 0;
  2168. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2169. BUG_ON(IS_ERR(root));
  2170. BUG_ON(root->reloc_root != reloc_root);
  2171. return btrfs_record_root_in_trans(trans, root);
  2172. }
  2173. static noinline_for_stack
  2174. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  2175. struct reloc_control *rc,
  2176. struct backref_node *node,
  2177. struct backref_edge *edges[])
  2178. {
  2179. struct backref_node *next;
  2180. struct btrfs_root *root;
  2181. int index = 0;
  2182. next = node;
  2183. while (1) {
  2184. cond_resched();
  2185. next = walk_up_backref(next, edges, &index);
  2186. root = next->root;
  2187. BUG_ON(!root);
  2188. BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
  2189. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2190. record_reloc_root_in_trans(trans, root);
  2191. break;
  2192. }
  2193. btrfs_record_root_in_trans(trans, root);
  2194. root = root->reloc_root;
  2195. if (next->new_bytenr != root->node->start) {
  2196. BUG_ON(next->new_bytenr);
  2197. BUG_ON(!list_empty(&next->list));
  2198. next->new_bytenr = root->node->start;
  2199. next->root = root;
  2200. list_add_tail(&next->list,
  2201. &rc->backref_cache.changed);
  2202. __mark_block_processed(rc, next);
  2203. break;
  2204. }
  2205. WARN_ON(1);
  2206. root = NULL;
  2207. next = walk_down_backref(edges, &index);
  2208. if (!next || next->level <= node->level)
  2209. break;
  2210. }
  2211. if (!root)
  2212. return NULL;
  2213. next = node;
  2214. /* setup backref node path for btrfs_reloc_cow_block */
  2215. while (1) {
  2216. rc->backref_cache.path[next->level] = next;
  2217. if (--index < 0)
  2218. break;
  2219. next = edges[index]->node[UPPER];
  2220. }
  2221. return root;
  2222. }
  2223. /*
  2224. * select a tree root for relocation. return NULL if the block
  2225. * is reference counted. we should use do_relocation() in this
  2226. * case. return a tree root pointer if the block isn't reference
  2227. * counted. return -ENOENT if the block is root of reloc tree.
  2228. */
  2229. static noinline_for_stack
  2230. struct btrfs_root *select_one_root(struct backref_node *node)
  2231. {
  2232. struct backref_node *next;
  2233. struct btrfs_root *root;
  2234. struct btrfs_root *fs_root = NULL;
  2235. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2236. int index = 0;
  2237. next = node;
  2238. while (1) {
  2239. cond_resched();
  2240. next = walk_up_backref(next, edges, &index);
  2241. root = next->root;
  2242. BUG_ON(!root);
  2243. /* no other choice for non-references counted tree */
  2244. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  2245. return root;
  2246. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
  2247. fs_root = root;
  2248. if (next != node)
  2249. return NULL;
  2250. next = walk_down_backref(edges, &index);
  2251. if (!next || next->level <= node->level)
  2252. break;
  2253. }
  2254. if (!fs_root)
  2255. return ERR_PTR(-ENOENT);
  2256. return fs_root;
  2257. }
  2258. static noinline_for_stack
  2259. u64 calcu_metadata_size(struct reloc_control *rc,
  2260. struct backref_node *node, int reserve)
  2261. {
  2262. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2263. struct backref_node *next = node;
  2264. struct backref_edge *edge;
  2265. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2266. u64 num_bytes = 0;
  2267. int index = 0;
  2268. BUG_ON(reserve && node->processed);
  2269. while (next) {
  2270. cond_resched();
  2271. while (1) {
  2272. if (next->processed && (reserve || next != node))
  2273. break;
  2274. num_bytes += fs_info->nodesize;
  2275. if (list_empty(&next->upper))
  2276. break;
  2277. edge = list_entry(next->upper.next,
  2278. struct backref_edge, list[LOWER]);
  2279. edges[index++] = edge;
  2280. next = edge->node[UPPER];
  2281. }
  2282. next = walk_down_backref(edges, &index);
  2283. }
  2284. return num_bytes;
  2285. }
  2286. static int reserve_metadata_space(struct btrfs_trans_handle *trans,
  2287. struct reloc_control *rc,
  2288. struct backref_node *node)
  2289. {
  2290. struct btrfs_root *root = rc->extent_root;
  2291. struct btrfs_fs_info *fs_info = root->fs_info;
  2292. u64 num_bytes;
  2293. int ret;
  2294. u64 tmp;
  2295. num_bytes = calcu_metadata_size(rc, node, 1) * 2;
  2296. trans->block_rsv = rc->block_rsv;
  2297. rc->reserved_bytes += num_bytes;
  2298. /*
  2299. * We are under a transaction here so we can only do limited flushing.
  2300. * If we get an enospc just kick back -EAGAIN so we know to drop the
  2301. * transaction and try to refill when we can flush all the things.
  2302. */
  2303. ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
  2304. BTRFS_RESERVE_FLUSH_LIMIT);
  2305. if (ret) {
  2306. tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
  2307. while (tmp <= rc->reserved_bytes)
  2308. tmp <<= 1;
  2309. /*
  2310. * only one thread can access block_rsv at this point,
  2311. * so we don't need hold lock to protect block_rsv.
  2312. * we expand more reservation size here to allow enough
  2313. * space for relocation and we will return eailer in
  2314. * enospc case.
  2315. */
  2316. rc->block_rsv->size = tmp + fs_info->nodesize *
  2317. RELOCATION_RESERVED_NODES;
  2318. return -EAGAIN;
  2319. }
  2320. return 0;
  2321. }
  2322. /*
  2323. * relocate a block tree, and then update pointers in upper level
  2324. * blocks that reference the block to point to the new location.
  2325. *
  2326. * if called by link_to_upper, the block has already been relocated.
  2327. * in that case this function just updates pointers.
  2328. */
  2329. static int do_relocation(struct btrfs_trans_handle *trans,
  2330. struct reloc_control *rc,
  2331. struct backref_node *node,
  2332. struct btrfs_key *key,
  2333. struct btrfs_path *path, int lowest)
  2334. {
  2335. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2336. struct backref_node *upper;
  2337. struct backref_edge *edge;
  2338. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2339. struct btrfs_root *root;
  2340. struct extent_buffer *eb;
  2341. u32 blocksize;
  2342. u64 bytenr;
  2343. u64 generation;
  2344. int slot;
  2345. int ret;
  2346. int err = 0;
  2347. BUG_ON(lowest && node->eb);
  2348. path->lowest_level = node->level + 1;
  2349. rc->backref_cache.path[node->level] = node;
  2350. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  2351. struct btrfs_key first_key;
  2352. cond_resched();
  2353. upper = edge->node[UPPER];
  2354. root = select_reloc_root(trans, rc, upper, edges);
  2355. BUG_ON(!root);
  2356. if (upper->eb && !upper->locked) {
  2357. if (!lowest) {
  2358. ret = btrfs_bin_search(upper->eb, key,
  2359. upper->level, &slot);
  2360. BUG_ON(ret);
  2361. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2362. if (node->eb->start == bytenr)
  2363. goto next;
  2364. }
  2365. drop_node_buffer(upper);
  2366. }
  2367. if (!upper->eb) {
  2368. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2369. if (ret) {
  2370. if (ret < 0)
  2371. err = ret;
  2372. else
  2373. err = -ENOENT;
  2374. btrfs_release_path(path);
  2375. break;
  2376. }
  2377. if (!upper->eb) {
  2378. upper->eb = path->nodes[upper->level];
  2379. path->nodes[upper->level] = NULL;
  2380. } else {
  2381. BUG_ON(upper->eb != path->nodes[upper->level]);
  2382. }
  2383. upper->locked = 1;
  2384. path->locks[upper->level] = 0;
  2385. slot = path->slots[upper->level];
  2386. btrfs_release_path(path);
  2387. } else {
  2388. ret = btrfs_bin_search(upper->eb, key, upper->level,
  2389. &slot);
  2390. BUG_ON(ret);
  2391. }
  2392. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2393. if (lowest) {
  2394. if (bytenr != node->bytenr) {
  2395. btrfs_err(root->fs_info,
  2396. "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
  2397. bytenr, node->bytenr, slot,
  2398. upper->eb->start);
  2399. err = -EIO;
  2400. goto next;
  2401. }
  2402. } else {
  2403. if (node->eb->start == bytenr)
  2404. goto next;
  2405. }
  2406. blocksize = root->fs_info->nodesize;
  2407. generation = btrfs_node_ptr_generation(upper->eb, slot);
  2408. btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
  2409. eb = read_tree_block(fs_info, bytenr, generation,
  2410. upper->level - 1, &first_key);
  2411. if (IS_ERR(eb)) {
  2412. err = PTR_ERR(eb);
  2413. goto next;
  2414. } else if (!extent_buffer_uptodate(eb)) {
  2415. free_extent_buffer(eb);
  2416. err = -EIO;
  2417. goto next;
  2418. }
  2419. btrfs_tree_lock(eb);
  2420. btrfs_set_lock_blocking(eb);
  2421. if (!node->eb) {
  2422. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  2423. slot, &eb);
  2424. btrfs_tree_unlock(eb);
  2425. free_extent_buffer(eb);
  2426. if (ret < 0) {
  2427. err = ret;
  2428. goto next;
  2429. }
  2430. BUG_ON(node->eb != eb);
  2431. } else {
  2432. btrfs_set_node_blockptr(upper->eb, slot,
  2433. node->eb->start);
  2434. btrfs_set_node_ptr_generation(upper->eb, slot,
  2435. trans->transid);
  2436. btrfs_mark_buffer_dirty(upper->eb);
  2437. ret = btrfs_inc_extent_ref(trans, root,
  2438. node->eb->start, blocksize,
  2439. upper->eb->start,
  2440. btrfs_header_owner(upper->eb),
  2441. node->level, 0);
  2442. BUG_ON(ret);
  2443. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  2444. BUG_ON(ret);
  2445. }
  2446. next:
  2447. if (!upper->pending)
  2448. drop_node_buffer(upper);
  2449. else
  2450. unlock_node_buffer(upper);
  2451. if (err)
  2452. break;
  2453. }
  2454. if (!err && node->pending) {
  2455. drop_node_buffer(node);
  2456. list_move_tail(&node->list, &rc->backref_cache.changed);
  2457. node->pending = 0;
  2458. }
  2459. path->lowest_level = 0;
  2460. BUG_ON(err == -ENOSPC);
  2461. return err;
  2462. }
  2463. static int link_to_upper(struct btrfs_trans_handle *trans,
  2464. struct reloc_control *rc,
  2465. struct backref_node *node,
  2466. struct btrfs_path *path)
  2467. {
  2468. struct btrfs_key key;
  2469. btrfs_node_key_to_cpu(node->eb, &key, 0);
  2470. return do_relocation(trans, rc, node, &key, path, 0);
  2471. }
  2472. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  2473. struct reloc_control *rc,
  2474. struct btrfs_path *path, int err)
  2475. {
  2476. LIST_HEAD(list);
  2477. struct backref_cache *cache = &rc->backref_cache;
  2478. struct backref_node *node;
  2479. int level;
  2480. int ret;
  2481. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  2482. while (!list_empty(&cache->pending[level])) {
  2483. node = list_entry(cache->pending[level].next,
  2484. struct backref_node, list);
  2485. list_move_tail(&node->list, &list);
  2486. BUG_ON(!node->pending);
  2487. if (!err) {
  2488. ret = link_to_upper(trans, rc, node, path);
  2489. if (ret < 0)
  2490. err = ret;
  2491. }
  2492. }
  2493. list_splice_init(&list, &cache->pending[level]);
  2494. }
  2495. return err;
  2496. }
  2497. static void mark_block_processed(struct reloc_control *rc,
  2498. u64 bytenr, u32 blocksize)
  2499. {
  2500. set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
  2501. EXTENT_DIRTY);
  2502. }
  2503. static void __mark_block_processed(struct reloc_control *rc,
  2504. struct backref_node *node)
  2505. {
  2506. u32 blocksize;
  2507. if (node->level == 0 ||
  2508. in_block_group(node->bytenr, rc->block_group)) {
  2509. blocksize = rc->extent_root->fs_info->nodesize;
  2510. mark_block_processed(rc, node->bytenr, blocksize);
  2511. }
  2512. node->processed = 1;
  2513. }
  2514. /*
  2515. * mark a block and all blocks directly/indirectly reference the block
  2516. * as processed.
  2517. */
  2518. static void update_processed_blocks(struct reloc_control *rc,
  2519. struct backref_node *node)
  2520. {
  2521. struct backref_node *next = node;
  2522. struct backref_edge *edge;
  2523. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2524. int index = 0;
  2525. while (next) {
  2526. cond_resched();
  2527. while (1) {
  2528. if (next->processed)
  2529. break;
  2530. __mark_block_processed(rc, next);
  2531. if (list_empty(&next->upper))
  2532. break;
  2533. edge = list_entry(next->upper.next,
  2534. struct backref_edge, list[LOWER]);
  2535. edges[index++] = edge;
  2536. next = edge->node[UPPER];
  2537. }
  2538. next = walk_down_backref(edges, &index);
  2539. }
  2540. }
  2541. static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
  2542. {
  2543. u32 blocksize = rc->extent_root->fs_info->nodesize;
  2544. if (test_range_bit(&rc->processed_blocks, bytenr,
  2545. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  2546. return 1;
  2547. return 0;
  2548. }
  2549. static int get_tree_block_key(struct btrfs_fs_info *fs_info,
  2550. struct tree_block *block)
  2551. {
  2552. struct extent_buffer *eb;
  2553. BUG_ON(block->key_ready);
  2554. eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
  2555. block->level, NULL);
  2556. if (IS_ERR(eb)) {
  2557. return PTR_ERR(eb);
  2558. } else if (!extent_buffer_uptodate(eb)) {
  2559. free_extent_buffer(eb);
  2560. return -EIO;
  2561. }
  2562. if (block->level == 0)
  2563. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2564. else
  2565. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2566. free_extent_buffer(eb);
  2567. block->key_ready = 1;
  2568. return 0;
  2569. }
  2570. /*
  2571. * helper function to relocate a tree block
  2572. */
  2573. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2574. struct reloc_control *rc,
  2575. struct backref_node *node,
  2576. struct btrfs_key *key,
  2577. struct btrfs_path *path)
  2578. {
  2579. struct btrfs_root *root;
  2580. int ret = 0;
  2581. if (!node)
  2582. return 0;
  2583. BUG_ON(node->processed);
  2584. root = select_one_root(node);
  2585. if (root == ERR_PTR(-ENOENT)) {
  2586. update_processed_blocks(rc, node);
  2587. goto out;
  2588. }
  2589. if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2590. ret = reserve_metadata_space(trans, rc, node);
  2591. if (ret)
  2592. goto out;
  2593. }
  2594. if (root) {
  2595. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2596. BUG_ON(node->new_bytenr);
  2597. BUG_ON(!list_empty(&node->list));
  2598. btrfs_record_root_in_trans(trans, root);
  2599. root = root->reloc_root;
  2600. node->new_bytenr = root->node->start;
  2601. node->root = root;
  2602. list_add_tail(&node->list, &rc->backref_cache.changed);
  2603. } else {
  2604. path->lowest_level = node->level;
  2605. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2606. btrfs_release_path(path);
  2607. if (ret > 0)
  2608. ret = 0;
  2609. }
  2610. if (!ret)
  2611. update_processed_blocks(rc, node);
  2612. } else {
  2613. ret = do_relocation(trans, rc, node, key, path, 1);
  2614. }
  2615. out:
  2616. if (ret || node->level == 0 || node->cowonly)
  2617. remove_backref_node(&rc->backref_cache, node);
  2618. return ret;
  2619. }
  2620. /*
  2621. * relocate a list of blocks
  2622. */
  2623. static noinline_for_stack
  2624. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2625. struct reloc_control *rc, struct rb_root *blocks)
  2626. {
  2627. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2628. struct backref_node *node;
  2629. struct btrfs_path *path;
  2630. struct tree_block *block;
  2631. struct tree_block *next;
  2632. int ret;
  2633. int err = 0;
  2634. path = btrfs_alloc_path();
  2635. if (!path) {
  2636. err = -ENOMEM;
  2637. goto out_free_blocks;
  2638. }
  2639. /* Kick in readahead for tree blocks with missing keys */
  2640. rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
  2641. if (!block->key_ready)
  2642. readahead_tree_block(fs_info, block->bytenr);
  2643. }
  2644. /* Get first keys */
  2645. rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
  2646. if (!block->key_ready) {
  2647. err = get_tree_block_key(fs_info, block);
  2648. if (err)
  2649. goto out_free_path;
  2650. }
  2651. }
  2652. /* Do tree relocation */
  2653. rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
  2654. node = build_backref_tree(rc, &block->key,
  2655. block->level, block->bytenr);
  2656. if (IS_ERR(node)) {
  2657. err = PTR_ERR(node);
  2658. goto out;
  2659. }
  2660. ret = relocate_tree_block(trans, rc, node, &block->key,
  2661. path);
  2662. if (ret < 0) {
  2663. if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
  2664. err = ret;
  2665. goto out;
  2666. }
  2667. }
  2668. out:
  2669. err = finish_pending_nodes(trans, rc, path, err);
  2670. out_free_path:
  2671. btrfs_free_path(path);
  2672. out_free_blocks:
  2673. free_block_list(blocks);
  2674. return err;
  2675. }
  2676. static noinline_for_stack
  2677. int prealloc_file_extent_cluster(struct inode *inode,
  2678. struct file_extent_cluster *cluster)
  2679. {
  2680. u64 alloc_hint = 0;
  2681. u64 start;
  2682. u64 end;
  2683. u64 offset = BTRFS_I(inode)->index_cnt;
  2684. u64 num_bytes;
  2685. int nr = 0;
  2686. int ret = 0;
  2687. u64 prealloc_start = cluster->start - offset;
  2688. u64 prealloc_end = cluster->end - offset;
  2689. u64 cur_offset;
  2690. struct extent_changeset *data_reserved = NULL;
  2691. BUG_ON(cluster->start != cluster->boundary[0]);
  2692. inode_lock(inode);
  2693. ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
  2694. prealloc_end + 1 - prealloc_start);
  2695. if (ret)
  2696. goto out;
  2697. cur_offset = prealloc_start;
  2698. while (nr < cluster->nr) {
  2699. start = cluster->boundary[nr] - offset;
  2700. if (nr + 1 < cluster->nr)
  2701. end = cluster->boundary[nr + 1] - 1 - offset;
  2702. else
  2703. end = cluster->end - offset;
  2704. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2705. num_bytes = end + 1 - start;
  2706. if (cur_offset < start)
  2707. btrfs_free_reserved_data_space(inode, data_reserved,
  2708. cur_offset, start - cur_offset);
  2709. ret = btrfs_prealloc_file_range(inode, 0, start,
  2710. num_bytes, num_bytes,
  2711. end + 1, &alloc_hint);
  2712. cur_offset = end + 1;
  2713. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2714. if (ret)
  2715. break;
  2716. nr++;
  2717. }
  2718. if (cur_offset < prealloc_end)
  2719. btrfs_free_reserved_data_space(inode, data_reserved,
  2720. cur_offset, prealloc_end + 1 - cur_offset);
  2721. out:
  2722. inode_unlock(inode);
  2723. extent_changeset_free(data_reserved);
  2724. return ret;
  2725. }
  2726. static noinline_for_stack
  2727. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2728. u64 block_start)
  2729. {
  2730. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2731. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2732. struct extent_map *em;
  2733. int ret = 0;
  2734. em = alloc_extent_map();
  2735. if (!em)
  2736. return -ENOMEM;
  2737. em->start = start;
  2738. em->len = end + 1 - start;
  2739. em->block_len = em->len;
  2740. em->block_start = block_start;
  2741. em->bdev = fs_info->fs_devices->latest_bdev;
  2742. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2743. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2744. while (1) {
  2745. write_lock(&em_tree->lock);
  2746. ret = add_extent_mapping(em_tree, em, 0);
  2747. write_unlock(&em_tree->lock);
  2748. if (ret != -EEXIST) {
  2749. free_extent_map(em);
  2750. break;
  2751. }
  2752. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
  2753. }
  2754. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2755. return ret;
  2756. }
  2757. static int relocate_file_extent_cluster(struct inode *inode,
  2758. struct file_extent_cluster *cluster)
  2759. {
  2760. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2761. u64 page_start;
  2762. u64 page_end;
  2763. u64 offset = BTRFS_I(inode)->index_cnt;
  2764. unsigned long index;
  2765. unsigned long last_index;
  2766. struct page *page;
  2767. struct file_ra_state *ra;
  2768. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  2769. int nr = 0;
  2770. int ret = 0;
  2771. if (!cluster->nr)
  2772. return 0;
  2773. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2774. if (!ra)
  2775. return -ENOMEM;
  2776. ret = prealloc_file_extent_cluster(inode, cluster);
  2777. if (ret)
  2778. goto out;
  2779. file_ra_state_init(ra, inode->i_mapping);
  2780. ret = setup_extent_mapping(inode, cluster->start - offset,
  2781. cluster->end - offset, cluster->start);
  2782. if (ret)
  2783. goto out;
  2784. index = (cluster->start - offset) >> PAGE_SHIFT;
  2785. last_index = (cluster->end - offset) >> PAGE_SHIFT;
  2786. while (index <= last_index) {
  2787. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  2788. PAGE_SIZE);
  2789. if (ret)
  2790. goto out;
  2791. page = find_lock_page(inode->i_mapping, index);
  2792. if (!page) {
  2793. page_cache_sync_readahead(inode->i_mapping,
  2794. ra, NULL, index,
  2795. last_index + 1 - index);
  2796. page = find_or_create_page(inode->i_mapping, index,
  2797. mask);
  2798. if (!page) {
  2799. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2800. PAGE_SIZE, true);
  2801. ret = -ENOMEM;
  2802. goto out;
  2803. }
  2804. }
  2805. if (PageReadahead(page)) {
  2806. page_cache_async_readahead(inode->i_mapping,
  2807. ra, NULL, page, index,
  2808. last_index + 1 - index);
  2809. }
  2810. if (!PageUptodate(page)) {
  2811. btrfs_readpage(NULL, page);
  2812. lock_page(page);
  2813. if (!PageUptodate(page)) {
  2814. unlock_page(page);
  2815. put_page(page);
  2816. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2817. PAGE_SIZE, true);
  2818. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2819. PAGE_SIZE, true);
  2820. ret = -EIO;
  2821. goto out;
  2822. }
  2823. }
  2824. page_start = page_offset(page);
  2825. page_end = page_start + PAGE_SIZE - 1;
  2826. lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
  2827. set_page_extent_mapped(page);
  2828. if (nr < cluster->nr &&
  2829. page_start + offset == cluster->boundary[nr]) {
  2830. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2831. page_start, page_end,
  2832. EXTENT_BOUNDARY);
  2833. nr++;
  2834. }
  2835. ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
  2836. NULL, 0);
  2837. if (ret) {
  2838. unlock_page(page);
  2839. put_page(page);
  2840. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2841. PAGE_SIZE, true);
  2842. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2843. PAGE_SIZE, true);
  2844. clear_extent_bits(&BTRFS_I(inode)->io_tree,
  2845. page_start, page_end,
  2846. EXTENT_LOCKED | EXTENT_BOUNDARY);
  2847. goto out;
  2848. }
  2849. set_page_dirty(page);
  2850. unlock_extent(&BTRFS_I(inode)->io_tree,
  2851. page_start, page_end);
  2852. unlock_page(page);
  2853. put_page(page);
  2854. index++;
  2855. btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
  2856. false);
  2857. balance_dirty_pages_ratelimited(inode->i_mapping);
  2858. btrfs_throttle(fs_info);
  2859. }
  2860. WARN_ON(nr != cluster->nr);
  2861. out:
  2862. kfree(ra);
  2863. return ret;
  2864. }
  2865. static noinline_for_stack
  2866. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2867. struct file_extent_cluster *cluster)
  2868. {
  2869. int ret;
  2870. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2871. ret = relocate_file_extent_cluster(inode, cluster);
  2872. if (ret)
  2873. return ret;
  2874. cluster->nr = 0;
  2875. }
  2876. if (!cluster->nr)
  2877. cluster->start = extent_key->objectid;
  2878. else
  2879. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2880. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2881. cluster->boundary[cluster->nr] = extent_key->objectid;
  2882. cluster->nr++;
  2883. if (cluster->nr >= MAX_EXTENTS) {
  2884. ret = relocate_file_extent_cluster(inode, cluster);
  2885. if (ret)
  2886. return ret;
  2887. cluster->nr = 0;
  2888. }
  2889. return 0;
  2890. }
  2891. /*
  2892. * helper to add a tree block to the list.
  2893. * the major work is getting the generation and level of the block
  2894. */
  2895. static int add_tree_block(struct reloc_control *rc,
  2896. struct btrfs_key *extent_key,
  2897. struct btrfs_path *path,
  2898. struct rb_root *blocks)
  2899. {
  2900. struct extent_buffer *eb;
  2901. struct btrfs_extent_item *ei;
  2902. struct btrfs_tree_block_info *bi;
  2903. struct tree_block *block;
  2904. struct rb_node *rb_node;
  2905. u32 item_size;
  2906. int level = -1;
  2907. u64 generation;
  2908. eb = path->nodes[0];
  2909. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2910. if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
  2911. item_size >= sizeof(*ei) + sizeof(*bi)) {
  2912. ei = btrfs_item_ptr(eb, path->slots[0],
  2913. struct btrfs_extent_item);
  2914. if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
  2915. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2916. level = btrfs_tree_block_level(eb, bi);
  2917. } else {
  2918. level = (int)extent_key->offset;
  2919. }
  2920. generation = btrfs_extent_generation(eb, ei);
  2921. } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
  2922. btrfs_print_v0_err(eb->fs_info);
  2923. btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
  2924. return -EINVAL;
  2925. } else {
  2926. BUG();
  2927. }
  2928. btrfs_release_path(path);
  2929. BUG_ON(level == -1);
  2930. block = kmalloc(sizeof(*block), GFP_NOFS);
  2931. if (!block)
  2932. return -ENOMEM;
  2933. block->bytenr = extent_key->objectid;
  2934. block->key.objectid = rc->extent_root->fs_info->nodesize;
  2935. block->key.offset = generation;
  2936. block->level = level;
  2937. block->key_ready = 0;
  2938. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  2939. if (rb_node)
  2940. backref_tree_panic(rb_node, -EEXIST, block->bytenr);
  2941. return 0;
  2942. }
  2943. /*
  2944. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  2945. */
  2946. static int __add_tree_block(struct reloc_control *rc,
  2947. u64 bytenr, u32 blocksize,
  2948. struct rb_root *blocks)
  2949. {
  2950. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2951. struct btrfs_path *path;
  2952. struct btrfs_key key;
  2953. int ret;
  2954. bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
  2955. if (tree_block_processed(bytenr, rc))
  2956. return 0;
  2957. if (tree_search(blocks, bytenr))
  2958. return 0;
  2959. path = btrfs_alloc_path();
  2960. if (!path)
  2961. return -ENOMEM;
  2962. again:
  2963. key.objectid = bytenr;
  2964. if (skinny) {
  2965. key.type = BTRFS_METADATA_ITEM_KEY;
  2966. key.offset = (u64)-1;
  2967. } else {
  2968. key.type = BTRFS_EXTENT_ITEM_KEY;
  2969. key.offset = blocksize;
  2970. }
  2971. path->search_commit_root = 1;
  2972. path->skip_locking = 1;
  2973. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  2974. if (ret < 0)
  2975. goto out;
  2976. if (ret > 0 && skinny) {
  2977. if (path->slots[0]) {
  2978. path->slots[0]--;
  2979. btrfs_item_key_to_cpu(path->nodes[0], &key,
  2980. path->slots[0]);
  2981. if (key.objectid == bytenr &&
  2982. (key.type == BTRFS_METADATA_ITEM_KEY ||
  2983. (key.type == BTRFS_EXTENT_ITEM_KEY &&
  2984. key.offset == blocksize)))
  2985. ret = 0;
  2986. }
  2987. if (ret) {
  2988. skinny = false;
  2989. btrfs_release_path(path);
  2990. goto again;
  2991. }
  2992. }
  2993. if (ret) {
  2994. ASSERT(ret == 1);
  2995. btrfs_print_leaf(path->nodes[0]);
  2996. btrfs_err(fs_info,
  2997. "tree block extent item (%llu) is not found in extent tree",
  2998. bytenr);
  2999. WARN_ON(1);
  3000. ret = -EINVAL;
  3001. goto out;
  3002. }
  3003. ret = add_tree_block(rc, &key, path, blocks);
  3004. out:
  3005. btrfs_free_path(path);
  3006. return ret;
  3007. }
  3008. /*
  3009. * helper to check if the block use full backrefs for pointers in it
  3010. */
  3011. static int block_use_full_backref(struct reloc_control *rc,
  3012. struct extent_buffer *eb)
  3013. {
  3014. u64 flags;
  3015. int ret;
  3016. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  3017. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  3018. return 1;
  3019. ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
  3020. eb->start, btrfs_header_level(eb), 1,
  3021. NULL, &flags);
  3022. BUG_ON(ret);
  3023. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  3024. ret = 1;
  3025. else
  3026. ret = 0;
  3027. return ret;
  3028. }
  3029. static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
  3030. struct btrfs_block_group_cache *block_group,
  3031. struct inode *inode,
  3032. u64 ino)
  3033. {
  3034. struct btrfs_key key;
  3035. struct btrfs_root *root = fs_info->tree_root;
  3036. struct btrfs_trans_handle *trans;
  3037. int ret = 0;
  3038. if (inode)
  3039. goto truncate;
  3040. key.objectid = ino;
  3041. key.type = BTRFS_INODE_ITEM_KEY;
  3042. key.offset = 0;
  3043. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3044. if (IS_ERR(inode))
  3045. return -ENOENT;
  3046. truncate:
  3047. ret = btrfs_check_trunc_cache_free_space(fs_info,
  3048. &fs_info->global_block_rsv);
  3049. if (ret)
  3050. goto out;
  3051. trans = btrfs_join_transaction(root);
  3052. if (IS_ERR(trans)) {
  3053. ret = PTR_ERR(trans);
  3054. goto out;
  3055. }
  3056. ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
  3057. btrfs_end_transaction(trans);
  3058. btrfs_btree_balance_dirty(fs_info);
  3059. out:
  3060. iput(inode);
  3061. return ret;
  3062. }
  3063. /*
  3064. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  3065. * this function scans fs tree to find blocks reference the data extent
  3066. */
  3067. static int find_data_references(struct reloc_control *rc,
  3068. struct btrfs_key *extent_key,
  3069. struct extent_buffer *leaf,
  3070. struct btrfs_extent_data_ref *ref,
  3071. struct rb_root *blocks)
  3072. {
  3073. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3074. struct btrfs_path *path;
  3075. struct tree_block *block;
  3076. struct btrfs_root *root;
  3077. struct btrfs_file_extent_item *fi;
  3078. struct rb_node *rb_node;
  3079. struct btrfs_key key;
  3080. u64 ref_root;
  3081. u64 ref_objectid;
  3082. u64 ref_offset;
  3083. u32 ref_count;
  3084. u32 nritems;
  3085. int err = 0;
  3086. int added = 0;
  3087. int counted;
  3088. int ret;
  3089. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  3090. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  3091. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  3092. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  3093. /*
  3094. * This is an extent belonging to the free space cache, lets just delete
  3095. * it and redo the search.
  3096. */
  3097. if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
  3098. ret = delete_block_group_cache(fs_info, rc->block_group,
  3099. NULL, ref_objectid);
  3100. if (ret != -ENOENT)
  3101. return ret;
  3102. ret = 0;
  3103. }
  3104. path = btrfs_alloc_path();
  3105. if (!path)
  3106. return -ENOMEM;
  3107. path->reada = READA_FORWARD;
  3108. root = read_fs_root(fs_info, ref_root);
  3109. if (IS_ERR(root)) {
  3110. err = PTR_ERR(root);
  3111. goto out;
  3112. }
  3113. key.objectid = ref_objectid;
  3114. key.type = BTRFS_EXTENT_DATA_KEY;
  3115. if (ref_offset > ((u64)-1 << 32))
  3116. key.offset = 0;
  3117. else
  3118. key.offset = ref_offset;
  3119. path->search_commit_root = 1;
  3120. path->skip_locking = 1;
  3121. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3122. if (ret < 0) {
  3123. err = ret;
  3124. goto out;
  3125. }
  3126. leaf = path->nodes[0];
  3127. nritems = btrfs_header_nritems(leaf);
  3128. /*
  3129. * the references in tree blocks that use full backrefs
  3130. * are not counted in
  3131. */
  3132. if (block_use_full_backref(rc, leaf))
  3133. counted = 0;
  3134. else
  3135. counted = 1;
  3136. rb_node = tree_search(blocks, leaf->start);
  3137. if (rb_node) {
  3138. if (counted)
  3139. added = 1;
  3140. else
  3141. path->slots[0] = nritems;
  3142. }
  3143. while (ref_count > 0) {
  3144. while (path->slots[0] >= nritems) {
  3145. ret = btrfs_next_leaf(root, path);
  3146. if (ret < 0) {
  3147. err = ret;
  3148. goto out;
  3149. }
  3150. if (WARN_ON(ret > 0))
  3151. goto out;
  3152. leaf = path->nodes[0];
  3153. nritems = btrfs_header_nritems(leaf);
  3154. added = 0;
  3155. if (block_use_full_backref(rc, leaf))
  3156. counted = 0;
  3157. else
  3158. counted = 1;
  3159. rb_node = tree_search(blocks, leaf->start);
  3160. if (rb_node) {
  3161. if (counted)
  3162. added = 1;
  3163. else
  3164. path->slots[0] = nritems;
  3165. }
  3166. }
  3167. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3168. if (WARN_ON(key.objectid != ref_objectid ||
  3169. key.type != BTRFS_EXTENT_DATA_KEY))
  3170. break;
  3171. fi = btrfs_item_ptr(leaf, path->slots[0],
  3172. struct btrfs_file_extent_item);
  3173. if (btrfs_file_extent_type(leaf, fi) ==
  3174. BTRFS_FILE_EXTENT_INLINE)
  3175. goto next;
  3176. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  3177. extent_key->objectid)
  3178. goto next;
  3179. key.offset -= btrfs_file_extent_offset(leaf, fi);
  3180. if (key.offset != ref_offset)
  3181. goto next;
  3182. if (counted)
  3183. ref_count--;
  3184. if (added)
  3185. goto next;
  3186. if (!tree_block_processed(leaf->start, rc)) {
  3187. block = kmalloc(sizeof(*block), GFP_NOFS);
  3188. if (!block) {
  3189. err = -ENOMEM;
  3190. break;
  3191. }
  3192. block->bytenr = leaf->start;
  3193. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  3194. block->level = 0;
  3195. block->key_ready = 1;
  3196. rb_node = tree_insert(blocks, block->bytenr,
  3197. &block->rb_node);
  3198. if (rb_node)
  3199. backref_tree_panic(rb_node, -EEXIST,
  3200. block->bytenr);
  3201. }
  3202. if (counted)
  3203. added = 1;
  3204. else
  3205. path->slots[0] = nritems;
  3206. next:
  3207. path->slots[0]++;
  3208. }
  3209. out:
  3210. btrfs_free_path(path);
  3211. return err;
  3212. }
  3213. /*
  3214. * helper to find all tree blocks that reference a given data extent
  3215. */
  3216. static noinline_for_stack
  3217. int add_data_references(struct reloc_control *rc,
  3218. struct btrfs_key *extent_key,
  3219. struct btrfs_path *path,
  3220. struct rb_root *blocks)
  3221. {
  3222. struct btrfs_key key;
  3223. struct extent_buffer *eb;
  3224. struct btrfs_extent_data_ref *dref;
  3225. struct btrfs_extent_inline_ref *iref;
  3226. unsigned long ptr;
  3227. unsigned long end;
  3228. u32 blocksize = rc->extent_root->fs_info->nodesize;
  3229. int ret = 0;
  3230. int err = 0;
  3231. eb = path->nodes[0];
  3232. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  3233. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  3234. ptr += sizeof(struct btrfs_extent_item);
  3235. while (ptr < end) {
  3236. iref = (struct btrfs_extent_inline_ref *)ptr;
  3237. key.type = btrfs_get_extent_inline_ref_type(eb, iref,
  3238. BTRFS_REF_TYPE_DATA);
  3239. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3240. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  3241. ret = __add_tree_block(rc, key.offset, blocksize,
  3242. blocks);
  3243. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3244. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  3245. ret = find_data_references(rc, extent_key,
  3246. eb, dref, blocks);
  3247. } else {
  3248. ret = -EUCLEAN;
  3249. btrfs_err(rc->extent_root->fs_info,
  3250. "extent %llu slot %d has an invalid inline ref type",
  3251. eb->start, path->slots[0]);
  3252. }
  3253. if (ret) {
  3254. err = ret;
  3255. goto out;
  3256. }
  3257. ptr += btrfs_extent_inline_ref_size(key.type);
  3258. }
  3259. WARN_ON(ptr > end);
  3260. while (1) {
  3261. cond_resched();
  3262. eb = path->nodes[0];
  3263. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  3264. ret = btrfs_next_leaf(rc->extent_root, path);
  3265. if (ret < 0) {
  3266. err = ret;
  3267. break;
  3268. }
  3269. if (ret > 0)
  3270. break;
  3271. eb = path->nodes[0];
  3272. }
  3273. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  3274. if (key.objectid != extent_key->objectid)
  3275. break;
  3276. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3277. ret = __add_tree_block(rc, key.offset, blocksize,
  3278. blocks);
  3279. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3280. dref = btrfs_item_ptr(eb, path->slots[0],
  3281. struct btrfs_extent_data_ref);
  3282. ret = find_data_references(rc, extent_key,
  3283. eb, dref, blocks);
  3284. } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
  3285. btrfs_print_v0_err(eb->fs_info);
  3286. btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
  3287. ret = -EINVAL;
  3288. } else {
  3289. ret = 0;
  3290. }
  3291. if (ret) {
  3292. err = ret;
  3293. break;
  3294. }
  3295. path->slots[0]++;
  3296. }
  3297. out:
  3298. btrfs_release_path(path);
  3299. if (err)
  3300. free_block_list(blocks);
  3301. return err;
  3302. }
  3303. /*
  3304. * helper to find next unprocessed extent
  3305. */
  3306. static noinline_for_stack
  3307. int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
  3308. struct btrfs_key *extent_key)
  3309. {
  3310. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3311. struct btrfs_key key;
  3312. struct extent_buffer *leaf;
  3313. u64 start, end, last;
  3314. int ret;
  3315. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  3316. while (1) {
  3317. cond_resched();
  3318. if (rc->search_start >= last) {
  3319. ret = 1;
  3320. break;
  3321. }
  3322. key.objectid = rc->search_start;
  3323. key.type = BTRFS_EXTENT_ITEM_KEY;
  3324. key.offset = 0;
  3325. path->search_commit_root = 1;
  3326. path->skip_locking = 1;
  3327. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  3328. 0, 0);
  3329. if (ret < 0)
  3330. break;
  3331. next:
  3332. leaf = path->nodes[0];
  3333. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  3334. ret = btrfs_next_leaf(rc->extent_root, path);
  3335. if (ret != 0)
  3336. break;
  3337. leaf = path->nodes[0];
  3338. }
  3339. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3340. if (key.objectid >= last) {
  3341. ret = 1;
  3342. break;
  3343. }
  3344. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  3345. key.type != BTRFS_METADATA_ITEM_KEY) {
  3346. path->slots[0]++;
  3347. goto next;
  3348. }
  3349. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3350. key.objectid + key.offset <= rc->search_start) {
  3351. path->slots[0]++;
  3352. goto next;
  3353. }
  3354. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  3355. key.objectid + fs_info->nodesize <=
  3356. rc->search_start) {
  3357. path->slots[0]++;
  3358. goto next;
  3359. }
  3360. ret = find_first_extent_bit(&rc->processed_blocks,
  3361. key.objectid, &start, &end,
  3362. EXTENT_DIRTY, NULL);
  3363. if (ret == 0 && start <= key.objectid) {
  3364. btrfs_release_path(path);
  3365. rc->search_start = end + 1;
  3366. } else {
  3367. if (key.type == BTRFS_EXTENT_ITEM_KEY)
  3368. rc->search_start = key.objectid + key.offset;
  3369. else
  3370. rc->search_start = key.objectid +
  3371. fs_info->nodesize;
  3372. memcpy(extent_key, &key, sizeof(key));
  3373. return 0;
  3374. }
  3375. }
  3376. btrfs_release_path(path);
  3377. return ret;
  3378. }
  3379. static void set_reloc_control(struct reloc_control *rc)
  3380. {
  3381. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3382. mutex_lock(&fs_info->reloc_mutex);
  3383. fs_info->reloc_ctl = rc;
  3384. mutex_unlock(&fs_info->reloc_mutex);
  3385. }
  3386. static void unset_reloc_control(struct reloc_control *rc)
  3387. {
  3388. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3389. mutex_lock(&fs_info->reloc_mutex);
  3390. fs_info->reloc_ctl = NULL;
  3391. mutex_unlock(&fs_info->reloc_mutex);
  3392. }
  3393. static int check_extent_flags(u64 flags)
  3394. {
  3395. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3396. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3397. return 1;
  3398. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  3399. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3400. return 1;
  3401. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3402. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  3403. return 1;
  3404. return 0;
  3405. }
  3406. static noinline_for_stack
  3407. int prepare_to_relocate(struct reloc_control *rc)
  3408. {
  3409. struct btrfs_trans_handle *trans;
  3410. int ret;
  3411. rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
  3412. BTRFS_BLOCK_RSV_TEMP);
  3413. if (!rc->block_rsv)
  3414. return -ENOMEM;
  3415. memset(&rc->cluster, 0, sizeof(rc->cluster));
  3416. rc->search_start = rc->block_group->key.objectid;
  3417. rc->extents_found = 0;
  3418. rc->nodes_relocated = 0;
  3419. rc->merging_rsv_size = 0;
  3420. rc->reserved_bytes = 0;
  3421. rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
  3422. RELOCATION_RESERVED_NODES;
  3423. ret = btrfs_block_rsv_refill(rc->extent_root,
  3424. rc->block_rsv, rc->block_rsv->size,
  3425. BTRFS_RESERVE_FLUSH_ALL);
  3426. if (ret)
  3427. return ret;
  3428. rc->create_reloc_tree = 1;
  3429. set_reloc_control(rc);
  3430. trans = btrfs_join_transaction(rc->extent_root);
  3431. if (IS_ERR(trans)) {
  3432. unset_reloc_control(rc);
  3433. /*
  3434. * extent tree is not a ref_cow tree and has no reloc_root to
  3435. * cleanup. And callers are responsible to free the above
  3436. * block rsv.
  3437. */
  3438. return PTR_ERR(trans);
  3439. }
  3440. btrfs_commit_transaction(trans);
  3441. return 0;
  3442. }
  3443. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  3444. {
  3445. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3446. struct rb_root blocks = RB_ROOT;
  3447. struct btrfs_key key;
  3448. struct btrfs_trans_handle *trans = NULL;
  3449. struct btrfs_path *path;
  3450. struct btrfs_extent_item *ei;
  3451. u64 flags;
  3452. u32 item_size;
  3453. int ret;
  3454. int err = 0;
  3455. int progress = 0;
  3456. path = btrfs_alloc_path();
  3457. if (!path)
  3458. return -ENOMEM;
  3459. path->reada = READA_FORWARD;
  3460. ret = prepare_to_relocate(rc);
  3461. if (ret) {
  3462. err = ret;
  3463. goto out_free;
  3464. }
  3465. while (1) {
  3466. rc->reserved_bytes = 0;
  3467. ret = btrfs_block_rsv_refill(rc->extent_root,
  3468. rc->block_rsv, rc->block_rsv->size,
  3469. BTRFS_RESERVE_FLUSH_ALL);
  3470. if (ret) {
  3471. err = ret;
  3472. break;
  3473. }
  3474. progress++;
  3475. trans = btrfs_start_transaction(rc->extent_root, 0);
  3476. if (IS_ERR(trans)) {
  3477. err = PTR_ERR(trans);
  3478. trans = NULL;
  3479. break;
  3480. }
  3481. restart:
  3482. if (update_backref_cache(trans, &rc->backref_cache)) {
  3483. btrfs_end_transaction(trans);
  3484. trans = NULL;
  3485. continue;
  3486. }
  3487. ret = find_next_extent(rc, path, &key);
  3488. if (ret < 0)
  3489. err = ret;
  3490. if (ret != 0)
  3491. break;
  3492. rc->extents_found++;
  3493. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  3494. struct btrfs_extent_item);
  3495. item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
  3496. if (item_size >= sizeof(*ei)) {
  3497. flags = btrfs_extent_flags(path->nodes[0], ei);
  3498. ret = check_extent_flags(flags);
  3499. BUG_ON(ret);
  3500. } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
  3501. err = -EINVAL;
  3502. btrfs_print_v0_err(trans->fs_info);
  3503. btrfs_abort_transaction(trans, err);
  3504. break;
  3505. } else {
  3506. BUG();
  3507. }
  3508. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  3509. ret = add_tree_block(rc, &key, path, &blocks);
  3510. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3511. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3512. ret = add_data_references(rc, &key, path, &blocks);
  3513. } else {
  3514. btrfs_release_path(path);
  3515. ret = 0;
  3516. }
  3517. if (ret < 0) {
  3518. err = ret;
  3519. break;
  3520. }
  3521. if (!RB_EMPTY_ROOT(&blocks)) {
  3522. ret = relocate_tree_blocks(trans, rc, &blocks);
  3523. if (ret < 0) {
  3524. /*
  3525. * if we fail to relocate tree blocks, force to update
  3526. * backref cache when committing transaction.
  3527. */
  3528. rc->backref_cache.last_trans = trans->transid - 1;
  3529. if (ret != -EAGAIN) {
  3530. err = ret;
  3531. break;
  3532. }
  3533. rc->extents_found--;
  3534. rc->search_start = key.objectid;
  3535. }
  3536. }
  3537. btrfs_end_transaction_throttle(trans);
  3538. btrfs_btree_balance_dirty(fs_info);
  3539. trans = NULL;
  3540. if (rc->stage == MOVE_DATA_EXTENTS &&
  3541. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3542. rc->found_file_extent = 1;
  3543. ret = relocate_data_extent(rc->data_inode,
  3544. &key, &rc->cluster);
  3545. if (ret < 0) {
  3546. err = ret;
  3547. break;
  3548. }
  3549. }
  3550. }
  3551. if (trans && progress && err == -ENOSPC) {
  3552. ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
  3553. if (ret == 1) {
  3554. err = 0;
  3555. progress = 0;
  3556. goto restart;
  3557. }
  3558. }
  3559. btrfs_release_path(path);
  3560. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
  3561. if (trans) {
  3562. btrfs_end_transaction_throttle(trans);
  3563. btrfs_btree_balance_dirty(fs_info);
  3564. }
  3565. if (!err) {
  3566. ret = relocate_file_extent_cluster(rc->data_inode,
  3567. &rc->cluster);
  3568. if (ret < 0)
  3569. err = ret;
  3570. }
  3571. rc->create_reloc_tree = 0;
  3572. set_reloc_control(rc);
  3573. backref_cache_cleanup(&rc->backref_cache);
  3574. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3575. err = prepare_to_merge(rc, err);
  3576. merge_reloc_roots(rc);
  3577. rc->merge_reloc_tree = 0;
  3578. unset_reloc_control(rc);
  3579. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3580. /* get rid of pinned extents */
  3581. trans = btrfs_join_transaction(rc->extent_root);
  3582. if (IS_ERR(trans)) {
  3583. err = PTR_ERR(trans);
  3584. goto out_free;
  3585. }
  3586. btrfs_commit_transaction(trans);
  3587. out_free:
  3588. btrfs_free_block_rsv(fs_info, rc->block_rsv);
  3589. btrfs_free_path(path);
  3590. return err;
  3591. }
  3592. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  3593. struct btrfs_root *root, u64 objectid)
  3594. {
  3595. struct btrfs_path *path;
  3596. struct btrfs_inode_item *item;
  3597. struct extent_buffer *leaf;
  3598. int ret;
  3599. path = btrfs_alloc_path();
  3600. if (!path)
  3601. return -ENOMEM;
  3602. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  3603. if (ret)
  3604. goto out;
  3605. leaf = path->nodes[0];
  3606. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3607. memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
  3608. btrfs_set_inode_generation(leaf, item, 1);
  3609. btrfs_set_inode_size(leaf, item, 0);
  3610. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3611. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
  3612. BTRFS_INODE_PREALLOC);
  3613. btrfs_mark_buffer_dirty(leaf);
  3614. out:
  3615. btrfs_free_path(path);
  3616. return ret;
  3617. }
  3618. /*
  3619. * helper to create inode for data relocation.
  3620. * the inode is in data relocation tree and its link count is 0
  3621. */
  3622. static noinline_for_stack
  3623. struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3624. struct btrfs_block_group_cache *group)
  3625. {
  3626. struct inode *inode = NULL;
  3627. struct btrfs_trans_handle *trans;
  3628. struct btrfs_root *root;
  3629. struct btrfs_key key;
  3630. u64 objectid;
  3631. int err = 0;
  3632. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3633. if (IS_ERR(root))
  3634. return ERR_CAST(root);
  3635. trans = btrfs_start_transaction(root, 6);
  3636. if (IS_ERR(trans))
  3637. return ERR_CAST(trans);
  3638. err = btrfs_find_free_objectid(root, &objectid);
  3639. if (err)
  3640. goto out;
  3641. err = __insert_orphan_inode(trans, root, objectid);
  3642. BUG_ON(err);
  3643. key.objectid = objectid;
  3644. key.type = BTRFS_INODE_ITEM_KEY;
  3645. key.offset = 0;
  3646. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3647. BUG_ON(IS_ERR(inode));
  3648. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3649. err = btrfs_orphan_add(trans, BTRFS_I(inode));
  3650. out:
  3651. btrfs_end_transaction(trans);
  3652. btrfs_btree_balance_dirty(fs_info);
  3653. if (err) {
  3654. if (inode)
  3655. iput(inode);
  3656. inode = ERR_PTR(err);
  3657. }
  3658. return inode;
  3659. }
  3660. static struct reloc_control *alloc_reloc_control(void)
  3661. {
  3662. struct reloc_control *rc;
  3663. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3664. if (!rc)
  3665. return NULL;
  3666. INIT_LIST_HEAD(&rc->reloc_roots);
  3667. backref_cache_init(&rc->backref_cache);
  3668. mapping_tree_init(&rc->reloc_root_tree);
  3669. extent_io_tree_init(&rc->processed_blocks, NULL);
  3670. return rc;
  3671. }
  3672. /*
  3673. * Print the block group being relocated
  3674. */
  3675. static void describe_relocation(struct btrfs_fs_info *fs_info,
  3676. struct btrfs_block_group_cache *block_group)
  3677. {
  3678. char buf[128]; /* prefixed by a '|' that'll be dropped */
  3679. u64 flags = block_group->flags;
  3680. /* Shouldn't happen */
  3681. if (!flags) {
  3682. strcpy(buf, "|NONE");
  3683. } else {
  3684. char *bp = buf;
  3685. #define DESCRIBE_FLAG(f, d) \
  3686. if (flags & BTRFS_BLOCK_GROUP_##f) { \
  3687. bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
  3688. flags &= ~BTRFS_BLOCK_GROUP_##f; \
  3689. }
  3690. DESCRIBE_FLAG(DATA, "data");
  3691. DESCRIBE_FLAG(SYSTEM, "system");
  3692. DESCRIBE_FLAG(METADATA, "metadata");
  3693. DESCRIBE_FLAG(RAID0, "raid0");
  3694. DESCRIBE_FLAG(RAID1, "raid1");
  3695. DESCRIBE_FLAG(DUP, "dup");
  3696. DESCRIBE_FLAG(RAID10, "raid10");
  3697. DESCRIBE_FLAG(RAID5, "raid5");
  3698. DESCRIBE_FLAG(RAID6, "raid6");
  3699. if (flags)
  3700. snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
  3701. #undef DESCRIBE_FLAG
  3702. }
  3703. btrfs_info(fs_info,
  3704. "relocating block group %llu flags %s",
  3705. block_group->key.objectid, buf + 1);
  3706. }
  3707. /*
  3708. * function to relocate all extents in a block group.
  3709. */
  3710. int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
  3711. {
  3712. struct btrfs_root *extent_root = fs_info->extent_root;
  3713. struct reloc_control *rc;
  3714. struct inode *inode;
  3715. struct btrfs_path *path;
  3716. int ret;
  3717. int rw = 0;
  3718. int err = 0;
  3719. rc = alloc_reloc_control();
  3720. if (!rc)
  3721. return -ENOMEM;
  3722. rc->extent_root = extent_root;
  3723. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3724. BUG_ON(!rc->block_group);
  3725. ret = btrfs_inc_block_group_ro(rc->block_group);
  3726. if (ret) {
  3727. err = ret;
  3728. goto out;
  3729. }
  3730. rw = 1;
  3731. path = btrfs_alloc_path();
  3732. if (!path) {
  3733. err = -ENOMEM;
  3734. goto out;
  3735. }
  3736. inode = lookup_free_space_inode(fs_info, rc->block_group, path);
  3737. btrfs_free_path(path);
  3738. if (!IS_ERR(inode))
  3739. ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
  3740. else
  3741. ret = PTR_ERR(inode);
  3742. if (ret && ret != -ENOENT) {
  3743. err = ret;
  3744. goto out;
  3745. }
  3746. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3747. if (IS_ERR(rc->data_inode)) {
  3748. err = PTR_ERR(rc->data_inode);
  3749. rc->data_inode = NULL;
  3750. goto out;
  3751. }
  3752. describe_relocation(fs_info, rc->block_group);
  3753. btrfs_wait_block_group_reservations(rc->block_group);
  3754. btrfs_wait_nocow_writers(rc->block_group);
  3755. btrfs_wait_ordered_roots(fs_info, U64_MAX,
  3756. rc->block_group->key.objectid,
  3757. rc->block_group->key.offset);
  3758. while (1) {
  3759. mutex_lock(&fs_info->cleaner_mutex);
  3760. ret = relocate_block_group(rc);
  3761. mutex_unlock(&fs_info->cleaner_mutex);
  3762. if (ret < 0) {
  3763. err = ret;
  3764. goto out;
  3765. }
  3766. if (rc->extents_found == 0)
  3767. break;
  3768. btrfs_info(fs_info, "found %llu extents", rc->extents_found);
  3769. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3770. ret = btrfs_wait_ordered_range(rc->data_inode, 0,
  3771. (u64)-1);
  3772. if (ret) {
  3773. err = ret;
  3774. goto out;
  3775. }
  3776. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3777. 0, -1);
  3778. rc->stage = UPDATE_DATA_PTRS;
  3779. }
  3780. }
  3781. WARN_ON(rc->block_group->pinned > 0);
  3782. WARN_ON(rc->block_group->reserved > 0);
  3783. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3784. out:
  3785. if (err && rw)
  3786. btrfs_dec_block_group_ro(rc->block_group);
  3787. iput(rc->data_inode);
  3788. btrfs_put_block_group(rc->block_group);
  3789. kfree(rc);
  3790. return err;
  3791. }
  3792. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3793. {
  3794. struct btrfs_fs_info *fs_info = root->fs_info;
  3795. struct btrfs_trans_handle *trans;
  3796. int ret, err;
  3797. trans = btrfs_start_transaction(fs_info->tree_root, 0);
  3798. if (IS_ERR(trans))
  3799. return PTR_ERR(trans);
  3800. memset(&root->root_item.drop_progress, 0,
  3801. sizeof(root->root_item.drop_progress));
  3802. root->root_item.drop_level = 0;
  3803. btrfs_set_root_refs(&root->root_item, 0);
  3804. ret = btrfs_update_root(trans, fs_info->tree_root,
  3805. &root->root_key, &root->root_item);
  3806. err = btrfs_end_transaction(trans);
  3807. if (err)
  3808. return err;
  3809. return ret;
  3810. }
  3811. /*
  3812. * recover relocation interrupted by system crash.
  3813. *
  3814. * this function resumes merging reloc trees with corresponding fs trees.
  3815. * this is important for keeping the sharing of tree blocks
  3816. */
  3817. int btrfs_recover_relocation(struct btrfs_root *root)
  3818. {
  3819. struct btrfs_fs_info *fs_info = root->fs_info;
  3820. LIST_HEAD(reloc_roots);
  3821. struct btrfs_key key;
  3822. struct btrfs_root *fs_root;
  3823. struct btrfs_root *reloc_root;
  3824. struct btrfs_path *path;
  3825. struct extent_buffer *leaf;
  3826. struct reloc_control *rc = NULL;
  3827. struct btrfs_trans_handle *trans;
  3828. int ret;
  3829. int err = 0;
  3830. path = btrfs_alloc_path();
  3831. if (!path)
  3832. return -ENOMEM;
  3833. path->reada = READA_BACK;
  3834. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3835. key.type = BTRFS_ROOT_ITEM_KEY;
  3836. key.offset = (u64)-1;
  3837. while (1) {
  3838. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
  3839. path, 0, 0);
  3840. if (ret < 0) {
  3841. err = ret;
  3842. goto out;
  3843. }
  3844. if (ret > 0) {
  3845. if (path->slots[0] == 0)
  3846. break;
  3847. path->slots[0]--;
  3848. }
  3849. leaf = path->nodes[0];
  3850. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3851. btrfs_release_path(path);
  3852. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3853. key.type != BTRFS_ROOT_ITEM_KEY)
  3854. break;
  3855. reloc_root = btrfs_read_fs_root(root, &key);
  3856. if (IS_ERR(reloc_root)) {
  3857. err = PTR_ERR(reloc_root);
  3858. goto out;
  3859. }
  3860. list_add(&reloc_root->root_list, &reloc_roots);
  3861. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3862. fs_root = read_fs_root(fs_info,
  3863. reloc_root->root_key.offset);
  3864. if (IS_ERR(fs_root)) {
  3865. ret = PTR_ERR(fs_root);
  3866. if (ret != -ENOENT) {
  3867. err = ret;
  3868. goto out;
  3869. }
  3870. ret = mark_garbage_root(reloc_root);
  3871. if (ret < 0) {
  3872. err = ret;
  3873. goto out;
  3874. }
  3875. }
  3876. }
  3877. if (key.offset == 0)
  3878. break;
  3879. key.offset--;
  3880. }
  3881. btrfs_release_path(path);
  3882. if (list_empty(&reloc_roots))
  3883. goto out;
  3884. rc = alloc_reloc_control();
  3885. if (!rc) {
  3886. err = -ENOMEM;
  3887. goto out;
  3888. }
  3889. rc->extent_root = fs_info->extent_root;
  3890. set_reloc_control(rc);
  3891. trans = btrfs_join_transaction(rc->extent_root);
  3892. if (IS_ERR(trans)) {
  3893. unset_reloc_control(rc);
  3894. err = PTR_ERR(trans);
  3895. goto out_free;
  3896. }
  3897. rc->merge_reloc_tree = 1;
  3898. while (!list_empty(&reloc_roots)) {
  3899. reloc_root = list_entry(reloc_roots.next,
  3900. struct btrfs_root, root_list);
  3901. list_del(&reloc_root->root_list);
  3902. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  3903. list_add_tail(&reloc_root->root_list,
  3904. &rc->reloc_roots);
  3905. continue;
  3906. }
  3907. fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
  3908. if (IS_ERR(fs_root)) {
  3909. err = PTR_ERR(fs_root);
  3910. goto out_free;
  3911. }
  3912. err = __add_reloc_root(reloc_root);
  3913. BUG_ON(err < 0); /* -ENOMEM or logic error */
  3914. fs_root->reloc_root = reloc_root;
  3915. }
  3916. err = btrfs_commit_transaction(trans);
  3917. if (err)
  3918. goto out_free;
  3919. merge_reloc_roots(rc);
  3920. unset_reloc_control(rc);
  3921. trans = btrfs_join_transaction(rc->extent_root);
  3922. if (IS_ERR(trans)) {
  3923. err = PTR_ERR(trans);
  3924. goto out_free;
  3925. }
  3926. err = btrfs_commit_transaction(trans);
  3927. out_free:
  3928. kfree(rc);
  3929. out:
  3930. if (!list_empty(&reloc_roots))
  3931. free_reloc_roots(&reloc_roots);
  3932. btrfs_free_path(path);
  3933. if (err == 0) {
  3934. /* cleanup orphan inode in data relocation tree */
  3935. fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3936. if (IS_ERR(fs_root))
  3937. err = PTR_ERR(fs_root);
  3938. else
  3939. err = btrfs_orphan_cleanup(fs_root);
  3940. }
  3941. return err;
  3942. }
  3943. /*
  3944. * helper to add ordered checksum for data relocation.
  3945. *
  3946. * cloning checksum properly handles the nodatasum extents.
  3947. * it also saves CPU time to re-calculate the checksum.
  3948. */
  3949. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  3950. {
  3951. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  3952. struct btrfs_ordered_sum *sums;
  3953. struct btrfs_ordered_extent *ordered;
  3954. int ret;
  3955. u64 disk_bytenr;
  3956. u64 new_bytenr;
  3957. LIST_HEAD(list);
  3958. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  3959. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  3960. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  3961. ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
  3962. disk_bytenr + len - 1, &list, 0);
  3963. if (ret)
  3964. goto out;
  3965. while (!list_empty(&list)) {
  3966. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  3967. list_del_init(&sums->list);
  3968. /*
  3969. * We need to offset the new_bytenr based on where the csum is.
  3970. * We need to do this because we will read in entire prealloc
  3971. * extents but we may have written to say the middle of the
  3972. * prealloc extent, so we need to make sure the csum goes with
  3973. * the right disk offset.
  3974. *
  3975. * We can do this because the data reloc inode refers strictly
  3976. * to the on disk bytes, so we don't have to worry about
  3977. * disk_len vs real len like with real inodes since it's all
  3978. * disk length.
  3979. */
  3980. new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
  3981. sums->bytenr = new_bytenr;
  3982. btrfs_add_ordered_sum(inode, ordered, sums);
  3983. }
  3984. out:
  3985. btrfs_put_ordered_extent(ordered);
  3986. return ret;
  3987. }
  3988. int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
  3989. struct btrfs_root *root, struct extent_buffer *buf,
  3990. struct extent_buffer *cow)
  3991. {
  3992. struct btrfs_fs_info *fs_info = root->fs_info;
  3993. struct reloc_control *rc;
  3994. struct backref_node *node;
  3995. int first_cow = 0;
  3996. int level;
  3997. int ret = 0;
  3998. rc = fs_info->reloc_ctl;
  3999. if (!rc)
  4000. return 0;
  4001. BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
  4002. root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
  4003. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  4004. if (buf == root->node)
  4005. __update_reloc_root(root, cow->start);
  4006. }
  4007. level = btrfs_header_level(buf);
  4008. if (btrfs_header_generation(buf) <=
  4009. btrfs_root_last_snapshot(&root->root_item))
  4010. first_cow = 1;
  4011. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
  4012. rc->create_reloc_tree) {
  4013. WARN_ON(!first_cow && level == 0);
  4014. node = rc->backref_cache.path[level];
  4015. BUG_ON(node->bytenr != buf->start &&
  4016. node->new_bytenr != buf->start);
  4017. drop_node_buffer(node);
  4018. extent_buffer_get(cow);
  4019. node->eb = cow;
  4020. node->new_bytenr = cow->start;
  4021. if (!node->pending) {
  4022. list_move_tail(&node->list,
  4023. &rc->backref_cache.pending[level]);
  4024. node->pending = 1;
  4025. }
  4026. if (first_cow)
  4027. __mark_block_processed(rc, node);
  4028. if (first_cow && level > 0)
  4029. rc->nodes_relocated += buf->len;
  4030. }
  4031. if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
  4032. ret = replace_file_extents(trans, rc, root, cow);
  4033. return ret;
  4034. }
  4035. /*
  4036. * called before creating snapshot. it calculates metadata reservation
  4037. * required for relocating tree blocks in the snapshot
  4038. */
  4039. void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
  4040. u64 *bytes_to_reserve)
  4041. {
  4042. struct btrfs_root *root;
  4043. struct reloc_control *rc;
  4044. root = pending->root;
  4045. if (!root->reloc_root)
  4046. return;
  4047. rc = root->fs_info->reloc_ctl;
  4048. if (!rc->merge_reloc_tree)
  4049. return;
  4050. root = root->reloc_root;
  4051. BUG_ON(btrfs_root_refs(&root->root_item) == 0);
  4052. /*
  4053. * relocation is in the stage of merging trees. the space
  4054. * used by merging a reloc tree is twice the size of
  4055. * relocated tree nodes in the worst case. half for cowing
  4056. * the reloc tree, half for cowing the fs tree. the space
  4057. * used by cowing the reloc tree will be freed after the
  4058. * tree is dropped. if we create snapshot, cowing the fs
  4059. * tree may use more space than it frees. so we need
  4060. * reserve extra space.
  4061. */
  4062. *bytes_to_reserve += rc->nodes_relocated;
  4063. }
  4064. /*
  4065. * called after snapshot is created. migrate block reservation
  4066. * and create reloc root for the newly created snapshot
  4067. */
  4068. int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
  4069. struct btrfs_pending_snapshot *pending)
  4070. {
  4071. struct btrfs_root *root = pending->root;
  4072. struct btrfs_root *reloc_root;
  4073. struct btrfs_root *new_root;
  4074. struct reloc_control *rc;
  4075. int ret;
  4076. if (!root->reloc_root)
  4077. return 0;
  4078. rc = root->fs_info->reloc_ctl;
  4079. rc->merging_rsv_size += rc->nodes_relocated;
  4080. if (rc->merge_reloc_tree) {
  4081. ret = btrfs_block_rsv_migrate(&pending->block_rsv,
  4082. rc->block_rsv,
  4083. rc->nodes_relocated, true);
  4084. if (ret)
  4085. return ret;
  4086. }
  4087. new_root = pending->snap;
  4088. reloc_root = create_reloc_root(trans, root->reloc_root,
  4089. new_root->root_key.objectid);
  4090. if (IS_ERR(reloc_root))
  4091. return PTR_ERR(reloc_root);
  4092. ret = __add_reloc_root(reloc_root);
  4093. BUG_ON(ret < 0);
  4094. new_root->reloc_root = reloc_root;
  4095. if (rc->create_reloc_tree)
  4096. ret = clone_backref_node(trans, rc, root, reloc_root);
  4097. return ret;
  4098. }