file.c 88 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2007 Oracle. All rights reserved.
  4. */
  5. #include <linux/fs.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/time.h>
  8. #include <linux/init.h>
  9. #include <linux/string.h>
  10. #include <linux/backing-dev.h>
  11. #include <linux/falloc.h>
  12. #include <linux/writeback.h>
  13. #include <linux/compat.h>
  14. #include <linux/slab.h>
  15. #include <linux/btrfs.h>
  16. #include <linux/uio.h>
  17. #include <linux/iversion.h>
  18. #include "ctree.h"
  19. #include "disk-io.h"
  20. #include "transaction.h"
  21. #include "btrfs_inode.h"
  22. #include "print-tree.h"
  23. #include "tree-log.h"
  24. #include "locking.h"
  25. #include "volumes.h"
  26. #include "qgroup.h"
  27. #include "compression.h"
  28. static struct kmem_cache *btrfs_inode_defrag_cachep;
  29. /*
  30. * when auto defrag is enabled we
  31. * queue up these defrag structs to remember which
  32. * inodes need defragging passes
  33. */
  34. struct inode_defrag {
  35. struct rb_node rb_node;
  36. /* objectid */
  37. u64 ino;
  38. /*
  39. * transid where the defrag was added, we search for
  40. * extents newer than this
  41. */
  42. u64 transid;
  43. /* root objectid */
  44. u64 root;
  45. /* last offset we were able to defrag */
  46. u64 last_offset;
  47. /* if we've wrapped around back to zero once already */
  48. int cycled;
  49. };
  50. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  51. struct inode_defrag *defrag2)
  52. {
  53. if (defrag1->root > defrag2->root)
  54. return 1;
  55. else if (defrag1->root < defrag2->root)
  56. return -1;
  57. else if (defrag1->ino > defrag2->ino)
  58. return 1;
  59. else if (defrag1->ino < defrag2->ino)
  60. return -1;
  61. else
  62. return 0;
  63. }
  64. /* pop a record for an inode into the defrag tree. The lock
  65. * must be held already
  66. *
  67. * If you're inserting a record for an older transid than an
  68. * existing record, the transid already in the tree is lowered
  69. *
  70. * If an existing record is found the defrag item you
  71. * pass in is freed
  72. */
  73. static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  74. struct inode_defrag *defrag)
  75. {
  76. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  77. struct inode_defrag *entry;
  78. struct rb_node **p;
  79. struct rb_node *parent = NULL;
  80. int ret;
  81. p = &fs_info->defrag_inodes.rb_node;
  82. while (*p) {
  83. parent = *p;
  84. entry = rb_entry(parent, struct inode_defrag, rb_node);
  85. ret = __compare_inode_defrag(defrag, entry);
  86. if (ret < 0)
  87. p = &parent->rb_left;
  88. else if (ret > 0)
  89. p = &parent->rb_right;
  90. else {
  91. /* if we're reinserting an entry for
  92. * an old defrag run, make sure to
  93. * lower the transid of our existing record
  94. */
  95. if (defrag->transid < entry->transid)
  96. entry->transid = defrag->transid;
  97. if (defrag->last_offset > entry->last_offset)
  98. entry->last_offset = defrag->last_offset;
  99. return -EEXIST;
  100. }
  101. }
  102. set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
  103. rb_link_node(&defrag->rb_node, parent, p);
  104. rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
  105. return 0;
  106. }
  107. static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
  108. {
  109. if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
  110. return 0;
  111. if (btrfs_fs_closing(fs_info))
  112. return 0;
  113. return 1;
  114. }
  115. /*
  116. * insert a defrag record for this inode if auto defrag is
  117. * enabled
  118. */
  119. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  120. struct btrfs_inode *inode)
  121. {
  122. struct btrfs_root *root = inode->root;
  123. struct btrfs_fs_info *fs_info = root->fs_info;
  124. struct inode_defrag *defrag;
  125. u64 transid;
  126. int ret;
  127. if (!__need_auto_defrag(fs_info))
  128. return 0;
  129. if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
  130. return 0;
  131. if (trans)
  132. transid = trans->transid;
  133. else
  134. transid = inode->root->last_trans;
  135. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  136. if (!defrag)
  137. return -ENOMEM;
  138. defrag->ino = btrfs_ino(inode);
  139. defrag->transid = transid;
  140. defrag->root = root->root_key.objectid;
  141. spin_lock(&fs_info->defrag_inodes_lock);
  142. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
  143. /*
  144. * If we set IN_DEFRAG flag and evict the inode from memory,
  145. * and then re-read this inode, this new inode doesn't have
  146. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  147. */
  148. ret = __btrfs_add_inode_defrag(inode, defrag);
  149. if (ret)
  150. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  151. } else {
  152. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  153. }
  154. spin_unlock(&fs_info->defrag_inodes_lock);
  155. return 0;
  156. }
  157. /*
  158. * Requeue the defrag object. If there is a defrag object that points to
  159. * the same inode in the tree, we will merge them together (by
  160. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  161. */
  162. static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
  163. struct inode_defrag *defrag)
  164. {
  165. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  166. int ret;
  167. if (!__need_auto_defrag(fs_info))
  168. goto out;
  169. /*
  170. * Here we don't check the IN_DEFRAG flag, because we need merge
  171. * them together.
  172. */
  173. spin_lock(&fs_info->defrag_inodes_lock);
  174. ret = __btrfs_add_inode_defrag(inode, defrag);
  175. spin_unlock(&fs_info->defrag_inodes_lock);
  176. if (ret)
  177. goto out;
  178. return;
  179. out:
  180. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  181. }
  182. /*
  183. * pick the defragable inode that we want, if it doesn't exist, we will get
  184. * the next one.
  185. */
  186. static struct inode_defrag *
  187. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  188. {
  189. struct inode_defrag *entry = NULL;
  190. struct inode_defrag tmp;
  191. struct rb_node *p;
  192. struct rb_node *parent = NULL;
  193. int ret;
  194. tmp.ino = ino;
  195. tmp.root = root;
  196. spin_lock(&fs_info->defrag_inodes_lock);
  197. p = fs_info->defrag_inodes.rb_node;
  198. while (p) {
  199. parent = p;
  200. entry = rb_entry(parent, struct inode_defrag, rb_node);
  201. ret = __compare_inode_defrag(&tmp, entry);
  202. if (ret < 0)
  203. p = parent->rb_left;
  204. else if (ret > 0)
  205. p = parent->rb_right;
  206. else
  207. goto out;
  208. }
  209. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  210. parent = rb_next(parent);
  211. if (parent)
  212. entry = rb_entry(parent, struct inode_defrag, rb_node);
  213. else
  214. entry = NULL;
  215. }
  216. out:
  217. if (entry)
  218. rb_erase(parent, &fs_info->defrag_inodes);
  219. spin_unlock(&fs_info->defrag_inodes_lock);
  220. return entry;
  221. }
  222. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  223. {
  224. struct inode_defrag *defrag;
  225. struct rb_node *node;
  226. spin_lock(&fs_info->defrag_inodes_lock);
  227. node = rb_first(&fs_info->defrag_inodes);
  228. while (node) {
  229. rb_erase(node, &fs_info->defrag_inodes);
  230. defrag = rb_entry(node, struct inode_defrag, rb_node);
  231. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  232. cond_resched_lock(&fs_info->defrag_inodes_lock);
  233. node = rb_first(&fs_info->defrag_inodes);
  234. }
  235. spin_unlock(&fs_info->defrag_inodes_lock);
  236. }
  237. #define BTRFS_DEFRAG_BATCH 1024
  238. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  239. struct inode_defrag *defrag)
  240. {
  241. struct btrfs_root *inode_root;
  242. struct inode *inode;
  243. struct btrfs_key key;
  244. struct btrfs_ioctl_defrag_range_args range;
  245. int num_defrag;
  246. int index;
  247. int ret;
  248. /* get the inode */
  249. key.objectid = defrag->root;
  250. key.type = BTRFS_ROOT_ITEM_KEY;
  251. key.offset = (u64)-1;
  252. index = srcu_read_lock(&fs_info->subvol_srcu);
  253. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  254. if (IS_ERR(inode_root)) {
  255. ret = PTR_ERR(inode_root);
  256. goto cleanup;
  257. }
  258. key.objectid = defrag->ino;
  259. key.type = BTRFS_INODE_ITEM_KEY;
  260. key.offset = 0;
  261. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  262. if (IS_ERR(inode)) {
  263. ret = PTR_ERR(inode);
  264. goto cleanup;
  265. }
  266. srcu_read_unlock(&fs_info->subvol_srcu, index);
  267. /* do a chunk of defrag */
  268. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  269. memset(&range, 0, sizeof(range));
  270. range.len = (u64)-1;
  271. range.start = defrag->last_offset;
  272. sb_start_write(fs_info->sb);
  273. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  274. BTRFS_DEFRAG_BATCH);
  275. sb_end_write(fs_info->sb);
  276. /*
  277. * if we filled the whole defrag batch, there
  278. * must be more work to do. Queue this defrag
  279. * again
  280. */
  281. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  282. defrag->last_offset = range.start;
  283. btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
  284. } else if (defrag->last_offset && !defrag->cycled) {
  285. /*
  286. * we didn't fill our defrag batch, but
  287. * we didn't start at zero. Make sure we loop
  288. * around to the start of the file.
  289. */
  290. defrag->last_offset = 0;
  291. defrag->cycled = 1;
  292. btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
  293. } else {
  294. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  295. }
  296. iput(inode);
  297. return 0;
  298. cleanup:
  299. srcu_read_unlock(&fs_info->subvol_srcu, index);
  300. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  301. return ret;
  302. }
  303. /*
  304. * run through the list of inodes in the FS that need
  305. * defragging
  306. */
  307. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  308. {
  309. struct inode_defrag *defrag;
  310. u64 first_ino = 0;
  311. u64 root_objectid = 0;
  312. atomic_inc(&fs_info->defrag_running);
  313. while (1) {
  314. /* Pause the auto defragger. */
  315. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  316. &fs_info->fs_state))
  317. break;
  318. if (!__need_auto_defrag(fs_info))
  319. break;
  320. /* find an inode to defrag */
  321. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  322. first_ino);
  323. if (!defrag) {
  324. if (root_objectid || first_ino) {
  325. root_objectid = 0;
  326. first_ino = 0;
  327. continue;
  328. } else {
  329. break;
  330. }
  331. }
  332. first_ino = defrag->ino + 1;
  333. root_objectid = defrag->root;
  334. __btrfs_run_defrag_inode(fs_info, defrag);
  335. }
  336. atomic_dec(&fs_info->defrag_running);
  337. /*
  338. * during unmount, we use the transaction_wait queue to
  339. * wait for the defragger to stop
  340. */
  341. wake_up(&fs_info->transaction_wait);
  342. return 0;
  343. }
  344. /* simple helper to fault in pages and copy. This should go away
  345. * and be replaced with calls into generic code.
  346. */
  347. static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  348. struct page **prepared_pages,
  349. struct iov_iter *i)
  350. {
  351. size_t copied = 0;
  352. size_t total_copied = 0;
  353. int pg = 0;
  354. int offset = pos & (PAGE_SIZE - 1);
  355. while (write_bytes > 0) {
  356. size_t count = min_t(size_t,
  357. PAGE_SIZE - offset, write_bytes);
  358. struct page *page = prepared_pages[pg];
  359. /*
  360. * Copy data from userspace to the current page
  361. */
  362. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  363. /* Flush processor's dcache for this page */
  364. flush_dcache_page(page);
  365. /*
  366. * if we get a partial write, we can end up with
  367. * partially up to date pages. These add
  368. * a lot of complexity, so make sure they don't
  369. * happen by forcing this copy to be retried.
  370. *
  371. * The rest of the btrfs_file_write code will fall
  372. * back to page at a time copies after we return 0.
  373. */
  374. if (!PageUptodate(page) && copied < count)
  375. copied = 0;
  376. iov_iter_advance(i, copied);
  377. write_bytes -= copied;
  378. total_copied += copied;
  379. /* Return to btrfs_file_write_iter to fault page */
  380. if (unlikely(copied == 0))
  381. break;
  382. if (copied < PAGE_SIZE - offset) {
  383. offset += copied;
  384. } else {
  385. pg++;
  386. offset = 0;
  387. }
  388. }
  389. return total_copied;
  390. }
  391. /*
  392. * unlocks pages after btrfs_file_write is done with them
  393. */
  394. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  395. {
  396. size_t i;
  397. for (i = 0; i < num_pages; i++) {
  398. /* page checked is some magic around finding pages that
  399. * have been modified without going through btrfs_set_page_dirty
  400. * clear it here. There should be no need to mark the pages
  401. * accessed as prepare_pages should have marked them accessed
  402. * in prepare_pages via find_or_create_page()
  403. */
  404. ClearPageChecked(pages[i]);
  405. unlock_page(pages[i]);
  406. put_page(pages[i]);
  407. }
  408. }
  409. static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
  410. const u64 start,
  411. const u64 len,
  412. struct extent_state **cached_state)
  413. {
  414. u64 search_start = start;
  415. const u64 end = start + len - 1;
  416. while (search_start < end) {
  417. const u64 search_len = end - search_start + 1;
  418. struct extent_map *em;
  419. u64 em_len;
  420. int ret = 0;
  421. em = btrfs_get_extent(inode, NULL, 0, search_start,
  422. search_len, 0);
  423. if (IS_ERR(em))
  424. return PTR_ERR(em);
  425. if (em->block_start != EXTENT_MAP_HOLE)
  426. goto next;
  427. em_len = em->len;
  428. if (em->start < search_start)
  429. em_len -= search_start - em->start;
  430. if (em_len > search_len)
  431. em_len = search_len;
  432. ret = set_extent_bit(&inode->io_tree, search_start,
  433. search_start + em_len - 1,
  434. EXTENT_DELALLOC_NEW,
  435. NULL, cached_state, GFP_NOFS);
  436. next:
  437. search_start = extent_map_end(em);
  438. free_extent_map(em);
  439. if (ret)
  440. return ret;
  441. }
  442. return 0;
  443. }
  444. /*
  445. * after copy_from_user, pages need to be dirtied and we need to make
  446. * sure holes are created between the current EOF and the start of
  447. * any next extents (if required).
  448. *
  449. * this also makes the decision about creating an inline extent vs
  450. * doing real data extents, marking pages dirty and delalloc as required.
  451. */
  452. int btrfs_dirty_pages(struct inode *inode, struct page **pages,
  453. size_t num_pages, loff_t pos, size_t write_bytes,
  454. struct extent_state **cached)
  455. {
  456. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  457. int err = 0;
  458. int i;
  459. u64 num_bytes;
  460. u64 start_pos;
  461. u64 end_of_last_block;
  462. u64 end_pos = pos + write_bytes;
  463. loff_t isize = i_size_read(inode);
  464. unsigned int extra_bits = 0;
  465. start_pos = pos & ~((u64) fs_info->sectorsize - 1);
  466. num_bytes = round_up(write_bytes + pos - start_pos,
  467. fs_info->sectorsize);
  468. end_of_last_block = start_pos + num_bytes - 1;
  469. /*
  470. * The pages may have already been dirty, clear out old accounting so
  471. * we can set things up properly
  472. */
  473. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
  474. EXTENT_DIRTY | EXTENT_DELALLOC |
  475. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
  476. if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
  477. if (start_pos >= isize &&
  478. !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
  479. /*
  480. * There can't be any extents following eof in this case
  481. * so just set the delalloc new bit for the range
  482. * directly.
  483. */
  484. extra_bits |= EXTENT_DELALLOC_NEW;
  485. } else {
  486. err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
  487. start_pos,
  488. num_bytes, cached);
  489. if (err)
  490. return err;
  491. }
  492. }
  493. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  494. extra_bits, cached, 0);
  495. if (err)
  496. return err;
  497. for (i = 0; i < num_pages; i++) {
  498. struct page *p = pages[i];
  499. SetPageUptodate(p);
  500. ClearPageChecked(p);
  501. set_page_dirty(p);
  502. }
  503. /*
  504. * we've only changed i_size in ram, and we haven't updated
  505. * the disk i_size. There is no need to log the inode
  506. * at this time.
  507. */
  508. if (end_pos > isize)
  509. i_size_write(inode, end_pos);
  510. return 0;
  511. }
  512. /*
  513. * this drops all the extents in the cache that intersect the range
  514. * [start, end]. Existing extents are split as required.
  515. */
  516. void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
  517. int skip_pinned)
  518. {
  519. struct extent_map *em;
  520. struct extent_map *split = NULL;
  521. struct extent_map *split2 = NULL;
  522. struct extent_map_tree *em_tree = &inode->extent_tree;
  523. u64 len = end - start + 1;
  524. u64 gen;
  525. int ret;
  526. int testend = 1;
  527. unsigned long flags;
  528. int compressed = 0;
  529. bool modified;
  530. WARN_ON(end < start);
  531. if (end == (u64)-1) {
  532. len = (u64)-1;
  533. testend = 0;
  534. }
  535. while (1) {
  536. int no_splits = 0;
  537. modified = false;
  538. if (!split)
  539. split = alloc_extent_map();
  540. if (!split2)
  541. split2 = alloc_extent_map();
  542. if (!split || !split2)
  543. no_splits = 1;
  544. write_lock(&em_tree->lock);
  545. em = lookup_extent_mapping(em_tree, start, len);
  546. if (!em) {
  547. write_unlock(&em_tree->lock);
  548. break;
  549. }
  550. flags = em->flags;
  551. gen = em->generation;
  552. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  553. if (testend && em->start + em->len >= start + len) {
  554. free_extent_map(em);
  555. write_unlock(&em_tree->lock);
  556. break;
  557. }
  558. start = em->start + em->len;
  559. if (testend)
  560. len = start + len - (em->start + em->len);
  561. free_extent_map(em);
  562. write_unlock(&em_tree->lock);
  563. continue;
  564. }
  565. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  566. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  567. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  568. modified = !list_empty(&em->list);
  569. if (no_splits)
  570. goto next;
  571. if (em->start < start) {
  572. split->start = em->start;
  573. split->len = start - em->start;
  574. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  575. split->orig_start = em->orig_start;
  576. split->block_start = em->block_start;
  577. if (compressed)
  578. split->block_len = em->block_len;
  579. else
  580. split->block_len = split->len;
  581. split->orig_block_len = max(split->block_len,
  582. em->orig_block_len);
  583. split->ram_bytes = em->ram_bytes;
  584. } else {
  585. split->orig_start = split->start;
  586. split->block_len = 0;
  587. split->block_start = em->block_start;
  588. split->orig_block_len = 0;
  589. split->ram_bytes = split->len;
  590. }
  591. split->generation = gen;
  592. split->bdev = em->bdev;
  593. split->flags = flags;
  594. split->compress_type = em->compress_type;
  595. replace_extent_mapping(em_tree, em, split, modified);
  596. free_extent_map(split);
  597. split = split2;
  598. split2 = NULL;
  599. }
  600. if (testend && em->start + em->len > start + len) {
  601. u64 diff = start + len - em->start;
  602. split->start = start + len;
  603. split->len = em->start + em->len - (start + len);
  604. split->bdev = em->bdev;
  605. split->flags = flags;
  606. split->compress_type = em->compress_type;
  607. split->generation = gen;
  608. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  609. split->orig_block_len = max(em->block_len,
  610. em->orig_block_len);
  611. split->ram_bytes = em->ram_bytes;
  612. if (compressed) {
  613. split->block_len = em->block_len;
  614. split->block_start = em->block_start;
  615. split->orig_start = em->orig_start;
  616. } else {
  617. split->block_len = split->len;
  618. split->block_start = em->block_start
  619. + diff;
  620. split->orig_start = em->orig_start;
  621. }
  622. } else {
  623. split->ram_bytes = split->len;
  624. split->orig_start = split->start;
  625. split->block_len = 0;
  626. split->block_start = em->block_start;
  627. split->orig_block_len = 0;
  628. }
  629. if (extent_map_in_tree(em)) {
  630. replace_extent_mapping(em_tree, em, split,
  631. modified);
  632. } else {
  633. ret = add_extent_mapping(em_tree, split,
  634. modified);
  635. ASSERT(ret == 0); /* Logic error */
  636. }
  637. free_extent_map(split);
  638. split = NULL;
  639. }
  640. next:
  641. if (extent_map_in_tree(em))
  642. remove_extent_mapping(em_tree, em);
  643. write_unlock(&em_tree->lock);
  644. /* once for us */
  645. free_extent_map(em);
  646. /* once for the tree*/
  647. free_extent_map(em);
  648. }
  649. if (split)
  650. free_extent_map(split);
  651. if (split2)
  652. free_extent_map(split2);
  653. }
  654. /*
  655. * this is very complex, but the basic idea is to drop all extents
  656. * in the range start - end. hint_block is filled in with a block number
  657. * that would be a good hint to the block allocator for this file.
  658. *
  659. * If an extent intersects the range but is not entirely inside the range
  660. * it is either truncated or split. Anything entirely inside the range
  661. * is deleted from the tree.
  662. */
  663. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  664. struct btrfs_root *root, struct inode *inode,
  665. struct btrfs_path *path, u64 start, u64 end,
  666. u64 *drop_end, int drop_cache,
  667. int replace_extent,
  668. u32 extent_item_size,
  669. int *key_inserted)
  670. {
  671. struct btrfs_fs_info *fs_info = root->fs_info;
  672. struct extent_buffer *leaf;
  673. struct btrfs_file_extent_item *fi;
  674. struct btrfs_key key;
  675. struct btrfs_key new_key;
  676. u64 ino = btrfs_ino(BTRFS_I(inode));
  677. u64 search_start = start;
  678. u64 disk_bytenr = 0;
  679. u64 num_bytes = 0;
  680. u64 extent_offset = 0;
  681. u64 extent_end = 0;
  682. u64 last_end = start;
  683. int del_nr = 0;
  684. int del_slot = 0;
  685. int extent_type;
  686. int recow;
  687. int ret;
  688. int modify_tree = -1;
  689. int update_refs;
  690. int found = 0;
  691. int leafs_visited = 0;
  692. if (drop_cache)
  693. btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
  694. if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
  695. modify_tree = 0;
  696. update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  697. root == fs_info->tree_root);
  698. while (1) {
  699. recow = 0;
  700. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  701. search_start, modify_tree);
  702. if (ret < 0)
  703. break;
  704. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  705. leaf = path->nodes[0];
  706. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  707. if (key.objectid == ino &&
  708. key.type == BTRFS_EXTENT_DATA_KEY)
  709. path->slots[0]--;
  710. }
  711. ret = 0;
  712. leafs_visited++;
  713. next_slot:
  714. leaf = path->nodes[0];
  715. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  716. BUG_ON(del_nr > 0);
  717. ret = btrfs_next_leaf(root, path);
  718. if (ret < 0)
  719. break;
  720. if (ret > 0) {
  721. ret = 0;
  722. break;
  723. }
  724. leafs_visited++;
  725. leaf = path->nodes[0];
  726. recow = 1;
  727. }
  728. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  729. if (key.objectid > ino)
  730. break;
  731. if (WARN_ON_ONCE(key.objectid < ino) ||
  732. key.type < BTRFS_EXTENT_DATA_KEY) {
  733. ASSERT(del_nr == 0);
  734. path->slots[0]++;
  735. goto next_slot;
  736. }
  737. if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  738. break;
  739. fi = btrfs_item_ptr(leaf, path->slots[0],
  740. struct btrfs_file_extent_item);
  741. extent_type = btrfs_file_extent_type(leaf, fi);
  742. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  743. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  744. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  745. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  746. extent_offset = btrfs_file_extent_offset(leaf, fi);
  747. extent_end = key.offset +
  748. btrfs_file_extent_num_bytes(leaf, fi);
  749. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  750. extent_end = key.offset +
  751. btrfs_file_extent_ram_bytes(leaf, fi);
  752. } else {
  753. /* can't happen */
  754. BUG();
  755. }
  756. /*
  757. * Don't skip extent items representing 0 byte lengths. They
  758. * used to be created (bug) if while punching holes we hit
  759. * -ENOSPC condition. So if we find one here, just ensure we
  760. * delete it, otherwise we would insert a new file extent item
  761. * with the same key (offset) as that 0 bytes length file
  762. * extent item in the call to setup_items_for_insert() later
  763. * in this function.
  764. */
  765. if (extent_end == key.offset && extent_end >= search_start) {
  766. last_end = extent_end;
  767. goto delete_extent_item;
  768. }
  769. if (extent_end <= search_start) {
  770. path->slots[0]++;
  771. goto next_slot;
  772. }
  773. found = 1;
  774. search_start = max(key.offset, start);
  775. if (recow || !modify_tree) {
  776. modify_tree = -1;
  777. btrfs_release_path(path);
  778. continue;
  779. }
  780. /*
  781. * | - range to drop - |
  782. * | -------- extent -------- |
  783. */
  784. if (start > key.offset && end < extent_end) {
  785. BUG_ON(del_nr > 0);
  786. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  787. ret = -EOPNOTSUPP;
  788. break;
  789. }
  790. memcpy(&new_key, &key, sizeof(new_key));
  791. new_key.offset = start;
  792. ret = btrfs_duplicate_item(trans, root, path,
  793. &new_key);
  794. if (ret == -EAGAIN) {
  795. btrfs_release_path(path);
  796. continue;
  797. }
  798. if (ret < 0)
  799. break;
  800. leaf = path->nodes[0];
  801. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  802. struct btrfs_file_extent_item);
  803. btrfs_set_file_extent_num_bytes(leaf, fi,
  804. start - key.offset);
  805. fi = btrfs_item_ptr(leaf, path->slots[0],
  806. struct btrfs_file_extent_item);
  807. extent_offset += start - key.offset;
  808. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  809. btrfs_set_file_extent_num_bytes(leaf, fi,
  810. extent_end - start);
  811. btrfs_mark_buffer_dirty(leaf);
  812. if (update_refs && disk_bytenr > 0) {
  813. ret = btrfs_inc_extent_ref(trans, root,
  814. disk_bytenr, num_bytes, 0,
  815. root->root_key.objectid,
  816. new_key.objectid,
  817. start - extent_offset);
  818. BUG_ON(ret); /* -ENOMEM */
  819. }
  820. key.offset = start;
  821. }
  822. /*
  823. * From here on out we will have actually dropped something, so
  824. * last_end can be updated.
  825. */
  826. last_end = extent_end;
  827. /*
  828. * | ---- range to drop ----- |
  829. * | -------- extent -------- |
  830. */
  831. if (start <= key.offset && end < extent_end) {
  832. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  833. ret = -EOPNOTSUPP;
  834. break;
  835. }
  836. memcpy(&new_key, &key, sizeof(new_key));
  837. new_key.offset = end;
  838. btrfs_set_item_key_safe(fs_info, path, &new_key);
  839. extent_offset += end - key.offset;
  840. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  841. btrfs_set_file_extent_num_bytes(leaf, fi,
  842. extent_end - end);
  843. btrfs_mark_buffer_dirty(leaf);
  844. if (update_refs && disk_bytenr > 0)
  845. inode_sub_bytes(inode, end - key.offset);
  846. break;
  847. }
  848. search_start = extent_end;
  849. /*
  850. * | ---- range to drop ----- |
  851. * | -------- extent -------- |
  852. */
  853. if (start > key.offset && end >= extent_end) {
  854. BUG_ON(del_nr > 0);
  855. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  856. ret = -EOPNOTSUPP;
  857. break;
  858. }
  859. btrfs_set_file_extent_num_bytes(leaf, fi,
  860. start - key.offset);
  861. btrfs_mark_buffer_dirty(leaf);
  862. if (update_refs && disk_bytenr > 0)
  863. inode_sub_bytes(inode, extent_end - start);
  864. if (end == extent_end)
  865. break;
  866. path->slots[0]++;
  867. goto next_slot;
  868. }
  869. /*
  870. * | ---- range to drop ----- |
  871. * | ------ extent ------ |
  872. */
  873. if (start <= key.offset && end >= extent_end) {
  874. delete_extent_item:
  875. if (del_nr == 0) {
  876. del_slot = path->slots[0];
  877. del_nr = 1;
  878. } else {
  879. BUG_ON(del_slot + del_nr != path->slots[0]);
  880. del_nr++;
  881. }
  882. if (update_refs &&
  883. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  884. inode_sub_bytes(inode,
  885. extent_end - key.offset);
  886. extent_end = ALIGN(extent_end,
  887. fs_info->sectorsize);
  888. } else if (update_refs && disk_bytenr > 0) {
  889. ret = btrfs_free_extent(trans, root,
  890. disk_bytenr, num_bytes, 0,
  891. root->root_key.objectid,
  892. key.objectid, key.offset -
  893. extent_offset);
  894. BUG_ON(ret); /* -ENOMEM */
  895. inode_sub_bytes(inode,
  896. extent_end - key.offset);
  897. }
  898. if (end == extent_end)
  899. break;
  900. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  901. path->slots[0]++;
  902. goto next_slot;
  903. }
  904. ret = btrfs_del_items(trans, root, path, del_slot,
  905. del_nr);
  906. if (ret) {
  907. btrfs_abort_transaction(trans, ret);
  908. break;
  909. }
  910. del_nr = 0;
  911. del_slot = 0;
  912. btrfs_release_path(path);
  913. continue;
  914. }
  915. BUG_ON(1);
  916. }
  917. if (!ret && del_nr > 0) {
  918. /*
  919. * Set path->slots[0] to first slot, so that after the delete
  920. * if items are move off from our leaf to its immediate left or
  921. * right neighbor leafs, we end up with a correct and adjusted
  922. * path->slots[0] for our insertion (if replace_extent != 0).
  923. */
  924. path->slots[0] = del_slot;
  925. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  926. if (ret)
  927. btrfs_abort_transaction(trans, ret);
  928. }
  929. leaf = path->nodes[0];
  930. /*
  931. * If btrfs_del_items() was called, it might have deleted a leaf, in
  932. * which case it unlocked our path, so check path->locks[0] matches a
  933. * write lock.
  934. */
  935. if (!ret && replace_extent && leafs_visited == 1 &&
  936. (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
  937. path->locks[0] == BTRFS_WRITE_LOCK) &&
  938. btrfs_leaf_free_space(fs_info, leaf) >=
  939. sizeof(struct btrfs_item) + extent_item_size) {
  940. key.objectid = ino;
  941. key.type = BTRFS_EXTENT_DATA_KEY;
  942. key.offset = start;
  943. if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
  944. struct btrfs_key slot_key;
  945. btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
  946. if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
  947. path->slots[0]++;
  948. }
  949. setup_items_for_insert(root, path, &key,
  950. &extent_item_size,
  951. extent_item_size,
  952. sizeof(struct btrfs_item) +
  953. extent_item_size, 1);
  954. *key_inserted = 1;
  955. }
  956. if (!replace_extent || !(*key_inserted))
  957. btrfs_release_path(path);
  958. if (drop_end)
  959. *drop_end = found ? min(end, last_end) : end;
  960. return ret;
  961. }
  962. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  963. struct btrfs_root *root, struct inode *inode, u64 start,
  964. u64 end, int drop_cache)
  965. {
  966. struct btrfs_path *path;
  967. int ret;
  968. path = btrfs_alloc_path();
  969. if (!path)
  970. return -ENOMEM;
  971. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  972. drop_cache, 0, 0, NULL);
  973. btrfs_free_path(path);
  974. return ret;
  975. }
  976. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  977. u64 objectid, u64 bytenr, u64 orig_offset,
  978. u64 *start, u64 *end)
  979. {
  980. struct btrfs_file_extent_item *fi;
  981. struct btrfs_key key;
  982. u64 extent_end;
  983. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  984. return 0;
  985. btrfs_item_key_to_cpu(leaf, &key, slot);
  986. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  987. return 0;
  988. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  989. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  990. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  991. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  992. btrfs_file_extent_compression(leaf, fi) ||
  993. btrfs_file_extent_encryption(leaf, fi) ||
  994. btrfs_file_extent_other_encoding(leaf, fi))
  995. return 0;
  996. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  997. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  998. return 0;
  999. *start = key.offset;
  1000. *end = extent_end;
  1001. return 1;
  1002. }
  1003. /*
  1004. * Mark extent in the range start - end as written.
  1005. *
  1006. * This changes extent type from 'pre-allocated' to 'regular'. If only
  1007. * part of extent is marked as written, the extent will be split into
  1008. * two or three.
  1009. */
  1010. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  1011. struct btrfs_inode *inode, u64 start, u64 end)
  1012. {
  1013. struct btrfs_fs_info *fs_info = trans->fs_info;
  1014. struct btrfs_root *root = inode->root;
  1015. struct extent_buffer *leaf;
  1016. struct btrfs_path *path;
  1017. struct btrfs_file_extent_item *fi;
  1018. struct btrfs_key key;
  1019. struct btrfs_key new_key;
  1020. u64 bytenr;
  1021. u64 num_bytes;
  1022. u64 extent_end;
  1023. u64 orig_offset;
  1024. u64 other_start;
  1025. u64 other_end;
  1026. u64 split;
  1027. int del_nr = 0;
  1028. int del_slot = 0;
  1029. int recow;
  1030. int ret;
  1031. u64 ino = btrfs_ino(inode);
  1032. path = btrfs_alloc_path();
  1033. if (!path)
  1034. return -ENOMEM;
  1035. again:
  1036. recow = 0;
  1037. split = start;
  1038. key.objectid = ino;
  1039. key.type = BTRFS_EXTENT_DATA_KEY;
  1040. key.offset = split;
  1041. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1042. if (ret < 0)
  1043. goto out;
  1044. if (ret > 0 && path->slots[0] > 0)
  1045. path->slots[0]--;
  1046. leaf = path->nodes[0];
  1047. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1048. if (key.objectid != ino ||
  1049. key.type != BTRFS_EXTENT_DATA_KEY) {
  1050. ret = -EINVAL;
  1051. btrfs_abort_transaction(trans, ret);
  1052. goto out;
  1053. }
  1054. fi = btrfs_item_ptr(leaf, path->slots[0],
  1055. struct btrfs_file_extent_item);
  1056. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
  1057. ret = -EINVAL;
  1058. btrfs_abort_transaction(trans, ret);
  1059. goto out;
  1060. }
  1061. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  1062. if (key.offset > start || extent_end < end) {
  1063. ret = -EINVAL;
  1064. btrfs_abort_transaction(trans, ret);
  1065. goto out;
  1066. }
  1067. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1068. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1069. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  1070. memcpy(&new_key, &key, sizeof(new_key));
  1071. if (start == key.offset && end < extent_end) {
  1072. other_start = 0;
  1073. other_end = start;
  1074. if (extent_mergeable(leaf, path->slots[0] - 1,
  1075. ino, bytenr, orig_offset,
  1076. &other_start, &other_end)) {
  1077. new_key.offset = end;
  1078. btrfs_set_item_key_safe(fs_info, path, &new_key);
  1079. fi = btrfs_item_ptr(leaf, path->slots[0],
  1080. struct btrfs_file_extent_item);
  1081. btrfs_set_file_extent_generation(leaf, fi,
  1082. trans->transid);
  1083. btrfs_set_file_extent_num_bytes(leaf, fi,
  1084. extent_end - end);
  1085. btrfs_set_file_extent_offset(leaf, fi,
  1086. end - orig_offset);
  1087. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1088. struct btrfs_file_extent_item);
  1089. btrfs_set_file_extent_generation(leaf, fi,
  1090. trans->transid);
  1091. btrfs_set_file_extent_num_bytes(leaf, fi,
  1092. end - other_start);
  1093. btrfs_mark_buffer_dirty(leaf);
  1094. goto out;
  1095. }
  1096. }
  1097. if (start > key.offset && end == extent_end) {
  1098. other_start = end;
  1099. other_end = 0;
  1100. if (extent_mergeable(leaf, path->slots[0] + 1,
  1101. ino, bytenr, orig_offset,
  1102. &other_start, &other_end)) {
  1103. fi = btrfs_item_ptr(leaf, path->slots[0],
  1104. struct btrfs_file_extent_item);
  1105. btrfs_set_file_extent_num_bytes(leaf, fi,
  1106. start - key.offset);
  1107. btrfs_set_file_extent_generation(leaf, fi,
  1108. trans->transid);
  1109. path->slots[0]++;
  1110. new_key.offset = start;
  1111. btrfs_set_item_key_safe(fs_info, path, &new_key);
  1112. fi = btrfs_item_ptr(leaf, path->slots[0],
  1113. struct btrfs_file_extent_item);
  1114. btrfs_set_file_extent_generation(leaf, fi,
  1115. trans->transid);
  1116. btrfs_set_file_extent_num_bytes(leaf, fi,
  1117. other_end - start);
  1118. btrfs_set_file_extent_offset(leaf, fi,
  1119. start - orig_offset);
  1120. btrfs_mark_buffer_dirty(leaf);
  1121. goto out;
  1122. }
  1123. }
  1124. while (start > key.offset || end < extent_end) {
  1125. if (key.offset == start)
  1126. split = end;
  1127. new_key.offset = split;
  1128. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  1129. if (ret == -EAGAIN) {
  1130. btrfs_release_path(path);
  1131. goto again;
  1132. }
  1133. if (ret < 0) {
  1134. btrfs_abort_transaction(trans, ret);
  1135. goto out;
  1136. }
  1137. leaf = path->nodes[0];
  1138. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1139. struct btrfs_file_extent_item);
  1140. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1141. btrfs_set_file_extent_num_bytes(leaf, fi,
  1142. split - key.offset);
  1143. fi = btrfs_item_ptr(leaf, path->slots[0],
  1144. struct btrfs_file_extent_item);
  1145. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1146. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1147. btrfs_set_file_extent_num_bytes(leaf, fi,
  1148. extent_end - split);
  1149. btrfs_mark_buffer_dirty(leaf);
  1150. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
  1151. 0, root->root_key.objectid,
  1152. ino, orig_offset);
  1153. if (ret) {
  1154. btrfs_abort_transaction(trans, ret);
  1155. goto out;
  1156. }
  1157. if (split == start) {
  1158. key.offset = start;
  1159. } else {
  1160. if (start != key.offset) {
  1161. ret = -EINVAL;
  1162. btrfs_abort_transaction(trans, ret);
  1163. goto out;
  1164. }
  1165. path->slots[0]--;
  1166. extent_end = end;
  1167. }
  1168. recow = 1;
  1169. }
  1170. other_start = end;
  1171. other_end = 0;
  1172. if (extent_mergeable(leaf, path->slots[0] + 1,
  1173. ino, bytenr, orig_offset,
  1174. &other_start, &other_end)) {
  1175. if (recow) {
  1176. btrfs_release_path(path);
  1177. goto again;
  1178. }
  1179. extent_end = other_end;
  1180. del_slot = path->slots[0] + 1;
  1181. del_nr++;
  1182. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1183. 0, root->root_key.objectid,
  1184. ino, orig_offset);
  1185. if (ret) {
  1186. btrfs_abort_transaction(trans, ret);
  1187. goto out;
  1188. }
  1189. }
  1190. other_start = 0;
  1191. other_end = start;
  1192. if (extent_mergeable(leaf, path->slots[0] - 1,
  1193. ino, bytenr, orig_offset,
  1194. &other_start, &other_end)) {
  1195. if (recow) {
  1196. btrfs_release_path(path);
  1197. goto again;
  1198. }
  1199. key.offset = other_start;
  1200. del_slot = path->slots[0];
  1201. del_nr++;
  1202. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1203. 0, root->root_key.objectid,
  1204. ino, orig_offset);
  1205. if (ret) {
  1206. btrfs_abort_transaction(trans, ret);
  1207. goto out;
  1208. }
  1209. }
  1210. if (del_nr == 0) {
  1211. fi = btrfs_item_ptr(leaf, path->slots[0],
  1212. struct btrfs_file_extent_item);
  1213. btrfs_set_file_extent_type(leaf, fi,
  1214. BTRFS_FILE_EXTENT_REG);
  1215. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1216. btrfs_mark_buffer_dirty(leaf);
  1217. } else {
  1218. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1219. struct btrfs_file_extent_item);
  1220. btrfs_set_file_extent_type(leaf, fi,
  1221. BTRFS_FILE_EXTENT_REG);
  1222. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1223. btrfs_set_file_extent_num_bytes(leaf, fi,
  1224. extent_end - key.offset);
  1225. btrfs_mark_buffer_dirty(leaf);
  1226. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1227. if (ret < 0) {
  1228. btrfs_abort_transaction(trans, ret);
  1229. goto out;
  1230. }
  1231. }
  1232. out:
  1233. btrfs_free_path(path);
  1234. return 0;
  1235. }
  1236. /*
  1237. * on error we return an unlocked page and the error value
  1238. * on success we return a locked page and 0
  1239. */
  1240. static int prepare_uptodate_page(struct inode *inode,
  1241. struct page *page, u64 pos,
  1242. bool force_uptodate)
  1243. {
  1244. int ret = 0;
  1245. if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
  1246. !PageUptodate(page)) {
  1247. ret = btrfs_readpage(NULL, page);
  1248. if (ret)
  1249. return ret;
  1250. lock_page(page);
  1251. if (!PageUptodate(page)) {
  1252. unlock_page(page);
  1253. return -EIO;
  1254. }
  1255. if (page->mapping != inode->i_mapping) {
  1256. unlock_page(page);
  1257. return -EAGAIN;
  1258. }
  1259. }
  1260. return 0;
  1261. }
  1262. /*
  1263. * this just gets pages into the page cache and locks them down.
  1264. */
  1265. static noinline int prepare_pages(struct inode *inode, struct page **pages,
  1266. size_t num_pages, loff_t pos,
  1267. size_t write_bytes, bool force_uptodate)
  1268. {
  1269. int i;
  1270. unsigned long index = pos >> PAGE_SHIFT;
  1271. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1272. int err = 0;
  1273. int faili;
  1274. for (i = 0; i < num_pages; i++) {
  1275. again:
  1276. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1277. mask | __GFP_WRITE);
  1278. if (!pages[i]) {
  1279. faili = i - 1;
  1280. err = -ENOMEM;
  1281. goto fail;
  1282. }
  1283. if (i == 0)
  1284. err = prepare_uptodate_page(inode, pages[i], pos,
  1285. force_uptodate);
  1286. if (!err && i == num_pages - 1)
  1287. err = prepare_uptodate_page(inode, pages[i],
  1288. pos + write_bytes, false);
  1289. if (err) {
  1290. put_page(pages[i]);
  1291. if (err == -EAGAIN) {
  1292. err = 0;
  1293. goto again;
  1294. }
  1295. faili = i - 1;
  1296. goto fail;
  1297. }
  1298. wait_on_page_writeback(pages[i]);
  1299. }
  1300. return 0;
  1301. fail:
  1302. while (faili >= 0) {
  1303. unlock_page(pages[faili]);
  1304. put_page(pages[faili]);
  1305. faili--;
  1306. }
  1307. return err;
  1308. }
  1309. /*
  1310. * This function locks the extent and properly waits for data=ordered extents
  1311. * to finish before allowing the pages to be modified if need.
  1312. *
  1313. * The return value:
  1314. * 1 - the extent is locked
  1315. * 0 - the extent is not locked, and everything is OK
  1316. * -EAGAIN - need re-prepare the pages
  1317. * the other < 0 number - Something wrong happens
  1318. */
  1319. static noinline int
  1320. lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
  1321. size_t num_pages, loff_t pos,
  1322. size_t write_bytes,
  1323. u64 *lockstart, u64 *lockend,
  1324. struct extent_state **cached_state)
  1325. {
  1326. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1327. u64 start_pos;
  1328. u64 last_pos;
  1329. int i;
  1330. int ret = 0;
  1331. start_pos = round_down(pos, fs_info->sectorsize);
  1332. last_pos = start_pos
  1333. + round_up(pos + write_bytes - start_pos,
  1334. fs_info->sectorsize) - 1;
  1335. if (start_pos < inode->vfs_inode.i_size) {
  1336. struct btrfs_ordered_extent *ordered;
  1337. lock_extent_bits(&inode->io_tree, start_pos, last_pos,
  1338. cached_state);
  1339. ordered = btrfs_lookup_ordered_range(inode, start_pos,
  1340. last_pos - start_pos + 1);
  1341. if (ordered &&
  1342. ordered->file_offset + ordered->len > start_pos &&
  1343. ordered->file_offset <= last_pos) {
  1344. unlock_extent_cached(&inode->io_tree, start_pos,
  1345. last_pos, cached_state);
  1346. for (i = 0; i < num_pages; i++) {
  1347. unlock_page(pages[i]);
  1348. put_page(pages[i]);
  1349. }
  1350. btrfs_start_ordered_extent(&inode->vfs_inode,
  1351. ordered, 1);
  1352. btrfs_put_ordered_extent(ordered);
  1353. return -EAGAIN;
  1354. }
  1355. if (ordered)
  1356. btrfs_put_ordered_extent(ordered);
  1357. *lockstart = start_pos;
  1358. *lockend = last_pos;
  1359. ret = 1;
  1360. }
  1361. /*
  1362. * It's possible the pages are dirty right now, but we don't want
  1363. * to clean them yet because copy_from_user may catch a page fault
  1364. * and we might have to fall back to one page at a time. If that
  1365. * happens, we'll unlock these pages and we'd have a window where
  1366. * reclaim could sneak in and drop the once-dirty page on the floor
  1367. * without writing it.
  1368. *
  1369. * We have the pages locked and the extent range locked, so there's
  1370. * no way someone can start IO on any dirty pages in this range.
  1371. *
  1372. * We'll call btrfs_dirty_pages() later on, and that will flip around
  1373. * delalloc bits and dirty the pages as required.
  1374. */
  1375. for (i = 0; i < num_pages; i++) {
  1376. set_page_extent_mapped(pages[i]);
  1377. WARN_ON(!PageLocked(pages[i]));
  1378. }
  1379. return ret;
  1380. }
  1381. static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
  1382. size_t *write_bytes)
  1383. {
  1384. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1385. struct btrfs_root *root = inode->root;
  1386. struct btrfs_ordered_extent *ordered;
  1387. u64 lockstart, lockend;
  1388. u64 num_bytes;
  1389. int ret;
  1390. ret = btrfs_start_write_no_snapshotting(root);
  1391. if (!ret)
  1392. return -ENOSPC;
  1393. lockstart = round_down(pos, fs_info->sectorsize);
  1394. lockend = round_up(pos + *write_bytes,
  1395. fs_info->sectorsize) - 1;
  1396. while (1) {
  1397. lock_extent(&inode->io_tree, lockstart, lockend);
  1398. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1399. lockend - lockstart + 1);
  1400. if (!ordered) {
  1401. break;
  1402. }
  1403. unlock_extent(&inode->io_tree, lockstart, lockend);
  1404. btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
  1405. btrfs_put_ordered_extent(ordered);
  1406. }
  1407. num_bytes = lockend - lockstart + 1;
  1408. ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
  1409. NULL, NULL, NULL);
  1410. if (ret <= 0) {
  1411. ret = 0;
  1412. btrfs_end_write_no_snapshotting(root);
  1413. } else {
  1414. *write_bytes = min_t(size_t, *write_bytes ,
  1415. num_bytes - pos + lockstart);
  1416. }
  1417. unlock_extent(&inode->io_tree, lockstart, lockend);
  1418. return ret;
  1419. }
  1420. static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
  1421. struct iov_iter *i)
  1422. {
  1423. struct file *file = iocb->ki_filp;
  1424. loff_t pos = iocb->ki_pos;
  1425. struct inode *inode = file_inode(file);
  1426. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1427. struct btrfs_root *root = BTRFS_I(inode)->root;
  1428. struct page **pages = NULL;
  1429. struct extent_state *cached_state = NULL;
  1430. struct extent_changeset *data_reserved = NULL;
  1431. u64 release_bytes = 0;
  1432. u64 lockstart;
  1433. u64 lockend;
  1434. size_t num_written = 0;
  1435. int nrptrs;
  1436. int ret = 0;
  1437. bool only_release_metadata = false;
  1438. bool force_page_uptodate = false;
  1439. nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
  1440. PAGE_SIZE / (sizeof(struct page *)));
  1441. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1442. nrptrs = max(nrptrs, 8);
  1443. pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
  1444. if (!pages)
  1445. return -ENOMEM;
  1446. while (iov_iter_count(i) > 0) {
  1447. size_t offset = pos & (PAGE_SIZE - 1);
  1448. size_t sector_offset;
  1449. size_t write_bytes = min(iov_iter_count(i),
  1450. nrptrs * (size_t)PAGE_SIZE -
  1451. offset);
  1452. size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
  1453. PAGE_SIZE);
  1454. size_t reserve_bytes;
  1455. size_t dirty_pages;
  1456. size_t copied;
  1457. size_t dirty_sectors;
  1458. size_t num_sectors;
  1459. int extents_locked;
  1460. WARN_ON(num_pages > nrptrs);
  1461. /*
  1462. * Fault pages before locking them in prepare_pages
  1463. * to avoid recursive lock
  1464. */
  1465. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1466. ret = -EFAULT;
  1467. break;
  1468. }
  1469. sector_offset = pos & (fs_info->sectorsize - 1);
  1470. reserve_bytes = round_up(write_bytes + sector_offset,
  1471. fs_info->sectorsize);
  1472. extent_changeset_release(data_reserved);
  1473. ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
  1474. write_bytes);
  1475. if (ret < 0) {
  1476. if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1477. BTRFS_INODE_PREALLOC)) &&
  1478. check_can_nocow(BTRFS_I(inode), pos,
  1479. &write_bytes) > 0) {
  1480. /*
  1481. * For nodata cow case, no need to reserve
  1482. * data space.
  1483. */
  1484. only_release_metadata = true;
  1485. /*
  1486. * our prealloc extent may be smaller than
  1487. * write_bytes, so scale down.
  1488. */
  1489. num_pages = DIV_ROUND_UP(write_bytes + offset,
  1490. PAGE_SIZE);
  1491. reserve_bytes = round_up(write_bytes +
  1492. sector_offset,
  1493. fs_info->sectorsize);
  1494. } else {
  1495. break;
  1496. }
  1497. }
  1498. WARN_ON(reserve_bytes == 0);
  1499. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  1500. reserve_bytes);
  1501. if (ret) {
  1502. if (!only_release_metadata)
  1503. btrfs_free_reserved_data_space(inode,
  1504. data_reserved, pos,
  1505. write_bytes);
  1506. else
  1507. btrfs_end_write_no_snapshotting(root);
  1508. break;
  1509. }
  1510. release_bytes = reserve_bytes;
  1511. again:
  1512. /*
  1513. * This is going to setup the pages array with the number of
  1514. * pages we want, so we don't really need to worry about the
  1515. * contents of pages from loop to loop
  1516. */
  1517. ret = prepare_pages(inode, pages, num_pages,
  1518. pos, write_bytes,
  1519. force_page_uptodate);
  1520. if (ret) {
  1521. btrfs_delalloc_release_extents(BTRFS_I(inode),
  1522. reserve_bytes, true);
  1523. break;
  1524. }
  1525. extents_locked = lock_and_cleanup_extent_if_need(
  1526. BTRFS_I(inode), pages,
  1527. num_pages, pos, write_bytes, &lockstart,
  1528. &lockend, &cached_state);
  1529. if (extents_locked < 0) {
  1530. if (extents_locked == -EAGAIN)
  1531. goto again;
  1532. btrfs_delalloc_release_extents(BTRFS_I(inode),
  1533. reserve_bytes, true);
  1534. ret = extents_locked;
  1535. break;
  1536. }
  1537. copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
  1538. num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
  1539. dirty_sectors = round_up(copied + sector_offset,
  1540. fs_info->sectorsize);
  1541. dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
  1542. /*
  1543. * if we have trouble faulting in the pages, fall
  1544. * back to one page at a time
  1545. */
  1546. if (copied < write_bytes)
  1547. nrptrs = 1;
  1548. if (copied == 0) {
  1549. force_page_uptodate = true;
  1550. dirty_sectors = 0;
  1551. dirty_pages = 0;
  1552. } else {
  1553. force_page_uptodate = false;
  1554. dirty_pages = DIV_ROUND_UP(copied + offset,
  1555. PAGE_SIZE);
  1556. }
  1557. if (num_sectors > dirty_sectors) {
  1558. /* release everything except the sectors we dirtied */
  1559. release_bytes -= dirty_sectors <<
  1560. fs_info->sb->s_blocksize_bits;
  1561. if (only_release_metadata) {
  1562. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  1563. release_bytes, true);
  1564. } else {
  1565. u64 __pos;
  1566. __pos = round_down(pos,
  1567. fs_info->sectorsize) +
  1568. (dirty_pages << PAGE_SHIFT);
  1569. btrfs_delalloc_release_space(inode,
  1570. data_reserved, __pos,
  1571. release_bytes, true);
  1572. }
  1573. }
  1574. release_bytes = round_up(copied + sector_offset,
  1575. fs_info->sectorsize);
  1576. if (copied > 0)
  1577. ret = btrfs_dirty_pages(inode, pages, dirty_pages,
  1578. pos, copied, &cached_state);
  1579. if (extents_locked)
  1580. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1581. lockstart, lockend, &cached_state);
  1582. btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
  1583. true);
  1584. if (ret) {
  1585. btrfs_drop_pages(pages, num_pages);
  1586. break;
  1587. }
  1588. release_bytes = 0;
  1589. if (only_release_metadata)
  1590. btrfs_end_write_no_snapshotting(root);
  1591. if (only_release_metadata && copied > 0) {
  1592. lockstart = round_down(pos,
  1593. fs_info->sectorsize);
  1594. lockend = round_up(pos + copied,
  1595. fs_info->sectorsize) - 1;
  1596. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1597. lockend, EXTENT_NORESERVE, NULL,
  1598. NULL, GFP_NOFS);
  1599. only_release_metadata = false;
  1600. }
  1601. btrfs_drop_pages(pages, num_pages);
  1602. cond_resched();
  1603. balance_dirty_pages_ratelimited(inode->i_mapping);
  1604. if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
  1605. btrfs_btree_balance_dirty(fs_info);
  1606. pos += copied;
  1607. num_written += copied;
  1608. }
  1609. kfree(pages);
  1610. if (release_bytes) {
  1611. if (only_release_metadata) {
  1612. btrfs_end_write_no_snapshotting(root);
  1613. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  1614. release_bytes, true);
  1615. } else {
  1616. btrfs_delalloc_release_space(inode, data_reserved,
  1617. round_down(pos, fs_info->sectorsize),
  1618. release_bytes, true);
  1619. }
  1620. }
  1621. extent_changeset_free(data_reserved);
  1622. return num_written ? num_written : ret;
  1623. }
  1624. static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
  1625. {
  1626. struct file *file = iocb->ki_filp;
  1627. struct inode *inode = file_inode(file);
  1628. loff_t pos;
  1629. ssize_t written;
  1630. ssize_t written_buffered;
  1631. loff_t endbyte;
  1632. int err;
  1633. written = generic_file_direct_write(iocb, from);
  1634. if (written < 0 || !iov_iter_count(from))
  1635. return written;
  1636. pos = iocb->ki_pos;
  1637. written_buffered = btrfs_buffered_write(iocb, from);
  1638. if (written_buffered < 0) {
  1639. err = written_buffered;
  1640. goto out;
  1641. }
  1642. /*
  1643. * Ensure all data is persisted. We want the next direct IO read to be
  1644. * able to read what was just written.
  1645. */
  1646. endbyte = pos + written_buffered - 1;
  1647. err = btrfs_fdatawrite_range(inode, pos, endbyte);
  1648. if (err)
  1649. goto out;
  1650. err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
  1651. if (err)
  1652. goto out;
  1653. written += written_buffered;
  1654. iocb->ki_pos = pos + written_buffered;
  1655. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
  1656. endbyte >> PAGE_SHIFT);
  1657. out:
  1658. return written ? written : err;
  1659. }
  1660. static void update_time_for_write(struct inode *inode)
  1661. {
  1662. struct timespec64 now;
  1663. if (IS_NOCMTIME(inode))
  1664. return;
  1665. now = current_time(inode);
  1666. if (!timespec64_equal(&inode->i_mtime, &now))
  1667. inode->i_mtime = now;
  1668. if (!timespec64_equal(&inode->i_ctime, &now))
  1669. inode->i_ctime = now;
  1670. if (IS_I_VERSION(inode))
  1671. inode_inc_iversion(inode);
  1672. }
  1673. static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
  1674. struct iov_iter *from)
  1675. {
  1676. struct file *file = iocb->ki_filp;
  1677. struct inode *inode = file_inode(file);
  1678. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1679. struct btrfs_root *root = BTRFS_I(inode)->root;
  1680. u64 start_pos;
  1681. u64 end_pos;
  1682. ssize_t num_written = 0;
  1683. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1684. ssize_t err;
  1685. loff_t pos;
  1686. size_t count = iov_iter_count(from);
  1687. loff_t oldsize;
  1688. int clean_page = 0;
  1689. if (!(iocb->ki_flags & IOCB_DIRECT) &&
  1690. (iocb->ki_flags & IOCB_NOWAIT))
  1691. return -EOPNOTSUPP;
  1692. if (!inode_trylock(inode)) {
  1693. if (iocb->ki_flags & IOCB_NOWAIT)
  1694. return -EAGAIN;
  1695. inode_lock(inode);
  1696. }
  1697. err = generic_write_checks(iocb, from);
  1698. if (err <= 0) {
  1699. inode_unlock(inode);
  1700. return err;
  1701. }
  1702. pos = iocb->ki_pos;
  1703. if (iocb->ki_flags & IOCB_NOWAIT) {
  1704. /*
  1705. * We will allocate space in case nodatacow is not set,
  1706. * so bail
  1707. */
  1708. if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1709. BTRFS_INODE_PREALLOC)) ||
  1710. check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
  1711. inode_unlock(inode);
  1712. return -EAGAIN;
  1713. }
  1714. }
  1715. current->backing_dev_info = inode_to_bdi(inode);
  1716. err = file_remove_privs(file);
  1717. if (err) {
  1718. inode_unlock(inode);
  1719. goto out;
  1720. }
  1721. /*
  1722. * If BTRFS flips readonly due to some impossible error
  1723. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1724. * although we have opened a file as writable, we have
  1725. * to stop this write operation to ensure FS consistency.
  1726. */
  1727. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1728. inode_unlock(inode);
  1729. err = -EROFS;
  1730. goto out;
  1731. }
  1732. /*
  1733. * We reserve space for updating the inode when we reserve space for the
  1734. * extent we are going to write, so we will enospc out there. We don't
  1735. * need to start yet another transaction to update the inode as we will
  1736. * update the inode when we finish writing whatever data we write.
  1737. */
  1738. update_time_for_write(inode);
  1739. start_pos = round_down(pos, fs_info->sectorsize);
  1740. oldsize = i_size_read(inode);
  1741. if (start_pos > oldsize) {
  1742. /* Expand hole size to cover write data, preventing empty gap */
  1743. end_pos = round_up(pos + count,
  1744. fs_info->sectorsize);
  1745. err = btrfs_cont_expand(inode, oldsize, end_pos);
  1746. if (err) {
  1747. inode_unlock(inode);
  1748. goto out;
  1749. }
  1750. if (start_pos > round_up(oldsize, fs_info->sectorsize))
  1751. clean_page = 1;
  1752. }
  1753. if (sync)
  1754. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1755. if (iocb->ki_flags & IOCB_DIRECT) {
  1756. num_written = __btrfs_direct_write(iocb, from);
  1757. } else {
  1758. num_written = btrfs_buffered_write(iocb, from);
  1759. if (num_written > 0)
  1760. iocb->ki_pos = pos + num_written;
  1761. if (clean_page)
  1762. pagecache_isize_extended(inode, oldsize,
  1763. i_size_read(inode));
  1764. }
  1765. inode_unlock(inode);
  1766. /*
  1767. * We also have to set last_sub_trans to the current log transid,
  1768. * otherwise subsequent syncs to a file that's been synced in this
  1769. * transaction will appear to have already occurred.
  1770. */
  1771. spin_lock(&BTRFS_I(inode)->lock);
  1772. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1773. spin_unlock(&BTRFS_I(inode)->lock);
  1774. if (num_written > 0)
  1775. num_written = generic_write_sync(iocb, num_written);
  1776. if (sync)
  1777. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1778. out:
  1779. current->backing_dev_info = NULL;
  1780. return num_written ? num_written : err;
  1781. }
  1782. int btrfs_release_file(struct inode *inode, struct file *filp)
  1783. {
  1784. struct btrfs_file_private *private = filp->private_data;
  1785. if (private && private->filldir_buf)
  1786. kfree(private->filldir_buf);
  1787. kfree(private);
  1788. filp->private_data = NULL;
  1789. /*
  1790. * ordered_data_close is set by settattr when we are about to truncate
  1791. * a file from a non-zero size to a zero size. This tries to
  1792. * flush down new bytes that may have been written if the
  1793. * application were using truncate to replace a file in place.
  1794. */
  1795. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1796. &BTRFS_I(inode)->runtime_flags))
  1797. filemap_flush(inode->i_mapping);
  1798. return 0;
  1799. }
  1800. static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
  1801. {
  1802. int ret;
  1803. struct blk_plug plug;
  1804. /*
  1805. * This is only called in fsync, which would do synchronous writes, so
  1806. * a plug can merge adjacent IOs as much as possible. Esp. in case of
  1807. * multiple disks using raid profile, a large IO can be split to
  1808. * several segments of stripe length (currently 64K).
  1809. */
  1810. blk_start_plug(&plug);
  1811. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1812. ret = btrfs_fdatawrite_range(inode, start, end);
  1813. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1814. blk_finish_plug(&plug);
  1815. return ret;
  1816. }
  1817. /*
  1818. * fsync call for both files and directories. This logs the inode into
  1819. * the tree log instead of forcing full commits whenever possible.
  1820. *
  1821. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1822. * in the metadata btree are up to date for copying to the log.
  1823. *
  1824. * It drops the inode mutex before doing the tree log commit. This is an
  1825. * important optimization for directories because holding the mutex prevents
  1826. * new operations on the dir while we write to disk.
  1827. */
  1828. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1829. {
  1830. struct dentry *dentry = file_dentry(file);
  1831. struct inode *inode = d_inode(dentry);
  1832. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1833. struct btrfs_root *root = BTRFS_I(inode)->root;
  1834. struct btrfs_trans_handle *trans;
  1835. struct btrfs_log_ctx ctx;
  1836. int ret = 0, err;
  1837. u64 len;
  1838. /*
  1839. * The range length can be represented by u64, we have to do the typecasts
  1840. * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
  1841. */
  1842. len = (u64)end - (u64)start + 1;
  1843. trace_btrfs_sync_file(file, datasync);
  1844. btrfs_init_log_ctx(&ctx, inode);
  1845. /*
  1846. * We write the dirty pages in the range and wait until they complete
  1847. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1848. * multi-task, and make the performance up. See
  1849. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1850. */
  1851. ret = start_ordered_ops(inode, start, end);
  1852. if (ret)
  1853. goto out;
  1854. inode_lock(inode);
  1855. /*
  1856. * We take the dio_sem here because the tree log stuff can race with
  1857. * lockless dio writes and get an extent map logged for an extent we
  1858. * never waited on. We need it this high up for lockdep reasons.
  1859. */
  1860. down_write(&BTRFS_I(inode)->dio_sem);
  1861. atomic_inc(&root->log_batch);
  1862. /*
  1863. * Before we acquired the inode's lock, someone may have dirtied more
  1864. * pages in the target range. We need to make sure that writeback for
  1865. * any such pages does not start while we are logging the inode, because
  1866. * if it does, any of the following might happen when we are not doing a
  1867. * full inode sync:
  1868. *
  1869. * 1) We log an extent after its writeback finishes but before its
  1870. * checksums are added to the csum tree, leading to -EIO errors
  1871. * when attempting to read the extent after a log replay.
  1872. *
  1873. * 2) We can end up logging an extent before its writeback finishes.
  1874. * Therefore after the log replay we will have a file extent item
  1875. * pointing to an unwritten extent (and no data checksums as well).
  1876. *
  1877. * So trigger writeback for any eventual new dirty pages and then we
  1878. * wait for all ordered extents to complete below.
  1879. */
  1880. ret = start_ordered_ops(inode, start, end);
  1881. if (ret) {
  1882. inode_unlock(inode);
  1883. goto out;
  1884. }
  1885. /*
  1886. * We have to do this here to avoid the priority inversion of waiting on
  1887. * IO of a lower priority task while holding a transaciton open.
  1888. */
  1889. ret = btrfs_wait_ordered_range(inode, start, len);
  1890. if (ret) {
  1891. up_write(&BTRFS_I(inode)->dio_sem);
  1892. inode_unlock(inode);
  1893. goto out;
  1894. }
  1895. atomic_inc(&root->log_batch);
  1896. smp_mb();
  1897. if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
  1898. BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
  1899. /*
  1900. * We've had everything committed since the last time we were
  1901. * modified so clear this flag in case it was set for whatever
  1902. * reason, it's no longer relevant.
  1903. */
  1904. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1905. &BTRFS_I(inode)->runtime_flags);
  1906. /*
  1907. * An ordered extent might have started before and completed
  1908. * already with io errors, in which case the inode was not
  1909. * updated and we end up here. So check the inode's mapping
  1910. * for any errors that might have happened since we last
  1911. * checked called fsync.
  1912. */
  1913. ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
  1914. up_write(&BTRFS_I(inode)->dio_sem);
  1915. inode_unlock(inode);
  1916. goto out;
  1917. }
  1918. /*
  1919. * We use start here because we will need to wait on the IO to complete
  1920. * in btrfs_sync_log, which could require joining a transaction (for
  1921. * example checking cross references in the nocow path). If we use join
  1922. * here we could get into a situation where we're waiting on IO to
  1923. * happen that is blocked on a transaction trying to commit. With start
  1924. * we inc the extwriter counter, so we wait for all extwriters to exit
  1925. * before we start blocking join'ers. This comment is to keep somebody
  1926. * from thinking they are super smart and changing this to
  1927. * btrfs_join_transaction *cough*Josef*cough*.
  1928. */
  1929. trans = btrfs_start_transaction(root, 0);
  1930. if (IS_ERR(trans)) {
  1931. ret = PTR_ERR(trans);
  1932. up_write(&BTRFS_I(inode)->dio_sem);
  1933. inode_unlock(inode);
  1934. goto out;
  1935. }
  1936. trans->sync = true;
  1937. ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
  1938. if (ret < 0) {
  1939. /* Fallthrough and commit/free transaction. */
  1940. ret = 1;
  1941. }
  1942. /* we've logged all the items and now have a consistent
  1943. * version of the file in the log. It is possible that
  1944. * someone will come in and modify the file, but that's
  1945. * fine because the log is consistent on disk, and we
  1946. * have references to all of the file's extents
  1947. *
  1948. * It is possible that someone will come in and log the
  1949. * file again, but that will end up using the synchronization
  1950. * inside btrfs_sync_log to keep things safe.
  1951. */
  1952. up_write(&BTRFS_I(inode)->dio_sem);
  1953. inode_unlock(inode);
  1954. /*
  1955. * If any of the ordered extents had an error, just return it to user
  1956. * space, so that the application knows some writes didn't succeed and
  1957. * can take proper action (retry for e.g.). Blindly committing the
  1958. * transaction in this case, would fool userspace that everything was
  1959. * successful. And we also want to make sure our log doesn't contain
  1960. * file extent items pointing to extents that weren't fully written to -
  1961. * just like in the non fast fsync path, where we check for the ordered
  1962. * operation's error flag before writing to the log tree and return -EIO
  1963. * if any of them had this flag set (btrfs_wait_ordered_range) -
  1964. * therefore we need to check for errors in the ordered operations,
  1965. * which are indicated by ctx.io_err.
  1966. */
  1967. if (ctx.io_err) {
  1968. btrfs_end_transaction(trans);
  1969. ret = ctx.io_err;
  1970. goto out;
  1971. }
  1972. if (ret != BTRFS_NO_LOG_SYNC) {
  1973. if (!ret) {
  1974. ret = btrfs_sync_log(trans, root, &ctx);
  1975. if (!ret) {
  1976. ret = btrfs_end_transaction(trans);
  1977. goto out;
  1978. }
  1979. }
  1980. ret = btrfs_commit_transaction(trans);
  1981. } else {
  1982. ret = btrfs_end_transaction(trans);
  1983. }
  1984. out:
  1985. ASSERT(list_empty(&ctx.list));
  1986. err = file_check_and_advance_wb_err(file);
  1987. if (!ret)
  1988. ret = err;
  1989. return ret > 0 ? -EIO : ret;
  1990. }
  1991. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1992. .fault = filemap_fault,
  1993. .map_pages = filemap_map_pages,
  1994. .page_mkwrite = btrfs_page_mkwrite,
  1995. };
  1996. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1997. {
  1998. struct address_space *mapping = filp->f_mapping;
  1999. if (!mapping->a_ops->readpage)
  2000. return -ENOEXEC;
  2001. file_accessed(filp);
  2002. vma->vm_ops = &btrfs_file_vm_ops;
  2003. return 0;
  2004. }
  2005. static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
  2006. int slot, u64 start, u64 end)
  2007. {
  2008. struct btrfs_file_extent_item *fi;
  2009. struct btrfs_key key;
  2010. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  2011. return 0;
  2012. btrfs_item_key_to_cpu(leaf, &key, slot);
  2013. if (key.objectid != btrfs_ino(inode) ||
  2014. key.type != BTRFS_EXTENT_DATA_KEY)
  2015. return 0;
  2016. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  2017. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  2018. return 0;
  2019. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  2020. return 0;
  2021. if (key.offset == end)
  2022. return 1;
  2023. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  2024. return 1;
  2025. return 0;
  2026. }
  2027. static int fill_holes(struct btrfs_trans_handle *trans,
  2028. struct btrfs_inode *inode,
  2029. struct btrfs_path *path, u64 offset, u64 end)
  2030. {
  2031. struct btrfs_fs_info *fs_info = trans->fs_info;
  2032. struct btrfs_root *root = inode->root;
  2033. struct extent_buffer *leaf;
  2034. struct btrfs_file_extent_item *fi;
  2035. struct extent_map *hole_em;
  2036. struct extent_map_tree *em_tree = &inode->extent_tree;
  2037. struct btrfs_key key;
  2038. int ret;
  2039. if (btrfs_fs_incompat(fs_info, NO_HOLES))
  2040. goto out;
  2041. key.objectid = btrfs_ino(inode);
  2042. key.type = BTRFS_EXTENT_DATA_KEY;
  2043. key.offset = offset;
  2044. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2045. if (ret <= 0) {
  2046. /*
  2047. * We should have dropped this offset, so if we find it then
  2048. * something has gone horribly wrong.
  2049. */
  2050. if (ret == 0)
  2051. ret = -EINVAL;
  2052. return ret;
  2053. }
  2054. leaf = path->nodes[0];
  2055. if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
  2056. u64 num_bytes;
  2057. path->slots[0]--;
  2058. fi = btrfs_item_ptr(leaf, path->slots[0],
  2059. struct btrfs_file_extent_item);
  2060. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  2061. end - offset;
  2062. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  2063. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  2064. btrfs_set_file_extent_offset(leaf, fi, 0);
  2065. btrfs_mark_buffer_dirty(leaf);
  2066. goto out;
  2067. }
  2068. if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
  2069. u64 num_bytes;
  2070. key.offset = offset;
  2071. btrfs_set_item_key_safe(fs_info, path, &key);
  2072. fi = btrfs_item_ptr(leaf, path->slots[0],
  2073. struct btrfs_file_extent_item);
  2074. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  2075. offset;
  2076. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  2077. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  2078. btrfs_set_file_extent_offset(leaf, fi, 0);
  2079. btrfs_mark_buffer_dirty(leaf);
  2080. goto out;
  2081. }
  2082. btrfs_release_path(path);
  2083. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
  2084. offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
  2085. if (ret)
  2086. return ret;
  2087. out:
  2088. btrfs_release_path(path);
  2089. hole_em = alloc_extent_map();
  2090. if (!hole_em) {
  2091. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  2092. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
  2093. } else {
  2094. hole_em->start = offset;
  2095. hole_em->len = end - offset;
  2096. hole_em->ram_bytes = hole_em->len;
  2097. hole_em->orig_start = offset;
  2098. hole_em->block_start = EXTENT_MAP_HOLE;
  2099. hole_em->block_len = 0;
  2100. hole_em->orig_block_len = 0;
  2101. hole_em->bdev = fs_info->fs_devices->latest_bdev;
  2102. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  2103. hole_em->generation = trans->transid;
  2104. do {
  2105. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  2106. write_lock(&em_tree->lock);
  2107. ret = add_extent_mapping(em_tree, hole_em, 1);
  2108. write_unlock(&em_tree->lock);
  2109. } while (ret == -EEXIST);
  2110. free_extent_map(hole_em);
  2111. if (ret)
  2112. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  2113. &inode->runtime_flags);
  2114. }
  2115. return 0;
  2116. }
  2117. /*
  2118. * Find a hole extent on given inode and change start/len to the end of hole
  2119. * extent.(hole/vacuum extent whose em->start <= start &&
  2120. * em->start + em->len > start)
  2121. * When a hole extent is found, return 1 and modify start/len.
  2122. */
  2123. static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
  2124. {
  2125. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2126. struct extent_map *em;
  2127. int ret = 0;
  2128. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2129. round_down(*start, fs_info->sectorsize),
  2130. round_up(*len, fs_info->sectorsize), 0);
  2131. if (IS_ERR(em))
  2132. return PTR_ERR(em);
  2133. /* Hole or vacuum extent(only exists in no-hole mode) */
  2134. if (em->block_start == EXTENT_MAP_HOLE) {
  2135. ret = 1;
  2136. *len = em->start + em->len > *start + *len ?
  2137. 0 : *start + *len - em->start - em->len;
  2138. *start = em->start + em->len;
  2139. }
  2140. free_extent_map(em);
  2141. return ret;
  2142. }
  2143. static int btrfs_punch_hole_lock_range(struct inode *inode,
  2144. const u64 lockstart,
  2145. const u64 lockend,
  2146. struct extent_state **cached_state)
  2147. {
  2148. while (1) {
  2149. struct btrfs_ordered_extent *ordered;
  2150. int ret;
  2151. truncate_pagecache_range(inode, lockstart, lockend);
  2152. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2153. cached_state);
  2154. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  2155. /*
  2156. * We need to make sure we have no ordered extents in this range
  2157. * and nobody raced in and read a page in this range, if we did
  2158. * we need to try again.
  2159. */
  2160. if ((!ordered ||
  2161. (ordered->file_offset + ordered->len <= lockstart ||
  2162. ordered->file_offset > lockend)) &&
  2163. !filemap_range_has_page(inode->i_mapping,
  2164. lockstart, lockend)) {
  2165. if (ordered)
  2166. btrfs_put_ordered_extent(ordered);
  2167. break;
  2168. }
  2169. if (ordered)
  2170. btrfs_put_ordered_extent(ordered);
  2171. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2172. lockend, cached_state);
  2173. ret = btrfs_wait_ordered_range(inode, lockstart,
  2174. lockend - lockstart + 1);
  2175. if (ret)
  2176. return ret;
  2177. }
  2178. return 0;
  2179. }
  2180. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  2181. {
  2182. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2183. struct btrfs_root *root = BTRFS_I(inode)->root;
  2184. struct extent_state *cached_state = NULL;
  2185. struct btrfs_path *path;
  2186. struct btrfs_block_rsv *rsv;
  2187. struct btrfs_trans_handle *trans;
  2188. u64 lockstart;
  2189. u64 lockend;
  2190. u64 tail_start;
  2191. u64 tail_len;
  2192. u64 orig_start = offset;
  2193. u64 cur_offset;
  2194. u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
  2195. u64 drop_end;
  2196. int ret = 0;
  2197. int err = 0;
  2198. unsigned int rsv_count;
  2199. bool same_block;
  2200. bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
  2201. u64 ino_size;
  2202. bool truncated_block = false;
  2203. bool updated_inode = false;
  2204. ret = btrfs_wait_ordered_range(inode, offset, len);
  2205. if (ret)
  2206. return ret;
  2207. inode_lock(inode);
  2208. ino_size = round_up(inode->i_size, fs_info->sectorsize);
  2209. ret = find_first_non_hole(inode, &offset, &len);
  2210. if (ret < 0)
  2211. goto out_only_mutex;
  2212. if (ret && !len) {
  2213. /* Already in a large hole */
  2214. ret = 0;
  2215. goto out_only_mutex;
  2216. }
  2217. lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
  2218. lockend = round_down(offset + len,
  2219. btrfs_inode_sectorsize(inode)) - 1;
  2220. same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
  2221. == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
  2222. /*
  2223. * We needn't truncate any block which is beyond the end of the file
  2224. * because we are sure there is no data there.
  2225. */
  2226. /*
  2227. * Only do this if we are in the same block and we aren't doing the
  2228. * entire block.
  2229. */
  2230. if (same_block && len < fs_info->sectorsize) {
  2231. if (offset < ino_size) {
  2232. truncated_block = true;
  2233. ret = btrfs_truncate_block(inode, offset, len, 0);
  2234. } else {
  2235. ret = 0;
  2236. }
  2237. goto out_only_mutex;
  2238. }
  2239. /* zero back part of the first block */
  2240. if (offset < ino_size) {
  2241. truncated_block = true;
  2242. ret = btrfs_truncate_block(inode, offset, 0, 0);
  2243. if (ret) {
  2244. inode_unlock(inode);
  2245. return ret;
  2246. }
  2247. }
  2248. /* Check the aligned pages after the first unaligned page,
  2249. * if offset != orig_start, which means the first unaligned page
  2250. * including several following pages are already in holes,
  2251. * the extra check can be skipped */
  2252. if (offset == orig_start) {
  2253. /* after truncate page, check hole again */
  2254. len = offset + len - lockstart;
  2255. offset = lockstart;
  2256. ret = find_first_non_hole(inode, &offset, &len);
  2257. if (ret < 0)
  2258. goto out_only_mutex;
  2259. if (ret && !len) {
  2260. ret = 0;
  2261. goto out_only_mutex;
  2262. }
  2263. lockstart = offset;
  2264. }
  2265. /* Check the tail unaligned part is in a hole */
  2266. tail_start = lockend + 1;
  2267. tail_len = offset + len - tail_start;
  2268. if (tail_len) {
  2269. ret = find_first_non_hole(inode, &tail_start, &tail_len);
  2270. if (unlikely(ret < 0))
  2271. goto out_only_mutex;
  2272. if (!ret) {
  2273. /* zero the front end of the last page */
  2274. if (tail_start + tail_len < ino_size) {
  2275. truncated_block = true;
  2276. ret = btrfs_truncate_block(inode,
  2277. tail_start + tail_len,
  2278. 0, 1);
  2279. if (ret)
  2280. goto out_only_mutex;
  2281. }
  2282. }
  2283. }
  2284. if (lockend < lockstart) {
  2285. ret = 0;
  2286. goto out_only_mutex;
  2287. }
  2288. ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
  2289. &cached_state);
  2290. if (ret) {
  2291. inode_unlock(inode);
  2292. goto out_only_mutex;
  2293. }
  2294. path = btrfs_alloc_path();
  2295. if (!path) {
  2296. ret = -ENOMEM;
  2297. goto out;
  2298. }
  2299. rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
  2300. if (!rsv) {
  2301. ret = -ENOMEM;
  2302. goto out_free;
  2303. }
  2304. rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
  2305. rsv->failfast = 1;
  2306. /*
  2307. * 1 - update the inode
  2308. * 1 - removing the extents in the range
  2309. * 1 - adding the hole extent if no_holes isn't set
  2310. */
  2311. rsv_count = no_holes ? 2 : 3;
  2312. trans = btrfs_start_transaction(root, rsv_count);
  2313. if (IS_ERR(trans)) {
  2314. err = PTR_ERR(trans);
  2315. goto out_free;
  2316. }
  2317. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
  2318. min_size, false);
  2319. BUG_ON(ret);
  2320. trans->block_rsv = rsv;
  2321. cur_offset = lockstart;
  2322. len = lockend - cur_offset;
  2323. while (cur_offset < lockend) {
  2324. ret = __btrfs_drop_extents(trans, root, inode, path,
  2325. cur_offset, lockend + 1,
  2326. &drop_end, 1, 0, 0, NULL);
  2327. if (ret != -ENOSPC)
  2328. break;
  2329. trans->block_rsv = &fs_info->trans_block_rsv;
  2330. if (cur_offset < drop_end && cur_offset < ino_size) {
  2331. ret = fill_holes(trans, BTRFS_I(inode), path,
  2332. cur_offset, drop_end);
  2333. if (ret) {
  2334. /*
  2335. * If we failed then we didn't insert our hole
  2336. * entries for the area we dropped, so now the
  2337. * fs is corrupted, so we must abort the
  2338. * transaction.
  2339. */
  2340. btrfs_abort_transaction(trans, ret);
  2341. err = ret;
  2342. break;
  2343. }
  2344. }
  2345. cur_offset = drop_end;
  2346. ret = btrfs_update_inode(trans, root, inode);
  2347. if (ret) {
  2348. err = ret;
  2349. break;
  2350. }
  2351. btrfs_end_transaction(trans);
  2352. btrfs_btree_balance_dirty(fs_info);
  2353. trans = btrfs_start_transaction(root, rsv_count);
  2354. if (IS_ERR(trans)) {
  2355. ret = PTR_ERR(trans);
  2356. trans = NULL;
  2357. break;
  2358. }
  2359. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
  2360. rsv, min_size, false);
  2361. BUG_ON(ret); /* shouldn't happen */
  2362. trans->block_rsv = rsv;
  2363. ret = find_first_non_hole(inode, &cur_offset, &len);
  2364. if (unlikely(ret < 0))
  2365. break;
  2366. if (ret && !len) {
  2367. ret = 0;
  2368. break;
  2369. }
  2370. }
  2371. if (ret) {
  2372. err = ret;
  2373. goto out_trans;
  2374. }
  2375. trans->block_rsv = &fs_info->trans_block_rsv;
  2376. /*
  2377. * If we are using the NO_HOLES feature we might have had already an
  2378. * hole that overlaps a part of the region [lockstart, lockend] and
  2379. * ends at (or beyond) lockend. Since we have no file extent items to
  2380. * represent holes, drop_end can be less than lockend and so we must
  2381. * make sure we have an extent map representing the existing hole (the
  2382. * call to __btrfs_drop_extents() might have dropped the existing extent
  2383. * map representing the existing hole), otherwise the fast fsync path
  2384. * will not record the existence of the hole region
  2385. * [existing_hole_start, lockend].
  2386. */
  2387. if (drop_end <= lockend)
  2388. drop_end = lockend + 1;
  2389. /*
  2390. * Don't insert file hole extent item if it's for a range beyond eof
  2391. * (because it's useless) or if it represents a 0 bytes range (when
  2392. * cur_offset == drop_end).
  2393. */
  2394. if (cur_offset < ino_size && cur_offset < drop_end) {
  2395. ret = fill_holes(trans, BTRFS_I(inode), path,
  2396. cur_offset, drop_end);
  2397. if (ret) {
  2398. /* Same comment as above. */
  2399. btrfs_abort_transaction(trans, ret);
  2400. err = ret;
  2401. goto out_trans;
  2402. }
  2403. }
  2404. out_trans:
  2405. if (!trans)
  2406. goto out_free;
  2407. inode_inc_iversion(inode);
  2408. inode->i_mtime = inode->i_ctime = current_time(inode);
  2409. trans->block_rsv = &fs_info->trans_block_rsv;
  2410. ret = btrfs_update_inode(trans, root, inode);
  2411. updated_inode = true;
  2412. btrfs_end_transaction(trans);
  2413. btrfs_btree_balance_dirty(fs_info);
  2414. out_free:
  2415. btrfs_free_path(path);
  2416. btrfs_free_block_rsv(fs_info, rsv);
  2417. out:
  2418. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2419. &cached_state);
  2420. out_only_mutex:
  2421. if (!updated_inode && truncated_block && !ret && !err) {
  2422. /*
  2423. * If we only end up zeroing part of a page, we still need to
  2424. * update the inode item, so that all the time fields are
  2425. * updated as well as the necessary btrfs inode in memory fields
  2426. * for detecting, at fsync time, if the inode isn't yet in the
  2427. * log tree or it's there but not up to date.
  2428. */
  2429. trans = btrfs_start_transaction(root, 1);
  2430. if (IS_ERR(trans)) {
  2431. err = PTR_ERR(trans);
  2432. } else {
  2433. err = btrfs_update_inode(trans, root, inode);
  2434. ret = btrfs_end_transaction(trans);
  2435. }
  2436. }
  2437. inode_unlock(inode);
  2438. if (ret && !err)
  2439. err = ret;
  2440. return err;
  2441. }
  2442. /* Helper structure to record which range is already reserved */
  2443. struct falloc_range {
  2444. struct list_head list;
  2445. u64 start;
  2446. u64 len;
  2447. };
  2448. /*
  2449. * Helper function to add falloc range
  2450. *
  2451. * Caller should have locked the larger range of extent containing
  2452. * [start, len)
  2453. */
  2454. static int add_falloc_range(struct list_head *head, u64 start, u64 len)
  2455. {
  2456. struct falloc_range *prev = NULL;
  2457. struct falloc_range *range = NULL;
  2458. if (list_empty(head))
  2459. goto insert;
  2460. /*
  2461. * As fallocate iterate by bytenr order, we only need to check
  2462. * the last range.
  2463. */
  2464. prev = list_entry(head->prev, struct falloc_range, list);
  2465. if (prev->start + prev->len == start) {
  2466. prev->len += len;
  2467. return 0;
  2468. }
  2469. insert:
  2470. range = kmalloc(sizeof(*range), GFP_KERNEL);
  2471. if (!range)
  2472. return -ENOMEM;
  2473. range->start = start;
  2474. range->len = len;
  2475. list_add_tail(&range->list, head);
  2476. return 0;
  2477. }
  2478. static int btrfs_fallocate_update_isize(struct inode *inode,
  2479. const u64 end,
  2480. const int mode)
  2481. {
  2482. struct btrfs_trans_handle *trans;
  2483. struct btrfs_root *root = BTRFS_I(inode)->root;
  2484. int ret;
  2485. int ret2;
  2486. if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
  2487. return 0;
  2488. trans = btrfs_start_transaction(root, 1);
  2489. if (IS_ERR(trans))
  2490. return PTR_ERR(trans);
  2491. inode->i_ctime = current_time(inode);
  2492. i_size_write(inode, end);
  2493. btrfs_ordered_update_i_size(inode, end, NULL);
  2494. ret = btrfs_update_inode(trans, root, inode);
  2495. ret2 = btrfs_end_transaction(trans);
  2496. return ret ? ret : ret2;
  2497. }
  2498. enum {
  2499. RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
  2500. RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
  2501. RANGE_BOUNDARY_HOLE = 2,
  2502. };
  2503. static int btrfs_zero_range_check_range_boundary(struct inode *inode,
  2504. u64 offset)
  2505. {
  2506. const u64 sectorsize = btrfs_inode_sectorsize(inode);
  2507. struct extent_map *em;
  2508. int ret;
  2509. offset = round_down(offset, sectorsize);
  2510. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
  2511. if (IS_ERR(em))
  2512. return PTR_ERR(em);
  2513. if (em->block_start == EXTENT_MAP_HOLE)
  2514. ret = RANGE_BOUNDARY_HOLE;
  2515. else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  2516. ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
  2517. else
  2518. ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
  2519. free_extent_map(em);
  2520. return ret;
  2521. }
  2522. static int btrfs_zero_range(struct inode *inode,
  2523. loff_t offset,
  2524. loff_t len,
  2525. const int mode)
  2526. {
  2527. struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
  2528. struct extent_map *em;
  2529. struct extent_changeset *data_reserved = NULL;
  2530. int ret;
  2531. u64 alloc_hint = 0;
  2532. const u64 sectorsize = btrfs_inode_sectorsize(inode);
  2533. u64 alloc_start = round_down(offset, sectorsize);
  2534. u64 alloc_end = round_up(offset + len, sectorsize);
  2535. u64 bytes_to_reserve = 0;
  2536. bool space_reserved = false;
  2537. inode_dio_wait(inode);
  2538. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2539. alloc_start, alloc_end - alloc_start, 0);
  2540. if (IS_ERR(em)) {
  2541. ret = PTR_ERR(em);
  2542. goto out;
  2543. }
  2544. /*
  2545. * Avoid hole punching and extent allocation for some cases. More cases
  2546. * could be considered, but these are unlikely common and we keep things
  2547. * as simple as possible for now. Also, intentionally, if the target
  2548. * range contains one or more prealloc extents together with regular
  2549. * extents and holes, we drop all the existing extents and allocate a
  2550. * new prealloc extent, so that we get a larger contiguous disk extent.
  2551. */
  2552. if (em->start <= alloc_start &&
  2553. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  2554. const u64 em_end = em->start + em->len;
  2555. if (em_end >= offset + len) {
  2556. /*
  2557. * The whole range is already a prealloc extent,
  2558. * do nothing except updating the inode's i_size if
  2559. * needed.
  2560. */
  2561. free_extent_map(em);
  2562. ret = btrfs_fallocate_update_isize(inode, offset + len,
  2563. mode);
  2564. goto out;
  2565. }
  2566. /*
  2567. * Part of the range is already a prealloc extent, so operate
  2568. * only on the remaining part of the range.
  2569. */
  2570. alloc_start = em_end;
  2571. ASSERT(IS_ALIGNED(alloc_start, sectorsize));
  2572. len = offset + len - alloc_start;
  2573. offset = alloc_start;
  2574. alloc_hint = em->block_start + em->len;
  2575. }
  2576. free_extent_map(em);
  2577. if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
  2578. BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
  2579. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2580. alloc_start, sectorsize, 0);
  2581. if (IS_ERR(em)) {
  2582. ret = PTR_ERR(em);
  2583. goto out;
  2584. }
  2585. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  2586. free_extent_map(em);
  2587. ret = btrfs_fallocate_update_isize(inode, offset + len,
  2588. mode);
  2589. goto out;
  2590. }
  2591. if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
  2592. free_extent_map(em);
  2593. ret = btrfs_truncate_block(inode, offset, len, 0);
  2594. if (!ret)
  2595. ret = btrfs_fallocate_update_isize(inode,
  2596. offset + len,
  2597. mode);
  2598. return ret;
  2599. }
  2600. free_extent_map(em);
  2601. alloc_start = round_down(offset, sectorsize);
  2602. alloc_end = alloc_start + sectorsize;
  2603. goto reserve_space;
  2604. }
  2605. alloc_start = round_up(offset, sectorsize);
  2606. alloc_end = round_down(offset + len, sectorsize);
  2607. /*
  2608. * For unaligned ranges, check the pages at the boundaries, they might
  2609. * map to an extent, in which case we need to partially zero them, or
  2610. * they might map to a hole, in which case we need our allocation range
  2611. * to cover them.
  2612. */
  2613. if (!IS_ALIGNED(offset, sectorsize)) {
  2614. ret = btrfs_zero_range_check_range_boundary(inode, offset);
  2615. if (ret < 0)
  2616. goto out;
  2617. if (ret == RANGE_BOUNDARY_HOLE) {
  2618. alloc_start = round_down(offset, sectorsize);
  2619. ret = 0;
  2620. } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
  2621. ret = btrfs_truncate_block(inode, offset, 0, 0);
  2622. if (ret)
  2623. goto out;
  2624. } else {
  2625. ret = 0;
  2626. }
  2627. }
  2628. if (!IS_ALIGNED(offset + len, sectorsize)) {
  2629. ret = btrfs_zero_range_check_range_boundary(inode,
  2630. offset + len);
  2631. if (ret < 0)
  2632. goto out;
  2633. if (ret == RANGE_BOUNDARY_HOLE) {
  2634. alloc_end = round_up(offset + len, sectorsize);
  2635. ret = 0;
  2636. } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
  2637. ret = btrfs_truncate_block(inode, offset + len, 0, 1);
  2638. if (ret)
  2639. goto out;
  2640. } else {
  2641. ret = 0;
  2642. }
  2643. }
  2644. reserve_space:
  2645. if (alloc_start < alloc_end) {
  2646. struct extent_state *cached_state = NULL;
  2647. const u64 lockstart = alloc_start;
  2648. const u64 lockend = alloc_end - 1;
  2649. bytes_to_reserve = alloc_end - alloc_start;
  2650. ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
  2651. bytes_to_reserve);
  2652. if (ret < 0)
  2653. goto out;
  2654. space_reserved = true;
  2655. ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
  2656. alloc_start, bytes_to_reserve);
  2657. if (ret)
  2658. goto out;
  2659. ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
  2660. &cached_state);
  2661. if (ret)
  2662. goto out;
  2663. ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
  2664. alloc_end - alloc_start,
  2665. i_blocksize(inode),
  2666. offset + len, &alloc_hint);
  2667. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2668. lockend, &cached_state);
  2669. /* btrfs_prealloc_file_range releases reserved space on error */
  2670. if (ret) {
  2671. space_reserved = false;
  2672. goto out;
  2673. }
  2674. }
  2675. ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
  2676. out:
  2677. if (ret && space_reserved)
  2678. btrfs_free_reserved_data_space(inode, data_reserved,
  2679. alloc_start, bytes_to_reserve);
  2680. extent_changeset_free(data_reserved);
  2681. return ret;
  2682. }
  2683. static long btrfs_fallocate(struct file *file, int mode,
  2684. loff_t offset, loff_t len)
  2685. {
  2686. struct inode *inode = file_inode(file);
  2687. struct extent_state *cached_state = NULL;
  2688. struct extent_changeset *data_reserved = NULL;
  2689. struct falloc_range *range;
  2690. struct falloc_range *tmp;
  2691. struct list_head reserve_list;
  2692. u64 cur_offset;
  2693. u64 last_byte;
  2694. u64 alloc_start;
  2695. u64 alloc_end;
  2696. u64 alloc_hint = 0;
  2697. u64 locked_end;
  2698. u64 actual_end = 0;
  2699. struct extent_map *em;
  2700. int blocksize = btrfs_inode_sectorsize(inode);
  2701. int ret;
  2702. alloc_start = round_down(offset, blocksize);
  2703. alloc_end = round_up(offset + len, blocksize);
  2704. cur_offset = alloc_start;
  2705. /* Make sure we aren't being give some crap mode */
  2706. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  2707. FALLOC_FL_ZERO_RANGE))
  2708. return -EOPNOTSUPP;
  2709. if (mode & FALLOC_FL_PUNCH_HOLE)
  2710. return btrfs_punch_hole(inode, offset, len);
  2711. /*
  2712. * Only trigger disk allocation, don't trigger qgroup reserve
  2713. *
  2714. * For qgroup space, it will be checked later.
  2715. */
  2716. if (!(mode & FALLOC_FL_ZERO_RANGE)) {
  2717. ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
  2718. alloc_end - alloc_start);
  2719. if (ret < 0)
  2720. return ret;
  2721. }
  2722. inode_lock(inode);
  2723. if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
  2724. ret = inode_newsize_ok(inode, offset + len);
  2725. if (ret)
  2726. goto out;
  2727. }
  2728. /*
  2729. * TODO: Move these two operations after we have checked
  2730. * accurate reserved space, or fallocate can still fail but
  2731. * with page truncated or size expanded.
  2732. *
  2733. * But that's a minor problem and won't do much harm BTW.
  2734. */
  2735. if (alloc_start > inode->i_size) {
  2736. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2737. alloc_start);
  2738. if (ret)
  2739. goto out;
  2740. } else if (offset + len > inode->i_size) {
  2741. /*
  2742. * If we are fallocating from the end of the file onward we
  2743. * need to zero out the end of the block if i_size lands in the
  2744. * middle of a block.
  2745. */
  2746. ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
  2747. if (ret)
  2748. goto out;
  2749. }
  2750. /*
  2751. * wait for ordered IO before we have any locks. We'll loop again
  2752. * below with the locks held.
  2753. */
  2754. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2755. alloc_end - alloc_start);
  2756. if (ret)
  2757. goto out;
  2758. if (mode & FALLOC_FL_ZERO_RANGE) {
  2759. ret = btrfs_zero_range(inode, offset, len, mode);
  2760. inode_unlock(inode);
  2761. return ret;
  2762. }
  2763. locked_end = alloc_end - 1;
  2764. while (1) {
  2765. struct btrfs_ordered_extent *ordered;
  2766. /* the extent lock is ordered inside the running
  2767. * transaction
  2768. */
  2769. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2770. locked_end, &cached_state);
  2771. ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
  2772. if (ordered &&
  2773. ordered->file_offset + ordered->len > alloc_start &&
  2774. ordered->file_offset < alloc_end) {
  2775. btrfs_put_ordered_extent(ordered);
  2776. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2777. alloc_start, locked_end,
  2778. &cached_state);
  2779. /*
  2780. * we can't wait on the range with the transaction
  2781. * running or with the extent lock held
  2782. */
  2783. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2784. alloc_end - alloc_start);
  2785. if (ret)
  2786. goto out;
  2787. } else {
  2788. if (ordered)
  2789. btrfs_put_ordered_extent(ordered);
  2790. break;
  2791. }
  2792. }
  2793. /* First, check if we exceed the qgroup limit */
  2794. INIT_LIST_HEAD(&reserve_list);
  2795. while (cur_offset < alloc_end) {
  2796. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
  2797. alloc_end - cur_offset, 0);
  2798. if (IS_ERR(em)) {
  2799. ret = PTR_ERR(em);
  2800. break;
  2801. }
  2802. last_byte = min(extent_map_end(em), alloc_end);
  2803. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2804. last_byte = ALIGN(last_byte, blocksize);
  2805. if (em->block_start == EXTENT_MAP_HOLE ||
  2806. (cur_offset >= inode->i_size &&
  2807. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2808. ret = add_falloc_range(&reserve_list, cur_offset,
  2809. last_byte - cur_offset);
  2810. if (ret < 0) {
  2811. free_extent_map(em);
  2812. break;
  2813. }
  2814. ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
  2815. cur_offset, last_byte - cur_offset);
  2816. if (ret < 0) {
  2817. free_extent_map(em);
  2818. break;
  2819. }
  2820. } else {
  2821. /*
  2822. * Do not need to reserve unwritten extent for this
  2823. * range, free reserved data space first, otherwise
  2824. * it'll result in false ENOSPC error.
  2825. */
  2826. btrfs_free_reserved_data_space(inode, data_reserved,
  2827. cur_offset, last_byte - cur_offset);
  2828. }
  2829. free_extent_map(em);
  2830. cur_offset = last_byte;
  2831. }
  2832. /*
  2833. * If ret is still 0, means we're OK to fallocate.
  2834. * Or just cleanup the list and exit.
  2835. */
  2836. list_for_each_entry_safe(range, tmp, &reserve_list, list) {
  2837. if (!ret)
  2838. ret = btrfs_prealloc_file_range(inode, mode,
  2839. range->start,
  2840. range->len, i_blocksize(inode),
  2841. offset + len, &alloc_hint);
  2842. else
  2843. btrfs_free_reserved_data_space(inode,
  2844. data_reserved, range->start,
  2845. range->len);
  2846. list_del(&range->list);
  2847. kfree(range);
  2848. }
  2849. if (ret < 0)
  2850. goto out_unlock;
  2851. /*
  2852. * We didn't need to allocate any more space, but we still extended the
  2853. * size of the file so we need to update i_size and the inode item.
  2854. */
  2855. ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
  2856. out_unlock:
  2857. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2858. &cached_state);
  2859. out:
  2860. inode_unlock(inode);
  2861. /* Let go of our reservation. */
  2862. if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
  2863. btrfs_free_reserved_data_space(inode, data_reserved,
  2864. alloc_start, alloc_end - cur_offset);
  2865. extent_changeset_free(data_reserved);
  2866. return ret;
  2867. }
  2868. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2869. {
  2870. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2871. struct extent_map *em = NULL;
  2872. struct extent_state *cached_state = NULL;
  2873. u64 lockstart;
  2874. u64 lockend;
  2875. u64 start;
  2876. u64 len;
  2877. int ret = 0;
  2878. if (inode->i_size == 0)
  2879. return -ENXIO;
  2880. /*
  2881. * *offset can be negative, in this case we start finding DATA/HOLE from
  2882. * the very start of the file.
  2883. */
  2884. start = max_t(loff_t, 0, *offset);
  2885. lockstart = round_down(start, fs_info->sectorsize);
  2886. lockend = round_up(i_size_read(inode),
  2887. fs_info->sectorsize);
  2888. if (lockend <= lockstart)
  2889. lockend = lockstart + fs_info->sectorsize;
  2890. lockend--;
  2891. len = lockend - lockstart + 1;
  2892. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2893. &cached_state);
  2894. while (start < inode->i_size) {
  2895. em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
  2896. start, len, 0);
  2897. if (IS_ERR(em)) {
  2898. ret = PTR_ERR(em);
  2899. em = NULL;
  2900. break;
  2901. }
  2902. if (whence == SEEK_HOLE &&
  2903. (em->block_start == EXTENT_MAP_HOLE ||
  2904. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2905. break;
  2906. else if (whence == SEEK_DATA &&
  2907. (em->block_start != EXTENT_MAP_HOLE &&
  2908. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2909. break;
  2910. start = em->start + em->len;
  2911. free_extent_map(em);
  2912. em = NULL;
  2913. cond_resched();
  2914. }
  2915. free_extent_map(em);
  2916. if (!ret) {
  2917. if (whence == SEEK_DATA && start >= inode->i_size)
  2918. ret = -ENXIO;
  2919. else
  2920. *offset = min_t(loff_t, start, inode->i_size);
  2921. }
  2922. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2923. &cached_state);
  2924. return ret;
  2925. }
  2926. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2927. {
  2928. struct inode *inode = file->f_mapping->host;
  2929. int ret;
  2930. inode_lock(inode);
  2931. switch (whence) {
  2932. case SEEK_END:
  2933. case SEEK_CUR:
  2934. offset = generic_file_llseek(file, offset, whence);
  2935. goto out;
  2936. case SEEK_DATA:
  2937. case SEEK_HOLE:
  2938. if (offset >= i_size_read(inode)) {
  2939. inode_unlock(inode);
  2940. return -ENXIO;
  2941. }
  2942. ret = find_desired_extent(inode, &offset, whence);
  2943. if (ret) {
  2944. inode_unlock(inode);
  2945. return ret;
  2946. }
  2947. }
  2948. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  2949. out:
  2950. inode_unlock(inode);
  2951. return offset;
  2952. }
  2953. static int btrfs_file_open(struct inode *inode, struct file *filp)
  2954. {
  2955. filp->f_mode |= FMODE_NOWAIT;
  2956. return generic_file_open(inode, filp);
  2957. }
  2958. const struct file_operations btrfs_file_operations = {
  2959. .llseek = btrfs_file_llseek,
  2960. .read_iter = generic_file_read_iter,
  2961. .splice_read = generic_file_splice_read,
  2962. .write_iter = btrfs_file_write_iter,
  2963. .mmap = btrfs_file_mmap,
  2964. .open = btrfs_file_open,
  2965. .release = btrfs_release_file,
  2966. .fsync = btrfs_sync_file,
  2967. .fallocate = btrfs_fallocate,
  2968. .unlocked_ioctl = btrfs_ioctl,
  2969. #ifdef CONFIG_COMPAT
  2970. .compat_ioctl = btrfs_compat_ioctl,
  2971. #endif
  2972. .remap_file_range = btrfs_remap_file_range,
  2973. };
  2974. void __cold btrfs_auto_defrag_exit(void)
  2975. {
  2976. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2977. }
  2978. int __init btrfs_auto_defrag_init(void)
  2979. {
  2980. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2981. sizeof(struct inode_defrag), 0,
  2982. SLAB_MEM_SPREAD,
  2983. NULL);
  2984. if (!btrfs_inode_defrag_cachep)
  2985. return -ENOMEM;
  2986. return 0;
  2987. }
  2988. int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
  2989. {
  2990. int ret;
  2991. /*
  2992. * So with compression we will find and lock a dirty page and clear the
  2993. * first one as dirty, setup an async extent, and immediately return
  2994. * with the entire range locked but with nobody actually marked with
  2995. * writeback. So we can't just filemap_write_and_wait_range() and
  2996. * expect it to work since it will just kick off a thread to do the
  2997. * actual work. So we need to call filemap_fdatawrite_range _again_
  2998. * since it will wait on the page lock, which won't be unlocked until
  2999. * after the pages have been marked as writeback and so we're good to go
  3000. * from there. We have to do this otherwise we'll miss the ordered
  3001. * extents and that results in badness. Please Josef, do not think you
  3002. * know better and pull this out at some point in the future, it is
  3003. * right and you are wrong.
  3004. */
  3005. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  3006. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  3007. &BTRFS_I(inode)->runtime_flags))
  3008. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  3009. return ret;
  3010. }