delayed-inode.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2011 Fujitsu. All rights reserved.
  4. * Written by Miao Xie <miaox@cn.fujitsu.com>
  5. */
  6. #include <linux/slab.h>
  7. #include <linux/iversion.h>
  8. #include "delayed-inode.h"
  9. #include "disk-io.h"
  10. #include "transaction.h"
  11. #include "ctree.h"
  12. #include "qgroup.h"
  13. #define BTRFS_DELAYED_WRITEBACK 512
  14. #define BTRFS_DELAYED_BACKGROUND 128
  15. #define BTRFS_DELAYED_BATCH 16
  16. static struct kmem_cache *delayed_node_cache;
  17. int __init btrfs_delayed_inode_init(void)
  18. {
  19. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  20. sizeof(struct btrfs_delayed_node),
  21. 0,
  22. SLAB_MEM_SPREAD,
  23. NULL);
  24. if (!delayed_node_cache)
  25. return -ENOMEM;
  26. return 0;
  27. }
  28. void __cold btrfs_delayed_inode_exit(void)
  29. {
  30. kmem_cache_destroy(delayed_node_cache);
  31. }
  32. static inline void btrfs_init_delayed_node(
  33. struct btrfs_delayed_node *delayed_node,
  34. struct btrfs_root *root, u64 inode_id)
  35. {
  36. delayed_node->root = root;
  37. delayed_node->inode_id = inode_id;
  38. refcount_set(&delayed_node->refs, 0);
  39. delayed_node->ins_root = RB_ROOT_CACHED;
  40. delayed_node->del_root = RB_ROOT_CACHED;
  41. mutex_init(&delayed_node->mutex);
  42. INIT_LIST_HEAD(&delayed_node->n_list);
  43. INIT_LIST_HEAD(&delayed_node->p_list);
  44. }
  45. static inline int btrfs_is_continuous_delayed_item(
  46. struct btrfs_delayed_item *item1,
  47. struct btrfs_delayed_item *item2)
  48. {
  49. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  50. item1->key.objectid == item2->key.objectid &&
  51. item1->key.type == item2->key.type &&
  52. item1->key.offset + 1 == item2->key.offset)
  53. return 1;
  54. return 0;
  55. }
  56. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  57. struct btrfs_inode *btrfs_inode)
  58. {
  59. struct btrfs_root *root = btrfs_inode->root;
  60. u64 ino = btrfs_ino(btrfs_inode);
  61. struct btrfs_delayed_node *node;
  62. node = READ_ONCE(btrfs_inode->delayed_node);
  63. if (node) {
  64. refcount_inc(&node->refs);
  65. return node;
  66. }
  67. spin_lock(&root->inode_lock);
  68. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  69. if (node) {
  70. if (btrfs_inode->delayed_node) {
  71. refcount_inc(&node->refs); /* can be accessed */
  72. BUG_ON(btrfs_inode->delayed_node != node);
  73. spin_unlock(&root->inode_lock);
  74. return node;
  75. }
  76. /*
  77. * It's possible that we're racing into the middle of removing
  78. * this node from the radix tree. In this case, the refcount
  79. * was zero and it should never go back to one. Just return
  80. * NULL like it was never in the radix at all; our release
  81. * function is in the process of removing it.
  82. *
  83. * Some implementations of refcount_inc refuse to bump the
  84. * refcount once it has hit zero. If we don't do this dance
  85. * here, refcount_inc() may decide to just WARN_ONCE() instead
  86. * of actually bumping the refcount.
  87. *
  88. * If this node is properly in the radix, we want to bump the
  89. * refcount twice, once for the inode and once for this get
  90. * operation.
  91. */
  92. if (refcount_inc_not_zero(&node->refs)) {
  93. refcount_inc(&node->refs);
  94. btrfs_inode->delayed_node = node;
  95. } else {
  96. node = NULL;
  97. }
  98. spin_unlock(&root->inode_lock);
  99. return node;
  100. }
  101. spin_unlock(&root->inode_lock);
  102. return NULL;
  103. }
  104. /* Will return either the node or PTR_ERR(-ENOMEM) */
  105. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  106. struct btrfs_inode *btrfs_inode)
  107. {
  108. struct btrfs_delayed_node *node;
  109. struct btrfs_root *root = btrfs_inode->root;
  110. u64 ino = btrfs_ino(btrfs_inode);
  111. int ret;
  112. again:
  113. node = btrfs_get_delayed_node(btrfs_inode);
  114. if (node)
  115. return node;
  116. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  117. if (!node)
  118. return ERR_PTR(-ENOMEM);
  119. btrfs_init_delayed_node(node, root, ino);
  120. /* cached in the btrfs inode and can be accessed */
  121. refcount_set(&node->refs, 2);
  122. ret = radix_tree_preload(GFP_NOFS);
  123. if (ret) {
  124. kmem_cache_free(delayed_node_cache, node);
  125. return ERR_PTR(ret);
  126. }
  127. spin_lock(&root->inode_lock);
  128. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  129. if (ret == -EEXIST) {
  130. spin_unlock(&root->inode_lock);
  131. kmem_cache_free(delayed_node_cache, node);
  132. radix_tree_preload_end();
  133. goto again;
  134. }
  135. btrfs_inode->delayed_node = node;
  136. spin_unlock(&root->inode_lock);
  137. radix_tree_preload_end();
  138. return node;
  139. }
  140. /*
  141. * Call it when holding delayed_node->mutex
  142. *
  143. * If mod = 1, add this node into the prepared list.
  144. */
  145. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  146. struct btrfs_delayed_node *node,
  147. int mod)
  148. {
  149. spin_lock(&root->lock);
  150. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  151. if (!list_empty(&node->p_list))
  152. list_move_tail(&node->p_list, &root->prepare_list);
  153. else if (mod)
  154. list_add_tail(&node->p_list, &root->prepare_list);
  155. } else {
  156. list_add_tail(&node->n_list, &root->node_list);
  157. list_add_tail(&node->p_list, &root->prepare_list);
  158. refcount_inc(&node->refs); /* inserted into list */
  159. root->nodes++;
  160. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  161. }
  162. spin_unlock(&root->lock);
  163. }
  164. /* Call it when holding delayed_node->mutex */
  165. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  166. struct btrfs_delayed_node *node)
  167. {
  168. spin_lock(&root->lock);
  169. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  170. root->nodes--;
  171. refcount_dec(&node->refs); /* not in the list */
  172. list_del_init(&node->n_list);
  173. if (!list_empty(&node->p_list))
  174. list_del_init(&node->p_list);
  175. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  176. }
  177. spin_unlock(&root->lock);
  178. }
  179. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  180. struct btrfs_delayed_root *delayed_root)
  181. {
  182. struct list_head *p;
  183. struct btrfs_delayed_node *node = NULL;
  184. spin_lock(&delayed_root->lock);
  185. if (list_empty(&delayed_root->node_list))
  186. goto out;
  187. p = delayed_root->node_list.next;
  188. node = list_entry(p, struct btrfs_delayed_node, n_list);
  189. refcount_inc(&node->refs);
  190. out:
  191. spin_unlock(&delayed_root->lock);
  192. return node;
  193. }
  194. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  195. struct btrfs_delayed_node *node)
  196. {
  197. struct btrfs_delayed_root *delayed_root;
  198. struct list_head *p;
  199. struct btrfs_delayed_node *next = NULL;
  200. delayed_root = node->root->fs_info->delayed_root;
  201. spin_lock(&delayed_root->lock);
  202. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  203. /* not in the list */
  204. if (list_empty(&delayed_root->node_list))
  205. goto out;
  206. p = delayed_root->node_list.next;
  207. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  208. goto out;
  209. else
  210. p = node->n_list.next;
  211. next = list_entry(p, struct btrfs_delayed_node, n_list);
  212. refcount_inc(&next->refs);
  213. out:
  214. spin_unlock(&delayed_root->lock);
  215. return next;
  216. }
  217. static void __btrfs_release_delayed_node(
  218. struct btrfs_delayed_node *delayed_node,
  219. int mod)
  220. {
  221. struct btrfs_delayed_root *delayed_root;
  222. if (!delayed_node)
  223. return;
  224. delayed_root = delayed_node->root->fs_info->delayed_root;
  225. mutex_lock(&delayed_node->mutex);
  226. if (delayed_node->count)
  227. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  228. else
  229. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  230. mutex_unlock(&delayed_node->mutex);
  231. if (refcount_dec_and_test(&delayed_node->refs)) {
  232. struct btrfs_root *root = delayed_node->root;
  233. spin_lock(&root->inode_lock);
  234. /*
  235. * Once our refcount goes to zero, nobody is allowed to bump it
  236. * back up. We can delete it now.
  237. */
  238. ASSERT(refcount_read(&delayed_node->refs) == 0);
  239. radix_tree_delete(&root->delayed_nodes_tree,
  240. delayed_node->inode_id);
  241. spin_unlock(&root->inode_lock);
  242. kmem_cache_free(delayed_node_cache, delayed_node);
  243. }
  244. }
  245. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  246. {
  247. __btrfs_release_delayed_node(node, 0);
  248. }
  249. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  250. struct btrfs_delayed_root *delayed_root)
  251. {
  252. struct list_head *p;
  253. struct btrfs_delayed_node *node = NULL;
  254. spin_lock(&delayed_root->lock);
  255. if (list_empty(&delayed_root->prepare_list))
  256. goto out;
  257. p = delayed_root->prepare_list.next;
  258. list_del_init(p);
  259. node = list_entry(p, struct btrfs_delayed_node, p_list);
  260. refcount_inc(&node->refs);
  261. out:
  262. spin_unlock(&delayed_root->lock);
  263. return node;
  264. }
  265. static inline void btrfs_release_prepared_delayed_node(
  266. struct btrfs_delayed_node *node)
  267. {
  268. __btrfs_release_delayed_node(node, 1);
  269. }
  270. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  271. {
  272. struct btrfs_delayed_item *item;
  273. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  274. if (item) {
  275. item->data_len = data_len;
  276. item->ins_or_del = 0;
  277. item->bytes_reserved = 0;
  278. item->delayed_node = NULL;
  279. refcount_set(&item->refs, 1);
  280. }
  281. return item;
  282. }
  283. /*
  284. * __btrfs_lookup_delayed_item - look up the delayed item by key
  285. * @delayed_node: pointer to the delayed node
  286. * @key: the key to look up
  287. * @prev: used to store the prev item if the right item isn't found
  288. * @next: used to store the next item if the right item isn't found
  289. *
  290. * Note: if we don't find the right item, we will return the prev item and
  291. * the next item.
  292. */
  293. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  294. struct rb_root *root,
  295. struct btrfs_key *key,
  296. struct btrfs_delayed_item **prev,
  297. struct btrfs_delayed_item **next)
  298. {
  299. struct rb_node *node, *prev_node = NULL;
  300. struct btrfs_delayed_item *delayed_item = NULL;
  301. int ret = 0;
  302. node = root->rb_node;
  303. while (node) {
  304. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  305. rb_node);
  306. prev_node = node;
  307. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  308. if (ret < 0)
  309. node = node->rb_right;
  310. else if (ret > 0)
  311. node = node->rb_left;
  312. else
  313. return delayed_item;
  314. }
  315. if (prev) {
  316. if (!prev_node)
  317. *prev = NULL;
  318. else if (ret < 0)
  319. *prev = delayed_item;
  320. else if ((node = rb_prev(prev_node)) != NULL) {
  321. *prev = rb_entry(node, struct btrfs_delayed_item,
  322. rb_node);
  323. } else
  324. *prev = NULL;
  325. }
  326. if (next) {
  327. if (!prev_node)
  328. *next = NULL;
  329. else if (ret > 0)
  330. *next = delayed_item;
  331. else if ((node = rb_next(prev_node)) != NULL) {
  332. *next = rb_entry(node, struct btrfs_delayed_item,
  333. rb_node);
  334. } else
  335. *next = NULL;
  336. }
  337. return NULL;
  338. }
  339. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  340. struct btrfs_delayed_node *delayed_node,
  341. struct btrfs_key *key)
  342. {
  343. return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
  344. NULL, NULL);
  345. }
  346. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  347. struct btrfs_delayed_item *ins,
  348. int action)
  349. {
  350. struct rb_node **p, *node;
  351. struct rb_node *parent_node = NULL;
  352. struct rb_root_cached *root;
  353. struct btrfs_delayed_item *item;
  354. int cmp;
  355. bool leftmost = true;
  356. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  357. root = &delayed_node->ins_root;
  358. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  359. root = &delayed_node->del_root;
  360. else
  361. BUG();
  362. p = &root->rb_root.rb_node;
  363. node = &ins->rb_node;
  364. while (*p) {
  365. parent_node = *p;
  366. item = rb_entry(parent_node, struct btrfs_delayed_item,
  367. rb_node);
  368. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  369. if (cmp < 0) {
  370. p = &(*p)->rb_right;
  371. leftmost = false;
  372. } else if (cmp > 0) {
  373. p = &(*p)->rb_left;
  374. } else {
  375. return -EEXIST;
  376. }
  377. }
  378. rb_link_node(node, parent_node, p);
  379. rb_insert_color_cached(node, root, leftmost);
  380. ins->delayed_node = delayed_node;
  381. ins->ins_or_del = action;
  382. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  383. action == BTRFS_DELAYED_INSERTION_ITEM &&
  384. ins->key.offset >= delayed_node->index_cnt)
  385. delayed_node->index_cnt = ins->key.offset + 1;
  386. delayed_node->count++;
  387. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  388. return 0;
  389. }
  390. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  391. struct btrfs_delayed_item *item)
  392. {
  393. return __btrfs_add_delayed_item(node, item,
  394. BTRFS_DELAYED_INSERTION_ITEM);
  395. }
  396. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  397. struct btrfs_delayed_item *item)
  398. {
  399. return __btrfs_add_delayed_item(node, item,
  400. BTRFS_DELAYED_DELETION_ITEM);
  401. }
  402. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  403. {
  404. int seq = atomic_inc_return(&delayed_root->items_seq);
  405. /* atomic_dec_return implies a barrier */
  406. if ((atomic_dec_return(&delayed_root->items) <
  407. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
  408. cond_wake_up_nomb(&delayed_root->wait);
  409. }
  410. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  411. {
  412. struct rb_root_cached *root;
  413. struct btrfs_delayed_root *delayed_root;
  414. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  415. BUG_ON(!delayed_root);
  416. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  417. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  418. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  419. root = &delayed_item->delayed_node->ins_root;
  420. else
  421. root = &delayed_item->delayed_node->del_root;
  422. rb_erase_cached(&delayed_item->rb_node, root);
  423. delayed_item->delayed_node->count--;
  424. finish_one_item(delayed_root);
  425. }
  426. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  427. {
  428. if (item) {
  429. __btrfs_remove_delayed_item(item);
  430. if (refcount_dec_and_test(&item->refs))
  431. kfree(item);
  432. }
  433. }
  434. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  435. struct btrfs_delayed_node *delayed_node)
  436. {
  437. struct rb_node *p;
  438. struct btrfs_delayed_item *item = NULL;
  439. p = rb_first_cached(&delayed_node->ins_root);
  440. if (p)
  441. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  442. return item;
  443. }
  444. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  445. struct btrfs_delayed_node *delayed_node)
  446. {
  447. struct rb_node *p;
  448. struct btrfs_delayed_item *item = NULL;
  449. p = rb_first_cached(&delayed_node->del_root);
  450. if (p)
  451. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  452. return item;
  453. }
  454. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  455. struct btrfs_delayed_item *item)
  456. {
  457. struct rb_node *p;
  458. struct btrfs_delayed_item *next = NULL;
  459. p = rb_next(&item->rb_node);
  460. if (p)
  461. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  462. return next;
  463. }
  464. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  465. struct btrfs_root *root,
  466. struct btrfs_delayed_item *item)
  467. {
  468. struct btrfs_block_rsv *src_rsv;
  469. struct btrfs_block_rsv *dst_rsv;
  470. struct btrfs_fs_info *fs_info = root->fs_info;
  471. u64 num_bytes;
  472. int ret;
  473. if (!trans->bytes_reserved)
  474. return 0;
  475. src_rsv = trans->block_rsv;
  476. dst_rsv = &fs_info->delayed_block_rsv;
  477. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  478. /*
  479. * Here we migrate space rsv from transaction rsv, since have already
  480. * reserved space when starting a transaction. So no need to reserve
  481. * qgroup space here.
  482. */
  483. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
  484. if (!ret) {
  485. trace_btrfs_space_reservation(fs_info, "delayed_item",
  486. item->key.objectid,
  487. num_bytes, 1);
  488. item->bytes_reserved = num_bytes;
  489. }
  490. return ret;
  491. }
  492. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  493. struct btrfs_delayed_item *item)
  494. {
  495. struct btrfs_block_rsv *rsv;
  496. struct btrfs_fs_info *fs_info = root->fs_info;
  497. if (!item->bytes_reserved)
  498. return;
  499. rsv = &fs_info->delayed_block_rsv;
  500. /*
  501. * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
  502. * to release/reserve qgroup space.
  503. */
  504. trace_btrfs_space_reservation(fs_info, "delayed_item",
  505. item->key.objectid, item->bytes_reserved,
  506. 0);
  507. btrfs_block_rsv_release(fs_info, rsv,
  508. item->bytes_reserved);
  509. }
  510. static int btrfs_delayed_inode_reserve_metadata(
  511. struct btrfs_trans_handle *trans,
  512. struct btrfs_root *root,
  513. struct btrfs_inode *inode,
  514. struct btrfs_delayed_node *node)
  515. {
  516. struct btrfs_fs_info *fs_info = root->fs_info;
  517. struct btrfs_block_rsv *src_rsv;
  518. struct btrfs_block_rsv *dst_rsv;
  519. u64 num_bytes;
  520. int ret;
  521. src_rsv = trans->block_rsv;
  522. dst_rsv = &fs_info->delayed_block_rsv;
  523. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  524. /*
  525. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  526. * which doesn't reserve space for speed. This is a problem since we
  527. * still need to reserve space for this update, so try to reserve the
  528. * space.
  529. *
  530. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  531. * we always reserve enough to update the inode item.
  532. */
  533. if (!src_rsv || (!trans->bytes_reserved &&
  534. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  535. ret = btrfs_qgroup_reserve_meta_prealloc(root,
  536. fs_info->nodesize, true);
  537. if (ret < 0)
  538. return ret;
  539. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  540. BTRFS_RESERVE_NO_FLUSH);
  541. /*
  542. * Since we're under a transaction reserve_metadata_bytes could
  543. * try to commit the transaction which will make it return
  544. * EAGAIN to make us stop the transaction we have, so return
  545. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  546. */
  547. if (ret == -EAGAIN) {
  548. ret = -ENOSPC;
  549. btrfs_qgroup_free_meta_prealloc(root, num_bytes);
  550. }
  551. if (!ret) {
  552. node->bytes_reserved = num_bytes;
  553. trace_btrfs_space_reservation(fs_info,
  554. "delayed_inode",
  555. btrfs_ino(inode),
  556. num_bytes, 1);
  557. } else {
  558. btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
  559. }
  560. return ret;
  561. }
  562. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
  563. if (!ret) {
  564. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  565. btrfs_ino(inode), num_bytes, 1);
  566. node->bytes_reserved = num_bytes;
  567. }
  568. return ret;
  569. }
  570. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  571. struct btrfs_delayed_node *node,
  572. bool qgroup_free)
  573. {
  574. struct btrfs_block_rsv *rsv;
  575. if (!node->bytes_reserved)
  576. return;
  577. rsv = &fs_info->delayed_block_rsv;
  578. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  579. node->inode_id, node->bytes_reserved, 0);
  580. btrfs_block_rsv_release(fs_info, rsv,
  581. node->bytes_reserved);
  582. if (qgroup_free)
  583. btrfs_qgroup_free_meta_prealloc(node->root,
  584. node->bytes_reserved);
  585. else
  586. btrfs_qgroup_convert_reserved_meta(node->root,
  587. node->bytes_reserved);
  588. node->bytes_reserved = 0;
  589. }
  590. /*
  591. * This helper will insert some continuous items into the same leaf according
  592. * to the free space of the leaf.
  593. */
  594. static int btrfs_batch_insert_items(struct btrfs_root *root,
  595. struct btrfs_path *path,
  596. struct btrfs_delayed_item *item)
  597. {
  598. struct btrfs_fs_info *fs_info = root->fs_info;
  599. struct btrfs_delayed_item *curr, *next;
  600. int free_space;
  601. int total_data_size = 0, total_size = 0;
  602. struct extent_buffer *leaf;
  603. char *data_ptr;
  604. struct btrfs_key *keys;
  605. u32 *data_size;
  606. struct list_head head;
  607. int slot;
  608. int nitems;
  609. int i;
  610. int ret = 0;
  611. BUG_ON(!path->nodes[0]);
  612. leaf = path->nodes[0];
  613. free_space = btrfs_leaf_free_space(fs_info, leaf);
  614. INIT_LIST_HEAD(&head);
  615. next = item;
  616. nitems = 0;
  617. /*
  618. * count the number of the continuous items that we can insert in batch
  619. */
  620. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  621. free_space) {
  622. total_data_size += next->data_len;
  623. total_size += next->data_len + sizeof(struct btrfs_item);
  624. list_add_tail(&next->tree_list, &head);
  625. nitems++;
  626. curr = next;
  627. next = __btrfs_next_delayed_item(curr);
  628. if (!next)
  629. break;
  630. if (!btrfs_is_continuous_delayed_item(curr, next))
  631. break;
  632. }
  633. if (!nitems) {
  634. ret = 0;
  635. goto out;
  636. }
  637. /*
  638. * we need allocate some memory space, but it might cause the task
  639. * to sleep, so we set all locked nodes in the path to blocking locks
  640. * first.
  641. */
  642. btrfs_set_path_blocking(path);
  643. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  644. if (!keys) {
  645. ret = -ENOMEM;
  646. goto out;
  647. }
  648. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  649. if (!data_size) {
  650. ret = -ENOMEM;
  651. goto error;
  652. }
  653. /* get keys of all the delayed items */
  654. i = 0;
  655. list_for_each_entry(next, &head, tree_list) {
  656. keys[i] = next->key;
  657. data_size[i] = next->data_len;
  658. i++;
  659. }
  660. /* insert the keys of the items */
  661. setup_items_for_insert(root, path, keys, data_size,
  662. total_data_size, total_size, nitems);
  663. /* insert the dir index items */
  664. slot = path->slots[0];
  665. list_for_each_entry_safe(curr, next, &head, tree_list) {
  666. data_ptr = btrfs_item_ptr(leaf, slot, char);
  667. write_extent_buffer(leaf, &curr->data,
  668. (unsigned long)data_ptr,
  669. curr->data_len);
  670. slot++;
  671. btrfs_delayed_item_release_metadata(root, curr);
  672. list_del(&curr->tree_list);
  673. btrfs_release_delayed_item(curr);
  674. }
  675. error:
  676. kfree(data_size);
  677. kfree(keys);
  678. out:
  679. return ret;
  680. }
  681. /*
  682. * This helper can just do simple insertion that needn't extend item for new
  683. * data, such as directory name index insertion, inode insertion.
  684. */
  685. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  686. struct btrfs_root *root,
  687. struct btrfs_path *path,
  688. struct btrfs_delayed_item *delayed_item)
  689. {
  690. struct extent_buffer *leaf;
  691. char *ptr;
  692. int ret;
  693. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  694. delayed_item->data_len);
  695. if (ret < 0 && ret != -EEXIST)
  696. return ret;
  697. leaf = path->nodes[0];
  698. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  699. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  700. delayed_item->data_len);
  701. btrfs_mark_buffer_dirty(leaf);
  702. btrfs_delayed_item_release_metadata(root, delayed_item);
  703. return 0;
  704. }
  705. /*
  706. * we insert an item first, then if there are some continuous items, we try
  707. * to insert those items into the same leaf.
  708. */
  709. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  710. struct btrfs_path *path,
  711. struct btrfs_root *root,
  712. struct btrfs_delayed_node *node)
  713. {
  714. struct btrfs_delayed_item *curr, *prev;
  715. int ret = 0;
  716. do_again:
  717. mutex_lock(&node->mutex);
  718. curr = __btrfs_first_delayed_insertion_item(node);
  719. if (!curr)
  720. goto insert_end;
  721. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  722. if (ret < 0) {
  723. btrfs_release_path(path);
  724. goto insert_end;
  725. }
  726. prev = curr;
  727. curr = __btrfs_next_delayed_item(prev);
  728. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  729. /* insert the continuous items into the same leaf */
  730. path->slots[0]++;
  731. btrfs_batch_insert_items(root, path, curr);
  732. }
  733. btrfs_release_delayed_item(prev);
  734. btrfs_mark_buffer_dirty(path->nodes[0]);
  735. btrfs_release_path(path);
  736. mutex_unlock(&node->mutex);
  737. goto do_again;
  738. insert_end:
  739. mutex_unlock(&node->mutex);
  740. return ret;
  741. }
  742. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  743. struct btrfs_root *root,
  744. struct btrfs_path *path,
  745. struct btrfs_delayed_item *item)
  746. {
  747. struct btrfs_delayed_item *curr, *next;
  748. struct extent_buffer *leaf;
  749. struct btrfs_key key;
  750. struct list_head head;
  751. int nitems, i, last_item;
  752. int ret = 0;
  753. BUG_ON(!path->nodes[0]);
  754. leaf = path->nodes[0];
  755. i = path->slots[0];
  756. last_item = btrfs_header_nritems(leaf) - 1;
  757. if (i > last_item)
  758. return -ENOENT; /* FIXME: Is errno suitable? */
  759. next = item;
  760. INIT_LIST_HEAD(&head);
  761. btrfs_item_key_to_cpu(leaf, &key, i);
  762. nitems = 0;
  763. /*
  764. * count the number of the dir index items that we can delete in batch
  765. */
  766. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  767. list_add_tail(&next->tree_list, &head);
  768. nitems++;
  769. curr = next;
  770. next = __btrfs_next_delayed_item(curr);
  771. if (!next)
  772. break;
  773. if (!btrfs_is_continuous_delayed_item(curr, next))
  774. break;
  775. i++;
  776. if (i > last_item)
  777. break;
  778. btrfs_item_key_to_cpu(leaf, &key, i);
  779. }
  780. if (!nitems)
  781. return 0;
  782. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  783. if (ret)
  784. goto out;
  785. list_for_each_entry_safe(curr, next, &head, tree_list) {
  786. btrfs_delayed_item_release_metadata(root, curr);
  787. list_del(&curr->tree_list);
  788. btrfs_release_delayed_item(curr);
  789. }
  790. out:
  791. return ret;
  792. }
  793. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  794. struct btrfs_path *path,
  795. struct btrfs_root *root,
  796. struct btrfs_delayed_node *node)
  797. {
  798. struct btrfs_delayed_item *curr, *prev;
  799. int ret = 0;
  800. do_again:
  801. mutex_lock(&node->mutex);
  802. curr = __btrfs_first_delayed_deletion_item(node);
  803. if (!curr)
  804. goto delete_fail;
  805. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  806. if (ret < 0)
  807. goto delete_fail;
  808. else if (ret > 0) {
  809. /*
  810. * can't find the item which the node points to, so this node
  811. * is invalid, just drop it.
  812. */
  813. prev = curr;
  814. curr = __btrfs_next_delayed_item(prev);
  815. btrfs_release_delayed_item(prev);
  816. ret = 0;
  817. btrfs_release_path(path);
  818. if (curr) {
  819. mutex_unlock(&node->mutex);
  820. goto do_again;
  821. } else
  822. goto delete_fail;
  823. }
  824. btrfs_batch_delete_items(trans, root, path, curr);
  825. btrfs_release_path(path);
  826. mutex_unlock(&node->mutex);
  827. goto do_again;
  828. delete_fail:
  829. btrfs_release_path(path);
  830. mutex_unlock(&node->mutex);
  831. return ret;
  832. }
  833. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  834. {
  835. struct btrfs_delayed_root *delayed_root;
  836. if (delayed_node &&
  837. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  838. BUG_ON(!delayed_node->root);
  839. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  840. delayed_node->count--;
  841. delayed_root = delayed_node->root->fs_info->delayed_root;
  842. finish_one_item(delayed_root);
  843. }
  844. }
  845. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  846. {
  847. struct btrfs_delayed_root *delayed_root;
  848. ASSERT(delayed_node->root);
  849. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  850. delayed_node->count--;
  851. delayed_root = delayed_node->root->fs_info->delayed_root;
  852. finish_one_item(delayed_root);
  853. }
  854. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  855. struct btrfs_root *root,
  856. struct btrfs_path *path,
  857. struct btrfs_delayed_node *node)
  858. {
  859. struct btrfs_fs_info *fs_info = root->fs_info;
  860. struct btrfs_key key;
  861. struct btrfs_inode_item *inode_item;
  862. struct extent_buffer *leaf;
  863. int mod;
  864. int ret;
  865. key.objectid = node->inode_id;
  866. key.type = BTRFS_INODE_ITEM_KEY;
  867. key.offset = 0;
  868. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  869. mod = -1;
  870. else
  871. mod = 1;
  872. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  873. if (ret > 0) {
  874. btrfs_release_path(path);
  875. return -ENOENT;
  876. } else if (ret < 0) {
  877. return ret;
  878. }
  879. leaf = path->nodes[0];
  880. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  881. struct btrfs_inode_item);
  882. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  883. sizeof(struct btrfs_inode_item));
  884. btrfs_mark_buffer_dirty(leaf);
  885. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  886. goto no_iref;
  887. path->slots[0]++;
  888. if (path->slots[0] >= btrfs_header_nritems(leaf))
  889. goto search;
  890. again:
  891. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  892. if (key.objectid != node->inode_id)
  893. goto out;
  894. if (key.type != BTRFS_INODE_REF_KEY &&
  895. key.type != BTRFS_INODE_EXTREF_KEY)
  896. goto out;
  897. /*
  898. * Delayed iref deletion is for the inode who has only one link,
  899. * so there is only one iref. The case that several irefs are
  900. * in the same item doesn't exist.
  901. */
  902. btrfs_del_item(trans, root, path);
  903. out:
  904. btrfs_release_delayed_iref(node);
  905. no_iref:
  906. btrfs_release_path(path);
  907. err_out:
  908. btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
  909. btrfs_release_delayed_inode(node);
  910. return ret;
  911. search:
  912. btrfs_release_path(path);
  913. key.type = BTRFS_INODE_EXTREF_KEY;
  914. key.offset = -1;
  915. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  916. if (ret < 0)
  917. goto err_out;
  918. ASSERT(ret);
  919. ret = 0;
  920. leaf = path->nodes[0];
  921. path->slots[0]--;
  922. goto again;
  923. }
  924. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  925. struct btrfs_root *root,
  926. struct btrfs_path *path,
  927. struct btrfs_delayed_node *node)
  928. {
  929. int ret;
  930. mutex_lock(&node->mutex);
  931. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  932. mutex_unlock(&node->mutex);
  933. return 0;
  934. }
  935. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  936. mutex_unlock(&node->mutex);
  937. return ret;
  938. }
  939. static inline int
  940. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  941. struct btrfs_path *path,
  942. struct btrfs_delayed_node *node)
  943. {
  944. int ret;
  945. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  946. if (ret)
  947. return ret;
  948. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  949. if (ret)
  950. return ret;
  951. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  952. return ret;
  953. }
  954. /*
  955. * Called when committing the transaction.
  956. * Returns 0 on success.
  957. * Returns < 0 on error and returns with an aborted transaction with any
  958. * outstanding delayed items cleaned up.
  959. */
  960. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
  961. {
  962. struct btrfs_fs_info *fs_info = trans->fs_info;
  963. struct btrfs_delayed_root *delayed_root;
  964. struct btrfs_delayed_node *curr_node, *prev_node;
  965. struct btrfs_path *path;
  966. struct btrfs_block_rsv *block_rsv;
  967. int ret = 0;
  968. bool count = (nr > 0);
  969. if (trans->aborted)
  970. return -EIO;
  971. path = btrfs_alloc_path();
  972. if (!path)
  973. return -ENOMEM;
  974. path->leave_spinning = 1;
  975. block_rsv = trans->block_rsv;
  976. trans->block_rsv = &fs_info->delayed_block_rsv;
  977. delayed_root = fs_info->delayed_root;
  978. curr_node = btrfs_first_delayed_node(delayed_root);
  979. while (curr_node && (!count || (count && nr--))) {
  980. ret = __btrfs_commit_inode_delayed_items(trans, path,
  981. curr_node);
  982. if (ret) {
  983. btrfs_release_delayed_node(curr_node);
  984. curr_node = NULL;
  985. btrfs_abort_transaction(trans, ret);
  986. break;
  987. }
  988. prev_node = curr_node;
  989. curr_node = btrfs_next_delayed_node(curr_node);
  990. btrfs_release_delayed_node(prev_node);
  991. }
  992. if (curr_node)
  993. btrfs_release_delayed_node(curr_node);
  994. btrfs_free_path(path);
  995. trans->block_rsv = block_rsv;
  996. return ret;
  997. }
  998. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
  999. {
  1000. return __btrfs_run_delayed_items(trans, -1);
  1001. }
  1002. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
  1003. {
  1004. return __btrfs_run_delayed_items(trans, nr);
  1005. }
  1006. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1007. struct btrfs_inode *inode)
  1008. {
  1009. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1010. struct btrfs_path *path;
  1011. struct btrfs_block_rsv *block_rsv;
  1012. int ret;
  1013. if (!delayed_node)
  1014. return 0;
  1015. mutex_lock(&delayed_node->mutex);
  1016. if (!delayed_node->count) {
  1017. mutex_unlock(&delayed_node->mutex);
  1018. btrfs_release_delayed_node(delayed_node);
  1019. return 0;
  1020. }
  1021. mutex_unlock(&delayed_node->mutex);
  1022. path = btrfs_alloc_path();
  1023. if (!path) {
  1024. btrfs_release_delayed_node(delayed_node);
  1025. return -ENOMEM;
  1026. }
  1027. path->leave_spinning = 1;
  1028. block_rsv = trans->block_rsv;
  1029. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1030. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1031. btrfs_release_delayed_node(delayed_node);
  1032. btrfs_free_path(path);
  1033. trans->block_rsv = block_rsv;
  1034. return ret;
  1035. }
  1036. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1037. {
  1038. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1039. struct btrfs_trans_handle *trans;
  1040. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1041. struct btrfs_path *path;
  1042. struct btrfs_block_rsv *block_rsv;
  1043. int ret;
  1044. if (!delayed_node)
  1045. return 0;
  1046. mutex_lock(&delayed_node->mutex);
  1047. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1048. mutex_unlock(&delayed_node->mutex);
  1049. btrfs_release_delayed_node(delayed_node);
  1050. return 0;
  1051. }
  1052. mutex_unlock(&delayed_node->mutex);
  1053. trans = btrfs_join_transaction(delayed_node->root);
  1054. if (IS_ERR(trans)) {
  1055. ret = PTR_ERR(trans);
  1056. goto out;
  1057. }
  1058. path = btrfs_alloc_path();
  1059. if (!path) {
  1060. ret = -ENOMEM;
  1061. goto trans_out;
  1062. }
  1063. path->leave_spinning = 1;
  1064. block_rsv = trans->block_rsv;
  1065. trans->block_rsv = &fs_info->delayed_block_rsv;
  1066. mutex_lock(&delayed_node->mutex);
  1067. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1068. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1069. path, delayed_node);
  1070. else
  1071. ret = 0;
  1072. mutex_unlock(&delayed_node->mutex);
  1073. btrfs_free_path(path);
  1074. trans->block_rsv = block_rsv;
  1075. trans_out:
  1076. btrfs_end_transaction(trans);
  1077. btrfs_btree_balance_dirty(fs_info);
  1078. out:
  1079. btrfs_release_delayed_node(delayed_node);
  1080. return ret;
  1081. }
  1082. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1083. {
  1084. struct btrfs_delayed_node *delayed_node;
  1085. delayed_node = READ_ONCE(inode->delayed_node);
  1086. if (!delayed_node)
  1087. return;
  1088. inode->delayed_node = NULL;
  1089. btrfs_release_delayed_node(delayed_node);
  1090. }
  1091. struct btrfs_async_delayed_work {
  1092. struct btrfs_delayed_root *delayed_root;
  1093. int nr;
  1094. struct btrfs_work work;
  1095. };
  1096. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1097. {
  1098. struct btrfs_async_delayed_work *async_work;
  1099. struct btrfs_delayed_root *delayed_root;
  1100. struct btrfs_trans_handle *trans;
  1101. struct btrfs_path *path;
  1102. struct btrfs_delayed_node *delayed_node = NULL;
  1103. struct btrfs_root *root;
  1104. struct btrfs_block_rsv *block_rsv;
  1105. int total_done = 0;
  1106. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1107. delayed_root = async_work->delayed_root;
  1108. path = btrfs_alloc_path();
  1109. if (!path)
  1110. goto out;
  1111. do {
  1112. if (atomic_read(&delayed_root->items) <
  1113. BTRFS_DELAYED_BACKGROUND / 2)
  1114. break;
  1115. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1116. if (!delayed_node)
  1117. break;
  1118. path->leave_spinning = 1;
  1119. root = delayed_node->root;
  1120. trans = btrfs_join_transaction(root);
  1121. if (IS_ERR(trans)) {
  1122. btrfs_release_path(path);
  1123. btrfs_release_prepared_delayed_node(delayed_node);
  1124. total_done++;
  1125. continue;
  1126. }
  1127. block_rsv = trans->block_rsv;
  1128. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1129. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1130. trans->block_rsv = block_rsv;
  1131. btrfs_end_transaction(trans);
  1132. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1133. btrfs_release_path(path);
  1134. btrfs_release_prepared_delayed_node(delayed_node);
  1135. total_done++;
  1136. } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
  1137. || total_done < async_work->nr);
  1138. btrfs_free_path(path);
  1139. out:
  1140. wake_up(&delayed_root->wait);
  1141. kfree(async_work);
  1142. }
  1143. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1144. struct btrfs_fs_info *fs_info, int nr)
  1145. {
  1146. struct btrfs_async_delayed_work *async_work;
  1147. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1148. if (!async_work)
  1149. return -ENOMEM;
  1150. async_work->delayed_root = delayed_root;
  1151. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1152. btrfs_async_run_delayed_root, NULL, NULL);
  1153. async_work->nr = nr;
  1154. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1155. return 0;
  1156. }
  1157. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1158. {
  1159. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1160. }
  1161. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1162. {
  1163. int val = atomic_read(&delayed_root->items_seq);
  1164. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1165. return 1;
  1166. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1167. return 1;
  1168. return 0;
  1169. }
  1170. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1171. {
  1172. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1173. if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
  1174. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1175. return;
  1176. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1177. int seq;
  1178. int ret;
  1179. seq = atomic_read(&delayed_root->items_seq);
  1180. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1181. if (ret)
  1182. return;
  1183. wait_event_interruptible(delayed_root->wait,
  1184. could_end_wait(delayed_root, seq));
  1185. return;
  1186. }
  1187. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1188. }
  1189. /* Will return 0 or -ENOMEM */
  1190. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1191. const char *name, int name_len,
  1192. struct btrfs_inode *dir,
  1193. struct btrfs_disk_key *disk_key, u8 type,
  1194. u64 index)
  1195. {
  1196. struct btrfs_delayed_node *delayed_node;
  1197. struct btrfs_delayed_item *delayed_item;
  1198. struct btrfs_dir_item *dir_item;
  1199. int ret;
  1200. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1201. if (IS_ERR(delayed_node))
  1202. return PTR_ERR(delayed_node);
  1203. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1204. if (!delayed_item) {
  1205. ret = -ENOMEM;
  1206. goto release_node;
  1207. }
  1208. delayed_item->key.objectid = btrfs_ino(dir);
  1209. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1210. delayed_item->key.offset = index;
  1211. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1212. dir_item->location = *disk_key;
  1213. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1214. btrfs_set_stack_dir_data_len(dir_item, 0);
  1215. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1216. btrfs_set_stack_dir_type(dir_item, type);
  1217. memcpy((char *)(dir_item + 1), name, name_len);
  1218. ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
  1219. /*
  1220. * we have reserved enough space when we start a new transaction,
  1221. * so reserving metadata failure is impossible
  1222. */
  1223. BUG_ON(ret);
  1224. mutex_lock(&delayed_node->mutex);
  1225. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1226. if (unlikely(ret)) {
  1227. btrfs_err(trans->fs_info,
  1228. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1229. name_len, name, delayed_node->root->root_key.objectid,
  1230. delayed_node->inode_id, ret);
  1231. BUG();
  1232. }
  1233. mutex_unlock(&delayed_node->mutex);
  1234. release_node:
  1235. btrfs_release_delayed_node(delayed_node);
  1236. return ret;
  1237. }
  1238. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1239. struct btrfs_delayed_node *node,
  1240. struct btrfs_key *key)
  1241. {
  1242. struct btrfs_delayed_item *item;
  1243. mutex_lock(&node->mutex);
  1244. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1245. if (!item) {
  1246. mutex_unlock(&node->mutex);
  1247. return 1;
  1248. }
  1249. btrfs_delayed_item_release_metadata(node->root, item);
  1250. btrfs_release_delayed_item(item);
  1251. mutex_unlock(&node->mutex);
  1252. return 0;
  1253. }
  1254. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1255. struct btrfs_inode *dir, u64 index)
  1256. {
  1257. struct btrfs_delayed_node *node;
  1258. struct btrfs_delayed_item *item;
  1259. struct btrfs_key item_key;
  1260. int ret;
  1261. node = btrfs_get_or_create_delayed_node(dir);
  1262. if (IS_ERR(node))
  1263. return PTR_ERR(node);
  1264. item_key.objectid = btrfs_ino(dir);
  1265. item_key.type = BTRFS_DIR_INDEX_KEY;
  1266. item_key.offset = index;
  1267. ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
  1268. &item_key);
  1269. if (!ret)
  1270. goto end;
  1271. item = btrfs_alloc_delayed_item(0);
  1272. if (!item) {
  1273. ret = -ENOMEM;
  1274. goto end;
  1275. }
  1276. item->key = item_key;
  1277. ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
  1278. /*
  1279. * we have reserved enough space when we start a new transaction,
  1280. * so reserving metadata failure is impossible.
  1281. */
  1282. BUG_ON(ret);
  1283. mutex_lock(&node->mutex);
  1284. ret = __btrfs_add_delayed_deletion_item(node, item);
  1285. if (unlikely(ret)) {
  1286. btrfs_err(trans->fs_info,
  1287. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1288. index, node->root->root_key.objectid,
  1289. node->inode_id, ret);
  1290. BUG();
  1291. }
  1292. mutex_unlock(&node->mutex);
  1293. end:
  1294. btrfs_release_delayed_node(node);
  1295. return ret;
  1296. }
  1297. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1298. {
  1299. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1300. if (!delayed_node)
  1301. return -ENOENT;
  1302. /*
  1303. * Since we have held i_mutex of this directory, it is impossible that
  1304. * a new directory index is added into the delayed node and index_cnt
  1305. * is updated now. So we needn't lock the delayed node.
  1306. */
  1307. if (!delayed_node->index_cnt) {
  1308. btrfs_release_delayed_node(delayed_node);
  1309. return -EINVAL;
  1310. }
  1311. inode->index_cnt = delayed_node->index_cnt;
  1312. btrfs_release_delayed_node(delayed_node);
  1313. return 0;
  1314. }
  1315. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1316. struct list_head *ins_list,
  1317. struct list_head *del_list)
  1318. {
  1319. struct btrfs_delayed_node *delayed_node;
  1320. struct btrfs_delayed_item *item;
  1321. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1322. if (!delayed_node)
  1323. return false;
  1324. /*
  1325. * We can only do one readdir with delayed items at a time because of
  1326. * item->readdir_list.
  1327. */
  1328. inode_unlock_shared(inode);
  1329. inode_lock(inode);
  1330. mutex_lock(&delayed_node->mutex);
  1331. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1332. while (item) {
  1333. refcount_inc(&item->refs);
  1334. list_add_tail(&item->readdir_list, ins_list);
  1335. item = __btrfs_next_delayed_item(item);
  1336. }
  1337. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1338. while (item) {
  1339. refcount_inc(&item->refs);
  1340. list_add_tail(&item->readdir_list, del_list);
  1341. item = __btrfs_next_delayed_item(item);
  1342. }
  1343. mutex_unlock(&delayed_node->mutex);
  1344. /*
  1345. * This delayed node is still cached in the btrfs inode, so refs
  1346. * must be > 1 now, and we needn't check it is going to be freed
  1347. * or not.
  1348. *
  1349. * Besides that, this function is used to read dir, we do not
  1350. * insert/delete delayed items in this period. So we also needn't
  1351. * requeue or dequeue this delayed node.
  1352. */
  1353. refcount_dec(&delayed_node->refs);
  1354. return true;
  1355. }
  1356. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1357. struct list_head *ins_list,
  1358. struct list_head *del_list)
  1359. {
  1360. struct btrfs_delayed_item *curr, *next;
  1361. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1362. list_del(&curr->readdir_list);
  1363. if (refcount_dec_and_test(&curr->refs))
  1364. kfree(curr);
  1365. }
  1366. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1367. list_del(&curr->readdir_list);
  1368. if (refcount_dec_and_test(&curr->refs))
  1369. kfree(curr);
  1370. }
  1371. /*
  1372. * The VFS is going to do up_read(), so we need to downgrade back to a
  1373. * read lock.
  1374. */
  1375. downgrade_write(&inode->i_rwsem);
  1376. }
  1377. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1378. u64 index)
  1379. {
  1380. struct btrfs_delayed_item *curr;
  1381. int ret = 0;
  1382. list_for_each_entry(curr, del_list, readdir_list) {
  1383. if (curr->key.offset > index)
  1384. break;
  1385. if (curr->key.offset == index) {
  1386. ret = 1;
  1387. break;
  1388. }
  1389. }
  1390. return ret;
  1391. }
  1392. /*
  1393. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1394. *
  1395. */
  1396. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1397. struct list_head *ins_list)
  1398. {
  1399. struct btrfs_dir_item *di;
  1400. struct btrfs_delayed_item *curr, *next;
  1401. struct btrfs_key location;
  1402. char *name;
  1403. int name_len;
  1404. int over = 0;
  1405. unsigned char d_type;
  1406. if (list_empty(ins_list))
  1407. return 0;
  1408. /*
  1409. * Changing the data of the delayed item is impossible. So
  1410. * we needn't lock them. And we have held i_mutex of the
  1411. * directory, nobody can delete any directory indexes now.
  1412. */
  1413. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1414. list_del(&curr->readdir_list);
  1415. if (curr->key.offset < ctx->pos) {
  1416. if (refcount_dec_and_test(&curr->refs))
  1417. kfree(curr);
  1418. continue;
  1419. }
  1420. ctx->pos = curr->key.offset;
  1421. di = (struct btrfs_dir_item *)curr->data;
  1422. name = (char *)(di + 1);
  1423. name_len = btrfs_stack_dir_name_len(di);
  1424. d_type = btrfs_filetype_table[di->type];
  1425. btrfs_disk_key_to_cpu(&location, &di->location);
  1426. over = !dir_emit(ctx, name, name_len,
  1427. location.objectid, d_type);
  1428. if (refcount_dec_and_test(&curr->refs))
  1429. kfree(curr);
  1430. if (over)
  1431. return 1;
  1432. ctx->pos++;
  1433. }
  1434. return 0;
  1435. }
  1436. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1437. struct btrfs_inode_item *inode_item,
  1438. struct inode *inode)
  1439. {
  1440. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1441. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1442. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1443. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1444. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1445. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1446. btrfs_set_stack_inode_generation(inode_item,
  1447. BTRFS_I(inode)->generation);
  1448. btrfs_set_stack_inode_sequence(inode_item,
  1449. inode_peek_iversion(inode));
  1450. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1451. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1452. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1453. btrfs_set_stack_inode_block_group(inode_item, 0);
  1454. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1455. inode->i_atime.tv_sec);
  1456. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1457. inode->i_atime.tv_nsec);
  1458. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1459. inode->i_mtime.tv_sec);
  1460. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1461. inode->i_mtime.tv_nsec);
  1462. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1463. inode->i_ctime.tv_sec);
  1464. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1465. inode->i_ctime.tv_nsec);
  1466. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1467. BTRFS_I(inode)->i_otime.tv_sec);
  1468. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1469. BTRFS_I(inode)->i_otime.tv_nsec);
  1470. }
  1471. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1472. {
  1473. struct btrfs_delayed_node *delayed_node;
  1474. struct btrfs_inode_item *inode_item;
  1475. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1476. if (!delayed_node)
  1477. return -ENOENT;
  1478. mutex_lock(&delayed_node->mutex);
  1479. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1480. mutex_unlock(&delayed_node->mutex);
  1481. btrfs_release_delayed_node(delayed_node);
  1482. return -ENOENT;
  1483. }
  1484. inode_item = &delayed_node->inode_item;
  1485. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1486. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1487. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1488. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1489. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1490. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1491. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1492. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1493. inode_set_iversion_queried(inode,
  1494. btrfs_stack_inode_sequence(inode_item));
  1495. inode->i_rdev = 0;
  1496. *rdev = btrfs_stack_inode_rdev(inode_item);
  1497. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1498. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1499. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1500. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1501. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1502. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1503. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1504. BTRFS_I(inode)->i_otime.tv_sec =
  1505. btrfs_stack_timespec_sec(&inode_item->otime);
  1506. BTRFS_I(inode)->i_otime.tv_nsec =
  1507. btrfs_stack_timespec_nsec(&inode_item->otime);
  1508. inode->i_generation = BTRFS_I(inode)->generation;
  1509. BTRFS_I(inode)->index_cnt = (u64)-1;
  1510. mutex_unlock(&delayed_node->mutex);
  1511. btrfs_release_delayed_node(delayed_node);
  1512. return 0;
  1513. }
  1514. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1515. struct btrfs_root *root, struct inode *inode)
  1516. {
  1517. struct btrfs_delayed_node *delayed_node;
  1518. int ret = 0;
  1519. delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
  1520. if (IS_ERR(delayed_node))
  1521. return PTR_ERR(delayed_node);
  1522. mutex_lock(&delayed_node->mutex);
  1523. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1524. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1525. goto release_node;
  1526. }
  1527. ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
  1528. delayed_node);
  1529. if (ret)
  1530. goto release_node;
  1531. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1532. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1533. delayed_node->count++;
  1534. atomic_inc(&root->fs_info->delayed_root->items);
  1535. release_node:
  1536. mutex_unlock(&delayed_node->mutex);
  1537. btrfs_release_delayed_node(delayed_node);
  1538. return ret;
  1539. }
  1540. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1541. {
  1542. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1543. struct btrfs_delayed_node *delayed_node;
  1544. /*
  1545. * we don't do delayed inode updates during log recovery because it
  1546. * leads to enospc problems. This means we also can't do
  1547. * delayed inode refs
  1548. */
  1549. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1550. return -EAGAIN;
  1551. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1552. if (IS_ERR(delayed_node))
  1553. return PTR_ERR(delayed_node);
  1554. /*
  1555. * We don't reserve space for inode ref deletion is because:
  1556. * - We ONLY do async inode ref deletion for the inode who has only
  1557. * one link(i_nlink == 1), it means there is only one inode ref.
  1558. * And in most case, the inode ref and the inode item are in the
  1559. * same leaf, and we will deal with them at the same time.
  1560. * Since we are sure we will reserve the space for the inode item,
  1561. * it is unnecessary to reserve space for inode ref deletion.
  1562. * - If the inode ref and the inode item are not in the same leaf,
  1563. * We also needn't worry about enospc problem, because we reserve
  1564. * much more space for the inode update than it needs.
  1565. * - At the worst, we can steal some space from the global reservation.
  1566. * It is very rare.
  1567. */
  1568. mutex_lock(&delayed_node->mutex);
  1569. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1570. goto release_node;
  1571. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1572. delayed_node->count++;
  1573. atomic_inc(&fs_info->delayed_root->items);
  1574. release_node:
  1575. mutex_unlock(&delayed_node->mutex);
  1576. btrfs_release_delayed_node(delayed_node);
  1577. return 0;
  1578. }
  1579. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1580. {
  1581. struct btrfs_root *root = delayed_node->root;
  1582. struct btrfs_fs_info *fs_info = root->fs_info;
  1583. struct btrfs_delayed_item *curr_item, *prev_item;
  1584. mutex_lock(&delayed_node->mutex);
  1585. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1586. while (curr_item) {
  1587. btrfs_delayed_item_release_metadata(root, curr_item);
  1588. prev_item = curr_item;
  1589. curr_item = __btrfs_next_delayed_item(prev_item);
  1590. btrfs_release_delayed_item(prev_item);
  1591. }
  1592. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1593. while (curr_item) {
  1594. btrfs_delayed_item_release_metadata(root, curr_item);
  1595. prev_item = curr_item;
  1596. curr_item = __btrfs_next_delayed_item(prev_item);
  1597. btrfs_release_delayed_item(prev_item);
  1598. }
  1599. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1600. btrfs_release_delayed_iref(delayed_node);
  1601. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1602. btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
  1603. btrfs_release_delayed_inode(delayed_node);
  1604. }
  1605. mutex_unlock(&delayed_node->mutex);
  1606. }
  1607. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1608. {
  1609. struct btrfs_delayed_node *delayed_node;
  1610. delayed_node = btrfs_get_delayed_node(inode);
  1611. if (!delayed_node)
  1612. return;
  1613. __btrfs_kill_delayed_node(delayed_node);
  1614. btrfs_release_delayed_node(delayed_node);
  1615. }
  1616. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1617. {
  1618. u64 inode_id = 0;
  1619. struct btrfs_delayed_node *delayed_nodes[8];
  1620. int i, n;
  1621. while (1) {
  1622. spin_lock(&root->inode_lock);
  1623. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1624. (void **)delayed_nodes, inode_id,
  1625. ARRAY_SIZE(delayed_nodes));
  1626. if (!n) {
  1627. spin_unlock(&root->inode_lock);
  1628. break;
  1629. }
  1630. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1631. for (i = 0; i < n; i++)
  1632. refcount_inc(&delayed_nodes[i]->refs);
  1633. spin_unlock(&root->inode_lock);
  1634. for (i = 0; i < n; i++) {
  1635. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1636. btrfs_release_delayed_node(delayed_nodes[i]);
  1637. }
  1638. }
  1639. }
  1640. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1641. {
  1642. struct btrfs_delayed_node *curr_node, *prev_node;
  1643. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1644. while (curr_node) {
  1645. __btrfs_kill_delayed_node(curr_node);
  1646. prev_node = curr_node;
  1647. curr_node = btrfs_next_delayed_node(curr_node);
  1648. btrfs_release_delayed_node(prev_node);
  1649. }
  1650. }