pvcalls-back.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236
  1. /*
  2. * (c) 2017 Stefano Stabellini <stefano@aporeto.com>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. */
  14. #include <linux/inet.h>
  15. #include <linux/kthread.h>
  16. #include <linux/list.h>
  17. #include <linux/radix-tree.h>
  18. #include <linux/module.h>
  19. #include <linux/semaphore.h>
  20. #include <linux/wait.h>
  21. #include <net/sock.h>
  22. #include <net/inet_common.h>
  23. #include <net/inet_connection_sock.h>
  24. #include <net/request_sock.h>
  25. #include <xen/events.h>
  26. #include <xen/grant_table.h>
  27. #include <xen/xen.h>
  28. #include <xen/xenbus.h>
  29. #include <xen/interface/io/pvcalls.h>
  30. #define PVCALLS_VERSIONS "1"
  31. #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
  32. struct pvcalls_back_global {
  33. struct list_head frontends;
  34. struct semaphore frontends_lock;
  35. } pvcalls_back_global;
  36. /*
  37. * Per-frontend data structure. It contains pointers to the command
  38. * ring, its event channel, a list of active sockets and a tree of
  39. * passive sockets.
  40. */
  41. struct pvcalls_fedata {
  42. struct list_head list;
  43. struct xenbus_device *dev;
  44. struct xen_pvcalls_sring *sring;
  45. struct xen_pvcalls_back_ring ring;
  46. int irq;
  47. struct list_head socket_mappings;
  48. struct radix_tree_root socketpass_mappings;
  49. struct semaphore socket_lock;
  50. };
  51. struct pvcalls_ioworker {
  52. struct work_struct register_work;
  53. struct workqueue_struct *wq;
  54. };
  55. struct sock_mapping {
  56. struct list_head list;
  57. struct pvcalls_fedata *fedata;
  58. struct sockpass_mapping *sockpass;
  59. struct socket *sock;
  60. uint64_t id;
  61. grant_ref_t ref;
  62. struct pvcalls_data_intf *ring;
  63. void *bytes;
  64. struct pvcalls_data data;
  65. uint32_t ring_order;
  66. int irq;
  67. atomic_t read;
  68. atomic_t write;
  69. atomic_t io;
  70. atomic_t release;
  71. void (*saved_data_ready)(struct sock *sk);
  72. struct pvcalls_ioworker ioworker;
  73. };
  74. struct sockpass_mapping {
  75. struct list_head list;
  76. struct pvcalls_fedata *fedata;
  77. struct socket *sock;
  78. uint64_t id;
  79. struct xen_pvcalls_request reqcopy;
  80. spinlock_t copy_lock;
  81. struct workqueue_struct *wq;
  82. struct work_struct register_work;
  83. void (*saved_data_ready)(struct sock *sk);
  84. };
  85. static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map);
  86. static int pvcalls_back_release_active(struct xenbus_device *dev,
  87. struct pvcalls_fedata *fedata,
  88. struct sock_mapping *map);
  89. static void pvcalls_conn_back_read(void *opaque)
  90. {
  91. struct sock_mapping *map = (struct sock_mapping *)opaque;
  92. struct msghdr msg;
  93. struct kvec vec[2];
  94. RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons;
  95. int32_t error;
  96. struct pvcalls_data_intf *intf = map->ring;
  97. struct pvcalls_data *data = &map->data;
  98. unsigned long flags;
  99. int ret;
  100. array_size = XEN_FLEX_RING_SIZE(map->ring_order);
  101. cons = intf->in_cons;
  102. prod = intf->in_prod;
  103. error = intf->in_error;
  104. /* read the indexes first, then deal with the data */
  105. virt_mb();
  106. if (error)
  107. return;
  108. size = pvcalls_queued(prod, cons, array_size);
  109. if (size >= array_size)
  110. return;
  111. spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
  112. if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) {
  113. atomic_set(&map->read, 0);
  114. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock,
  115. flags);
  116. return;
  117. }
  118. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
  119. wanted = array_size - size;
  120. masked_prod = pvcalls_mask(prod, array_size);
  121. masked_cons = pvcalls_mask(cons, array_size);
  122. memset(&msg, 0, sizeof(msg));
  123. if (masked_prod < masked_cons) {
  124. vec[0].iov_base = data->in + masked_prod;
  125. vec[0].iov_len = wanted;
  126. iov_iter_kvec(&msg.msg_iter, WRITE, vec, 1, wanted);
  127. } else {
  128. vec[0].iov_base = data->in + masked_prod;
  129. vec[0].iov_len = array_size - masked_prod;
  130. vec[1].iov_base = data->in;
  131. vec[1].iov_len = wanted - vec[0].iov_len;
  132. iov_iter_kvec(&msg.msg_iter, WRITE, vec, 2, wanted);
  133. }
  134. atomic_set(&map->read, 0);
  135. ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT);
  136. WARN_ON(ret > wanted);
  137. if (ret == -EAGAIN) /* shouldn't happen */
  138. return;
  139. if (!ret)
  140. ret = -ENOTCONN;
  141. spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
  142. if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue))
  143. atomic_inc(&map->read);
  144. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
  145. /* write the data, then modify the indexes */
  146. virt_wmb();
  147. if (ret < 0)
  148. intf->in_error = ret;
  149. else
  150. intf->in_prod = prod + ret;
  151. /* update the indexes, then notify the other end */
  152. virt_wmb();
  153. notify_remote_via_irq(map->irq);
  154. return;
  155. }
  156. static void pvcalls_conn_back_write(struct sock_mapping *map)
  157. {
  158. struct pvcalls_data_intf *intf = map->ring;
  159. struct pvcalls_data *data = &map->data;
  160. struct msghdr msg;
  161. struct kvec vec[2];
  162. RING_IDX cons, prod, size, array_size;
  163. int ret;
  164. cons = intf->out_cons;
  165. prod = intf->out_prod;
  166. /* read the indexes before dealing with the data */
  167. virt_mb();
  168. array_size = XEN_FLEX_RING_SIZE(map->ring_order);
  169. size = pvcalls_queued(prod, cons, array_size);
  170. if (size == 0)
  171. return;
  172. memset(&msg, 0, sizeof(msg));
  173. msg.msg_flags |= MSG_DONTWAIT;
  174. if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) {
  175. vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
  176. vec[0].iov_len = size;
  177. iov_iter_kvec(&msg.msg_iter, READ, vec, 1, size);
  178. } else {
  179. vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
  180. vec[0].iov_len = array_size - pvcalls_mask(cons, array_size);
  181. vec[1].iov_base = data->out;
  182. vec[1].iov_len = size - vec[0].iov_len;
  183. iov_iter_kvec(&msg.msg_iter, READ, vec, 2, size);
  184. }
  185. atomic_set(&map->write, 0);
  186. ret = inet_sendmsg(map->sock, &msg, size);
  187. if (ret == -EAGAIN || (ret >= 0 && ret < size)) {
  188. atomic_inc(&map->write);
  189. atomic_inc(&map->io);
  190. }
  191. if (ret == -EAGAIN)
  192. return;
  193. /* write the data, then update the indexes */
  194. virt_wmb();
  195. if (ret < 0) {
  196. intf->out_error = ret;
  197. } else {
  198. intf->out_error = 0;
  199. intf->out_cons = cons + ret;
  200. prod = intf->out_prod;
  201. }
  202. /* update the indexes, then notify the other end */
  203. virt_wmb();
  204. if (prod != cons + ret)
  205. atomic_inc(&map->write);
  206. notify_remote_via_irq(map->irq);
  207. }
  208. static void pvcalls_back_ioworker(struct work_struct *work)
  209. {
  210. struct pvcalls_ioworker *ioworker = container_of(work,
  211. struct pvcalls_ioworker, register_work);
  212. struct sock_mapping *map = container_of(ioworker, struct sock_mapping,
  213. ioworker);
  214. while (atomic_read(&map->io) > 0) {
  215. if (atomic_read(&map->release) > 0) {
  216. atomic_set(&map->release, 0);
  217. return;
  218. }
  219. if (atomic_read(&map->read) > 0)
  220. pvcalls_conn_back_read(map);
  221. if (atomic_read(&map->write) > 0)
  222. pvcalls_conn_back_write(map);
  223. atomic_dec(&map->io);
  224. }
  225. }
  226. static int pvcalls_back_socket(struct xenbus_device *dev,
  227. struct xen_pvcalls_request *req)
  228. {
  229. struct pvcalls_fedata *fedata;
  230. int ret;
  231. struct xen_pvcalls_response *rsp;
  232. fedata = dev_get_drvdata(&dev->dev);
  233. if (req->u.socket.domain != AF_INET ||
  234. req->u.socket.type != SOCK_STREAM ||
  235. (req->u.socket.protocol != IPPROTO_IP &&
  236. req->u.socket.protocol != AF_INET))
  237. ret = -EAFNOSUPPORT;
  238. else
  239. ret = 0;
  240. /* leave the actual socket allocation for later */
  241. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  242. rsp->req_id = req->req_id;
  243. rsp->cmd = req->cmd;
  244. rsp->u.socket.id = req->u.socket.id;
  245. rsp->ret = ret;
  246. return 0;
  247. }
  248. static void pvcalls_sk_state_change(struct sock *sock)
  249. {
  250. struct sock_mapping *map = sock->sk_user_data;
  251. struct pvcalls_data_intf *intf;
  252. if (map == NULL)
  253. return;
  254. intf = map->ring;
  255. intf->in_error = -ENOTCONN;
  256. notify_remote_via_irq(map->irq);
  257. }
  258. static void pvcalls_sk_data_ready(struct sock *sock)
  259. {
  260. struct sock_mapping *map = sock->sk_user_data;
  261. struct pvcalls_ioworker *iow;
  262. if (map == NULL)
  263. return;
  264. iow = &map->ioworker;
  265. atomic_inc(&map->read);
  266. atomic_inc(&map->io);
  267. queue_work(iow->wq, &iow->register_work);
  268. }
  269. static struct sock_mapping *pvcalls_new_active_socket(
  270. struct pvcalls_fedata *fedata,
  271. uint64_t id,
  272. grant_ref_t ref,
  273. uint32_t evtchn,
  274. struct socket *sock)
  275. {
  276. int ret;
  277. struct sock_mapping *map;
  278. void *page;
  279. map = kzalloc(sizeof(*map), GFP_KERNEL);
  280. if (map == NULL)
  281. return NULL;
  282. map->fedata = fedata;
  283. map->sock = sock;
  284. map->id = id;
  285. map->ref = ref;
  286. ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page);
  287. if (ret < 0)
  288. goto out;
  289. map->ring = page;
  290. map->ring_order = map->ring->ring_order;
  291. /* first read the order, then map the data ring */
  292. virt_rmb();
  293. if (map->ring_order > MAX_RING_ORDER) {
  294. pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n",
  295. __func__, map->ring_order, MAX_RING_ORDER);
  296. goto out;
  297. }
  298. ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref,
  299. (1 << map->ring_order), &page);
  300. if (ret < 0)
  301. goto out;
  302. map->bytes = page;
  303. ret = bind_interdomain_evtchn_to_irqhandler(fedata->dev->otherend_id,
  304. evtchn,
  305. pvcalls_back_conn_event,
  306. 0,
  307. "pvcalls-backend",
  308. map);
  309. if (ret < 0)
  310. goto out;
  311. map->irq = ret;
  312. map->data.in = map->bytes;
  313. map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order);
  314. map->ioworker.wq = alloc_workqueue("pvcalls_io", WQ_UNBOUND, 1);
  315. if (!map->ioworker.wq)
  316. goto out;
  317. atomic_set(&map->io, 1);
  318. INIT_WORK(&map->ioworker.register_work, pvcalls_back_ioworker);
  319. down(&fedata->socket_lock);
  320. list_add_tail(&map->list, &fedata->socket_mappings);
  321. up(&fedata->socket_lock);
  322. write_lock_bh(&map->sock->sk->sk_callback_lock);
  323. map->saved_data_ready = map->sock->sk->sk_data_ready;
  324. map->sock->sk->sk_user_data = map;
  325. map->sock->sk->sk_data_ready = pvcalls_sk_data_ready;
  326. map->sock->sk->sk_state_change = pvcalls_sk_state_change;
  327. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  328. return map;
  329. out:
  330. down(&fedata->socket_lock);
  331. list_del(&map->list);
  332. pvcalls_back_release_active(fedata->dev, fedata, map);
  333. up(&fedata->socket_lock);
  334. return NULL;
  335. }
  336. static int pvcalls_back_connect(struct xenbus_device *dev,
  337. struct xen_pvcalls_request *req)
  338. {
  339. struct pvcalls_fedata *fedata;
  340. int ret = -EINVAL;
  341. struct socket *sock;
  342. struct sock_mapping *map;
  343. struct xen_pvcalls_response *rsp;
  344. struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr;
  345. fedata = dev_get_drvdata(&dev->dev);
  346. if (req->u.connect.len < sizeof(sa->sa_family) ||
  347. req->u.connect.len > sizeof(req->u.connect.addr) ||
  348. sa->sa_family != AF_INET)
  349. goto out;
  350. ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock);
  351. if (ret < 0)
  352. goto out;
  353. ret = inet_stream_connect(sock, sa, req->u.connect.len, 0);
  354. if (ret < 0) {
  355. sock_release(sock);
  356. goto out;
  357. }
  358. map = pvcalls_new_active_socket(fedata,
  359. req->u.connect.id,
  360. req->u.connect.ref,
  361. req->u.connect.evtchn,
  362. sock);
  363. if (!map) {
  364. ret = -EFAULT;
  365. sock_release(sock);
  366. }
  367. out:
  368. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  369. rsp->req_id = req->req_id;
  370. rsp->cmd = req->cmd;
  371. rsp->u.connect.id = req->u.connect.id;
  372. rsp->ret = ret;
  373. return 0;
  374. }
  375. static int pvcalls_back_release_active(struct xenbus_device *dev,
  376. struct pvcalls_fedata *fedata,
  377. struct sock_mapping *map)
  378. {
  379. disable_irq(map->irq);
  380. if (map->sock->sk != NULL) {
  381. write_lock_bh(&map->sock->sk->sk_callback_lock);
  382. map->sock->sk->sk_user_data = NULL;
  383. map->sock->sk->sk_data_ready = map->saved_data_ready;
  384. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  385. }
  386. atomic_set(&map->release, 1);
  387. flush_work(&map->ioworker.register_work);
  388. xenbus_unmap_ring_vfree(dev, map->bytes);
  389. xenbus_unmap_ring_vfree(dev, (void *)map->ring);
  390. unbind_from_irqhandler(map->irq, map);
  391. sock_release(map->sock);
  392. kfree(map);
  393. return 0;
  394. }
  395. static int pvcalls_back_release_passive(struct xenbus_device *dev,
  396. struct pvcalls_fedata *fedata,
  397. struct sockpass_mapping *mappass)
  398. {
  399. if (mappass->sock->sk != NULL) {
  400. write_lock_bh(&mappass->sock->sk->sk_callback_lock);
  401. mappass->sock->sk->sk_user_data = NULL;
  402. mappass->sock->sk->sk_data_ready = mappass->saved_data_ready;
  403. write_unlock_bh(&mappass->sock->sk->sk_callback_lock);
  404. }
  405. sock_release(mappass->sock);
  406. flush_workqueue(mappass->wq);
  407. destroy_workqueue(mappass->wq);
  408. kfree(mappass);
  409. return 0;
  410. }
  411. static int pvcalls_back_release(struct xenbus_device *dev,
  412. struct xen_pvcalls_request *req)
  413. {
  414. struct pvcalls_fedata *fedata;
  415. struct sock_mapping *map, *n;
  416. struct sockpass_mapping *mappass;
  417. int ret = 0;
  418. struct xen_pvcalls_response *rsp;
  419. fedata = dev_get_drvdata(&dev->dev);
  420. down(&fedata->socket_lock);
  421. list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
  422. if (map->id == req->u.release.id) {
  423. list_del(&map->list);
  424. up(&fedata->socket_lock);
  425. ret = pvcalls_back_release_active(dev, fedata, map);
  426. goto out;
  427. }
  428. }
  429. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  430. req->u.release.id);
  431. if (mappass != NULL) {
  432. radix_tree_delete(&fedata->socketpass_mappings, mappass->id);
  433. up(&fedata->socket_lock);
  434. ret = pvcalls_back_release_passive(dev, fedata, mappass);
  435. } else
  436. up(&fedata->socket_lock);
  437. out:
  438. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  439. rsp->req_id = req->req_id;
  440. rsp->u.release.id = req->u.release.id;
  441. rsp->cmd = req->cmd;
  442. rsp->ret = ret;
  443. return 0;
  444. }
  445. static void __pvcalls_back_accept(struct work_struct *work)
  446. {
  447. struct sockpass_mapping *mappass = container_of(
  448. work, struct sockpass_mapping, register_work);
  449. struct sock_mapping *map;
  450. struct pvcalls_ioworker *iow;
  451. struct pvcalls_fedata *fedata;
  452. struct socket *sock;
  453. struct xen_pvcalls_response *rsp;
  454. struct xen_pvcalls_request *req;
  455. int notify;
  456. int ret = -EINVAL;
  457. unsigned long flags;
  458. fedata = mappass->fedata;
  459. /*
  460. * __pvcalls_back_accept can race against pvcalls_back_accept.
  461. * We only need to check the value of "cmd" on read. It could be
  462. * done atomically, but to simplify the code on the write side, we
  463. * use a spinlock.
  464. */
  465. spin_lock_irqsave(&mappass->copy_lock, flags);
  466. req = &mappass->reqcopy;
  467. if (req->cmd != PVCALLS_ACCEPT) {
  468. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  469. return;
  470. }
  471. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  472. sock = sock_alloc();
  473. if (sock == NULL)
  474. goto out_error;
  475. sock->type = mappass->sock->type;
  476. sock->ops = mappass->sock->ops;
  477. ret = inet_accept(mappass->sock, sock, O_NONBLOCK, true);
  478. if (ret == -EAGAIN) {
  479. sock_release(sock);
  480. return;
  481. }
  482. map = pvcalls_new_active_socket(fedata,
  483. req->u.accept.id_new,
  484. req->u.accept.ref,
  485. req->u.accept.evtchn,
  486. sock);
  487. if (!map) {
  488. ret = -EFAULT;
  489. sock_release(sock);
  490. goto out_error;
  491. }
  492. map->sockpass = mappass;
  493. iow = &map->ioworker;
  494. atomic_inc(&map->read);
  495. atomic_inc(&map->io);
  496. queue_work(iow->wq, &iow->register_work);
  497. out_error:
  498. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  499. rsp->req_id = req->req_id;
  500. rsp->cmd = req->cmd;
  501. rsp->u.accept.id = req->u.accept.id;
  502. rsp->ret = ret;
  503. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
  504. if (notify)
  505. notify_remote_via_irq(fedata->irq);
  506. mappass->reqcopy.cmd = 0;
  507. }
  508. static void pvcalls_pass_sk_data_ready(struct sock *sock)
  509. {
  510. struct sockpass_mapping *mappass = sock->sk_user_data;
  511. struct pvcalls_fedata *fedata;
  512. struct xen_pvcalls_response *rsp;
  513. unsigned long flags;
  514. int notify;
  515. if (mappass == NULL)
  516. return;
  517. fedata = mappass->fedata;
  518. spin_lock_irqsave(&mappass->copy_lock, flags);
  519. if (mappass->reqcopy.cmd == PVCALLS_POLL) {
  520. rsp = RING_GET_RESPONSE(&fedata->ring,
  521. fedata->ring.rsp_prod_pvt++);
  522. rsp->req_id = mappass->reqcopy.req_id;
  523. rsp->u.poll.id = mappass->reqcopy.u.poll.id;
  524. rsp->cmd = mappass->reqcopy.cmd;
  525. rsp->ret = 0;
  526. mappass->reqcopy.cmd = 0;
  527. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  528. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
  529. if (notify)
  530. notify_remote_via_irq(mappass->fedata->irq);
  531. } else {
  532. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  533. queue_work(mappass->wq, &mappass->register_work);
  534. }
  535. }
  536. static int pvcalls_back_bind(struct xenbus_device *dev,
  537. struct xen_pvcalls_request *req)
  538. {
  539. struct pvcalls_fedata *fedata;
  540. int ret;
  541. struct sockpass_mapping *map;
  542. struct xen_pvcalls_response *rsp;
  543. fedata = dev_get_drvdata(&dev->dev);
  544. map = kzalloc(sizeof(*map), GFP_KERNEL);
  545. if (map == NULL) {
  546. ret = -ENOMEM;
  547. goto out;
  548. }
  549. INIT_WORK(&map->register_work, __pvcalls_back_accept);
  550. spin_lock_init(&map->copy_lock);
  551. map->wq = alloc_workqueue("pvcalls_wq", WQ_UNBOUND, 1);
  552. if (!map->wq) {
  553. ret = -ENOMEM;
  554. goto out;
  555. }
  556. ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock);
  557. if (ret < 0)
  558. goto out;
  559. ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr,
  560. req->u.bind.len);
  561. if (ret < 0)
  562. goto out;
  563. map->fedata = fedata;
  564. map->id = req->u.bind.id;
  565. down(&fedata->socket_lock);
  566. ret = radix_tree_insert(&fedata->socketpass_mappings, map->id,
  567. map);
  568. up(&fedata->socket_lock);
  569. if (ret)
  570. goto out;
  571. write_lock_bh(&map->sock->sk->sk_callback_lock);
  572. map->saved_data_ready = map->sock->sk->sk_data_ready;
  573. map->sock->sk->sk_user_data = map;
  574. map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready;
  575. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  576. out:
  577. if (ret) {
  578. if (map && map->sock)
  579. sock_release(map->sock);
  580. if (map && map->wq)
  581. destroy_workqueue(map->wq);
  582. kfree(map);
  583. }
  584. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  585. rsp->req_id = req->req_id;
  586. rsp->cmd = req->cmd;
  587. rsp->u.bind.id = req->u.bind.id;
  588. rsp->ret = ret;
  589. return 0;
  590. }
  591. static int pvcalls_back_listen(struct xenbus_device *dev,
  592. struct xen_pvcalls_request *req)
  593. {
  594. struct pvcalls_fedata *fedata;
  595. int ret = -EINVAL;
  596. struct sockpass_mapping *map;
  597. struct xen_pvcalls_response *rsp;
  598. fedata = dev_get_drvdata(&dev->dev);
  599. down(&fedata->socket_lock);
  600. map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id);
  601. up(&fedata->socket_lock);
  602. if (map == NULL)
  603. goto out;
  604. ret = inet_listen(map->sock, req->u.listen.backlog);
  605. out:
  606. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  607. rsp->req_id = req->req_id;
  608. rsp->cmd = req->cmd;
  609. rsp->u.listen.id = req->u.listen.id;
  610. rsp->ret = ret;
  611. return 0;
  612. }
  613. static int pvcalls_back_accept(struct xenbus_device *dev,
  614. struct xen_pvcalls_request *req)
  615. {
  616. struct pvcalls_fedata *fedata;
  617. struct sockpass_mapping *mappass;
  618. int ret = -EINVAL;
  619. struct xen_pvcalls_response *rsp;
  620. unsigned long flags;
  621. fedata = dev_get_drvdata(&dev->dev);
  622. down(&fedata->socket_lock);
  623. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  624. req->u.accept.id);
  625. up(&fedata->socket_lock);
  626. if (mappass == NULL)
  627. goto out_error;
  628. /*
  629. * Limitation of the current implementation: only support one
  630. * concurrent accept or poll call on one socket.
  631. */
  632. spin_lock_irqsave(&mappass->copy_lock, flags);
  633. if (mappass->reqcopy.cmd != 0) {
  634. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  635. ret = -EINTR;
  636. goto out_error;
  637. }
  638. mappass->reqcopy = *req;
  639. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  640. queue_work(mappass->wq, &mappass->register_work);
  641. /* Tell the caller we don't need to send back a notification yet */
  642. return -1;
  643. out_error:
  644. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  645. rsp->req_id = req->req_id;
  646. rsp->cmd = req->cmd;
  647. rsp->u.accept.id = req->u.accept.id;
  648. rsp->ret = ret;
  649. return 0;
  650. }
  651. static int pvcalls_back_poll(struct xenbus_device *dev,
  652. struct xen_pvcalls_request *req)
  653. {
  654. struct pvcalls_fedata *fedata;
  655. struct sockpass_mapping *mappass;
  656. struct xen_pvcalls_response *rsp;
  657. struct inet_connection_sock *icsk;
  658. struct request_sock_queue *queue;
  659. unsigned long flags;
  660. int ret;
  661. bool data;
  662. fedata = dev_get_drvdata(&dev->dev);
  663. down(&fedata->socket_lock);
  664. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  665. req->u.poll.id);
  666. up(&fedata->socket_lock);
  667. if (mappass == NULL)
  668. return -EINVAL;
  669. /*
  670. * Limitation of the current implementation: only support one
  671. * concurrent accept or poll call on one socket.
  672. */
  673. spin_lock_irqsave(&mappass->copy_lock, flags);
  674. if (mappass->reqcopy.cmd != 0) {
  675. ret = -EINTR;
  676. goto out;
  677. }
  678. mappass->reqcopy = *req;
  679. icsk = inet_csk(mappass->sock->sk);
  680. queue = &icsk->icsk_accept_queue;
  681. data = queue->rskq_accept_head != NULL;
  682. if (data) {
  683. mappass->reqcopy.cmd = 0;
  684. ret = 0;
  685. goto out;
  686. }
  687. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  688. /* Tell the caller we don't need to send back a notification yet */
  689. return -1;
  690. out:
  691. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  692. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  693. rsp->req_id = req->req_id;
  694. rsp->cmd = req->cmd;
  695. rsp->u.poll.id = req->u.poll.id;
  696. rsp->ret = ret;
  697. return 0;
  698. }
  699. static int pvcalls_back_handle_cmd(struct xenbus_device *dev,
  700. struct xen_pvcalls_request *req)
  701. {
  702. int ret = 0;
  703. switch (req->cmd) {
  704. case PVCALLS_SOCKET:
  705. ret = pvcalls_back_socket(dev, req);
  706. break;
  707. case PVCALLS_CONNECT:
  708. ret = pvcalls_back_connect(dev, req);
  709. break;
  710. case PVCALLS_RELEASE:
  711. ret = pvcalls_back_release(dev, req);
  712. break;
  713. case PVCALLS_BIND:
  714. ret = pvcalls_back_bind(dev, req);
  715. break;
  716. case PVCALLS_LISTEN:
  717. ret = pvcalls_back_listen(dev, req);
  718. break;
  719. case PVCALLS_ACCEPT:
  720. ret = pvcalls_back_accept(dev, req);
  721. break;
  722. case PVCALLS_POLL:
  723. ret = pvcalls_back_poll(dev, req);
  724. break;
  725. default:
  726. {
  727. struct pvcalls_fedata *fedata;
  728. struct xen_pvcalls_response *rsp;
  729. fedata = dev_get_drvdata(&dev->dev);
  730. rsp = RING_GET_RESPONSE(
  731. &fedata->ring, fedata->ring.rsp_prod_pvt++);
  732. rsp->req_id = req->req_id;
  733. rsp->cmd = req->cmd;
  734. rsp->ret = -ENOTSUPP;
  735. break;
  736. }
  737. }
  738. return ret;
  739. }
  740. static void pvcalls_back_work(struct pvcalls_fedata *fedata)
  741. {
  742. int notify, notify_all = 0, more = 1;
  743. struct xen_pvcalls_request req;
  744. struct xenbus_device *dev = fedata->dev;
  745. while (more) {
  746. while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) {
  747. RING_COPY_REQUEST(&fedata->ring,
  748. fedata->ring.req_cons++,
  749. &req);
  750. if (!pvcalls_back_handle_cmd(dev, &req)) {
  751. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(
  752. &fedata->ring, notify);
  753. notify_all += notify;
  754. }
  755. }
  756. if (notify_all) {
  757. notify_remote_via_irq(fedata->irq);
  758. notify_all = 0;
  759. }
  760. RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more);
  761. }
  762. }
  763. static irqreturn_t pvcalls_back_event(int irq, void *dev_id)
  764. {
  765. struct xenbus_device *dev = dev_id;
  766. struct pvcalls_fedata *fedata = NULL;
  767. if (dev == NULL)
  768. return IRQ_HANDLED;
  769. fedata = dev_get_drvdata(&dev->dev);
  770. if (fedata == NULL)
  771. return IRQ_HANDLED;
  772. pvcalls_back_work(fedata);
  773. return IRQ_HANDLED;
  774. }
  775. static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map)
  776. {
  777. struct sock_mapping *map = sock_map;
  778. struct pvcalls_ioworker *iow;
  779. if (map == NULL || map->sock == NULL || map->sock->sk == NULL ||
  780. map->sock->sk->sk_user_data != map)
  781. return IRQ_HANDLED;
  782. iow = &map->ioworker;
  783. atomic_inc(&map->write);
  784. atomic_inc(&map->io);
  785. queue_work(iow->wq, &iow->register_work);
  786. return IRQ_HANDLED;
  787. }
  788. static int backend_connect(struct xenbus_device *dev)
  789. {
  790. int err, evtchn;
  791. grant_ref_t ring_ref;
  792. struct pvcalls_fedata *fedata = NULL;
  793. fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL);
  794. if (!fedata)
  795. return -ENOMEM;
  796. fedata->irq = -1;
  797. err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u",
  798. &evtchn);
  799. if (err != 1) {
  800. err = -EINVAL;
  801. xenbus_dev_fatal(dev, err, "reading %s/event-channel",
  802. dev->otherend);
  803. goto error;
  804. }
  805. err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref);
  806. if (err != 1) {
  807. err = -EINVAL;
  808. xenbus_dev_fatal(dev, err, "reading %s/ring-ref",
  809. dev->otherend);
  810. goto error;
  811. }
  812. err = bind_interdomain_evtchn_to_irq(dev->otherend_id, evtchn);
  813. if (err < 0)
  814. goto error;
  815. fedata->irq = err;
  816. err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event,
  817. IRQF_ONESHOT, "pvcalls-back", dev);
  818. if (err < 0)
  819. goto error;
  820. err = xenbus_map_ring_valloc(dev, &ring_ref, 1,
  821. (void **)&fedata->sring);
  822. if (err < 0)
  823. goto error;
  824. BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1);
  825. fedata->dev = dev;
  826. INIT_LIST_HEAD(&fedata->socket_mappings);
  827. INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL);
  828. sema_init(&fedata->socket_lock, 1);
  829. dev_set_drvdata(&dev->dev, fedata);
  830. down(&pvcalls_back_global.frontends_lock);
  831. list_add_tail(&fedata->list, &pvcalls_back_global.frontends);
  832. up(&pvcalls_back_global.frontends_lock);
  833. return 0;
  834. error:
  835. if (fedata->irq >= 0)
  836. unbind_from_irqhandler(fedata->irq, dev);
  837. if (fedata->sring != NULL)
  838. xenbus_unmap_ring_vfree(dev, fedata->sring);
  839. kfree(fedata);
  840. return err;
  841. }
  842. static int backend_disconnect(struct xenbus_device *dev)
  843. {
  844. struct pvcalls_fedata *fedata;
  845. struct sock_mapping *map, *n;
  846. struct sockpass_mapping *mappass;
  847. struct radix_tree_iter iter;
  848. void **slot;
  849. fedata = dev_get_drvdata(&dev->dev);
  850. down(&fedata->socket_lock);
  851. list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
  852. list_del(&map->list);
  853. pvcalls_back_release_active(dev, fedata, map);
  854. }
  855. radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) {
  856. mappass = radix_tree_deref_slot(slot);
  857. if (!mappass)
  858. continue;
  859. if (radix_tree_exception(mappass)) {
  860. if (radix_tree_deref_retry(mappass))
  861. slot = radix_tree_iter_retry(&iter);
  862. } else {
  863. radix_tree_delete(&fedata->socketpass_mappings,
  864. mappass->id);
  865. pvcalls_back_release_passive(dev, fedata, mappass);
  866. }
  867. }
  868. up(&fedata->socket_lock);
  869. unbind_from_irqhandler(fedata->irq, dev);
  870. xenbus_unmap_ring_vfree(dev, fedata->sring);
  871. list_del(&fedata->list);
  872. kfree(fedata);
  873. dev_set_drvdata(&dev->dev, NULL);
  874. return 0;
  875. }
  876. static int pvcalls_back_probe(struct xenbus_device *dev,
  877. const struct xenbus_device_id *id)
  878. {
  879. int err, abort;
  880. struct xenbus_transaction xbt;
  881. again:
  882. abort = 1;
  883. err = xenbus_transaction_start(&xbt);
  884. if (err) {
  885. pr_warn("%s cannot create xenstore transaction\n", __func__);
  886. return err;
  887. }
  888. err = xenbus_printf(xbt, dev->nodename, "versions", "%s",
  889. PVCALLS_VERSIONS);
  890. if (err) {
  891. pr_warn("%s write out 'versions' failed\n", __func__);
  892. goto abort;
  893. }
  894. err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u",
  895. MAX_RING_ORDER);
  896. if (err) {
  897. pr_warn("%s write out 'max-page-order' failed\n", __func__);
  898. goto abort;
  899. }
  900. err = xenbus_printf(xbt, dev->nodename, "function-calls",
  901. XENBUS_FUNCTIONS_CALLS);
  902. if (err) {
  903. pr_warn("%s write out 'function-calls' failed\n", __func__);
  904. goto abort;
  905. }
  906. abort = 0;
  907. abort:
  908. err = xenbus_transaction_end(xbt, abort);
  909. if (err) {
  910. if (err == -EAGAIN && !abort)
  911. goto again;
  912. pr_warn("%s cannot complete xenstore transaction\n", __func__);
  913. return err;
  914. }
  915. if (abort)
  916. return -EFAULT;
  917. xenbus_switch_state(dev, XenbusStateInitWait);
  918. return 0;
  919. }
  920. static void set_backend_state(struct xenbus_device *dev,
  921. enum xenbus_state state)
  922. {
  923. while (dev->state != state) {
  924. switch (dev->state) {
  925. case XenbusStateClosed:
  926. switch (state) {
  927. case XenbusStateInitWait:
  928. case XenbusStateConnected:
  929. xenbus_switch_state(dev, XenbusStateInitWait);
  930. break;
  931. case XenbusStateClosing:
  932. xenbus_switch_state(dev, XenbusStateClosing);
  933. break;
  934. default:
  935. WARN_ON(1);
  936. }
  937. break;
  938. case XenbusStateInitWait:
  939. case XenbusStateInitialised:
  940. switch (state) {
  941. case XenbusStateConnected:
  942. backend_connect(dev);
  943. xenbus_switch_state(dev, XenbusStateConnected);
  944. break;
  945. case XenbusStateClosing:
  946. case XenbusStateClosed:
  947. xenbus_switch_state(dev, XenbusStateClosing);
  948. break;
  949. default:
  950. WARN_ON(1);
  951. }
  952. break;
  953. case XenbusStateConnected:
  954. switch (state) {
  955. case XenbusStateInitWait:
  956. case XenbusStateClosing:
  957. case XenbusStateClosed:
  958. down(&pvcalls_back_global.frontends_lock);
  959. backend_disconnect(dev);
  960. up(&pvcalls_back_global.frontends_lock);
  961. xenbus_switch_state(dev, XenbusStateClosing);
  962. break;
  963. default:
  964. WARN_ON(1);
  965. }
  966. break;
  967. case XenbusStateClosing:
  968. switch (state) {
  969. case XenbusStateInitWait:
  970. case XenbusStateConnected:
  971. case XenbusStateClosed:
  972. xenbus_switch_state(dev, XenbusStateClosed);
  973. break;
  974. default:
  975. WARN_ON(1);
  976. }
  977. break;
  978. default:
  979. WARN_ON(1);
  980. }
  981. }
  982. }
  983. static void pvcalls_back_changed(struct xenbus_device *dev,
  984. enum xenbus_state frontend_state)
  985. {
  986. switch (frontend_state) {
  987. case XenbusStateInitialising:
  988. set_backend_state(dev, XenbusStateInitWait);
  989. break;
  990. case XenbusStateInitialised:
  991. case XenbusStateConnected:
  992. set_backend_state(dev, XenbusStateConnected);
  993. break;
  994. case XenbusStateClosing:
  995. set_backend_state(dev, XenbusStateClosing);
  996. break;
  997. case XenbusStateClosed:
  998. set_backend_state(dev, XenbusStateClosed);
  999. if (xenbus_dev_is_online(dev))
  1000. break;
  1001. device_unregister(&dev->dev);
  1002. break;
  1003. case XenbusStateUnknown:
  1004. set_backend_state(dev, XenbusStateClosed);
  1005. device_unregister(&dev->dev);
  1006. break;
  1007. default:
  1008. xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend",
  1009. frontend_state);
  1010. break;
  1011. }
  1012. }
  1013. static int pvcalls_back_remove(struct xenbus_device *dev)
  1014. {
  1015. return 0;
  1016. }
  1017. static int pvcalls_back_uevent(struct xenbus_device *xdev,
  1018. struct kobj_uevent_env *env)
  1019. {
  1020. return 0;
  1021. }
  1022. static const struct xenbus_device_id pvcalls_back_ids[] = {
  1023. { "pvcalls" },
  1024. { "" }
  1025. };
  1026. static struct xenbus_driver pvcalls_back_driver = {
  1027. .ids = pvcalls_back_ids,
  1028. .probe = pvcalls_back_probe,
  1029. .remove = pvcalls_back_remove,
  1030. .uevent = pvcalls_back_uevent,
  1031. .otherend_changed = pvcalls_back_changed,
  1032. };
  1033. static int __init pvcalls_back_init(void)
  1034. {
  1035. int ret;
  1036. if (!xen_domain())
  1037. return -ENODEV;
  1038. ret = xenbus_register_backend(&pvcalls_back_driver);
  1039. if (ret < 0)
  1040. return ret;
  1041. sema_init(&pvcalls_back_global.frontends_lock, 1);
  1042. INIT_LIST_HEAD(&pvcalls_back_global.frontends);
  1043. return 0;
  1044. }
  1045. module_init(pvcalls_back_init);
  1046. static void __exit pvcalls_back_fin(void)
  1047. {
  1048. struct pvcalls_fedata *fedata, *nfedata;
  1049. down(&pvcalls_back_global.frontends_lock);
  1050. list_for_each_entry_safe(fedata, nfedata,
  1051. &pvcalls_back_global.frontends, list) {
  1052. backend_disconnect(fedata->dev);
  1053. }
  1054. up(&pvcalls_back_global.frontends_lock);
  1055. xenbus_unregister_driver(&pvcalls_back_driver);
  1056. }
  1057. module_exit(pvcalls_back_fin);
  1058. MODULE_DESCRIPTION("Xen PV Calls backend driver");
  1059. MODULE_AUTHOR("Stefano Stabellini <sstabellini@kernel.org>");
  1060. MODULE_LICENSE("GPL");