xhci-ring.c 123 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * xHCI host controller driver
  4. *
  5. * Copyright (C) 2008 Intel Corp.
  6. *
  7. * Author: Sarah Sharp
  8. * Some code borrowed from the Linux EHCI driver.
  9. */
  10. /*
  11. * Ring initialization rules:
  12. * 1. Each segment is initialized to zero, except for link TRBs.
  13. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
  14. * Consumer Cycle State (CCS), depending on ring function.
  15. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
  16. *
  17. * Ring behavior rules:
  18. * 1. A ring is empty if enqueue == dequeue. This means there will always be at
  19. * least one free TRB in the ring. This is useful if you want to turn that
  20. * into a link TRB and expand the ring.
  21. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
  22. * link TRB, then load the pointer with the address in the link TRB. If the
  23. * link TRB had its toggle bit set, you may need to update the ring cycle
  24. * state (see cycle bit rules). You may have to do this multiple times
  25. * until you reach a non-link TRB.
  26. * 3. A ring is full if enqueue++ (for the definition of increment above)
  27. * equals the dequeue pointer.
  28. *
  29. * Cycle bit rules:
  30. * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
  31. * in a link TRB, it must toggle the ring cycle state.
  32. * 2. When a producer increments an enqueue pointer and encounters a toggle bit
  33. * in a link TRB, it must toggle the ring cycle state.
  34. *
  35. * Producer rules:
  36. * 1. Check if ring is full before you enqueue.
  37. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
  38. * Update enqueue pointer between each write (which may update the ring
  39. * cycle state).
  40. * 3. Notify consumer. If SW is producer, it rings the doorbell for command
  41. * and endpoint rings. If HC is the producer for the event ring,
  42. * and it generates an interrupt according to interrupt modulation rules.
  43. *
  44. * Consumer rules:
  45. * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
  46. * the TRB is owned by the consumer.
  47. * 2. Update dequeue pointer (which may update the ring cycle state) and
  48. * continue processing TRBs until you reach a TRB which is not owned by you.
  49. * 3. Notify the producer. SW is the consumer for the event ring, and it
  50. * updates event ring dequeue pointer. HC is the consumer for the command and
  51. * endpoint rings; it generates events on the event ring for these.
  52. */
  53. #include <linux/scatterlist.h>
  54. #include <linux/slab.h>
  55. #include <linux/dma-mapping.h>
  56. #include "xhci.h"
  57. #include "xhci-trace.h"
  58. #include "xhci-mtk.h"
  59. /*
  60. * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
  61. * address of the TRB.
  62. */
  63. dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
  64. union xhci_trb *trb)
  65. {
  66. unsigned long segment_offset;
  67. if (!seg || !trb || trb < seg->trbs)
  68. return 0;
  69. /* offset in TRBs */
  70. segment_offset = trb - seg->trbs;
  71. if (segment_offset >= TRBS_PER_SEGMENT)
  72. return 0;
  73. return seg->dma + (segment_offset * sizeof(*trb));
  74. }
  75. static bool trb_is_noop(union xhci_trb *trb)
  76. {
  77. return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
  78. }
  79. static bool trb_is_link(union xhci_trb *trb)
  80. {
  81. return TRB_TYPE_LINK_LE32(trb->link.control);
  82. }
  83. static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
  84. {
  85. return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
  86. }
  87. static bool last_trb_on_ring(struct xhci_ring *ring,
  88. struct xhci_segment *seg, union xhci_trb *trb)
  89. {
  90. return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
  91. }
  92. static bool link_trb_toggles_cycle(union xhci_trb *trb)
  93. {
  94. return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
  95. }
  96. static bool last_td_in_urb(struct xhci_td *td)
  97. {
  98. struct urb_priv *urb_priv = td->urb->hcpriv;
  99. return urb_priv->num_tds_done == urb_priv->num_tds;
  100. }
  101. static void inc_td_cnt(struct urb *urb)
  102. {
  103. struct urb_priv *urb_priv = urb->hcpriv;
  104. urb_priv->num_tds_done++;
  105. }
  106. static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
  107. {
  108. if (trb_is_link(trb)) {
  109. /* unchain chained link TRBs */
  110. trb->link.control &= cpu_to_le32(~TRB_CHAIN);
  111. } else {
  112. trb->generic.field[0] = 0;
  113. trb->generic.field[1] = 0;
  114. trb->generic.field[2] = 0;
  115. /* Preserve only the cycle bit of this TRB */
  116. trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
  117. trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
  118. }
  119. }
  120. /* Updates trb to point to the next TRB in the ring, and updates seg if the next
  121. * TRB is in a new segment. This does not skip over link TRBs, and it does not
  122. * effect the ring dequeue or enqueue pointers.
  123. */
  124. static void next_trb(struct xhci_hcd *xhci,
  125. struct xhci_ring *ring,
  126. struct xhci_segment **seg,
  127. union xhci_trb **trb)
  128. {
  129. if (trb_is_link(*trb)) {
  130. *seg = (*seg)->next;
  131. *trb = ((*seg)->trbs);
  132. } else {
  133. (*trb)++;
  134. }
  135. }
  136. /*
  137. * See Cycle bit rules. SW is the consumer for the event ring only.
  138. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  139. */
  140. void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
  141. {
  142. /* event ring doesn't have link trbs, check for last trb */
  143. if (ring->type == TYPE_EVENT) {
  144. if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
  145. ring->dequeue++;
  146. goto out;
  147. }
  148. if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
  149. ring->cycle_state ^= 1;
  150. ring->deq_seg = ring->deq_seg->next;
  151. ring->dequeue = ring->deq_seg->trbs;
  152. goto out;
  153. }
  154. /* All other rings have link trbs */
  155. if (!trb_is_link(ring->dequeue)) {
  156. ring->dequeue++;
  157. ring->num_trbs_free++;
  158. }
  159. while (trb_is_link(ring->dequeue)) {
  160. ring->deq_seg = ring->deq_seg->next;
  161. ring->dequeue = ring->deq_seg->trbs;
  162. }
  163. out:
  164. trace_xhci_inc_deq(ring);
  165. return;
  166. }
  167. /*
  168. * See Cycle bit rules. SW is the consumer for the event ring only.
  169. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  170. *
  171. * If we've just enqueued a TRB that is in the middle of a TD (meaning the
  172. * chain bit is set), then set the chain bit in all the following link TRBs.
  173. * If we've enqueued the last TRB in a TD, make sure the following link TRBs
  174. * have their chain bit cleared (so that each Link TRB is a separate TD).
  175. *
  176. * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
  177. * set, but other sections talk about dealing with the chain bit set. This was
  178. * fixed in the 0.96 specification errata, but we have to assume that all 0.95
  179. * xHCI hardware can't handle the chain bit being cleared on a link TRB.
  180. *
  181. * @more_trbs_coming: Will you enqueue more TRBs before calling
  182. * prepare_transfer()?
  183. */
  184. static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
  185. bool more_trbs_coming)
  186. {
  187. u32 chain;
  188. union xhci_trb *next;
  189. chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
  190. /* If this is not event ring, there is one less usable TRB */
  191. if (!trb_is_link(ring->enqueue))
  192. ring->num_trbs_free--;
  193. next = ++(ring->enqueue);
  194. /* Update the dequeue pointer further if that was a link TRB */
  195. while (trb_is_link(next)) {
  196. /*
  197. * If the caller doesn't plan on enqueueing more TDs before
  198. * ringing the doorbell, then we don't want to give the link TRB
  199. * to the hardware just yet. We'll give the link TRB back in
  200. * prepare_ring() just before we enqueue the TD at the top of
  201. * the ring.
  202. */
  203. if (!chain && !more_trbs_coming)
  204. break;
  205. /* If we're not dealing with 0.95 hardware or isoc rings on
  206. * AMD 0.96 host, carry over the chain bit of the previous TRB
  207. * (which may mean the chain bit is cleared).
  208. */
  209. if (!(ring->type == TYPE_ISOC &&
  210. (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
  211. !xhci_link_trb_quirk(xhci)) {
  212. next->link.control &= cpu_to_le32(~TRB_CHAIN);
  213. next->link.control |= cpu_to_le32(chain);
  214. }
  215. /* Give this link TRB to the hardware */
  216. wmb();
  217. next->link.control ^= cpu_to_le32(TRB_CYCLE);
  218. /* Toggle the cycle bit after the last ring segment. */
  219. if (link_trb_toggles_cycle(next))
  220. ring->cycle_state ^= 1;
  221. ring->enq_seg = ring->enq_seg->next;
  222. ring->enqueue = ring->enq_seg->trbs;
  223. next = ring->enqueue;
  224. }
  225. trace_xhci_inc_enq(ring);
  226. }
  227. /*
  228. * Check to see if there's room to enqueue num_trbs on the ring and make sure
  229. * enqueue pointer will not advance into dequeue segment. See rules above.
  230. */
  231. static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
  232. unsigned int num_trbs)
  233. {
  234. int num_trbs_in_deq_seg;
  235. if (ring->num_trbs_free < num_trbs)
  236. return 0;
  237. if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
  238. num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
  239. if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
  240. return 0;
  241. }
  242. return 1;
  243. }
  244. /* Ring the host controller doorbell after placing a command on the ring */
  245. void xhci_ring_cmd_db(struct xhci_hcd *xhci)
  246. {
  247. if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
  248. return;
  249. xhci_dbg(xhci, "// Ding dong!\n");
  250. writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
  251. /* Flush PCI posted writes */
  252. readl(&xhci->dba->doorbell[0]);
  253. }
  254. static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
  255. {
  256. return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
  257. }
  258. static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
  259. {
  260. return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
  261. cmd_list);
  262. }
  263. /*
  264. * Turn all commands on command ring with status set to "aborted" to no-op trbs.
  265. * If there are other commands waiting then restart the ring and kick the timer.
  266. * This must be called with command ring stopped and xhci->lock held.
  267. */
  268. static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
  269. struct xhci_command *cur_cmd)
  270. {
  271. struct xhci_command *i_cmd;
  272. /* Turn all aborted commands in list to no-ops, then restart */
  273. list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
  274. if (i_cmd->status != COMP_COMMAND_ABORTED)
  275. continue;
  276. i_cmd->status = COMP_COMMAND_RING_STOPPED;
  277. xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
  278. i_cmd->command_trb);
  279. trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
  280. /*
  281. * caller waiting for completion is called when command
  282. * completion event is received for these no-op commands
  283. */
  284. }
  285. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  286. /* ring command ring doorbell to restart the command ring */
  287. if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
  288. !(xhci->xhc_state & XHCI_STATE_DYING)) {
  289. xhci->current_cmd = cur_cmd;
  290. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  291. xhci_ring_cmd_db(xhci);
  292. }
  293. }
  294. /* Must be called with xhci->lock held, releases and aquires lock back */
  295. static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
  296. {
  297. u64 temp_64;
  298. int ret;
  299. xhci_dbg(xhci, "Abort command ring\n");
  300. reinit_completion(&xhci->cmd_ring_stop_completion);
  301. temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  302. xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
  303. &xhci->op_regs->cmd_ring);
  304. /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
  305. * completion of the Command Abort operation. If CRR is not negated in 5
  306. * seconds then driver handles it as if host died (-ENODEV).
  307. * In the future we should distinguish between -ENODEV and -ETIMEDOUT
  308. * and try to recover a -ETIMEDOUT with a host controller reset.
  309. */
  310. ret = xhci_handshake(&xhci->op_regs->cmd_ring,
  311. CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
  312. if (ret < 0) {
  313. xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
  314. xhci_halt(xhci);
  315. xhci_hc_died(xhci);
  316. return ret;
  317. }
  318. /*
  319. * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
  320. * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
  321. * but the completion event in never sent. Wait 2 secs (arbitrary
  322. * number) to handle those cases after negation of CMD_RING_RUNNING.
  323. */
  324. spin_unlock_irqrestore(&xhci->lock, flags);
  325. ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
  326. msecs_to_jiffies(2000));
  327. spin_lock_irqsave(&xhci->lock, flags);
  328. if (!ret) {
  329. xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
  330. xhci_cleanup_command_queue(xhci);
  331. } else {
  332. xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
  333. }
  334. return 0;
  335. }
  336. void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
  337. unsigned int slot_id,
  338. unsigned int ep_index,
  339. unsigned int stream_id)
  340. {
  341. __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
  342. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  343. unsigned int ep_state = ep->ep_state;
  344. /* Don't ring the doorbell for this endpoint if there are pending
  345. * cancellations because we don't want to interrupt processing.
  346. * We don't want to restart any stream rings if there's a set dequeue
  347. * pointer command pending because the device can choose to start any
  348. * stream once the endpoint is on the HW schedule.
  349. */
  350. if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
  351. (ep_state & EP_HALTED))
  352. return;
  353. writel(DB_VALUE(ep_index, stream_id), db_addr);
  354. /* The CPU has better things to do at this point than wait for a
  355. * write-posting flush. It'll get there soon enough.
  356. */
  357. }
  358. /* Ring the doorbell for any rings with pending URBs */
  359. static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
  360. unsigned int slot_id,
  361. unsigned int ep_index)
  362. {
  363. unsigned int stream_id;
  364. struct xhci_virt_ep *ep;
  365. ep = &xhci->devs[slot_id]->eps[ep_index];
  366. /* A ring has pending URBs if its TD list is not empty */
  367. if (!(ep->ep_state & EP_HAS_STREAMS)) {
  368. if (ep->ring && !(list_empty(&ep->ring->td_list)))
  369. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
  370. return;
  371. }
  372. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  373. stream_id++) {
  374. struct xhci_stream_info *stream_info = ep->stream_info;
  375. if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
  376. xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
  377. stream_id);
  378. }
  379. }
  380. /* Get the right ring for the given slot_id, ep_index and stream_id.
  381. * If the endpoint supports streams, boundary check the URB's stream ID.
  382. * If the endpoint doesn't support streams, return the singular endpoint ring.
  383. */
  384. struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
  385. unsigned int slot_id, unsigned int ep_index,
  386. unsigned int stream_id)
  387. {
  388. struct xhci_virt_ep *ep;
  389. ep = &xhci->devs[slot_id]->eps[ep_index];
  390. /* Common case: no streams */
  391. if (!(ep->ep_state & EP_HAS_STREAMS))
  392. return ep->ring;
  393. if (stream_id == 0) {
  394. xhci_warn(xhci,
  395. "WARN: Slot ID %u, ep index %u has streams, "
  396. "but URB has no stream ID.\n",
  397. slot_id, ep_index);
  398. return NULL;
  399. }
  400. if (stream_id < ep->stream_info->num_streams)
  401. return ep->stream_info->stream_rings[stream_id];
  402. xhci_warn(xhci,
  403. "WARN: Slot ID %u, ep index %u has "
  404. "stream IDs 1 to %u allocated, "
  405. "but stream ID %u is requested.\n",
  406. slot_id, ep_index,
  407. ep->stream_info->num_streams - 1,
  408. stream_id);
  409. return NULL;
  410. }
  411. /*
  412. * Get the hw dequeue pointer xHC stopped on, either directly from the
  413. * endpoint context, or if streams are in use from the stream context.
  414. * The returned hw_dequeue contains the lowest four bits with cycle state
  415. * and possbile stream context type.
  416. */
  417. static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
  418. unsigned int ep_index, unsigned int stream_id)
  419. {
  420. struct xhci_ep_ctx *ep_ctx;
  421. struct xhci_stream_ctx *st_ctx;
  422. struct xhci_virt_ep *ep;
  423. ep = &vdev->eps[ep_index];
  424. if (ep->ep_state & EP_HAS_STREAMS) {
  425. st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
  426. return le64_to_cpu(st_ctx->stream_ring);
  427. }
  428. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  429. return le64_to_cpu(ep_ctx->deq);
  430. }
  431. /*
  432. * Move the xHC's endpoint ring dequeue pointer past cur_td.
  433. * Record the new state of the xHC's endpoint ring dequeue segment,
  434. * dequeue pointer, stream id, and new consumer cycle state in state.
  435. * Update our internal representation of the ring's dequeue pointer.
  436. *
  437. * We do this in three jumps:
  438. * - First we update our new ring state to be the same as when the xHC stopped.
  439. * - Then we traverse the ring to find the segment that contains
  440. * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
  441. * any link TRBs with the toggle cycle bit set.
  442. * - Finally we move the dequeue state one TRB further, toggling the cycle bit
  443. * if we've moved it past a link TRB with the toggle cycle bit set.
  444. *
  445. * Some of the uses of xhci_generic_trb are grotty, but if they're done
  446. * with correct __le32 accesses they should work fine. Only users of this are
  447. * in here.
  448. */
  449. void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
  450. unsigned int slot_id, unsigned int ep_index,
  451. unsigned int stream_id, struct xhci_td *cur_td,
  452. struct xhci_dequeue_state *state)
  453. {
  454. struct xhci_virt_device *dev = xhci->devs[slot_id];
  455. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  456. struct xhci_ring *ep_ring;
  457. struct xhci_segment *new_seg;
  458. union xhci_trb *new_deq;
  459. dma_addr_t addr;
  460. u64 hw_dequeue;
  461. bool cycle_found = false;
  462. bool td_last_trb_found = false;
  463. ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
  464. ep_index, stream_id);
  465. if (!ep_ring) {
  466. xhci_warn(xhci, "WARN can't find new dequeue state "
  467. "for invalid stream ID %u.\n",
  468. stream_id);
  469. return;
  470. }
  471. /* Dig out the cycle state saved by the xHC during the stop ep cmd */
  472. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  473. "Finding endpoint context");
  474. hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
  475. new_seg = ep_ring->deq_seg;
  476. new_deq = ep_ring->dequeue;
  477. state->new_cycle_state = hw_dequeue & 0x1;
  478. state->stream_id = stream_id;
  479. /*
  480. * We want to find the pointer, segment and cycle state of the new trb
  481. * (the one after current TD's last_trb). We know the cycle state at
  482. * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
  483. * found.
  484. */
  485. do {
  486. if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
  487. == (dma_addr_t)(hw_dequeue & ~0xf)) {
  488. cycle_found = true;
  489. if (td_last_trb_found)
  490. break;
  491. }
  492. if (new_deq == cur_td->last_trb)
  493. td_last_trb_found = true;
  494. if (cycle_found && trb_is_link(new_deq) &&
  495. link_trb_toggles_cycle(new_deq))
  496. state->new_cycle_state ^= 0x1;
  497. next_trb(xhci, ep_ring, &new_seg, &new_deq);
  498. /* Search wrapped around, bail out */
  499. if (new_deq == ep->ring->dequeue) {
  500. xhci_err(xhci, "Error: Failed finding new dequeue state\n");
  501. state->new_deq_seg = NULL;
  502. state->new_deq_ptr = NULL;
  503. return;
  504. }
  505. } while (!cycle_found || !td_last_trb_found);
  506. state->new_deq_seg = new_seg;
  507. state->new_deq_ptr = new_deq;
  508. /* Don't update the ring cycle state for the producer (us). */
  509. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  510. "Cycle state = 0x%x", state->new_cycle_state);
  511. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  512. "New dequeue segment = %p (virtual)",
  513. state->new_deq_seg);
  514. addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
  515. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  516. "New dequeue pointer = 0x%llx (DMA)",
  517. (unsigned long long) addr);
  518. }
  519. /* flip_cycle means flip the cycle bit of all but the first and last TRB.
  520. * (The last TRB actually points to the ring enqueue pointer, which is not part
  521. * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
  522. */
  523. static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  524. struct xhci_td *td, bool flip_cycle)
  525. {
  526. struct xhci_segment *seg = td->start_seg;
  527. union xhci_trb *trb = td->first_trb;
  528. while (1) {
  529. trb_to_noop(trb, TRB_TR_NOOP);
  530. /* flip cycle if asked to */
  531. if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
  532. trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
  533. if (trb == td->last_trb)
  534. break;
  535. next_trb(xhci, ep_ring, &seg, &trb);
  536. }
  537. }
  538. static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
  539. struct xhci_virt_ep *ep)
  540. {
  541. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  542. /* Can't del_timer_sync in interrupt */
  543. del_timer(&ep->stop_cmd_timer);
  544. }
  545. /*
  546. * Must be called with xhci->lock held in interrupt context,
  547. * releases and re-acquires xhci->lock
  548. */
  549. static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
  550. struct xhci_td *cur_td, int status)
  551. {
  552. struct urb *urb = cur_td->urb;
  553. struct urb_priv *urb_priv = urb->hcpriv;
  554. struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
  555. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
  556. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
  557. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  558. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  559. usb_amd_quirk_pll_enable();
  560. }
  561. }
  562. xhci_urb_free_priv(urb_priv);
  563. usb_hcd_unlink_urb_from_ep(hcd, urb);
  564. spin_unlock(&xhci->lock);
  565. trace_xhci_urb_giveback(urb);
  566. usb_hcd_giveback_urb(hcd, urb, status);
  567. spin_lock(&xhci->lock);
  568. }
  569. static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
  570. struct xhci_ring *ring, struct xhci_td *td)
  571. {
  572. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  573. struct xhci_segment *seg = td->bounce_seg;
  574. struct urb *urb = td->urb;
  575. if (!ring || !seg || !urb)
  576. return;
  577. if (usb_urb_dir_out(urb)) {
  578. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  579. DMA_TO_DEVICE);
  580. return;
  581. }
  582. /* for in tranfers we need to copy the data from bounce to sg */
  583. sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
  584. seg->bounce_len, seg->bounce_offs);
  585. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  586. DMA_FROM_DEVICE);
  587. seg->bounce_len = 0;
  588. seg->bounce_offs = 0;
  589. }
  590. /*
  591. * When we get a command completion for a Stop Endpoint Command, we need to
  592. * unlink any cancelled TDs from the ring. There are two ways to do that:
  593. *
  594. * 1. If the HW was in the middle of processing the TD that needs to be
  595. * cancelled, then we must move the ring's dequeue pointer past the last TRB
  596. * in the TD with a Set Dequeue Pointer Command.
  597. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
  598. * bit cleared) so that the HW will skip over them.
  599. */
  600. static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
  601. union xhci_trb *trb, struct xhci_event_cmd *event)
  602. {
  603. unsigned int ep_index;
  604. struct xhci_ring *ep_ring;
  605. struct xhci_virt_ep *ep;
  606. struct xhci_td *cur_td = NULL;
  607. struct xhci_td *last_unlinked_td;
  608. struct xhci_ep_ctx *ep_ctx;
  609. struct xhci_virt_device *vdev;
  610. u64 hw_deq;
  611. struct xhci_dequeue_state deq_state;
  612. if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
  613. if (!xhci->devs[slot_id])
  614. xhci_warn(xhci, "Stop endpoint command "
  615. "completion for disabled slot %u\n",
  616. slot_id);
  617. return;
  618. }
  619. memset(&deq_state, 0, sizeof(deq_state));
  620. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  621. vdev = xhci->devs[slot_id];
  622. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  623. trace_xhci_handle_cmd_stop_ep(ep_ctx);
  624. ep = &xhci->devs[slot_id]->eps[ep_index];
  625. last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
  626. struct xhci_td, cancelled_td_list);
  627. if (list_empty(&ep->cancelled_td_list)) {
  628. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  629. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  630. return;
  631. }
  632. /* Fix up the ep ring first, so HW stops executing cancelled TDs.
  633. * We have the xHCI lock, so nothing can modify this list until we drop
  634. * it. We're also in the event handler, so we can't get re-interrupted
  635. * if another Stop Endpoint command completes
  636. */
  637. list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
  638. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  639. "Removing canceled TD starting at 0x%llx (dma).",
  640. (unsigned long long)xhci_trb_virt_to_dma(
  641. cur_td->start_seg, cur_td->first_trb));
  642. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  643. if (!ep_ring) {
  644. /* This shouldn't happen unless a driver is mucking
  645. * with the stream ID after submission. This will
  646. * leave the TD on the hardware ring, and the hardware
  647. * will try to execute it, and may access a buffer
  648. * that has already been freed. In the best case, the
  649. * hardware will execute it, and the event handler will
  650. * ignore the completion event for that TD, since it was
  651. * removed from the td_list for that endpoint. In
  652. * short, don't muck with the stream ID after
  653. * submission.
  654. */
  655. xhci_warn(xhci, "WARN Cancelled URB %p "
  656. "has invalid stream ID %u.\n",
  657. cur_td->urb,
  658. cur_td->urb->stream_id);
  659. goto remove_finished_td;
  660. }
  661. /*
  662. * If we stopped on the TD we need to cancel, then we have to
  663. * move the xHC endpoint ring dequeue pointer past this TD.
  664. */
  665. hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
  666. cur_td->urb->stream_id);
  667. hw_deq &= ~0xf;
  668. if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
  669. cur_td->last_trb, hw_deq, false)) {
  670. xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
  671. cur_td->urb->stream_id,
  672. cur_td, &deq_state);
  673. } else {
  674. td_to_noop(xhci, ep_ring, cur_td, false);
  675. }
  676. remove_finished_td:
  677. /*
  678. * The event handler won't see a completion for this TD anymore,
  679. * so remove it from the endpoint ring's TD list. Keep it in
  680. * the cancelled TD list for URB completion later.
  681. */
  682. list_del_init(&cur_td->td_list);
  683. }
  684. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  685. /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
  686. if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
  687. xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
  688. &deq_state);
  689. xhci_ring_cmd_db(xhci);
  690. } else {
  691. /* Otherwise ring the doorbell(s) to restart queued transfers */
  692. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  693. }
  694. /*
  695. * Drop the lock and complete the URBs in the cancelled TD list.
  696. * New TDs to be cancelled might be added to the end of the list before
  697. * we can complete all the URBs for the TDs we already unlinked.
  698. * So stop when we've completed the URB for the last TD we unlinked.
  699. */
  700. do {
  701. cur_td = list_first_entry(&ep->cancelled_td_list,
  702. struct xhci_td, cancelled_td_list);
  703. list_del_init(&cur_td->cancelled_td_list);
  704. /* Clean up the cancelled URB */
  705. /* Doesn't matter what we pass for status, since the core will
  706. * just overwrite it (because the URB has been unlinked).
  707. */
  708. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  709. xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
  710. inc_td_cnt(cur_td->urb);
  711. if (last_td_in_urb(cur_td))
  712. xhci_giveback_urb_in_irq(xhci, cur_td, 0);
  713. /* Stop processing the cancelled list if the watchdog timer is
  714. * running.
  715. */
  716. if (xhci->xhc_state & XHCI_STATE_DYING)
  717. return;
  718. } while (cur_td != last_unlinked_td);
  719. /* Return to the event handler with xhci->lock re-acquired */
  720. }
  721. static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
  722. {
  723. struct xhci_td *cur_td;
  724. struct xhci_td *tmp;
  725. list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
  726. list_del_init(&cur_td->td_list);
  727. if (!list_empty(&cur_td->cancelled_td_list))
  728. list_del_init(&cur_td->cancelled_td_list);
  729. xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
  730. inc_td_cnt(cur_td->urb);
  731. if (last_td_in_urb(cur_td))
  732. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  733. }
  734. }
  735. static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
  736. int slot_id, int ep_index)
  737. {
  738. struct xhci_td *cur_td;
  739. struct xhci_td *tmp;
  740. struct xhci_virt_ep *ep;
  741. struct xhci_ring *ring;
  742. ep = &xhci->devs[slot_id]->eps[ep_index];
  743. if ((ep->ep_state & EP_HAS_STREAMS) ||
  744. (ep->ep_state & EP_GETTING_NO_STREAMS)) {
  745. int stream_id;
  746. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  747. stream_id++) {
  748. ring = ep->stream_info->stream_rings[stream_id];
  749. if (!ring)
  750. continue;
  751. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  752. "Killing URBs for slot ID %u, ep index %u, stream %u",
  753. slot_id, ep_index, stream_id);
  754. xhci_kill_ring_urbs(xhci, ring);
  755. }
  756. } else {
  757. ring = ep->ring;
  758. if (!ring)
  759. return;
  760. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  761. "Killing URBs for slot ID %u, ep index %u",
  762. slot_id, ep_index);
  763. xhci_kill_ring_urbs(xhci, ring);
  764. }
  765. list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
  766. cancelled_td_list) {
  767. list_del_init(&cur_td->cancelled_td_list);
  768. inc_td_cnt(cur_td->urb);
  769. if (last_td_in_urb(cur_td))
  770. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  771. }
  772. }
  773. /*
  774. * host controller died, register read returns 0xffffffff
  775. * Complete pending commands, mark them ABORTED.
  776. * URBs need to be given back as usb core might be waiting with device locks
  777. * held for the URBs to finish during device disconnect, blocking host remove.
  778. *
  779. * Call with xhci->lock held.
  780. * lock is relased and re-acquired while giving back urb.
  781. */
  782. void xhci_hc_died(struct xhci_hcd *xhci)
  783. {
  784. int i, j;
  785. if (xhci->xhc_state & XHCI_STATE_DYING)
  786. return;
  787. xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
  788. xhci->xhc_state |= XHCI_STATE_DYING;
  789. xhci_cleanup_command_queue(xhci);
  790. /* return any pending urbs, remove may be waiting for them */
  791. for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
  792. if (!xhci->devs[i])
  793. continue;
  794. for (j = 0; j < 31; j++)
  795. xhci_kill_endpoint_urbs(xhci, i, j);
  796. }
  797. /* inform usb core hc died if PCI remove isn't already handling it */
  798. if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
  799. usb_hc_died(xhci_to_hcd(xhci));
  800. }
  801. /* Watchdog timer function for when a stop endpoint command fails to complete.
  802. * In this case, we assume the host controller is broken or dying or dead. The
  803. * host may still be completing some other events, so we have to be careful to
  804. * let the event ring handler and the URB dequeueing/enqueueing functions know
  805. * through xhci->state.
  806. *
  807. * The timer may also fire if the host takes a very long time to respond to the
  808. * command, and the stop endpoint command completion handler cannot delete the
  809. * timer before the timer function is called. Another endpoint cancellation may
  810. * sneak in before the timer function can grab the lock, and that may queue
  811. * another stop endpoint command and add the timer back. So we cannot use a
  812. * simple flag to say whether there is a pending stop endpoint command for a
  813. * particular endpoint.
  814. *
  815. * Instead we use a combination of that flag and checking if a new timer is
  816. * pending.
  817. */
  818. void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
  819. {
  820. struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
  821. struct xhci_hcd *xhci = ep->xhci;
  822. unsigned long flags;
  823. spin_lock_irqsave(&xhci->lock, flags);
  824. /* bail out if cmd completed but raced with stop ep watchdog timer.*/
  825. if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
  826. timer_pending(&ep->stop_cmd_timer)) {
  827. spin_unlock_irqrestore(&xhci->lock, flags);
  828. xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
  829. return;
  830. }
  831. xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
  832. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  833. xhci_halt(xhci);
  834. /*
  835. * handle a stop endpoint cmd timeout as if host died (-ENODEV).
  836. * In the future we could distinguish between -ENODEV and -ETIMEDOUT
  837. * and try to recover a -ETIMEDOUT with a host controller reset
  838. */
  839. xhci_hc_died(xhci);
  840. spin_unlock_irqrestore(&xhci->lock, flags);
  841. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  842. "xHCI host controller is dead.");
  843. }
  844. static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
  845. struct xhci_virt_device *dev,
  846. struct xhci_ring *ep_ring,
  847. unsigned int ep_index)
  848. {
  849. union xhci_trb *dequeue_temp;
  850. int num_trbs_free_temp;
  851. bool revert = false;
  852. num_trbs_free_temp = ep_ring->num_trbs_free;
  853. dequeue_temp = ep_ring->dequeue;
  854. /* If we get two back-to-back stalls, and the first stalled transfer
  855. * ends just before a link TRB, the dequeue pointer will be left on
  856. * the link TRB by the code in the while loop. So we have to update
  857. * the dequeue pointer one segment further, or we'll jump off
  858. * the segment into la-la-land.
  859. */
  860. if (trb_is_link(ep_ring->dequeue)) {
  861. ep_ring->deq_seg = ep_ring->deq_seg->next;
  862. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  863. }
  864. while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
  865. /* We have more usable TRBs */
  866. ep_ring->num_trbs_free++;
  867. ep_ring->dequeue++;
  868. if (trb_is_link(ep_ring->dequeue)) {
  869. if (ep_ring->dequeue ==
  870. dev->eps[ep_index].queued_deq_ptr)
  871. break;
  872. ep_ring->deq_seg = ep_ring->deq_seg->next;
  873. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  874. }
  875. if (ep_ring->dequeue == dequeue_temp) {
  876. revert = true;
  877. break;
  878. }
  879. }
  880. if (revert) {
  881. xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
  882. ep_ring->num_trbs_free = num_trbs_free_temp;
  883. }
  884. }
  885. /*
  886. * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
  887. * we need to clear the set deq pending flag in the endpoint ring state, so that
  888. * the TD queueing code can ring the doorbell again. We also need to ring the
  889. * endpoint doorbell to restart the ring, but only if there aren't more
  890. * cancellations pending.
  891. */
  892. static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
  893. union xhci_trb *trb, u32 cmd_comp_code)
  894. {
  895. unsigned int ep_index;
  896. unsigned int stream_id;
  897. struct xhci_ring *ep_ring;
  898. struct xhci_virt_device *dev;
  899. struct xhci_virt_ep *ep;
  900. struct xhci_ep_ctx *ep_ctx;
  901. struct xhci_slot_ctx *slot_ctx;
  902. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  903. stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
  904. dev = xhci->devs[slot_id];
  905. ep = &dev->eps[ep_index];
  906. ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
  907. if (!ep_ring) {
  908. xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
  909. stream_id);
  910. /* XXX: Harmless??? */
  911. goto cleanup;
  912. }
  913. ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
  914. slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
  915. trace_xhci_handle_cmd_set_deq(slot_ctx);
  916. trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
  917. if (cmd_comp_code != COMP_SUCCESS) {
  918. unsigned int ep_state;
  919. unsigned int slot_state;
  920. switch (cmd_comp_code) {
  921. case COMP_TRB_ERROR:
  922. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
  923. break;
  924. case COMP_CONTEXT_STATE_ERROR:
  925. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
  926. ep_state = GET_EP_CTX_STATE(ep_ctx);
  927. slot_state = le32_to_cpu(slot_ctx->dev_state);
  928. slot_state = GET_SLOT_STATE(slot_state);
  929. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  930. "Slot state = %u, EP state = %u",
  931. slot_state, ep_state);
  932. break;
  933. case COMP_SLOT_NOT_ENABLED_ERROR:
  934. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
  935. slot_id);
  936. break;
  937. default:
  938. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
  939. cmd_comp_code);
  940. break;
  941. }
  942. /* OK what do we do now? The endpoint state is hosed, and we
  943. * should never get to this point if the synchronization between
  944. * queueing, and endpoint state are correct. This might happen
  945. * if the device gets disconnected after we've finished
  946. * cancelling URBs, which might not be an error...
  947. */
  948. } else {
  949. u64 deq;
  950. /* 4.6.10 deq ptr is written to the stream ctx for streams */
  951. if (ep->ep_state & EP_HAS_STREAMS) {
  952. struct xhci_stream_ctx *ctx =
  953. &ep->stream_info->stream_ctx_array[stream_id];
  954. deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
  955. } else {
  956. deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
  957. }
  958. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  959. "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
  960. if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
  961. ep->queued_deq_ptr) == deq) {
  962. /* Update the ring's dequeue segment and dequeue pointer
  963. * to reflect the new position.
  964. */
  965. update_ring_for_set_deq_completion(xhci, dev,
  966. ep_ring, ep_index);
  967. } else {
  968. xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
  969. xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
  970. ep->queued_deq_seg, ep->queued_deq_ptr);
  971. }
  972. }
  973. cleanup:
  974. dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
  975. dev->eps[ep_index].queued_deq_seg = NULL;
  976. dev->eps[ep_index].queued_deq_ptr = NULL;
  977. /* Restart any rings with pending URBs */
  978. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  979. }
  980. static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
  981. union xhci_trb *trb, u32 cmd_comp_code)
  982. {
  983. struct xhci_virt_device *vdev;
  984. struct xhci_ep_ctx *ep_ctx;
  985. unsigned int ep_index;
  986. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  987. vdev = xhci->devs[slot_id];
  988. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  989. trace_xhci_handle_cmd_reset_ep(ep_ctx);
  990. /* This command will only fail if the endpoint wasn't halted,
  991. * but we don't care.
  992. */
  993. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  994. "Ignoring reset ep completion code of %u", cmd_comp_code);
  995. /* HW with the reset endpoint quirk needs to have a configure endpoint
  996. * command complete before the endpoint can be used. Queue that here
  997. * because the HW can't handle two commands being queued in a row.
  998. */
  999. if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
  1000. struct xhci_command *command;
  1001. command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  1002. if (!command)
  1003. return;
  1004. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1005. "Queueing configure endpoint command");
  1006. xhci_queue_configure_endpoint(xhci, command,
  1007. xhci->devs[slot_id]->in_ctx->dma, slot_id,
  1008. false);
  1009. xhci_ring_cmd_db(xhci);
  1010. } else {
  1011. /* Clear our internal halted state */
  1012. xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
  1013. }
  1014. /* if this was a soft reset, then restart */
  1015. if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
  1016. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  1017. }
  1018. static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
  1019. struct xhci_command *command, u32 cmd_comp_code)
  1020. {
  1021. if (cmd_comp_code == COMP_SUCCESS)
  1022. command->slot_id = slot_id;
  1023. else
  1024. command->slot_id = 0;
  1025. }
  1026. static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
  1027. {
  1028. struct xhci_virt_device *virt_dev;
  1029. struct xhci_slot_ctx *slot_ctx;
  1030. virt_dev = xhci->devs[slot_id];
  1031. if (!virt_dev)
  1032. return;
  1033. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  1034. trace_xhci_handle_cmd_disable_slot(slot_ctx);
  1035. if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
  1036. /* Delete default control endpoint resources */
  1037. xhci_free_device_endpoint_resources(xhci, virt_dev, true);
  1038. xhci_free_virt_device(xhci, slot_id);
  1039. }
  1040. static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
  1041. struct xhci_event_cmd *event, u32 cmd_comp_code)
  1042. {
  1043. struct xhci_virt_device *virt_dev;
  1044. struct xhci_input_control_ctx *ctrl_ctx;
  1045. struct xhci_ep_ctx *ep_ctx;
  1046. unsigned int ep_index;
  1047. unsigned int ep_state;
  1048. u32 add_flags, drop_flags;
  1049. /*
  1050. * Configure endpoint commands can come from the USB core
  1051. * configuration or alt setting changes, or because the HW
  1052. * needed an extra configure endpoint command after a reset
  1053. * endpoint command or streams were being configured.
  1054. * If the command was for a halted endpoint, the xHCI driver
  1055. * is not waiting on the configure endpoint command.
  1056. */
  1057. virt_dev = xhci->devs[slot_id];
  1058. ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
  1059. if (!ctrl_ctx) {
  1060. xhci_warn(xhci, "Could not get input context, bad type.\n");
  1061. return;
  1062. }
  1063. add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1064. drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1065. /* Input ctx add_flags are the endpoint index plus one */
  1066. ep_index = xhci_last_valid_endpoint(add_flags) - 1;
  1067. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
  1068. trace_xhci_handle_cmd_config_ep(ep_ctx);
  1069. /* A usb_set_interface() call directly after clearing a halted
  1070. * condition may race on this quirky hardware. Not worth
  1071. * worrying about, since this is prototype hardware. Not sure
  1072. * if this will work for streams, but streams support was
  1073. * untested on this prototype.
  1074. */
  1075. if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
  1076. ep_index != (unsigned int) -1 &&
  1077. add_flags - SLOT_FLAG == drop_flags) {
  1078. ep_state = virt_dev->eps[ep_index].ep_state;
  1079. if (!(ep_state & EP_HALTED))
  1080. return;
  1081. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1082. "Completed config ep cmd - "
  1083. "last ep index = %d, state = %d",
  1084. ep_index, ep_state);
  1085. /* Clear internal halted state and restart ring(s) */
  1086. virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
  1087. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  1088. return;
  1089. }
  1090. return;
  1091. }
  1092. static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
  1093. {
  1094. struct xhci_virt_device *vdev;
  1095. struct xhci_slot_ctx *slot_ctx;
  1096. vdev = xhci->devs[slot_id];
  1097. slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
  1098. trace_xhci_handle_cmd_addr_dev(slot_ctx);
  1099. }
  1100. static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
  1101. struct xhci_event_cmd *event)
  1102. {
  1103. struct xhci_virt_device *vdev;
  1104. struct xhci_slot_ctx *slot_ctx;
  1105. vdev = xhci->devs[slot_id];
  1106. slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
  1107. trace_xhci_handle_cmd_reset_dev(slot_ctx);
  1108. xhci_dbg(xhci, "Completed reset device command.\n");
  1109. if (!xhci->devs[slot_id])
  1110. xhci_warn(xhci, "Reset device command completion "
  1111. "for disabled slot %u\n", slot_id);
  1112. }
  1113. static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
  1114. struct xhci_event_cmd *event)
  1115. {
  1116. if (!(xhci->quirks & XHCI_NEC_HOST)) {
  1117. xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
  1118. return;
  1119. }
  1120. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1121. "NEC firmware version %2x.%02x",
  1122. NEC_FW_MAJOR(le32_to_cpu(event->status)),
  1123. NEC_FW_MINOR(le32_to_cpu(event->status)));
  1124. }
  1125. static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
  1126. {
  1127. list_del(&cmd->cmd_list);
  1128. if (cmd->completion) {
  1129. cmd->status = status;
  1130. complete(cmd->completion);
  1131. } else {
  1132. kfree(cmd);
  1133. }
  1134. }
  1135. void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
  1136. {
  1137. struct xhci_command *cur_cmd, *tmp_cmd;
  1138. xhci->current_cmd = NULL;
  1139. list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
  1140. xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
  1141. }
  1142. void xhci_handle_command_timeout(struct work_struct *work)
  1143. {
  1144. struct xhci_hcd *xhci;
  1145. unsigned long flags;
  1146. u64 hw_ring_state;
  1147. xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
  1148. spin_lock_irqsave(&xhci->lock, flags);
  1149. /*
  1150. * If timeout work is pending, or current_cmd is NULL, it means we
  1151. * raced with command completion. Command is handled so just return.
  1152. */
  1153. if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
  1154. spin_unlock_irqrestore(&xhci->lock, flags);
  1155. return;
  1156. }
  1157. /* mark this command to be cancelled */
  1158. xhci->current_cmd->status = COMP_COMMAND_ABORTED;
  1159. /* Make sure command ring is running before aborting it */
  1160. hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1161. if (hw_ring_state == ~(u64)0) {
  1162. xhci_hc_died(xhci);
  1163. goto time_out_completed;
  1164. }
  1165. if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
  1166. (hw_ring_state & CMD_RING_RUNNING)) {
  1167. /* Prevent new doorbell, and start command abort */
  1168. xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
  1169. xhci_dbg(xhci, "Command timeout\n");
  1170. xhci_abort_cmd_ring(xhci, flags);
  1171. goto time_out_completed;
  1172. }
  1173. /* host removed. Bail out */
  1174. if (xhci->xhc_state & XHCI_STATE_REMOVING) {
  1175. xhci_dbg(xhci, "host removed, ring start fail?\n");
  1176. xhci_cleanup_command_queue(xhci);
  1177. goto time_out_completed;
  1178. }
  1179. /* command timeout on stopped ring, ring can't be aborted */
  1180. xhci_dbg(xhci, "Command timeout on stopped ring\n");
  1181. xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
  1182. time_out_completed:
  1183. spin_unlock_irqrestore(&xhci->lock, flags);
  1184. return;
  1185. }
  1186. static void handle_cmd_completion(struct xhci_hcd *xhci,
  1187. struct xhci_event_cmd *event)
  1188. {
  1189. int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1190. u64 cmd_dma;
  1191. dma_addr_t cmd_dequeue_dma;
  1192. u32 cmd_comp_code;
  1193. union xhci_trb *cmd_trb;
  1194. struct xhci_command *cmd;
  1195. u32 cmd_type;
  1196. cmd_dma = le64_to_cpu(event->cmd_trb);
  1197. cmd_trb = xhci->cmd_ring->dequeue;
  1198. trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
  1199. cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  1200. cmd_trb);
  1201. /*
  1202. * Check whether the completion event is for our internal kept
  1203. * command.
  1204. */
  1205. if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
  1206. xhci_warn(xhci,
  1207. "ERROR mismatched command completion event\n");
  1208. return;
  1209. }
  1210. cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
  1211. cancel_delayed_work(&xhci->cmd_timer);
  1212. cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
  1213. /* If CMD ring stopped we own the trbs between enqueue and dequeue */
  1214. if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
  1215. complete_all(&xhci->cmd_ring_stop_completion);
  1216. return;
  1217. }
  1218. if (cmd->command_trb != xhci->cmd_ring->dequeue) {
  1219. xhci_err(xhci,
  1220. "Command completion event does not match command\n");
  1221. return;
  1222. }
  1223. /*
  1224. * Host aborted the command ring, check if the current command was
  1225. * supposed to be aborted, otherwise continue normally.
  1226. * The command ring is stopped now, but the xHC will issue a Command
  1227. * Ring Stopped event which will cause us to restart it.
  1228. */
  1229. if (cmd_comp_code == COMP_COMMAND_ABORTED) {
  1230. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  1231. if (cmd->status == COMP_COMMAND_ABORTED) {
  1232. if (xhci->current_cmd == cmd)
  1233. xhci->current_cmd = NULL;
  1234. goto event_handled;
  1235. }
  1236. }
  1237. cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
  1238. switch (cmd_type) {
  1239. case TRB_ENABLE_SLOT:
  1240. xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
  1241. break;
  1242. case TRB_DISABLE_SLOT:
  1243. xhci_handle_cmd_disable_slot(xhci, slot_id);
  1244. break;
  1245. case TRB_CONFIG_EP:
  1246. if (!cmd->completion)
  1247. xhci_handle_cmd_config_ep(xhci, slot_id, event,
  1248. cmd_comp_code);
  1249. break;
  1250. case TRB_EVAL_CONTEXT:
  1251. break;
  1252. case TRB_ADDR_DEV:
  1253. xhci_handle_cmd_addr_dev(xhci, slot_id);
  1254. break;
  1255. case TRB_STOP_RING:
  1256. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1257. le32_to_cpu(cmd_trb->generic.field[3])));
  1258. if (!cmd->completion)
  1259. xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
  1260. break;
  1261. case TRB_SET_DEQ:
  1262. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1263. le32_to_cpu(cmd_trb->generic.field[3])));
  1264. xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
  1265. break;
  1266. case TRB_CMD_NOOP:
  1267. /* Is this an aborted command turned to NO-OP? */
  1268. if (cmd->status == COMP_COMMAND_RING_STOPPED)
  1269. cmd_comp_code = COMP_COMMAND_RING_STOPPED;
  1270. break;
  1271. case TRB_RESET_EP:
  1272. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1273. le32_to_cpu(cmd_trb->generic.field[3])));
  1274. xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
  1275. break;
  1276. case TRB_RESET_DEV:
  1277. /* SLOT_ID field in reset device cmd completion event TRB is 0.
  1278. * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
  1279. */
  1280. slot_id = TRB_TO_SLOT_ID(
  1281. le32_to_cpu(cmd_trb->generic.field[3]));
  1282. xhci_handle_cmd_reset_dev(xhci, slot_id, event);
  1283. break;
  1284. case TRB_NEC_GET_FW:
  1285. xhci_handle_cmd_nec_get_fw(xhci, event);
  1286. break;
  1287. default:
  1288. /* Skip over unknown commands on the event ring */
  1289. xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
  1290. break;
  1291. }
  1292. /* restart timer if this wasn't the last command */
  1293. if (!list_is_singular(&xhci->cmd_list)) {
  1294. xhci->current_cmd = list_first_entry(&cmd->cmd_list,
  1295. struct xhci_command, cmd_list);
  1296. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  1297. } else if (xhci->current_cmd == cmd) {
  1298. xhci->current_cmd = NULL;
  1299. }
  1300. event_handled:
  1301. xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
  1302. inc_deq(xhci, xhci->cmd_ring);
  1303. }
  1304. static void handle_vendor_event(struct xhci_hcd *xhci,
  1305. union xhci_trb *event)
  1306. {
  1307. u32 trb_type;
  1308. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
  1309. xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
  1310. if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
  1311. handle_cmd_completion(xhci, &event->event_cmd);
  1312. }
  1313. static void handle_device_notification(struct xhci_hcd *xhci,
  1314. union xhci_trb *event)
  1315. {
  1316. u32 slot_id;
  1317. struct usb_device *udev;
  1318. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
  1319. if (!xhci->devs[slot_id]) {
  1320. xhci_warn(xhci, "Device Notification event for "
  1321. "unused slot %u\n", slot_id);
  1322. return;
  1323. }
  1324. xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
  1325. slot_id);
  1326. udev = xhci->devs[slot_id]->udev;
  1327. if (udev && udev->parent)
  1328. usb_wakeup_notification(udev->parent, udev->portnum);
  1329. }
  1330. /*
  1331. * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI
  1332. * Controller.
  1333. * As per ThunderX2errata-129 USB 2 device may come up as USB 1
  1334. * If a connection to a USB 1 device is followed by another connection
  1335. * to a USB 2 device.
  1336. *
  1337. * Reset the PHY after the USB device is disconnected if device speed
  1338. * is less than HCD_USB3.
  1339. * Retry the reset sequence max of 4 times checking the PLL lock status.
  1340. *
  1341. */
  1342. static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci)
  1343. {
  1344. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  1345. u32 pll_lock_check;
  1346. u32 retry_count = 4;
  1347. do {
  1348. /* Assert PHY reset */
  1349. writel(0x6F, hcd->regs + 0x1048);
  1350. udelay(10);
  1351. /* De-assert the PHY reset */
  1352. writel(0x7F, hcd->regs + 0x1048);
  1353. udelay(200);
  1354. pll_lock_check = readl(hcd->regs + 0x1070);
  1355. } while (!(pll_lock_check & 0x1) && --retry_count);
  1356. }
  1357. static void handle_port_status(struct xhci_hcd *xhci,
  1358. union xhci_trb *event)
  1359. {
  1360. struct usb_hcd *hcd;
  1361. u32 port_id;
  1362. u32 portsc, cmd_reg;
  1363. int max_ports;
  1364. int slot_id;
  1365. unsigned int hcd_portnum;
  1366. struct xhci_bus_state *bus_state;
  1367. bool bogus_port_status = false;
  1368. struct xhci_port *port;
  1369. /* Port status change events always have a successful completion code */
  1370. if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
  1371. xhci_warn(xhci,
  1372. "WARN: xHC returned failed port status event\n");
  1373. port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
  1374. xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
  1375. max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1376. if ((port_id <= 0) || (port_id > max_ports)) {
  1377. xhci_warn(xhci, "Invalid port id %d\n", port_id);
  1378. inc_deq(xhci, xhci->event_ring);
  1379. return;
  1380. }
  1381. port = &xhci->hw_ports[port_id - 1];
  1382. if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
  1383. xhci_warn(xhci, "Event for invalid port %u\n", port_id);
  1384. bogus_port_status = true;
  1385. goto cleanup;
  1386. }
  1387. /* We might get interrupts after shared_hcd is removed */
  1388. if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) {
  1389. xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n");
  1390. bogus_port_status = true;
  1391. goto cleanup;
  1392. }
  1393. hcd = port->rhub->hcd;
  1394. bus_state = &xhci->bus_state[hcd_index(hcd)];
  1395. hcd_portnum = port->hcd_portnum;
  1396. portsc = readl(port->addr);
  1397. trace_xhci_handle_port_status(hcd_portnum, portsc);
  1398. if (hcd->state == HC_STATE_SUSPENDED) {
  1399. xhci_dbg(xhci, "resume root hub\n");
  1400. usb_hcd_resume_root_hub(hcd);
  1401. }
  1402. if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
  1403. bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
  1404. if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
  1405. xhci_dbg(xhci, "port resume event for port %d\n", port_id);
  1406. cmd_reg = readl(&xhci->op_regs->command);
  1407. if (!(cmd_reg & CMD_RUN)) {
  1408. xhci_warn(xhci, "xHC is not running.\n");
  1409. goto cleanup;
  1410. }
  1411. if (DEV_SUPERSPEED_ANY(portsc)) {
  1412. xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
  1413. /* Set a flag to say the port signaled remote wakeup,
  1414. * so we can tell the difference between the end of
  1415. * device and host initiated resume.
  1416. */
  1417. bus_state->port_remote_wakeup |= 1 << hcd_portnum;
  1418. xhci_test_and_clear_bit(xhci, port, PORT_PLC);
  1419. xhci_set_link_state(xhci, port, XDEV_U0);
  1420. /* Need to wait until the next link state change
  1421. * indicates the device is actually in U0.
  1422. */
  1423. bogus_port_status = true;
  1424. goto cleanup;
  1425. } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
  1426. xhci_dbg(xhci, "resume HS port %d\n", port_id);
  1427. bus_state->resume_done[hcd_portnum] = jiffies +
  1428. msecs_to_jiffies(USB_RESUME_TIMEOUT);
  1429. set_bit(hcd_portnum, &bus_state->resuming_ports);
  1430. /* Do the rest in GetPortStatus after resume time delay.
  1431. * Avoid polling roothub status before that so that a
  1432. * usb device auto-resume latency around ~40ms.
  1433. */
  1434. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  1435. mod_timer(&hcd->rh_timer,
  1436. bus_state->resume_done[hcd_portnum]);
  1437. usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
  1438. bogus_port_status = true;
  1439. }
  1440. }
  1441. if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
  1442. DEV_SUPERSPEED_ANY(portsc)) {
  1443. xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
  1444. /* We've just brought the device into U0 through either the
  1445. * Resume state after a device remote wakeup, or through the
  1446. * U3Exit state after a host-initiated resume. If it's a device
  1447. * initiated remote wake, don't pass up the link state change,
  1448. * so the roothub behavior is consistent with external
  1449. * USB 3.0 hub behavior.
  1450. */
  1451. slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
  1452. if (slot_id && xhci->devs[slot_id])
  1453. xhci_ring_device(xhci, slot_id);
  1454. if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
  1455. bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
  1456. xhci_test_and_clear_bit(xhci, port, PORT_PLC);
  1457. usb_wakeup_notification(hcd->self.root_hub,
  1458. hcd_portnum + 1);
  1459. bogus_port_status = true;
  1460. goto cleanup;
  1461. }
  1462. }
  1463. /*
  1464. * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
  1465. * RExit to a disconnect state). If so, let the the driver know it's
  1466. * out of the RExit state.
  1467. */
  1468. if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 &&
  1469. test_and_clear_bit(hcd_portnum,
  1470. &bus_state->rexit_ports)) {
  1471. complete(&bus_state->rexit_done[hcd_portnum]);
  1472. bogus_port_status = true;
  1473. goto cleanup;
  1474. }
  1475. if (hcd->speed < HCD_USB3) {
  1476. xhci_test_and_clear_bit(xhci, port, PORT_PLC);
  1477. if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) &&
  1478. (portsc & PORT_CSC) && !(portsc & PORT_CONNECT))
  1479. xhci_cavium_reset_phy_quirk(xhci);
  1480. }
  1481. cleanup:
  1482. /* Update event ring dequeue pointer before dropping the lock */
  1483. inc_deq(xhci, xhci->event_ring);
  1484. /* Don't make the USB core poll the roothub if we got a bad port status
  1485. * change event. Besides, at that point we can't tell which roothub
  1486. * (USB 2.0 or USB 3.0) to kick.
  1487. */
  1488. if (bogus_port_status)
  1489. return;
  1490. /*
  1491. * xHCI port-status-change events occur when the "or" of all the
  1492. * status-change bits in the portsc register changes from 0 to 1.
  1493. * New status changes won't cause an event if any other change
  1494. * bits are still set. When an event occurs, switch over to
  1495. * polling to avoid losing status changes.
  1496. */
  1497. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  1498. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  1499. spin_unlock(&xhci->lock);
  1500. /* Pass this up to the core */
  1501. usb_hcd_poll_rh_status(hcd);
  1502. spin_lock(&xhci->lock);
  1503. }
  1504. /*
  1505. * This TD is defined by the TRBs starting at start_trb in start_seg and ending
  1506. * at end_trb, which may be in another segment. If the suspect DMA address is a
  1507. * TRB in this TD, this function returns that TRB's segment. Otherwise it
  1508. * returns 0.
  1509. */
  1510. struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
  1511. struct xhci_segment *start_seg,
  1512. union xhci_trb *start_trb,
  1513. union xhci_trb *end_trb,
  1514. dma_addr_t suspect_dma,
  1515. bool debug)
  1516. {
  1517. dma_addr_t start_dma;
  1518. dma_addr_t end_seg_dma;
  1519. dma_addr_t end_trb_dma;
  1520. struct xhci_segment *cur_seg;
  1521. start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
  1522. cur_seg = start_seg;
  1523. do {
  1524. if (start_dma == 0)
  1525. return NULL;
  1526. /* We may get an event for a Link TRB in the middle of a TD */
  1527. end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
  1528. &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
  1529. /* If the end TRB isn't in this segment, this is set to 0 */
  1530. end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
  1531. if (debug)
  1532. xhci_warn(xhci,
  1533. "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
  1534. (unsigned long long)suspect_dma,
  1535. (unsigned long long)start_dma,
  1536. (unsigned long long)end_trb_dma,
  1537. (unsigned long long)cur_seg->dma,
  1538. (unsigned long long)end_seg_dma);
  1539. if (end_trb_dma > 0) {
  1540. /* The end TRB is in this segment, so suspect should be here */
  1541. if (start_dma <= end_trb_dma) {
  1542. if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
  1543. return cur_seg;
  1544. } else {
  1545. /* Case for one segment with
  1546. * a TD wrapped around to the top
  1547. */
  1548. if ((suspect_dma >= start_dma &&
  1549. suspect_dma <= end_seg_dma) ||
  1550. (suspect_dma >= cur_seg->dma &&
  1551. suspect_dma <= end_trb_dma))
  1552. return cur_seg;
  1553. }
  1554. return NULL;
  1555. } else {
  1556. /* Might still be somewhere in this segment */
  1557. if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
  1558. return cur_seg;
  1559. }
  1560. cur_seg = cur_seg->next;
  1561. start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
  1562. } while (cur_seg != start_seg);
  1563. return NULL;
  1564. }
  1565. static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
  1566. unsigned int slot_id, unsigned int ep_index,
  1567. unsigned int stream_id, struct xhci_td *td,
  1568. enum xhci_ep_reset_type reset_type)
  1569. {
  1570. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  1571. struct xhci_command *command;
  1572. command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  1573. if (!command)
  1574. return;
  1575. ep->ep_state |= EP_HALTED;
  1576. xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
  1577. if (reset_type == EP_HARD_RESET) {
  1578. ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
  1579. xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
  1580. }
  1581. xhci_ring_cmd_db(xhci);
  1582. }
  1583. /* Check if an error has halted the endpoint ring. The class driver will
  1584. * cleanup the halt for a non-default control endpoint if we indicate a stall.
  1585. * However, a babble and other errors also halt the endpoint ring, and the class
  1586. * driver won't clear the halt in that case, so we need to issue a Set Transfer
  1587. * Ring Dequeue Pointer command manually.
  1588. */
  1589. static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
  1590. struct xhci_ep_ctx *ep_ctx,
  1591. unsigned int trb_comp_code)
  1592. {
  1593. /* TRB completion codes that may require a manual halt cleanup */
  1594. if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
  1595. trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
  1596. trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
  1597. /* The 0.95 spec says a babbling control endpoint
  1598. * is not halted. The 0.96 spec says it is. Some HW
  1599. * claims to be 0.95 compliant, but it halts the control
  1600. * endpoint anyway. Check if a babble halted the
  1601. * endpoint.
  1602. */
  1603. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
  1604. return 1;
  1605. return 0;
  1606. }
  1607. int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
  1608. {
  1609. if (trb_comp_code >= 224 && trb_comp_code <= 255) {
  1610. /* Vendor defined "informational" completion code,
  1611. * treat as not-an-error.
  1612. */
  1613. xhci_dbg(xhci, "Vendor defined info completion code %u\n",
  1614. trb_comp_code);
  1615. xhci_dbg(xhci, "Treating code as success.\n");
  1616. return 1;
  1617. }
  1618. return 0;
  1619. }
  1620. static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
  1621. struct xhci_ring *ep_ring, int *status)
  1622. {
  1623. struct urb *urb = NULL;
  1624. /* Clean up the endpoint's TD list */
  1625. urb = td->urb;
  1626. /* if a bounce buffer was used to align this td then unmap it */
  1627. xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
  1628. /* Do one last check of the actual transfer length.
  1629. * If the host controller said we transferred more data than the buffer
  1630. * length, urb->actual_length will be a very big number (since it's
  1631. * unsigned). Play it safe and say we didn't transfer anything.
  1632. */
  1633. if (urb->actual_length > urb->transfer_buffer_length) {
  1634. xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
  1635. urb->transfer_buffer_length, urb->actual_length);
  1636. urb->actual_length = 0;
  1637. *status = 0;
  1638. }
  1639. list_del_init(&td->td_list);
  1640. /* Was this TD slated to be cancelled but completed anyway? */
  1641. if (!list_empty(&td->cancelled_td_list))
  1642. list_del_init(&td->cancelled_td_list);
  1643. inc_td_cnt(urb);
  1644. /* Giveback the urb when all the tds are completed */
  1645. if (last_td_in_urb(td)) {
  1646. if ((urb->actual_length != urb->transfer_buffer_length &&
  1647. (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
  1648. (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
  1649. xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
  1650. urb, urb->actual_length,
  1651. urb->transfer_buffer_length, *status);
  1652. /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
  1653. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
  1654. *status = 0;
  1655. xhci_giveback_urb_in_irq(xhci, td, *status);
  1656. }
  1657. return 0;
  1658. }
  1659. static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1660. struct xhci_transfer_event *event,
  1661. struct xhci_virt_ep *ep, int *status)
  1662. {
  1663. struct xhci_virt_device *xdev;
  1664. struct xhci_ep_ctx *ep_ctx;
  1665. struct xhci_ring *ep_ring;
  1666. unsigned int slot_id;
  1667. u32 trb_comp_code;
  1668. int ep_index;
  1669. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1670. xdev = xhci->devs[slot_id];
  1671. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1672. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1673. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1674. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1675. if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
  1676. trb_comp_code == COMP_STOPPED ||
  1677. trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
  1678. /* The Endpoint Stop Command completion will take care of any
  1679. * stopped TDs. A stopped TD may be restarted, so don't update
  1680. * the ring dequeue pointer or take this TD off any lists yet.
  1681. */
  1682. return 0;
  1683. }
  1684. if (trb_comp_code == COMP_STALL_ERROR ||
  1685. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  1686. trb_comp_code)) {
  1687. /* Issue a reset endpoint command to clear the host side
  1688. * halt, followed by a set dequeue command to move the
  1689. * dequeue pointer past the TD.
  1690. * The class driver clears the device side halt later.
  1691. */
  1692. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
  1693. ep_ring->stream_id, td, EP_HARD_RESET);
  1694. } else {
  1695. /* Update ring dequeue pointer */
  1696. while (ep_ring->dequeue != td->last_trb)
  1697. inc_deq(xhci, ep_ring);
  1698. inc_deq(xhci, ep_ring);
  1699. }
  1700. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1701. }
  1702. /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
  1703. static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
  1704. union xhci_trb *stop_trb)
  1705. {
  1706. u32 sum;
  1707. union xhci_trb *trb = ring->dequeue;
  1708. struct xhci_segment *seg = ring->deq_seg;
  1709. for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
  1710. if (!trb_is_noop(trb) && !trb_is_link(trb))
  1711. sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
  1712. }
  1713. return sum;
  1714. }
  1715. /*
  1716. * Process control tds, update urb status and actual_length.
  1717. */
  1718. static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1719. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1720. struct xhci_virt_ep *ep, int *status)
  1721. {
  1722. struct xhci_virt_device *xdev;
  1723. unsigned int slot_id;
  1724. int ep_index;
  1725. struct xhci_ep_ctx *ep_ctx;
  1726. u32 trb_comp_code;
  1727. u32 remaining, requested;
  1728. u32 trb_type;
  1729. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
  1730. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1731. xdev = xhci->devs[slot_id];
  1732. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1733. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1734. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1735. requested = td->urb->transfer_buffer_length;
  1736. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1737. switch (trb_comp_code) {
  1738. case COMP_SUCCESS:
  1739. if (trb_type != TRB_STATUS) {
  1740. xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
  1741. (trb_type == TRB_DATA) ? "data" : "setup");
  1742. *status = -ESHUTDOWN;
  1743. break;
  1744. }
  1745. *status = 0;
  1746. break;
  1747. case COMP_SHORT_PACKET:
  1748. *status = 0;
  1749. break;
  1750. case COMP_STOPPED_SHORT_PACKET:
  1751. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1752. td->urb->actual_length = remaining;
  1753. else
  1754. xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
  1755. goto finish_td;
  1756. case COMP_STOPPED:
  1757. switch (trb_type) {
  1758. case TRB_SETUP:
  1759. td->urb->actual_length = 0;
  1760. goto finish_td;
  1761. case TRB_DATA:
  1762. case TRB_NORMAL:
  1763. td->urb->actual_length = requested - remaining;
  1764. goto finish_td;
  1765. case TRB_STATUS:
  1766. td->urb->actual_length = requested;
  1767. goto finish_td;
  1768. default:
  1769. xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
  1770. trb_type);
  1771. goto finish_td;
  1772. }
  1773. case COMP_STOPPED_LENGTH_INVALID:
  1774. goto finish_td;
  1775. default:
  1776. if (!xhci_requires_manual_halt_cleanup(xhci,
  1777. ep_ctx, trb_comp_code))
  1778. break;
  1779. xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
  1780. trb_comp_code, ep_index);
  1781. /* else fall through */
  1782. case COMP_STALL_ERROR:
  1783. /* Did we transfer part of the data (middle) phase? */
  1784. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1785. td->urb->actual_length = requested - remaining;
  1786. else if (!td->urb_length_set)
  1787. td->urb->actual_length = 0;
  1788. goto finish_td;
  1789. }
  1790. /* stopped at setup stage, no data transferred */
  1791. if (trb_type == TRB_SETUP)
  1792. goto finish_td;
  1793. /*
  1794. * if on data stage then update the actual_length of the URB and flag it
  1795. * as set, so it won't be overwritten in the event for the last TRB.
  1796. */
  1797. if (trb_type == TRB_DATA ||
  1798. trb_type == TRB_NORMAL) {
  1799. td->urb_length_set = true;
  1800. td->urb->actual_length = requested - remaining;
  1801. xhci_dbg(xhci, "Waiting for status stage event\n");
  1802. return 0;
  1803. }
  1804. /* at status stage */
  1805. if (!td->urb_length_set)
  1806. td->urb->actual_length = requested;
  1807. finish_td:
  1808. return finish_td(xhci, td, event, ep, status);
  1809. }
  1810. /*
  1811. * Process isochronous tds, update urb packet status and actual_length.
  1812. */
  1813. static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1814. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1815. struct xhci_virt_ep *ep, int *status)
  1816. {
  1817. struct xhci_ring *ep_ring;
  1818. struct urb_priv *urb_priv;
  1819. int idx;
  1820. struct usb_iso_packet_descriptor *frame;
  1821. u32 trb_comp_code;
  1822. bool sum_trbs_for_length = false;
  1823. u32 remaining, requested, ep_trb_len;
  1824. int short_framestatus;
  1825. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1826. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1827. urb_priv = td->urb->hcpriv;
  1828. idx = urb_priv->num_tds_done;
  1829. frame = &td->urb->iso_frame_desc[idx];
  1830. requested = frame->length;
  1831. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1832. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1833. short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
  1834. -EREMOTEIO : 0;
  1835. /* handle completion code */
  1836. switch (trb_comp_code) {
  1837. case COMP_SUCCESS:
  1838. if (remaining) {
  1839. frame->status = short_framestatus;
  1840. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  1841. sum_trbs_for_length = true;
  1842. break;
  1843. }
  1844. frame->status = 0;
  1845. break;
  1846. case COMP_SHORT_PACKET:
  1847. frame->status = short_framestatus;
  1848. sum_trbs_for_length = true;
  1849. break;
  1850. case COMP_BANDWIDTH_OVERRUN_ERROR:
  1851. frame->status = -ECOMM;
  1852. break;
  1853. case COMP_ISOCH_BUFFER_OVERRUN:
  1854. case COMP_BABBLE_DETECTED_ERROR:
  1855. frame->status = -EOVERFLOW;
  1856. break;
  1857. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  1858. case COMP_STALL_ERROR:
  1859. frame->status = -EPROTO;
  1860. break;
  1861. case COMP_USB_TRANSACTION_ERROR:
  1862. frame->status = -EPROTO;
  1863. if (ep_trb != td->last_trb)
  1864. return 0;
  1865. break;
  1866. case COMP_STOPPED:
  1867. sum_trbs_for_length = true;
  1868. break;
  1869. case COMP_STOPPED_SHORT_PACKET:
  1870. /* field normally containing residue now contains tranferred */
  1871. frame->status = short_framestatus;
  1872. requested = remaining;
  1873. break;
  1874. case COMP_STOPPED_LENGTH_INVALID:
  1875. requested = 0;
  1876. remaining = 0;
  1877. break;
  1878. default:
  1879. sum_trbs_for_length = true;
  1880. frame->status = -1;
  1881. break;
  1882. }
  1883. if (sum_trbs_for_length)
  1884. frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1885. ep_trb_len - remaining;
  1886. else
  1887. frame->actual_length = requested;
  1888. td->urb->actual_length += frame->actual_length;
  1889. return finish_td(xhci, td, event, ep, status);
  1890. }
  1891. static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1892. struct xhci_transfer_event *event,
  1893. struct xhci_virt_ep *ep, int *status)
  1894. {
  1895. struct xhci_ring *ep_ring;
  1896. struct urb_priv *urb_priv;
  1897. struct usb_iso_packet_descriptor *frame;
  1898. int idx;
  1899. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1900. urb_priv = td->urb->hcpriv;
  1901. idx = urb_priv->num_tds_done;
  1902. frame = &td->urb->iso_frame_desc[idx];
  1903. /* The transfer is partly done. */
  1904. frame->status = -EXDEV;
  1905. /* calc actual length */
  1906. frame->actual_length = 0;
  1907. /* Update ring dequeue pointer */
  1908. while (ep_ring->dequeue != td->last_trb)
  1909. inc_deq(xhci, ep_ring);
  1910. inc_deq(xhci, ep_ring);
  1911. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1912. }
  1913. /*
  1914. * Process bulk and interrupt tds, update urb status and actual_length.
  1915. */
  1916. static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1917. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1918. struct xhci_virt_ep *ep, int *status)
  1919. {
  1920. struct xhci_slot_ctx *slot_ctx;
  1921. struct xhci_ring *ep_ring;
  1922. u32 trb_comp_code;
  1923. u32 remaining, requested, ep_trb_len;
  1924. unsigned int slot_id;
  1925. int ep_index;
  1926. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1927. slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx);
  1928. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1929. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1930. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1931. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1932. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1933. requested = td->urb->transfer_buffer_length;
  1934. switch (trb_comp_code) {
  1935. case COMP_SUCCESS:
  1936. ep_ring->err_count = 0;
  1937. /* handle success with untransferred data as short packet */
  1938. if (ep_trb != td->last_trb || remaining) {
  1939. xhci_warn(xhci, "WARN Successful completion on short TX\n");
  1940. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1941. td->urb->ep->desc.bEndpointAddress,
  1942. requested, remaining);
  1943. }
  1944. *status = 0;
  1945. break;
  1946. case COMP_SHORT_PACKET:
  1947. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1948. td->urb->ep->desc.bEndpointAddress,
  1949. requested, remaining);
  1950. *status = 0;
  1951. break;
  1952. case COMP_STOPPED_SHORT_PACKET:
  1953. td->urb->actual_length = remaining;
  1954. goto finish_td;
  1955. case COMP_STOPPED_LENGTH_INVALID:
  1956. /* stopped on ep trb with invalid length, exclude it */
  1957. ep_trb_len = 0;
  1958. remaining = 0;
  1959. break;
  1960. case COMP_USB_TRANSACTION_ERROR:
  1961. if ((ep_ring->err_count++ > MAX_SOFT_RETRY) ||
  1962. le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
  1963. break;
  1964. *status = 0;
  1965. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
  1966. ep_ring->stream_id, td, EP_SOFT_RESET);
  1967. return 0;
  1968. default:
  1969. /* do nothing */
  1970. break;
  1971. }
  1972. if (ep_trb == td->last_trb)
  1973. td->urb->actual_length = requested - remaining;
  1974. else
  1975. td->urb->actual_length =
  1976. sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1977. ep_trb_len - remaining;
  1978. finish_td:
  1979. if (remaining > requested) {
  1980. xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
  1981. remaining);
  1982. td->urb->actual_length = 0;
  1983. }
  1984. return finish_td(xhci, td, event, ep, status);
  1985. }
  1986. /*
  1987. * If this function returns an error condition, it means it got a Transfer
  1988. * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
  1989. * At this point, the host controller is probably hosed and should be reset.
  1990. */
  1991. static int handle_tx_event(struct xhci_hcd *xhci,
  1992. struct xhci_transfer_event *event)
  1993. {
  1994. struct xhci_virt_device *xdev;
  1995. struct xhci_virt_ep *ep;
  1996. struct xhci_ring *ep_ring;
  1997. unsigned int slot_id;
  1998. int ep_index;
  1999. struct xhci_td *td = NULL;
  2000. dma_addr_t ep_trb_dma;
  2001. struct xhci_segment *ep_seg;
  2002. union xhci_trb *ep_trb;
  2003. int status = -EINPROGRESS;
  2004. struct xhci_ep_ctx *ep_ctx;
  2005. struct list_head *tmp;
  2006. u32 trb_comp_code;
  2007. int td_num = 0;
  2008. bool handling_skipped_tds = false;
  2009. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  2010. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  2011. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  2012. ep_trb_dma = le64_to_cpu(event->buffer);
  2013. xdev = xhci->devs[slot_id];
  2014. if (!xdev) {
  2015. xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
  2016. slot_id);
  2017. goto err_out;
  2018. }
  2019. ep = &xdev->eps[ep_index];
  2020. ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
  2021. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2022. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
  2023. xhci_err(xhci,
  2024. "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
  2025. slot_id, ep_index);
  2026. goto err_out;
  2027. }
  2028. /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
  2029. if (!ep_ring) {
  2030. switch (trb_comp_code) {
  2031. case COMP_STALL_ERROR:
  2032. case COMP_USB_TRANSACTION_ERROR:
  2033. case COMP_INVALID_STREAM_TYPE_ERROR:
  2034. case COMP_INVALID_STREAM_ID_ERROR:
  2035. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
  2036. NULL, EP_SOFT_RESET);
  2037. goto cleanup;
  2038. case COMP_RING_UNDERRUN:
  2039. case COMP_RING_OVERRUN:
  2040. case COMP_STOPPED_LENGTH_INVALID:
  2041. goto cleanup;
  2042. default:
  2043. xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
  2044. slot_id, ep_index);
  2045. goto err_out;
  2046. }
  2047. }
  2048. /* Count current td numbers if ep->skip is set */
  2049. if (ep->skip) {
  2050. list_for_each(tmp, &ep_ring->td_list)
  2051. td_num++;
  2052. }
  2053. /* Look for common error cases */
  2054. switch (trb_comp_code) {
  2055. /* Skip codes that require special handling depending on
  2056. * transfer type
  2057. */
  2058. case COMP_SUCCESS:
  2059. if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
  2060. break;
  2061. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  2062. trb_comp_code = COMP_SHORT_PACKET;
  2063. else
  2064. xhci_warn_ratelimited(xhci,
  2065. "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
  2066. slot_id, ep_index);
  2067. case COMP_SHORT_PACKET:
  2068. break;
  2069. /* Completion codes for endpoint stopped state */
  2070. case COMP_STOPPED:
  2071. xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
  2072. slot_id, ep_index);
  2073. break;
  2074. case COMP_STOPPED_LENGTH_INVALID:
  2075. xhci_dbg(xhci,
  2076. "Stopped on No-op or Link TRB for slot %u ep %u\n",
  2077. slot_id, ep_index);
  2078. break;
  2079. case COMP_STOPPED_SHORT_PACKET:
  2080. xhci_dbg(xhci,
  2081. "Stopped with short packet transfer detected for slot %u ep %u\n",
  2082. slot_id, ep_index);
  2083. break;
  2084. /* Completion codes for endpoint halted state */
  2085. case COMP_STALL_ERROR:
  2086. xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
  2087. ep_index);
  2088. ep->ep_state |= EP_HALTED;
  2089. status = -EPIPE;
  2090. break;
  2091. case COMP_SPLIT_TRANSACTION_ERROR:
  2092. case COMP_USB_TRANSACTION_ERROR:
  2093. xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
  2094. slot_id, ep_index);
  2095. status = -EPROTO;
  2096. break;
  2097. case COMP_BABBLE_DETECTED_ERROR:
  2098. xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
  2099. slot_id, ep_index);
  2100. status = -EOVERFLOW;
  2101. break;
  2102. /* Completion codes for endpoint error state */
  2103. case COMP_TRB_ERROR:
  2104. xhci_warn(xhci,
  2105. "WARN: TRB error for slot %u ep %u on endpoint\n",
  2106. slot_id, ep_index);
  2107. status = -EILSEQ;
  2108. break;
  2109. /* completion codes not indicating endpoint state change */
  2110. case COMP_DATA_BUFFER_ERROR:
  2111. xhci_warn(xhci,
  2112. "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
  2113. slot_id, ep_index);
  2114. status = -ENOSR;
  2115. break;
  2116. case COMP_BANDWIDTH_OVERRUN_ERROR:
  2117. xhci_warn(xhci,
  2118. "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
  2119. slot_id, ep_index);
  2120. break;
  2121. case COMP_ISOCH_BUFFER_OVERRUN:
  2122. xhci_warn(xhci,
  2123. "WARN: buffer overrun event for slot %u ep %u on endpoint",
  2124. slot_id, ep_index);
  2125. break;
  2126. case COMP_RING_UNDERRUN:
  2127. /*
  2128. * When the Isoch ring is empty, the xHC will generate
  2129. * a Ring Overrun Event for IN Isoch endpoint or Ring
  2130. * Underrun Event for OUT Isoch endpoint.
  2131. */
  2132. xhci_dbg(xhci, "underrun event on endpoint\n");
  2133. if (!list_empty(&ep_ring->td_list))
  2134. xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
  2135. "still with TDs queued?\n",
  2136. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2137. ep_index);
  2138. goto cleanup;
  2139. case COMP_RING_OVERRUN:
  2140. xhci_dbg(xhci, "overrun event on endpoint\n");
  2141. if (!list_empty(&ep_ring->td_list))
  2142. xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
  2143. "still with TDs queued?\n",
  2144. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2145. ep_index);
  2146. goto cleanup;
  2147. case COMP_MISSED_SERVICE_ERROR:
  2148. /*
  2149. * When encounter missed service error, one or more isoc tds
  2150. * may be missed by xHC.
  2151. * Set skip flag of the ep_ring; Complete the missed tds as
  2152. * short transfer when process the ep_ring next time.
  2153. */
  2154. ep->skip = true;
  2155. xhci_dbg(xhci,
  2156. "Miss service interval error for slot %u ep %u, set skip flag\n",
  2157. slot_id, ep_index);
  2158. goto cleanup;
  2159. case COMP_NO_PING_RESPONSE_ERROR:
  2160. ep->skip = true;
  2161. xhci_dbg(xhci,
  2162. "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
  2163. slot_id, ep_index);
  2164. goto cleanup;
  2165. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  2166. /* needs disable slot command to recover */
  2167. xhci_warn(xhci,
  2168. "WARN: detect an incompatible device for slot %u ep %u",
  2169. slot_id, ep_index);
  2170. status = -EPROTO;
  2171. break;
  2172. default:
  2173. if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
  2174. status = 0;
  2175. break;
  2176. }
  2177. xhci_warn(xhci,
  2178. "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
  2179. trb_comp_code, slot_id, ep_index);
  2180. goto cleanup;
  2181. }
  2182. do {
  2183. /* This TRB should be in the TD at the head of this ring's
  2184. * TD list.
  2185. */
  2186. if (list_empty(&ep_ring->td_list)) {
  2187. /*
  2188. * Don't print wanings if it's due to a stopped endpoint
  2189. * generating an extra completion event if the device
  2190. * was suspended. Or, a event for the last TRB of a
  2191. * short TD we already got a short event for.
  2192. * The short TD is already removed from the TD list.
  2193. */
  2194. if (!(trb_comp_code == COMP_STOPPED ||
  2195. trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
  2196. ep_ring->last_td_was_short)) {
  2197. xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
  2198. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2199. ep_index);
  2200. }
  2201. if (ep->skip) {
  2202. ep->skip = false;
  2203. xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
  2204. slot_id, ep_index);
  2205. }
  2206. goto cleanup;
  2207. }
  2208. /* We've skipped all the TDs on the ep ring when ep->skip set */
  2209. if (ep->skip && td_num == 0) {
  2210. ep->skip = false;
  2211. xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
  2212. slot_id, ep_index);
  2213. goto cleanup;
  2214. }
  2215. td = list_first_entry(&ep_ring->td_list, struct xhci_td,
  2216. td_list);
  2217. if (ep->skip)
  2218. td_num--;
  2219. /* Is this a TRB in the currently executing TD? */
  2220. ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
  2221. td->last_trb, ep_trb_dma, false);
  2222. /*
  2223. * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
  2224. * is not in the current TD pointed by ep_ring->dequeue because
  2225. * that the hardware dequeue pointer still at the previous TRB
  2226. * of the current TD. The previous TRB maybe a Link TD or the
  2227. * last TRB of the previous TD. The command completion handle
  2228. * will take care the rest.
  2229. */
  2230. if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
  2231. trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
  2232. goto cleanup;
  2233. }
  2234. if (!ep_seg) {
  2235. if (!ep->skip ||
  2236. !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
  2237. /* Some host controllers give a spurious
  2238. * successful event after a short transfer.
  2239. * Ignore it.
  2240. */
  2241. if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
  2242. ep_ring->last_td_was_short) {
  2243. ep_ring->last_td_was_short = false;
  2244. goto cleanup;
  2245. }
  2246. /* HC is busted, give up! */
  2247. xhci_err(xhci,
  2248. "ERROR Transfer event TRB DMA ptr not "
  2249. "part of current TD ep_index %d "
  2250. "comp_code %u\n", ep_index,
  2251. trb_comp_code);
  2252. trb_in_td(xhci, ep_ring->deq_seg,
  2253. ep_ring->dequeue, td->last_trb,
  2254. ep_trb_dma, true);
  2255. return -ESHUTDOWN;
  2256. }
  2257. skip_isoc_td(xhci, td, event, ep, &status);
  2258. goto cleanup;
  2259. }
  2260. if (trb_comp_code == COMP_SHORT_PACKET)
  2261. ep_ring->last_td_was_short = true;
  2262. else
  2263. ep_ring->last_td_was_short = false;
  2264. if (ep->skip) {
  2265. xhci_dbg(xhci,
  2266. "Found td. Clear skip flag for slot %u ep %u.\n",
  2267. slot_id, ep_index);
  2268. ep->skip = false;
  2269. }
  2270. ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
  2271. sizeof(*ep_trb)];
  2272. trace_xhci_handle_transfer(ep_ring,
  2273. (struct xhci_generic_trb *) ep_trb);
  2274. /*
  2275. * No-op TRB could trigger interrupts in a case where
  2276. * a URB was killed and a STALL_ERROR happens right
  2277. * after the endpoint ring stopped. Reset the halted
  2278. * endpoint. Otherwise, the endpoint remains stalled
  2279. * indefinitely.
  2280. */
  2281. if (trb_is_noop(ep_trb)) {
  2282. if (trb_comp_code == COMP_STALL_ERROR ||
  2283. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  2284. trb_comp_code))
  2285. xhci_cleanup_halted_endpoint(xhci, slot_id,
  2286. ep_index,
  2287. ep_ring->stream_id,
  2288. td, EP_HARD_RESET);
  2289. goto cleanup;
  2290. }
  2291. /* update the urb's actual_length and give back to the core */
  2292. if (usb_endpoint_xfer_control(&td->urb->ep->desc))
  2293. process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
  2294. else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
  2295. process_isoc_td(xhci, td, ep_trb, event, ep, &status);
  2296. else
  2297. process_bulk_intr_td(xhci, td, ep_trb, event, ep,
  2298. &status);
  2299. cleanup:
  2300. handling_skipped_tds = ep->skip &&
  2301. trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
  2302. trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
  2303. /*
  2304. * Do not update event ring dequeue pointer if we're in a loop
  2305. * processing missed tds.
  2306. */
  2307. if (!handling_skipped_tds)
  2308. inc_deq(xhci, xhci->event_ring);
  2309. /*
  2310. * If ep->skip is set, it means there are missed tds on the
  2311. * endpoint ring need to take care of.
  2312. * Process them as short transfer until reach the td pointed by
  2313. * the event.
  2314. */
  2315. } while (handling_skipped_tds);
  2316. return 0;
  2317. err_out:
  2318. xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
  2319. (unsigned long long) xhci_trb_virt_to_dma(
  2320. xhci->event_ring->deq_seg,
  2321. xhci->event_ring->dequeue),
  2322. lower_32_bits(le64_to_cpu(event->buffer)),
  2323. upper_32_bits(le64_to_cpu(event->buffer)),
  2324. le32_to_cpu(event->transfer_len),
  2325. le32_to_cpu(event->flags));
  2326. return -ENODEV;
  2327. }
  2328. /*
  2329. * This function handles all OS-owned events on the event ring. It may drop
  2330. * xhci->lock between event processing (e.g. to pass up port status changes).
  2331. * Returns >0 for "possibly more events to process" (caller should call again),
  2332. * otherwise 0 if done. In future, <0 returns should indicate error code.
  2333. */
  2334. static int xhci_handle_event(struct xhci_hcd *xhci)
  2335. {
  2336. union xhci_trb *event;
  2337. int update_ptrs = 1;
  2338. int ret;
  2339. /* Event ring hasn't been allocated yet. */
  2340. if (!xhci->event_ring || !xhci->event_ring->dequeue) {
  2341. xhci_err(xhci, "ERROR event ring not ready\n");
  2342. return -ENOMEM;
  2343. }
  2344. event = xhci->event_ring->dequeue;
  2345. /* Does the HC or OS own the TRB? */
  2346. if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
  2347. xhci->event_ring->cycle_state)
  2348. return 0;
  2349. trace_xhci_handle_event(xhci->event_ring, &event->generic);
  2350. /*
  2351. * Barrier between reading the TRB_CYCLE (valid) flag above and any
  2352. * speculative reads of the event's flags/data below.
  2353. */
  2354. rmb();
  2355. /* FIXME: Handle more event types. */
  2356. switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
  2357. case TRB_TYPE(TRB_COMPLETION):
  2358. handle_cmd_completion(xhci, &event->event_cmd);
  2359. break;
  2360. case TRB_TYPE(TRB_PORT_STATUS):
  2361. handle_port_status(xhci, event);
  2362. update_ptrs = 0;
  2363. break;
  2364. case TRB_TYPE(TRB_TRANSFER):
  2365. ret = handle_tx_event(xhci, &event->trans_event);
  2366. if (ret >= 0)
  2367. update_ptrs = 0;
  2368. break;
  2369. case TRB_TYPE(TRB_DEV_NOTE):
  2370. handle_device_notification(xhci, event);
  2371. break;
  2372. default:
  2373. if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
  2374. TRB_TYPE(48))
  2375. handle_vendor_event(xhci, event);
  2376. else
  2377. xhci_warn(xhci, "ERROR unknown event type %d\n",
  2378. TRB_FIELD_TO_TYPE(
  2379. le32_to_cpu(event->event_cmd.flags)));
  2380. }
  2381. /* Any of the above functions may drop and re-acquire the lock, so check
  2382. * to make sure a watchdog timer didn't mark the host as non-responsive.
  2383. */
  2384. if (xhci->xhc_state & XHCI_STATE_DYING) {
  2385. xhci_dbg(xhci, "xHCI host dying, returning from "
  2386. "event handler.\n");
  2387. return 0;
  2388. }
  2389. if (update_ptrs)
  2390. /* Update SW event ring dequeue pointer */
  2391. inc_deq(xhci, xhci->event_ring);
  2392. /* Are there more items on the event ring? Caller will call us again to
  2393. * check.
  2394. */
  2395. return 1;
  2396. }
  2397. /*
  2398. * xHCI spec says we can get an interrupt, and if the HC has an error condition,
  2399. * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
  2400. * indicators of an event TRB error, but we check the status *first* to be safe.
  2401. */
  2402. irqreturn_t xhci_irq(struct usb_hcd *hcd)
  2403. {
  2404. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  2405. union xhci_trb *event_ring_deq;
  2406. irqreturn_t ret = IRQ_NONE;
  2407. unsigned long flags;
  2408. dma_addr_t deq;
  2409. u64 temp_64;
  2410. u32 status;
  2411. spin_lock_irqsave(&xhci->lock, flags);
  2412. /* Check if the xHC generated the interrupt, or the irq is shared */
  2413. status = readl(&xhci->op_regs->status);
  2414. if (status == ~(u32)0) {
  2415. xhci_hc_died(xhci);
  2416. ret = IRQ_HANDLED;
  2417. goto out;
  2418. }
  2419. if (!(status & STS_EINT))
  2420. goto out;
  2421. if (status & STS_FATAL) {
  2422. xhci_warn(xhci, "WARNING: Host System Error\n");
  2423. xhci_halt(xhci);
  2424. ret = IRQ_HANDLED;
  2425. goto out;
  2426. }
  2427. /*
  2428. * Clear the op reg interrupt status first,
  2429. * so we can receive interrupts from other MSI-X interrupters.
  2430. * Write 1 to clear the interrupt status.
  2431. */
  2432. status |= STS_EINT;
  2433. writel(status, &xhci->op_regs->status);
  2434. if (!hcd->msi_enabled) {
  2435. u32 irq_pending;
  2436. irq_pending = readl(&xhci->ir_set->irq_pending);
  2437. irq_pending |= IMAN_IP;
  2438. writel(irq_pending, &xhci->ir_set->irq_pending);
  2439. }
  2440. if (xhci->xhc_state & XHCI_STATE_DYING ||
  2441. xhci->xhc_state & XHCI_STATE_HALTED) {
  2442. xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
  2443. "Shouldn't IRQs be disabled?\n");
  2444. /* Clear the event handler busy flag (RW1C);
  2445. * the event ring should be empty.
  2446. */
  2447. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2448. xhci_write_64(xhci, temp_64 | ERST_EHB,
  2449. &xhci->ir_set->erst_dequeue);
  2450. ret = IRQ_HANDLED;
  2451. goto out;
  2452. }
  2453. event_ring_deq = xhci->event_ring->dequeue;
  2454. /* FIXME this should be a delayed service routine
  2455. * that clears the EHB.
  2456. */
  2457. while (xhci_handle_event(xhci) > 0) {}
  2458. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2459. /* If necessary, update the HW's version of the event ring deq ptr. */
  2460. if (event_ring_deq != xhci->event_ring->dequeue) {
  2461. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  2462. xhci->event_ring->dequeue);
  2463. if (deq == 0)
  2464. xhci_warn(xhci, "WARN something wrong with SW event "
  2465. "ring dequeue ptr.\n");
  2466. /* Update HC event ring dequeue pointer */
  2467. temp_64 &= ERST_PTR_MASK;
  2468. temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
  2469. }
  2470. /* Clear the event handler busy flag (RW1C); event ring is empty. */
  2471. temp_64 |= ERST_EHB;
  2472. xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
  2473. ret = IRQ_HANDLED;
  2474. out:
  2475. spin_unlock_irqrestore(&xhci->lock, flags);
  2476. return ret;
  2477. }
  2478. irqreturn_t xhci_msi_irq(int irq, void *hcd)
  2479. {
  2480. return xhci_irq(hcd);
  2481. }
  2482. /**** Endpoint Ring Operations ****/
  2483. /*
  2484. * Generic function for queueing a TRB on a ring.
  2485. * The caller must have checked to make sure there's room on the ring.
  2486. *
  2487. * @more_trbs_coming: Will you enqueue more TRBs before calling
  2488. * prepare_transfer()?
  2489. */
  2490. static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
  2491. bool more_trbs_coming,
  2492. u32 field1, u32 field2, u32 field3, u32 field4)
  2493. {
  2494. struct xhci_generic_trb *trb;
  2495. trb = &ring->enqueue->generic;
  2496. trb->field[0] = cpu_to_le32(field1);
  2497. trb->field[1] = cpu_to_le32(field2);
  2498. trb->field[2] = cpu_to_le32(field3);
  2499. trb->field[3] = cpu_to_le32(field4);
  2500. trace_xhci_queue_trb(ring, trb);
  2501. inc_enq(xhci, ring, more_trbs_coming);
  2502. }
  2503. /*
  2504. * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
  2505. * FIXME allocate segments if the ring is full.
  2506. */
  2507. static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  2508. u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
  2509. {
  2510. unsigned int num_trbs_needed;
  2511. /* Make sure the endpoint has been added to xHC schedule */
  2512. switch (ep_state) {
  2513. case EP_STATE_DISABLED:
  2514. /*
  2515. * USB core changed config/interfaces without notifying us,
  2516. * or hardware is reporting the wrong state.
  2517. */
  2518. xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
  2519. return -ENOENT;
  2520. case EP_STATE_ERROR:
  2521. xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
  2522. /* FIXME event handling code for error needs to clear it */
  2523. /* XXX not sure if this should be -ENOENT or not */
  2524. return -EINVAL;
  2525. case EP_STATE_HALTED:
  2526. xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
  2527. case EP_STATE_STOPPED:
  2528. case EP_STATE_RUNNING:
  2529. break;
  2530. default:
  2531. xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
  2532. /*
  2533. * FIXME issue Configure Endpoint command to try to get the HC
  2534. * back into a known state.
  2535. */
  2536. return -EINVAL;
  2537. }
  2538. while (1) {
  2539. if (room_on_ring(xhci, ep_ring, num_trbs))
  2540. break;
  2541. if (ep_ring == xhci->cmd_ring) {
  2542. xhci_err(xhci, "Do not support expand command ring\n");
  2543. return -ENOMEM;
  2544. }
  2545. xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
  2546. "ERROR no room on ep ring, try ring expansion");
  2547. num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
  2548. if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
  2549. mem_flags)) {
  2550. xhci_err(xhci, "Ring expansion failed\n");
  2551. return -ENOMEM;
  2552. }
  2553. }
  2554. while (trb_is_link(ep_ring->enqueue)) {
  2555. /* If we're not dealing with 0.95 hardware or isoc rings
  2556. * on AMD 0.96 host, clear the chain bit.
  2557. */
  2558. if (!xhci_link_trb_quirk(xhci) &&
  2559. !(ep_ring->type == TYPE_ISOC &&
  2560. (xhci->quirks & XHCI_AMD_0x96_HOST)))
  2561. ep_ring->enqueue->link.control &=
  2562. cpu_to_le32(~TRB_CHAIN);
  2563. else
  2564. ep_ring->enqueue->link.control |=
  2565. cpu_to_le32(TRB_CHAIN);
  2566. wmb();
  2567. ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
  2568. /* Toggle the cycle bit after the last ring segment. */
  2569. if (link_trb_toggles_cycle(ep_ring->enqueue))
  2570. ep_ring->cycle_state ^= 1;
  2571. ep_ring->enq_seg = ep_ring->enq_seg->next;
  2572. ep_ring->enqueue = ep_ring->enq_seg->trbs;
  2573. }
  2574. return 0;
  2575. }
  2576. static int prepare_transfer(struct xhci_hcd *xhci,
  2577. struct xhci_virt_device *xdev,
  2578. unsigned int ep_index,
  2579. unsigned int stream_id,
  2580. unsigned int num_trbs,
  2581. struct urb *urb,
  2582. unsigned int td_index,
  2583. gfp_t mem_flags)
  2584. {
  2585. int ret;
  2586. struct urb_priv *urb_priv;
  2587. struct xhci_td *td;
  2588. struct xhci_ring *ep_ring;
  2589. struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2590. ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
  2591. if (!ep_ring) {
  2592. xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
  2593. stream_id);
  2594. return -EINVAL;
  2595. }
  2596. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  2597. num_trbs, mem_flags);
  2598. if (ret)
  2599. return ret;
  2600. urb_priv = urb->hcpriv;
  2601. td = &urb_priv->td[td_index];
  2602. INIT_LIST_HEAD(&td->td_list);
  2603. INIT_LIST_HEAD(&td->cancelled_td_list);
  2604. if (td_index == 0) {
  2605. ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
  2606. if (unlikely(ret))
  2607. return ret;
  2608. }
  2609. td->urb = urb;
  2610. /* Add this TD to the tail of the endpoint ring's TD list */
  2611. list_add_tail(&td->td_list, &ep_ring->td_list);
  2612. td->start_seg = ep_ring->enq_seg;
  2613. td->first_trb = ep_ring->enqueue;
  2614. return 0;
  2615. }
  2616. unsigned int count_trbs(u64 addr, u64 len)
  2617. {
  2618. unsigned int num_trbs;
  2619. num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
  2620. TRB_MAX_BUFF_SIZE);
  2621. if (num_trbs == 0)
  2622. num_trbs++;
  2623. return num_trbs;
  2624. }
  2625. static inline unsigned int count_trbs_needed(struct urb *urb)
  2626. {
  2627. return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
  2628. }
  2629. static unsigned int count_sg_trbs_needed(struct urb *urb)
  2630. {
  2631. struct scatterlist *sg;
  2632. unsigned int i, len, full_len, num_trbs = 0;
  2633. full_len = urb->transfer_buffer_length;
  2634. for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
  2635. len = sg_dma_len(sg);
  2636. num_trbs += count_trbs(sg_dma_address(sg), len);
  2637. len = min_t(unsigned int, len, full_len);
  2638. full_len -= len;
  2639. if (full_len == 0)
  2640. break;
  2641. }
  2642. return num_trbs;
  2643. }
  2644. static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
  2645. {
  2646. u64 addr, len;
  2647. addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
  2648. len = urb->iso_frame_desc[i].length;
  2649. return count_trbs(addr, len);
  2650. }
  2651. static void check_trb_math(struct urb *urb, int running_total)
  2652. {
  2653. if (unlikely(running_total != urb->transfer_buffer_length))
  2654. dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
  2655. "queued %#x (%d), asked for %#x (%d)\n",
  2656. __func__,
  2657. urb->ep->desc.bEndpointAddress,
  2658. running_total, running_total,
  2659. urb->transfer_buffer_length,
  2660. urb->transfer_buffer_length);
  2661. }
  2662. static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
  2663. unsigned int ep_index, unsigned int stream_id, int start_cycle,
  2664. struct xhci_generic_trb *start_trb)
  2665. {
  2666. /*
  2667. * Pass all the TRBs to the hardware at once and make sure this write
  2668. * isn't reordered.
  2669. */
  2670. wmb();
  2671. if (start_cycle)
  2672. start_trb->field[3] |= cpu_to_le32(start_cycle);
  2673. else
  2674. start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
  2675. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
  2676. }
  2677. static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
  2678. struct xhci_ep_ctx *ep_ctx)
  2679. {
  2680. int xhci_interval;
  2681. int ep_interval;
  2682. xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
  2683. ep_interval = urb->interval;
  2684. /* Convert to microframes */
  2685. if (urb->dev->speed == USB_SPEED_LOW ||
  2686. urb->dev->speed == USB_SPEED_FULL)
  2687. ep_interval *= 8;
  2688. /* FIXME change this to a warning and a suggestion to use the new API
  2689. * to set the polling interval (once the API is added).
  2690. */
  2691. if (xhci_interval != ep_interval) {
  2692. dev_dbg_ratelimited(&urb->dev->dev,
  2693. "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
  2694. ep_interval, ep_interval == 1 ? "" : "s",
  2695. xhci_interval, xhci_interval == 1 ? "" : "s");
  2696. urb->interval = xhci_interval;
  2697. /* Convert back to frames for LS/FS devices */
  2698. if (urb->dev->speed == USB_SPEED_LOW ||
  2699. urb->dev->speed == USB_SPEED_FULL)
  2700. urb->interval /= 8;
  2701. }
  2702. }
  2703. /*
  2704. * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
  2705. * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
  2706. * (comprised of sg list entries) can take several service intervals to
  2707. * transmit.
  2708. */
  2709. int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2710. struct urb *urb, int slot_id, unsigned int ep_index)
  2711. {
  2712. struct xhci_ep_ctx *ep_ctx;
  2713. ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
  2714. check_interval(xhci, urb, ep_ctx);
  2715. return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
  2716. }
  2717. /*
  2718. * For xHCI 1.0 host controllers, TD size is the number of max packet sized
  2719. * packets remaining in the TD (*not* including this TRB).
  2720. *
  2721. * Total TD packet count = total_packet_count =
  2722. * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
  2723. *
  2724. * Packets transferred up to and including this TRB = packets_transferred =
  2725. * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
  2726. *
  2727. * TD size = total_packet_count - packets_transferred
  2728. *
  2729. * For xHCI 0.96 and older, TD size field should be the remaining bytes
  2730. * including this TRB, right shifted by 10
  2731. *
  2732. * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
  2733. * This is taken care of in the TRB_TD_SIZE() macro
  2734. *
  2735. * The last TRB in a TD must have the TD size set to zero.
  2736. */
  2737. static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
  2738. int trb_buff_len, unsigned int td_total_len,
  2739. struct urb *urb, bool more_trbs_coming)
  2740. {
  2741. u32 maxp, total_packet_count;
  2742. /* MTK xHCI 0.96 contains some features from 1.0 */
  2743. if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
  2744. return ((td_total_len - transferred) >> 10);
  2745. /* One TRB with a zero-length data packet. */
  2746. if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
  2747. trb_buff_len == td_total_len)
  2748. return 0;
  2749. /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
  2750. if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
  2751. trb_buff_len = 0;
  2752. maxp = usb_endpoint_maxp(&urb->ep->desc);
  2753. total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
  2754. /* Queueing functions don't count the current TRB into transferred */
  2755. return (total_packet_count - ((transferred + trb_buff_len) / maxp));
  2756. }
  2757. static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
  2758. u32 *trb_buff_len, struct xhci_segment *seg)
  2759. {
  2760. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  2761. unsigned int unalign;
  2762. unsigned int max_pkt;
  2763. u32 new_buff_len;
  2764. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  2765. unalign = (enqd_len + *trb_buff_len) % max_pkt;
  2766. /* we got lucky, last normal TRB data on segment is packet aligned */
  2767. if (unalign == 0)
  2768. return 0;
  2769. xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
  2770. unalign, *trb_buff_len);
  2771. /* is the last nornal TRB alignable by splitting it */
  2772. if (*trb_buff_len > unalign) {
  2773. *trb_buff_len -= unalign;
  2774. xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
  2775. return 0;
  2776. }
  2777. /*
  2778. * We want enqd_len + trb_buff_len to sum up to a number aligned to
  2779. * number which is divisible by the endpoint's wMaxPacketSize. IOW:
  2780. * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
  2781. */
  2782. new_buff_len = max_pkt - (enqd_len % max_pkt);
  2783. if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
  2784. new_buff_len = (urb->transfer_buffer_length - enqd_len);
  2785. /* create a max max_pkt sized bounce buffer pointed to by last trb */
  2786. if (usb_urb_dir_out(urb)) {
  2787. sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
  2788. seg->bounce_buf, new_buff_len, enqd_len);
  2789. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2790. max_pkt, DMA_TO_DEVICE);
  2791. } else {
  2792. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2793. max_pkt, DMA_FROM_DEVICE);
  2794. }
  2795. if (dma_mapping_error(dev, seg->bounce_dma)) {
  2796. /* try without aligning. Some host controllers survive */
  2797. xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
  2798. return 0;
  2799. }
  2800. *trb_buff_len = new_buff_len;
  2801. seg->bounce_len = new_buff_len;
  2802. seg->bounce_offs = enqd_len;
  2803. xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
  2804. return 1;
  2805. }
  2806. /* This is very similar to what ehci-q.c qtd_fill() does */
  2807. int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2808. struct urb *urb, int slot_id, unsigned int ep_index)
  2809. {
  2810. struct xhci_ring *ring;
  2811. struct urb_priv *urb_priv;
  2812. struct xhci_td *td;
  2813. struct xhci_generic_trb *start_trb;
  2814. struct scatterlist *sg = NULL;
  2815. bool more_trbs_coming = true;
  2816. bool need_zero_pkt = false;
  2817. bool first_trb = true;
  2818. unsigned int num_trbs;
  2819. unsigned int start_cycle, num_sgs = 0;
  2820. unsigned int enqd_len, block_len, trb_buff_len, full_len;
  2821. int sent_len, ret;
  2822. u32 field, length_field, remainder;
  2823. u64 addr, send_addr;
  2824. ring = xhci_urb_to_transfer_ring(xhci, urb);
  2825. if (!ring)
  2826. return -EINVAL;
  2827. full_len = urb->transfer_buffer_length;
  2828. /* If we have scatter/gather list, we use it. */
  2829. if (urb->num_sgs) {
  2830. num_sgs = urb->num_mapped_sgs;
  2831. sg = urb->sg;
  2832. addr = (u64) sg_dma_address(sg);
  2833. block_len = sg_dma_len(sg);
  2834. num_trbs = count_sg_trbs_needed(urb);
  2835. } else {
  2836. num_trbs = count_trbs_needed(urb);
  2837. addr = (u64) urb->transfer_dma;
  2838. block_len = full_len;
  2839. }
  2840. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2841. ep_index, urb->stream_id,
  2842. num_trbs, urb, 0, mem_flags);
  2843. if (unlikely(ret < 0))
  2844. return ret;
  2845. urb_priv = urb->hcpriv;
  2846. /* Deal with URB_ZERO_PACKET - need one more td/trb */
  2847. if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
  2848. need_zero_pkt = true;
  2849. td = &urb_priv->td[0];
  2850. /*
  2851. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2852. * until we've finished creating all the other TRBs. The ring's cycle
  2853. * state may change as we enqueue the other TRBs, so save it too.
  2854. */
  2855. start_trb = &ring->enqueue->generic;
  2856. start_cycle = ring->cycle_state;
  2857. send_addr = addr;
  2858. /* Queue the TRBs, even if they are zero-length */
  2859. for (enqd_len = 0; first_trb || enqd_len < full_len;
  2860. enqd_len += trb_buff_len) {
  2861. field = TRB_TYPE(TRB_NORMAL);
  2862. /* TRB buffer should not cross 64KB boundaries */
  2863. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  2864. trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
  2865. if (enqd_len + trb_buff_len > full_len)
  2866. trb_buff_len = full_len - enqd_len;
  2867. /* Don't change the cycle bit of the first TRB until later */
  2868. if (first_trb) {
  2869. first_trb = false;
  2870. if (start_cycle == 0)
  2871. field |= TRB_CYCLE;
  2872. } else
  2873. field |= ring->cycle_state;
  2874. /* Chain all the TRBs together; clear the chain bit in the last
  2875. * TRB to indicate it's the last TRB in the chain.
  2876. */
  2877. if (enqd_len + trb_buff_len < full_len) {
  2878. field |= TRB_CHAIN;
  2879. if (trb_is_link(ring->enqueue + 1)) {
  2880. if (xhci_align_td(xhci, urb, enqd_len,
  2881. &trb_buff_len,
  2882. ring->enq_seg)) {
  2883. send_addr = ring->enq_seg->bounce_dma;
  2884. /* assuming TD won't span 2 segs */
  2885. td->bounce_seg = ring->enq_seg;
  2886. }
  2887. }
  2888. }
  2889. if (enqd_len + trb_buff_len >= full_len) {
  2890. field &= ~TRB_CHAIN;
  2891. field |= TRB_IOC;
  2892. more_trbs_coming = false;
  2893. td->last_trb = ring->enqueue;
  2894. }
  2895. /* Only set interrupt on short packet for IN endpoints */
  2896. if (usb_urb_dir_in(urb))
  2897. field |= TRB_ISP;
  2898. /* Set the TRB length, TD size, and interrupter fields. */
  2899. remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
  2900. full_len, urb, more_trbs_coming);
  2901. length_field = TRB_LEN(trb_buff_len) |
  2902. TRB_TD_SIZE(remainder) |
  2903. TRB_INTR_TARGET(0);
  2904. queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
  2905. lower_32_bits(send_addr),
  2906. upper_32_bits(send_addr),
  2907. length_field,
  2908. field);
  2909. addr += trb_buff_len;
  2910. sent_len = trb_buff_len;
  2911. while (sg && sent_len >= block_len) {
  2912. /* New sg entry */
  2913. --num_sgs;
  2914. sent_len -= block_len;
  2915. if (num_sgs != 0) {
  2916. sg = sg_next(sg);
  2917. block_len = sg_dma_len(sg);
  2918. addr = (u64) sg_dma_address(sg);
  2919. addr += sent_len;
  2920. }
  2921. }
  2922. block_len -= sent_len;
  2923. send_addr = addr;
  2924. }
  2925. if (need_zero_pkt) {
  2926. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2927. ep_index, urb->stream_id,
  2928. 1, urb, 1, mem_flags);
  2929. urb_priv->td[1].last_trb = ring->enqueue;
  2930. field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
  2931. queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
  2932. }
  2933. check_trb_math(urb, enqd_len);
  2934. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  2935. start_cycle, start_trb);
  2936. return 0;
  2937. }
  2938. /* Caller must have locked xhci->lock */
  2939. int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2940. struct urb *urb, int slot_id, unsigned int ep_index)
  2941. {
  2942. struct xhci_ring *ep_ring;
  2943. int num_trbs;
  2944. int ret;
  2945. struct usb_ctrlrequest *setup;
  2946. struct xhci_generic_trb *start_trb;
  2947. int start_cycle;
  2948. u32 field;
  2949. struct urb_priv *urb_priv;
  2950. struct xhci_td *td;
  2951. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  2952. if (!ep_ring)
  2953. return -EINVAL;
  2954. /*
  2955. * Need to copy setup packet into setup TRB, so we can't use the setup
  2956. * DMA address.
  2957. */
  2958. if (!urb->setup_packet)
  2959. return -EINVAL;
  2960. /* 1 TRB for setup, 1 for status */
  2961. num_trbs = 2;
  2962. /*
  2963. * Don't need to check if we need additional event data and normal TRBs,
  2964. * since data in control transfers will never get bigger than 16MB
  2965. * XXX: can we get a buffer that crosses 64KB boundaries?
  2966. */
  2967. if (urb->transfer_buffer_length > 0)
  2968. num_trbs++;
  2969. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2970. ep_index, urb->stream_id,
  2971. num_trbs, urb, 0, mem_flags);
  2972. if (ret < 0)
  2973. return ret;
  2974. urb_priv = urb->hcpriv;
  2975. td = &urb_priv->td[0];
  2976. /*
  2977. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2978. * until we've finished creating all the other TRBs. The ring's cycle
  2979. * state may change as we enqueue the other TRBs, so save it too.
  2980. */
  2981. start_trb = &ep_ring->enqueue->generic;
  2982. start_cycle = ep_ring->cycle_state;
  2983. /* Queue setup TRB - see section 6.4.1.2.1 */
  2984. /* FIXME better way to translate setup_packet into two u32 fields? */
  2985. setup = (struct usb_ctrlrequest *) urb->setup_packet;
  2986. field = 0;
  2987. field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
  2988. if (start_cycle == 0)
  2989. field |= 0x1;
  2990. /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
  2991. if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
  2992. if (urb->transfer_buffer_length > 0) {
  2993. if (setup->bRequestType & USB_DIR_IN)
  2994. field |= TRB_TX_TYPE(TRB_DATA_IN);
  2995. else
  2996. field |= TRB_TX_TYPE(TRB_DATA_OUT);
  2997. }
  2998. }
  2999. queue_trb(xhci, ep_ring, true,
  3000. setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
  3001. le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
  3002. TRB_LEN(8) | TRB_INTR_TARGET(0),
  3003. /* Immediate data in pointer */
  3004. field);
  3005. /* If there's data, queue data TRBs */
  3006. /* Only set interrupt on short packet for IN endpoints */
  3007. if (usb_urb_dir_in(urb))
  3008. field = TRB_ISP | TRB_TYPE(TRB_DATA);
  3009. else
  3010. field = TRB_TYPE(TRB_DATA);
  3011. if (urb->transfer_buffer_length > 0) {
  3012. u32 length_field, remainder;
  3013. remainder = xhci_td_remainder(xhci, 0,
  3014. urb->transfer_buffer_length,
  3015. urb->transfer_buffer_length,
  3016. urb, 1);
  3017. length_field = TRB_LEN(urb->transfer_buffer_length) |
  3018. TRB_TD_SIZE(remainder) |
  3019. TRB_INTR_TARGET(0);
  3020. if (setup->bRequestType & USB_DIR_IN)
  3021. field |= TRB_DIR_IN;
  3022. queue_trb(xhci, ep_ring, true,
  3023. lower_32_bits(urb->transfer_dma),
  3024. upper_32_bits(urb->transfer_dma),
  3025. length_field,
  3026. field | ep_ring->cycle_state);
  3027. }
  3028. /* Save the DMA address of the last TRB in the TD */
  3029. td->last_trb = ep_ring->enqueue;
  3030. /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
  3031. /* If the device sent data, the status stage is an OUT transfer */
  3032. if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
  3033. field = 0;
  3034. else
  3035. field = TRB_DIR_IN;
  3036. queue_trb(xhci, ep_ring, false,
  3037. 0,
  3038. 0,
  3039. TRB_INTR_TARGET(0),
  3040. /* Event on completion */
  3041. field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
  3042. giveback_first_trb(xhci, slot_id, ep_index, 0,
  3043. start_cycle, start_trb);
  3044. return 0;
  3045. }
  3046. /*
  3047. * The transfer burst count field of the isochronous TRB defines the number of
  3048. * bursts that are required to move all packets in this TD. Only SuperSpeed
  3049. * devices can burst up to bMaxBurst number of packets per service interval.
  3050. * This field is zero based, meaning a value of zero in the field means one
  3051. * burst. Basically, for everything but SuperSpeed devices, this field will be
  3052. * zero. Only xHCI 1.0 host controllers support this field.
  3053. */
  3054. static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
  3055. struct urb *urb, unsigned int total_packet_count)
  3056. {
  3057. unsigned int max_burst;
  3058. if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
  3059. return 0;
  3060. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3061. return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
  3062. }
  3063. /*
  3064. * Returns the number of packets in the last "burst" of packets. This field is
  3065. * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
  3066. * the last burst packet count is equal to the total number of packets in the
  3067. * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
  3068. * must contain (bMaxBurst + 1) number of packets, but the last burst can
  3069. * contain 1 to (bMaxBurst + 1) packets.
  3070. */
  3071. static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
  3072. struct urb *urb, unsigned int total_packet_count)
  3073. {
  3074. unsigned int max_burst;
  3075. unsigned int residue;
  3076. if (xhci->hci_version < 0x100)
  3077. return 0;
  3078. if (urb->dev->speed >= USB_SPEED_SUPER) {
  3079. /* bMaxBurst is zero based: 0 means 1 packet per burst */
  3080. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3081. residue = total_packet_count % (max_burst + 1);
  3082. /* If residue is zero, the last burst contains (max_burst + 1)
  3083. * number of packets, but the TLBPC field is zero-based.
  3084. */
  3085. if (residue == 0)
  3086. return max_burst;
  3087. return residue - 1;
  3088. }
  3089. if (total_packet_count == 0)
  3090. return 0;
  3091. return total_packet_count - 1;
  3092. }
  3093. /*
  3094. * Calculates Frame ID field of the isochronous TRB identifies the
  3095. * target frame that the Interval associated with this Isochronous
  3096. * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
  3097. *
  3098. * Returns actual frame id on success, negative value on error.
  3099. */
  3100. static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
  3101. struct urb *urb, int index)
  3102. {
  3103. int start_frame, ist, ret = 0;
  3104. int start_frame_id, end_frame_id, current_frame_id;
  3105. if (urb->dev->speed == USB_SPEED_LOW ||
  3106. urb->dev->speed == USB_SPEED_FULL)
  3107. start_frame = urb->start_frame + index * urb->interval;
  3108. else
  3109. start_frame = (urb->start_frame + index * urb->interval) >> 3;
  3110. /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
  3111. *
  3112. * If bit [3] of IST is cleared to '0', software can add a TRB no
  3113. * later than IST[2:0] Microframes before that TRB is scheduled to
  3114. * be executed.
  3115. * If bit [3] of IST is set to '1', software can add a TRB no later
  3116. * than IST[2:0] Frames before that TRB is scheduled to be executed.
  3117. */
  3118. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3119. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3120. ist <<= 3;
  3121. /* Software shall not schedule an Isoch TD with a Frame ID value that
  3122. * is less than the Start Frame ID or greater than the End Frame ID,
  3123. * where:
  3124. *
  3125. * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
  3126. * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
  3127. *
  3128. * Both the End Frame ID and Start Frame ID values are calculated
  3129. * in microframes. When software determines the valid Frame ID value;
  3130. * The End Frame ID value should be rounded down to the nearest Frame
  3131. * boundary, and the Start Frame ID value should be rounded up to the
  3132. * nearest Frame boundary.
  3133. */
  3134. current_frame_id = readl(&xhci->run_regs->microframe_index);
  3135. start_frame_id = roundup(current_frame_id + ist + 1, 8);
  3136. end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
  3137. start_frame &= 0x7ff;
  3138. start_frame_id = (start_frame_id >> 3) & 0x7ff;
  3139. end_frame_id = (end_frame_id >> 3) & 0x7ff;
  3140. xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
  3141. __func__, index, readl(&xhci->run_regs->microframe_index),
  3142. start_frame_id, end_frame_id, start_frame);
  3143. if (start_frame_id < end_frame_id) {
  3144. if (start_frame > end_frame_id ||
  3145. start_frame < start_frame_id)
  3146. ret = -EINVAL;
  3147. } else if (start_frame_id > end_frame_id) {
  3148. if ((start_frame > end_frame_id &&
  3149. start_frame < start_frame_id))
  3150. ret = -EINVAL;
  3151. } else {
  3152. ret = -EINVAL;
  3153. }
  3154. if (index == 0) {
  3155. if (ret == -EINVAL || start_frame == start_frame_id) {
  3156. start_frame = start_frame_id + 1;
  3157. if (urb->dev->speed == USB_SPEED_LOW ||
  3158. urb->dev->speed == USB_SPEED_FULL)
  3159. urb->start_frame = start_frame;
  3160. else
  3161. urb->start_frame = start_frame << 3;
  3162. ret = 0;
  3163. }
  3164. }
  3165. if (ret) {
  3166. xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
  3167. start_frame, current_frame_id, index,
  3168. start_frame_id, end_frame_id);
  3169. xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
  3170. return ret;
  3171. }
  3172. return start_frame;
  3173. }
  3174. /* This is for isoc transfer */
  3175. static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  3176. struct urb *urb, int slot_id, unsigned int ep_index)
  3177. {
  3178. struct xhci_ring *ep_ring;
  3179. struct urb_priv *urb_priv;
  3180. struct xhci_td *td;
  3181. int num_tds, trbs_per_td;
  3182. struct xhci_generic_trb *start_trb;
  3183. bool first_trb;
  3184. int start_cycle;
  3185. u32 field, length_field;
  3186. int running_total, trb_buff_len, td_len, td_remain_len, ret;
  3187. u64 start_addr, addr;
  3188. int i, j;
  3189. bool more_trbs_coming;
  3190. struct xhci_virt_ep *xep;
  3191. int frame_id;
  3192. xep = &xhci->devs[slot_id]->eps[ep_index];
  3193. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  3194. num_tds = urb->number_of_packets;
  3195. if (num_tds < 1) {
  3196. xhci_dbg(xhci, "Isoc URB with zero packets?\n");
  3197. return -EINVAL;
  3198. }
  3199. start_addr = (u64) urb->transfer_dma;
  3200. start_trb = &ep_ring->enqueue->generic;
  3201. start_cycle = ep_ring->cycle_state;
  3202. urb_priv = urb->hcpriv;
  3203. /* Queue the TRBs for each TD, even if they are zero-length */
  3204. for (i = 0; i < num_tds; i++) {
  3205. unsigned int total_pkt_count, max_pkt;
  3206. unsigned int burst_count, last_burst_pkt_count;
  3207. u32 sia_frame_id;
  3208. first_trb = true;
  3209. running_total = 0;
  3210. addr = start_addr + urb->iso_frame_desc[i].offset;
  3211. td_len = urb->iso_frame_desc[i].length;
  3212. td_remain_len = td_len;
  3213. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  3214. total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
  3215. /* A zero-length transfer still involves at least one packet. */
  3216. if (total_pkt_count == 0)
  3217. total_pkt_count++;
  3218. burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
  3219. last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
  3220. urb, total_pkt_count);
  3221. trbs_per_td = count_isoc_trbs_needed(urb, i);
  3222. ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
  3223. urb->stream_id, trbs_per_td, urb, i, mem_flags);
  3224. if (ret < 0) {
  3225. if (i == 0)
  3226. return ret;
  3227. goto cleanup;
  3228. }
  3229. td = &urb_priv->td[i];
  3230. /* use SIA as default, if frame id is used overwrite it */
  3231. sia_frame_id = TRB_SIA;
  3232. if (!(urb->transfer_flags & URB_ISO_ASAP) &&
  3233. HCC_CFC(xhci->hcc_params)) {
  3234. frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
  3235. if (frame_id >= 0)
  3236. sia_frame_id = TRB_FRAME_ID(frame_id);
  3237. }
  3238. /*
  3239. * Set isoc specific data for the first TRB in a TD.
  3240. * Prevent HW from getting the TRBs by keeping the cycle state
  3241. * inverted in the first TDs isoc TRB.
  3242. */
  3243. field = TRB_TYPE(TRB_ISOC) |
  3244. TRB_TLBPC(last_burst_pkt_count) |
  3245. sia_frame_id |
  3246. (i ? ep_ring->cycle_state : !start_cycle);
  3247. /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
  3248. if (!xep->use_extended_tbc)
  3249. field |= TRB_TBC(burst_count);
  3250. /* fill the rest of the TRB fields, and remaining normal TRBs */
  3251. for (j = 0; j < trbs_per_td; j++) {
  3252. u32 remainder = 0;
  3253. /* only first TRB is isoc, overwrite otherwise */
  3254. if (!first_trb)
  3255. field = TRB_TYPE(TRB_NORMAL) |
  3256. ep_ring->cycle_state;
  3257. /* Only set interrupt on short packet for IN EPs */
  3258. if (usb_urb_dir_in(urb))
  3259. field |= TRB_ISP;
  3260. /* Set the chain bit for all except the last TRB */
  3261. if (j < trbs_per_td - 1) {
  3262. more_trbs_coming = true;
  3263. field |= TRB_CHAIN;
  3264. } else {
  3265. more_trbs_coming = false;
  3266. td->last_trb = ep_ring->enqueue;
  3267. field |= TRB_IOC;
  3268. /* set BEI, except for the last TD */
  3269. if (xhci->hci_version >= 0x100 &&
  3270. !(xhci->quirks & XHCI_AVOID_BEI) &&
  3271. i < num_tds - 1)
  3272. field |= TRB_BEI;
  3273. }
  3274. /* Calculate TRB length */
  3275. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  3276. if (trb_buff_len > td_remain_len)
  3277. trb_buff_len = td_remain_len;
  3278. /* Set the TRB length, TD size, & interrupter fields. */
  3279. remainder = xhci_td_remainder(xhci, running_total,
  3280. trb_buff_len, td_len,
  3281. urb, more_trbs_coming);
  3282. length_field = TRB_LEN(trb_buff_len) |
  3283. TRB_INTR_TARGET(0);
  3284. /* xhci 1.1 with ETE uses TD Size field for TBC */
  3285. if (first_trb && xep->use_extended_tbc)
  3286. length_field |= TRB_TD_SIZE_TBC(burst_count);
  3287. else
  3288. length_field |= TRB_TD_SIZE(remainder);
  3289. first_trb = false;
  3290. queue_trb(xhci, ep_ring, more_trbs_coming,
  3291. lower_32_bits(addr),
  3292. upper_32_bits(addr),
  3293. length_field,
  3294. field);
  3295. running_total += trb_buff_len;
  3296. addr += trb_buff_len;
  3297. td_remain_len -= trb_buff_len;
  3298. }
  3299. /* Check TD length */
  3300. if (running_total != td_len) {
  3301. xhci_err(xhci, "ISOC TD length unmatch\n");
  3302. ret = -EINVAL;
  3303. goto cleanup;
  3304. }
  3305. }
  3306. /* store the next frame id */
  3307. if (HCC_CFC(xhci->hcc_params))
  3308. xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
  3309. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  3310. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  3311. usb_amd_quirk_pll_disable();
  3312. }
  3313. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
  3314. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  3315. start_cycle, start_trb);
  3316. return 0;
  3317. cleanup:
  3318. /* Clean up a partially enqueued isoc transfer. */
  3319. for (i--; i >= 0; i--)
  3320. list_del_init(&urb_priv->td[i].td_list);
  3321. /* Use the first TD as a temporary variable to turn the TDs we've queued
  3322. * into No-ops with a software-owned cycle bit. That way the hardware
  3323. * won't accidentally start executing bogus TDs when we partially
  3324. * overwrite them. td->first_trb and td->start_seg are already set.
  3325. */
  3326. urb_priv->td[0].last_trb = ep_ring->enqueue;
  3327. /* Every TRB except the first & last will have its cycle bit flipped. */
  3328. td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
  3329. /* Reset the ring enqueue back to the first TRB and its cycle bit. */
  3330. ep_ring->enqueue = urb_priv->td[0].first_trb;
  3331. ep_ring->enq_seg = urb_priv->td[0].start_seg;
  3332. ep_ring->cycle_state = start_cycle;
  3333. ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
  3334. usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
  3335. return ret;
  3336. }
  3337. /*
  3338. * Check transfer ring to guarantee there is enough room for the urb.
  3339. * Update ISO URB start_frame and interval.
  3340. * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
  3341. * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
  3342. * Contiguous Frame ID is not supported by HC.
  3343. */
  3344. int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
  3345. struct urb *urb, int slot_id, unsigned int ep_index)
  3346. {
  3347. struct xhci_virt_device *xdev;
  3348. struct xhci_ring *ep_ring;
  3349. struct xhci_ep_ctx *ep_ctx;
  3350. int start_frame;
  3351. int num_tds, num_trbs, i;
  3352. int ret;
  3353. struct xhci_virt_ep *xep;
  3354. int ist;
  3355. xdev = xhci->devs[slot_id];
  3356. xep = &xhci->devs[slot_id]->eps[ep_index];
  3357. ep_ring = xdev->eps[ep_index].ring;
  3358. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  3359. num_trbs = 0;
  3360. num_tds = urb->number_of_packets;
  3361. for (i = 0; i < num_tds; i++)
  3362. num_trbs += count_isoc_trbs_needed(urb, i);
  3363. /* Check the ring to guarantee there is enough room for the whole urb.
  3364. * Do not insert any td of the urb to the ring if the check failed.
  3365. */
  3366. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  3367. num_trbs, mem_flags);
  3368. if (ret)
  3369. return ret;
  3370. /*
  3371. * Check interval value. This should be done before we start to
  3372. * calculate the start frame value.
  3373. */
  3374. check_interval(xhci, urb, ep_ctx);
  3375. /* Calculate the start frame and put it in urb->start_frame. */
  3376. if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
  3377. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
  3378. urb->start_frame = xep->next_frame_id;
  3379. goto skip_start_over;
  3380. }
  3381. }
  3382. start_frame = readl(&xhci->run_regs->microframe_index);
  3383. start_frame &= 0x3fff;
  3384. /*
  3385. * Round up to the next frame and consider the time before trb really
  3386. * gets scheduled by hardare.
  3387. */
  3388. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3389. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3390. ist <<= 3;
  3391. start_frame += ist + XHCI_CFC_DELAY;
  3392. start_frame = roundup(start_frame, 8);
  3393. /*
  3394. * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
  3395. * is greate than 8 microframes.
  3396. */
  3397. if (urb->dev->speed == USB_SPEED_LOW ||
  3398. urb->dev->speed == USB_SPEED_FULL) {
  3399. start_frame = roundup(start_frame, urb->interval << 3);
  3400. urb->start_frame = start_frame >> 3;
  3401. } else {
  3402. start_frame = roundup(start_frame, urb->interval);
  3403. urb->start_frame = start_frame;
  3404. }
  3405. skip_start_over:
  3406. ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
  3407. return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
  3408. }
  3409. /**** Command Ring Operations ****/
  3410. /* Generic function for queueing a command TRB on the command ring.
  3411. * Check to make sure there's room on the command ring for one command TRB.
  3412. * Also check that there's room reserved for commands that must not fail.
  3413. * If this is a command that must not fail, meaning command_must_succeed = TRUE,
  3414. * then only check for the number of reserved spots.
  3415. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
  3416. * because the command event handler may want to resubmit a failed command.
  3417. */
  3418. static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3419. u32 field1, u32 field2,
  3420. u32 field3, u32 field4, bool command_must_succeed)
  3421. {
  3422. int reserved_trbs = xhci->cmd_ring_reserved_trbs;
  3423. int ret;
  3424. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  3425. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3426. xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
  3427. return -ESHUTDOWN;
  3428. }
  3429. if (!command_must_succeed)
  3430. reserved_trbs++;
  3431. ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
  3432. reserved_trbs, GFP_ATOMIC);
  3433. if (ret < 0) {
  3434. xhci_err(xhci, "ERR: No room for command on command ring\n");
  3435. if (command_must_succeed)
  3436. xhci_err(xhci, "ERR: Reserved TRB counting for "
  3437. "unfailable commands failed.\n");
  3438. return ret;
  3439. }
  3440. cmd->command_trb = xhci->cmd_ring->enqueue;
  3441. /* if there are no other commands queued we start the timeout timer */
  3442. if (list_empty(&xhci->cmd_list)) {
  3443. xhci->current_cmd = cmd;
  3444. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  3445. }
  3446. list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
  3447. queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
  3448. field4 | xhci->cmd_ring->cycle_state);
  3449. return 0;
  3450. }
  3451. /* Queue a slot enable or disable request on the command ring */
  3452. int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3453. u32 trb_type, u32 slot_id)
  3454. {
  3455. return queue_command(xhci, cmd, 0, 0, 0,
  3456. TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
  3457. }
  3458. /* Queue an address device command TRB */
  3459. int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3460. dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
  3461. {
  3462. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3463. upper_32_bits(in_ctx_ptr), 0,
  3464. TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
  3465. | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
  3466. }
  3467. int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3468. u32 field1, u32 field2, u32 field3, u32 field4)
  3469. {
  3470. return queue_command(xhci, cmd, field1, field2, field3, field4, false);
  3471. }
  3472. /* Queue a reset device command TRB */
  3473. int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3474. u32 slot_id)
  3475. {
  3476. return queue_command(xhci, cmd, 0, 0, 0,
  3477. TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
  3478. false);
  3479. }
  3480. /* Queue a configure endpoint command TRB */
  3481. int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
  3482. struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
  3483. u32 slot_id, bool command_must_succeed)
  3484. {
  3485. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3486. upper_32_bits(in_ctx_ptr), 0,
  3487. TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
  3488. command_must_succeed);
  3489. }
  3490. /* Queue an evaluate context command TRB */
  3491. int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3492. dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
  3493. {
  3494. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3495. upper_32_bits(in_ctx_ptr), 0,
  3496. TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
  3497. command_must_succeed);
  3498. }
  3499. /*
  3500. * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
  3501. * activity on an endpoint that is about to be suspended.
  3502. */
  3503. int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3504. int slot_id, unsigned int ep_index, int suspend)
  3505. {
  3506. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3507. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3508. u32 type = TRB_TYPE(TRB_STOP_RING);
  3509. u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
  3510. return queue_command(xhci, cmd, 0, 0, 0,
  3511. trb_slot_id | trb_ep_index | type | trb_suspend, false);
  3512. }
  3513. /* Set Transfer Ring Dequeue Pointer command */
  3514. void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
  3515. unsigned int slot_id, unsigned int ep_index,
  3516. struct xhci_dequeue_state *deq_state)
  3517. {
  3518. dma_addr_t addr;
  3519. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3520. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3521. u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
  3522. u32 trb_sct = 0;
  3523. u32 type = TRB_TYPE(TRB_SET_DEQ);
  3524. struct xhci_virt_ep *ep;
  3525. struct xhci_command *cmd;
  3526. int ret;
  3527. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  3528. "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
  3529. deq_state->new_deq_seg,
  3530. (unsigned long long)deq_state->new_deq_seg->dma,
  3531. deq_state->new_deq_ptr,
  3532. (unsigned long long)xhci_trb_virt_to_dma(
  3533. deq_state->new_deq_seg, deq_state->new_deq_ptr),
  3534. deq_state->new_cycle_state);
  3535. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  3536. deq_state->new_deq_ptr);
  3537. if (addr == 0) {
  3538. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3539. xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
  3540. deq_state->new_deq_seg, deq_state->new_deq_ptr);
  3541. return;
  3542. }
  3543. ep = &xhci->devs[slot_id]->eps[ep_index];
  3544. if ((ep->ep_state & SET_DEQ_PENDING)) {
  3545. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3546. xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
  3547. return;
  3548. }
  3549. /* This function gets called from contexts where it cannot sleep */
  3550. cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  3551. if (!cmd)
  3552. return;
  3553. ep->queued_deq_seg = deq_state->new_deq_seg;
  3554. ep->queued_deq_ptr = deq_state->new_deq_ptr;
  3555. if (deq_state->stream_id)
  3556. trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
  3557. ret = queue_command(xhci, cmd,
  3558. lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
  3559. upper_32_bits(addr), trb_stream_id,
  3560. trb_slot_id | trb_ep_index | type, false);
  3561. if (ret < 0) {
  3562. xhci_free_command(xhci, cmd);
  3563. return;
  3564. }
  3565. /* Stop the TD queueing code from ringing the doorbell until
  3566. * this command completes. The HC won't set the dequeue pointer
  3567. * if the ring is running, and ringing the doorbell starts the
  3568. * ring running.
  3569. */
  3570. ep->ep_state |= SET_DEQ_PENDING;
  3571. }
  3572. int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3573. int slot_id, unsigned int ep_index,
  3574. enum xhci_ep_reset_type reset_type)
  3575. {
  3576. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3577. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3578. u32 type = TRB_TYPE(TRB_RESET_EP);
  3579. if (reset_type == EP_SOFT_RESET)
  3580. type |= TRB_TSP;
  3581. return queue_command(xhci, cmd, 0, 0, 0,
  3582. trb_slot_id | trb_ep_index | type, false);
  3583. }