pch_udc.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/pci.h>
  9. #include <linux/delay.h>
  10. #include <linux/errno.h>
  11. #include <linux/list.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/usb/ch9.h>
  14. #include <linux/usb/gadget.h>
  15. #include <linux/gpio.h>
  16. #include <linux/irq.h>
  17. /* GPIO port for VBUS detecting */
  18. static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
  19. #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
  20. #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
  21. /* Address offset of Registers */
  22. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  23. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  24. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  25. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  26. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  27. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  28. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  29. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  30. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  31. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  32. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  33. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  34. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  35. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  36. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  37. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  38. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  39. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  40. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  41. /* Endpoint control register */
  42. /* Bit position */
  43. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  44. #define UDC_EPCTL_RRDY (1 << 9)
  45. #define UDC_EPCTL_CNAK (1 << 8)
  46. #define UDC_EPCTL_SNAK (1 << 7)
  47. #define UDC_EPCTL_NAK (1 << 6)
  48. #define UDC_EPCTL_P (1 << 3)
  49. #define UDC_EPCTL_F (1 << 1)
  50. #define UDC_EPCTL_S (1 << 0)
  51. #define UDC_EPCTL_ET_SHIFT 4
  52. /* Mask patern */
  53. #define UDC_EPCTL_ET_MASK 0x00000030
  54. /* Value for ET field */
  55. #define UDC_EPCTL_ET_CONTROL 0
  56. #define UDC_EPCTL_ET_ISO 1
  57. #define UDC_EPCTL_ET_BULK 2
  58. #define UDC_EPCTL_ET_INTERRUPT 3
  59. /* Endpoint status register */
  60. /* Bit position */
  61. #define UDC_EPSTS_XFERDONE (1 << 27)
  62. #define UDC_EPSTS_RSS (1 << 26)
  63. #define UDC_EPSTS_RCS (1 << 25)
  64. #define UDC_EPSTS_TXEMPTY (1 << 24)
  65. #define UDC_EPSTS_TDC (1 << 10)
  66. #define UDC_EPSTS_HE (1 << 9)
  67. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  68. #define UDC_EPSTS_BNA (1 << 7)
  69. #define UDC_EPSTS_IN (1 << 6)
  70. #define UDC_EPSTS_OUT_SHIFT 4
  71. /* Mask patern */
  72. #define UDC_EPSTS_OUT_MASK 0x00000030
  73. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  74. /* Value for OUT field */
  75. #define UDC_EPSTS_OUT_SETUP 2
  76. #define UDC_EPSTS_OUT_DATA 1
  77. /* Device configuration register */
  78. /* Bit position */
  79. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  80. #define UDC_DEVCFG_SP (1 << 3)
  81. /* SPD Valee */
  82. #define UDC_DEVCFG_SPD_HS 0x0
  83. #define UDC_DEVCFG_SPD_FS 0x1
  84. #define UDC_DEVCFG_SPD_LS 0x2
  85. /* Device control register */
  86. /* Bit position */
  87. #define UDC_DEVCTL_THLEN_SHIFT 24
  88. #define UDC_DEVCTL_BRLEN_SHIFT 16
  89. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  90. #define UDC_DEVCTL_SD (1 << 10)
  91. #define UDC_DEVCTL_MODE (1 << 9)
  92. #define UDC_DEVCTL_BREN (1 << 8)
  93. #define UDC_DEVCTL_THE (1 << 7)
  94. #define UDC_DEVCTL_DU (1 << 4)
  95. #define UDC_DEVCTL_TDE (1 << 3)
  96. #define UDC_DEVCTL_RDE (1 << 2)
  97. #define UDC_DEVCTL_RES (1 << 0)
  98. /* Device status register */
  99. /* Bit position */
  100. #define UDC_DEVSTS_TS_SHIFT 18
  101. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  102. #define UDC_DEVSTS_ALT_SHIFT 8
  103. #define UDC_DEVSTS_INTF_SHIFT 4
  104. #define UDC_DEVSTS_CFG_SHIFT 0
  105. /* Mask patern */
  106. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  107. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  108. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  109. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  110. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  111. /* value for maximum speed for SPEED field */
  112. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  113. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  114. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  115. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  116. /* Device irq register */
  117. /* Bit position */
  118. #define UDC_DEVINT_RWKP (1 << 7)
  119. #define UDC_DEVINT_ENUM (1 << 6)
  120. #define UDC_DEVINT_SOF (1 << 5)
  121. #define UDC_DEVINT_US (1 << 4)
  122. #define UDC_DEVINT_UR (1 << 3)
  123. #define UDC_DEVINT_ES (1 << 2)
  124. #define UDC_DEVINT_SI (1 << 1)
  125. #define UDC_DEVINT_SC (1 << 0)
  126. /* Mask patern */
  127. #define UDC_DEVINT_MSK 0x7f
  128. /* Endpoint irq register */
  129. /* Bit position */
  130. #define UDC_EPINT_IN_SHIFT 0
  131. #define UDC_EPINT_OUT_SHIFT 16
  132. #define UDC_EPINT_IN_EP0 (1 << 0)
  133. #define UDC_EPINT_OUT_EP0 (1 << 16)
  134. /* Mask patern */
  135. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  136. /* UDC_CSR_BUSY Status register */
  137. /* Bit position */
  138. #define UDC_CSR_BUSY (1 << 0)
  139. /* SOFT RESET register */
  140. /* Bit position */
  141. #define UDC_PSRST (1 << 1)
  142. #define UDC_SRST (1 << 0)
  143. /* USB_DEVICE endpoint register */
  144. /* Bit position */
  145. #define UDC_CSR_NE_NUM_SHIFT 0
  146. #define UDC_CSR_NE_DIR_SHIFT 4
  147. #define UDC_CSR_NE_TYPE_SHIFT 5
  148. #define UDC_CSR_NE_CFG_SHIFT 7
  149. #define UDC_CSR_NE_INTF_SHIFT 11
  150. #define UDC_CSR_NE_ALT_SHIFT 15
  151. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  152. /* Mask patern */
  153. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  154. #define UDC_CSR_NE_DIR_MASK 0x00000010
  155. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  156. #define UDC_CSR_NE_CFG_MASK 0x00000780
  157. #define UDC_CSR_NE_INTF_MASK 0x00007800
  158. #define UDC_CSR_NE_ALT_MASK 0x00078000
  159. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  160. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  161. #define PCH_UDC_EPINT(in, num)\
  162. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  163. /* Index of endpoint */
  164. #define UDC_EP0IN_IDX 0
  165. #define UDC_EP0OUT_IDX 1
  166. #define UDC_EPIN_IDX(ep) (ep * 2)
  167. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  168. #define PCH_UDC_EP0 0
  169. #define PCH_UDC_EP1 1
  170. #define PCH_UDC_EP2 2
  171. #define PCH_UDC_EP3 3
  172. /* Number of endpoint */
  173. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  174. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  175. /* Length Value */
  176. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  177. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  178. /* Value of EP Buffer Size */
  179. #define UDC_EP0IN_BUFF_SIZE 16
  180. #define UDC_EPIN_BUFF_SIZE 256
  181. #define UDC_EP0OUT_BUFF_SIZE 16
  182. #define UDC_EPOUT_BUFF_SIZE 256
  183. /* Value of EP maximum packet size */
  184. #define UDC_EP0IN_MAX_PKT_SIZE 64
  185. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  186. #define UDC_BULK_MAX_PKT_SIZE 512
  187. /* DMA */
  188. #define DMA_DIR_RX 1 /* DMA for data receive */
  189. #define DMA_DIR_TX 2 /* DMA for data transmit */
  190. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  191. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  192. /**
  193. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  194. * for data
  195. * @status: Status quadlet
  196. * @reserved: Reserved
  197. * @dataptr: Buffer descriptor
  198. * @next: Next descriptor
  199. */
  200. struct pch_udc_data_dma_desc {
  201. u32 status;
  202. u32 reserved;
  203. u32 dataptr;
  204. u32 next;
  205. };
  206. /**
  207. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  208. * for control data
  209. * @status: Status
  210. * @reserved: Reserved
  211. * @data12: First setup word
  212. * @data34: Second setup word
  213. */
  214. struct pch_udc_stp_dma_desc {
  215. u32 status;
  216. u32 reserved;
  217. struct usb_ctrlrequest request;
  218. } __attribute((packed));
  219. /* DMA status definitions */
  220. /* Buffer status */
  221. #define PCH_UDC_BUFF_STS 0xC0000000
  222. #define PCH_UDC_BS_HST_RDY 0x00000000
  223. #define PCH_UDC_BS_DMA_BSY 0x40000000
  224. #define PCH_UDC_BS_DMA_DONE 0x80000000
  225. #define PCH_UDC_BS_HST_BSY 0xC0000000
  226. /* Rx/Tx Status */
  227. #define PCH_UDC_RXTX_STS 0x30000000
  228. #define PCH_UDC_RTS_SUCC 0x00000000
  229. #define PCH_UDC_RTS_DESERR 0x10000000
  230. #define PCH_UDC_RTS_BUFERR 0x30000000
  231. /* Last Descriptor Indication */
  232. #define PCH_UDC_DMA_LAST 0x08000000
  233. /* Number of Rx/Tx Bytes Mask */
  234. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  235. /**
  236. * struct pch_udc_cfg_data - Structure to hold current configuration
  237. * and interface information
  238. * @cur_cfg: current configuration in use
  239. * @cur_intf: current interface in use
  240. * @cur_alt: current alt interface in use
  241. */
  242. struct pch_udc_cfg_data {
  243. u16 cur_cfg;
  244. u16 cur_intf;
  245. u16 cur_alt;
  246. };
  247. /**
  248. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  249. * @ep: embedded ep request
  250. * @td_stp_phys: for setup request
  251. * @td_data_phys: for data request
  252. * @td_stp: for setup request
  253. * @td_data: for data request
  254. * @dev: reference to device struct
  255. * @offset_addr: offset address of ep register
  256. * @desc: for this ep
  257. * @queue: queue for requests
  258. * @num: endpoint number
  259. * @in: endpoint is IN
  260. * @halted: endpoint halted?
  261. * @epsts: Endpoint status
  262. */
  263. struct pch_udc_ep {
  264. struct usb_ep ep;
  265. dma_addr_t td_stp_phys;
  266. dma_addr_t td_data_phys;
  267. struct pch_udc_stp_dma_desc *td_stp;
  268. struct pch_udc_data_dma_desc *td_data;
  269. struct pch_udc_dev *dev;
  270. unsigned long offset_addr;
  271. struct list_head queue;
  272. unsigned num:5,
  273. in:1,
  274. halted:1;
  275. unsigned long epsts;
  276. };
  277. /**
  278. * struct pch_vbus_gpio_data - Structure holding GPIO informaton
  279. * for detecting VBUS
  280. * @port: gpio port number
  281. * @intr: gpio interrupt number
  282. * @irq_work_fall Structure for WorkQueue
  283. * @irq_work_rise Structure for WorkQueue
  284. */
  285. struct pch_vbus_gpio_data {
  286. int port;
  287. int intr;
  288. struct work_struct irq_work_fall;
  289. struct work_struct irq_work_rise;
  290. };
  291. /**
  292. * struct pch_udc_dev - Structure holding complete information
  293. * of the PCH USB device
  294. * @gadget: gadget driver data
  295. * @driver: reference to gadget driver bound
  296. * @pdev: reference to the PCI device
  297. * @ep: array of endpoints
  298. * @lock: protects all state
  299. * @stall: stall requested
  300. * @prot_stall: protcol stall requested
  301. * @registered: driver registered with system
  302. * @suspended: driver in suspended state
  303. * @connected: gadget driver associated
  304. * @vbus_session: required vbus_session state
  305. * @set_cfg_not_acked: pending acknowledgement 4 setup
  306. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  307. * @data_requests: DMA pool for data requests
  308. * @stp_requests: DMA pool for setup requests
  309. * @dma_addr: DMA pool for received
  310. * @setup_data: Received setup data
  311. * @base_addr: for mapped device memory
  312. * @cfg_data: current cfg, intf, and alt in use
  313. * @vbus_gpio: GPIO informaton for detecting VBUS
  314. */
  315. struct pch_udc_dev {
  316. struct usb_gadget gadget;
  317. struct usb_gadget_driver *driver;
  318. struct pci_dev *pdev;
  319. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  320. spinlock_t lock; /* protects all state */
  321. unsigned
  322. stall:1,
  323. prot_stall:1,
  324. suspended:1,
  325. connected:1,
  326. vbus_session:1,
  327. set_cfg_not_acked:1,
  328. waiting_zlp_ack:1;
  329. struct dma_pool *data_requests;
  330. struct dma_pool *stp_requests;
  331. dma_addr_t dma_addr;
  332. struct usb_ctrlrequest setup_data;
  333. void __iomem *base_addr;
  334. struct pch_udc_cfg_data cfg_data;
  335. struct pch_vbus_gpio_data vbus_gpio;
  336. };
  337. #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
  338. #define PCH_UDC_PCI_BAR_QUARK_X1000 0
  339. #define PCH_UDC_PCI_BAR 1
  340. #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939
  341. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  342. #define PCI_VENDOR_ID_ROHM 0x10DB
  343. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  344. #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
  345. static const char ep0_string[] = "ep0in";
  346. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  347. static bool speed_fs;
  348. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  349. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  350. /**
  351. * struct pch_udc_request - Structure holding a PCH USB device request packet
  352. * @req: embedded ep request
  353. * @td_data_phys: phys. address
  354. * @td_data: first dma desc. of chain
  355. * @td_data_last: last dma desc. of chain
  356. * @queue: associated queue
  357. * @dma_going: DMA in progress for request
  358. * @dma_mapped: DMA memory mapped for request
  359. * @dma_done: DMA completed for request
  360. * @chain_len: chain length
  361. * @buf: Buffer memory for align adjustment
  362. * @dma: DMA memory for align adjustment
  363. */
  364. struct pch_udc_request {
  365. struct usb_request req;
  366. dma_addr_t td_data_phys;
  367. struct pch_udc_data_dma_desc *td_data;
  368. struct pch_udc_data_dma_desc *td_data_last;
  369. struct list_head queue;
  370. unsigned dma_going:1,
  371. dma_mapped:1,
  372. dma_done:1;
  373. unsigned chain_len;
  374. void *buf;
  375. dma_addr_t dma;
  376. };
  377. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  378. {
  379. return ioread32(dev->base_addr + reg);
  380. }
  381. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  382. unsigned long val, unsigned long reg)
  383. {
  384. iowrite32(val, dev->base_addr + reg);
  385. }
  386. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  387. unsigned long reg,
  388. unsigned long bitmask)
  389. {
  390. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  391. }
  392. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  393. unsigned long reg,
  394. unsigned long bitmask)
  395. {
  396. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  397. }
  398. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  399. {
  400. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  401. }
  402. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  403. unsigned long val, unsigned long reg)
  404. {
  405. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  406. }
  407. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  408. unsigned long reg,
  409. unsigned long bitmask)
  410. {
  411. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  412. }
  413. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  414. unsigned long reg,
  415. unsigned long bitmask)
  416. {
  417. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  418. }
  419. /**
  420. * pch_udc_csr_busy() - Wait till idle.
  421. * @dev: Reference to pch_udc_dev structure
  422. */
  423. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  424. {
  425. unsigned int count = 200;
  426. /* Wait till idle */
  427. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  428. && --count)
  429. cpu_relax();
  430. if (!count)
  431. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  432. }
  433. /**
  434. * pch_udc_write_csr() - Write the command and status registers.
  435. * @dev: Reference to pch_udc_dev structure
  436. * @val: value to be written to CSR register
  437. * @addr: address of CSR register
  438. */
  439. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  440. unsigned int ep)
  441. {
  442. unsigned long reg = PCH_UDC_CSR(ep);
  443. pch_udc_csr_busy(dev); /* Wait till idle */
  444. pch_udc_writel(dev, val, reg);
  445. pch_udc_csr_busy(dev); /* Wait till idle */
  446. }
  447. /**
  448. * pch_udc_read_csr() - Read the command and status registers.
  449. * @dev: Reference to pch_udc_dev structure
  450. * @addr: address of CSR register
  451. *
  452. * Return codes: content of CSR register
  453. */
  454. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  455. {
  456. unsigned long reg = PCH_UDC_CSR(ep);
  457. pch_udc_csr_busy(dev); /* Wait till idle */
  458. pch_udc_readl(dev, reg); /* Dummy read */
  459. pch_udc_csr_busy(dev); /* Wait till idle */
  460. return pch_udc_readl(dev, reg);
  461. }
  462. /**
  463. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  464. * @dev: Reference to pch_udc_dev structure
  465. */
  466. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  467. {
  468. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  469. mdelay(1);
  470. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  471. }
  472. /**
  473. * pch_udc_get_frame() - Get the current frame from device status register
  474. * @dev: Reference to pch_udc_dev structure
  475. * Retern current frame
  476. */
  477. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  478. {
  479. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  480. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  481. }
  482. /**
  483. * pch_udc_clear_selfpowered() - Clear the self power control
  484. * @dev: Reference to pch_udc_regs structure
  485. */
  486. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  487. {
  488. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  489. }
  490. /**
  491. * pch_udc_set_selfpowered() - Set the self power control
  492. * @dev: Reference to pch_udc_regs structure
  493. */
  494. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  495. {
  496. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  497. }
  498. /**
  499. * pch_udc_set_disconnect() - Set the disconnect status.
  500. * @dev: Reference to pch_udc_regs structure
  501. */
  502. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  503. {
  504. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  505. }
  506. /**
  507. * pch_udc_clear_disconnect() - Clear the disconnect status.
  508. * @dev: Reference to pch_udc_regs structure
  509. */
  510. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  511. {
  512. /* Clear the disconnect */
  513. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  514. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  515. mdelay(1);
  516. /* Resume USB signalling */
  517. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  518. }
  519. /**
  520. * pch_udc_reconnect() - This API initializes usb device controller,
  521. * and clear the disconnect status.
  522. * @dev: Reference to pch_udc_regs structure
  523. */
  524. static void pch_udc_init(struct pch_udc_dev *dev);
  525. static void pch_udc_reconnect(struct pch_udc_dev *dev)
  526. {
  527. pch_udc_init(dev);
  528. /* enable device interrupts */
  529. /* pch_udc_enable_interrupts() */
  530. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
  531. UDC_DEVINT_UR | UDC_DEVINT_ENUM);
  532. /* Clear the disconnect */
  533. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  534. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  535. mdelay(1);
  536. /* Resume USB signalling */
  537. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  538. }
  539. /**
  540. * pch_udc_vbus_session() - set or clearr the disconnect status.
  541. * @dev: Reference to pch_udc_regs structure
  542. * @is_active: Parameter specifying the action
  543. * 0: indicating VBUS power is ending
  544. * !0: indicating VBUS power is starting
  545. */
  546. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  547. int is_active)
  548. {
  549. if (is_active) {
  550. pch_udc_reconnect(dev);
  551. dev->vbus_session = 1;
  552. } else {
  553. if (dev->driver && dev->driver->disconnect) {
  554. spin_lock(&dev->lock);
  555. dev->driver->disconnect(&dev->gadget);
  556. spin_unlock(&dev->lock);
  557. }
  558. pch_udc_set_disconnect(dev);
  559. dev->vbus_session = 0;
  560. }
  561. }
  562. /**
  563. * pch_udc_ep_set_stall() - Set the stall of endpoint
  564. * @ep: Reference to structure of type pch_udc_ep_regs
  565. */
  566. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  567. {
  568. if (ep->in) {
  569. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  570. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  571. } else {
  572. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  573. }
  574. }
  575. /**
  576. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  577. * @ep: Reference to structure of type pch_udc_ep_regs
  578. */
  579. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  580. {
  581. /* Clear the stall */
  582. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  583. /* Clear NAK by writing CNAK */
  584. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  585. }
  586. /**
  587. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  588. * @ep: Reference to structure of type pch_udc_ep_regs
  589. * @type: Type of endpoint
  590. */
  591. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  592. u8 type)
  593. {
  594. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  595. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  596. }
  597. /**
  598. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  599. * @ep: Reference to structure of type pch_udc_ep_regs
  600. * @buf_size: The buffer word size
  601. */
  602. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  603. u32 buf_size, u32 ep_in)
  604. {
  605. u32 data;
  606. if (ep_in) {
  607. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  608. data = (data & 0xffff0000) | (buf_size & 0xffff);
  609. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  610. } else {
  611. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  612. data = (buf_size << 16) | (data & 0xffff);
  613. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  614. }
  615. }
  616. /**
  617. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  618. * @ep: Reference to structure of type pch_udc_ep_regs
  619. * @pkt_size: The packet byte size
  620. */
  621. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  622. {
  623. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  624. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  625. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  626. }
  627. /**
  628. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  629. * @ep: Reference to structure of type pch_udc_ep_regs
  630. * @addr: Address of the register
  631. */
  632. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  633. {
  634. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  635. }
  636. /**
  637. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  638. * @ep: Reference to structure of type pch_udc_ep_regs
  639. * @addr: Address of the register
  640. */
  641. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  642. {
  643. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  644. }
  645. /**
  646. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  647. * @ep: Reference to structure of type pch_udc_ep_regs
  648. */
  649. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  650. {
  651. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  652. }
  653. /**
  654. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  655. * @ep: Reference to structure of type pch_udc_ep_regs
  656. */
  657. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  658. {
  659. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  660. }
  661. /**
  662. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  663. * @ep: Reference to structure of type pch_udc_ep_regs
  664. */
  665. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  666. {
  667. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  668. }
  669. /**
  670. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  671. * register depending on the direction specified
  672. * @dev: Reference to structure of type pch_udc_regs
  673. * @dir: whether Tx or Rx
  674. * DMA_DIR_RX: Receive
  675. * DMA_DIR_TX: Transmit
  676. */
  677. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  678. {
  679. if (dir == DMA_DIR_RX)
  680. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  681. else if (dir == DMA_DIR_TX)
  682. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  683. }
  684. /**
  685. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  686. * register depending on the direction specified
  687. * @dev: Reference to structure of type pch_udc_regs
  688. * @dir: Whether Tx or Rx
  689. * DMA_DIR_RX: Receive
  690. * DMA_DIR_TX: Transmit
  691. */
  692. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  693. {
  694. if (dir == DMA_DIR_RX)
  695. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  696. else if (dir == DMA_DIR_TX)
  697. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  698. }
  699. /**
  700. * pch_udc_set_csr_done() - Set the device control register
  701. * CSR done field (bit 13)
  702. * @dev: reference to structure of type pch_udc_regs
  703. */
  704. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  705. {
  706. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  707. }
  708. /**
  709. * pch_udc_disable_interrupts() - Disables the specified interrupts
  710. * @dev: Reference to structure of type pch_udc_regs
  711. * @mask: Mask to disable interrupts
  712. */
  713. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  714. u32 mask)
  715. {
  716. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  717. }
  718. /**
  719. * pch_udc_enable_interrupts() - Enable the specified interrupts
  720. * @dev: Reference to structure of type pch_udc_regs
  721. * @mask: Mask to enable interrupts
  722. */
  723. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  724. u32 mask)
  725. {
  726. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  727. }
  728. /**
  729. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  730. * @dev: Reference to structure of type pch_udc_regs
  731. * @mask: Mask to disable interrupts
  732. */
  733. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  734. u32 mask)
  735. {
  736. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  737. }
  738. /**
  739. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  740. * @dev: Reference to structure of type pch_udc_regs
  741. * @mask: Mask to enable interrupts
  742. */
  743. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  744. u32 mask)
  745. {
  746. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  747. }
  748. /**
  749. * pch_udc_read_device_interrupts() - Read the device interrupts
  750. * @dev: Reference to structure of type pch_udc_regs
  751. * Retern The device interrupts
  752. */
  753. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  754. {
  755. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  756. }
  757. /**
  758. * pch_udc_write_device_interrupts() - Write device interrupts
  759. * @dev: Reference to structure of type pch_udc_regs
  760. * @val: The value to be written to interrupt register
  761. */
  762. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  763. u32 val)
  764. {
  765. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  766. }
  767. /**
  768. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  769. * @dev: Reference to structure of type pch_udc_regs
  770. * Retern The endpoint interrupt
  771. */
  772. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  773. {
  774. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  775. }
  776. /**
  777. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  778. * @dev: Reference to structure of type pch_udc_regs
  779. * @val: The value to be written to interrupt register
  780. */
  781. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  782. u32 val)
  783. {
  784. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  785. }
  786. /**
  787. * pch_udc_read_device_status() - Read the device status
  788. * @dev: Reference to structure of type pch_udc_regs
  789. * Retern The device status
  790. */
  791. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  792. {
  793. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  794. }
  795. /**
  796. * pch_udc_read_ep_control() - Read the endpoint control
  797. * @ep: Reference to structure of type pch_udc_ep_regs
  798. * Retern The endpoint control register value
  799. */
  800. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  801. {
  802. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  803. }
  804. /**
  805. * pch_udc_clear_ep_control() - Clear the endpoint control register
  806. * @ep: Reference to structure of type pch_udc_ep_regs
  807. * Retern The endpoint control register value
  808. */
  809. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  810. {
  811. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  812. }
  813. /**
  814. * pch_udc_read_ep_status() - Read the endpoint status
  815. * @ep: Reference to structure of type pch_udc_ep_regs
  816. * Retern The endpoint status
  817. */
  818. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  819. {
  820. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  821. }
  822. /**
  823. * pch_udc_clear_ep_status() - Clear the endpoint status
  824. * @ep: Reference to structure of type pch_udc_ep_regs
  825. * @stat: Endpoint status
  826. */
  827. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  828. u32 stat)
  829. {
  830. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  831. }
  832. /**
  833. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  834. * of the endpoint control register
  835. * @ep: Reference to structure of type pch_udc_ep_regs
  836. */
  837. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  838. {
  839. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  840. }
  841. /**
  842. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  843. * of the endpoint control register
  844. * @ep: reference to structure of type pch_udc_ep_regs
  845. */
  846. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  847. {
  848. unsigned int loopcnt = 0;
  849. struct pch_udc_dev *dev = ep->dev;
  850. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  851. return;
  852. if (!ep->in) {
  853. loopcnt = 10000;
  854. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  855. --loopcnt)
  856. udelay(5);
  857. if (!loopcnt)
  858. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  859. __func__);
  860. }
  861. loopcnt = 10000;
  862. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  863. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  864. udelay(5);
  865. }
  866. if (!loopcnt)
  867. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  868. __func__, ep->num, (ep->in ? "in" : "out"));
  869. }
  870. /**
  871. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  872. * @ep: reference to structure of type pch_udc_ep_regs
  873. * @dir: direction of endpoint
  874. * 0: endpoint is OUT
  875. * !0: endpoint is IN
  876. */
  877. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  878. {
  879. if (dir) { /* IN ep */
  880. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  881. return;
  882. }
  883. }
  884. /**
  885. * pch_udc_ep_enable() - This api enables endpoint
  886. * @regs: Reference to structure pch_udc_ep_regs
  887. * @desc: endpoint descriptor
  888. */
  889. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  890. struct pch_udc_cfg_data *cfg,
  891. const struct usb_endpoint_descriptor *desc)
  892. {
  893. u32 val = 0;
  894. u32 buff_size = 0;
  895. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  896. if (ep->in)
  897. buff_size = UDC_EPIN_BUFF_SIZE;
  898. else
  899. buff_size = UDC_EPOUT_BUFF_SIZE;
  900. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  901. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  902. pch_udc_ep_set_nak(ep);
  903. pch_udc_ep_fifo_flush(ep, ep->in);
  904. /* Configure the endpoint */
  905. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  906. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  907. UDC_CSR_NE_TYPE_SHIFT) |
  908. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  909. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  910. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  911. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  912. if (ep->in)
  913. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  914. else
  915. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  916. }
  917. /**
  918. * pch_udc_ep_disable() - This api disables endpoint
  919. * @regs: Reference to structure pch_udc_ep_regs
  920. */
  921. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  922. {
  923. if (ep->in) {
  924. /* flush the fifo */
  925. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  926. /* set NAK */
  927. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  928. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  929. } else {
  930. /* set NAK */
  931. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  932. }
  933. /* reset desc pointer */
  934. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  935. }
  936. /**
  937. * pch_udc_wait_ep_stall() - Wait EP stall.
  938. * @dev: Reference to pch_udc_dev structure
  939. */
  940. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  941. {
  942. unsigned int count = 10000;
  943. /* Wait till idle */
  944. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  945. udelay(5);
  946. if (!count)
  947. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  948. }
  949. /**
  950. * pch_udc_init() - This API initializes usb device controller
  951. * @dev: Rreference to pch_udc_regs structure
  952. */
  953. static void pch_udc_init(struct pch_udc_dev *dev)
  954. {
  955. if (NULL == dev) {
  956. pr_err("%s: Invalid address\n", __func__);
  957. return;
  958. }
  959. /* Soft Reset and Reset PHY */
  960. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  961. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  962. mdelay(1);
  963. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  964. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  965. mdelay(1);
  966. /* mask and clear all device interrupts */
  967. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  968. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  969. /* mask and clear all ep interrupts */
  970. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  971. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  972. /* enable dynamic CSR programmingi, self powered and device speed */
  973. if (speed_fs)
  974. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  975. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  976. else /* defaul high speed */
  977. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  978. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  979. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  980. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  981. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  982. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  983. UDC_DEVCTL_THE);
  984. }
  985. /**
  986. * pch_udc_exit() - This API exit usb device controller
  987. * @dev: Reference to pch_udc_regs structure
  988. */
  989. static void pch_udc_exit(struct pch_udc_dev *dev)
  990. {
  991. /* mask all device interrupts */
  992. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  993. /* mask all ep interrupts */
  994. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  995. /* put device in disconnected state */
  996. pch_udc_set_disconnect(dev);
  997. }
  998. /**
  999. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  1000. * @gadget: Reference to the gadget driver
  1001. *
  1002. * Return codes:
  1003. * 0: Success
  1004. * -EINVAL: If the gadget passed is NULL
  1005. */
  1006. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  1007. {
  1008. struct pch_udc_dev *dev;
  1009. if (!gadget)
  1010. return -EINVAL;
  1011. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1012. return pch_udc_get_frame(dev);
  1013. }
  1014. /**
  1015. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  1016. * @gadget: Reference to the gadget driver
  1017. *
  1018. * Return codes:
  1019. * 0: Success
  1020. * -EINVAL: If the gadget passed is NULL
  1021. */
  1022. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1023. {
  1024. struct pch_udc_dev *dev;
  1025. unsigned long flags;
  1026. if (!gadget)
  1027. return -EINVAL;
  1028. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1029. spin_lock_irqsave(&dev->lock, flags);
  1030. pch_udc_rmt_wakeup(dev);
  1031. spin_unlock_irqrestore(&dev->lock, flags);
  1032. return 0;
  1033. }
  1034. /**
  1035. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1036. * is self powered or not
  1037. * @gadget: Reference to the gadget driver
  1038. * @value: Specifies self powered or not
  1039. *
  1040. * Return codes:
  1041. * 0: Success
  1042. * -EINVAL: If the gadget passed is NULL
  1043. */
  1044. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1045. {
  1046. struct pch_udc_dev *dev;
  1047. if (!gadget)
  1048. return -EINVAL;
  1049. gadget->is_selfpowered = (value != 0);
  1050. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1051. if (value)
  1052. pch_udc_set_selfpowered(dev);
  1053. else
  1054. pch_udc_clear_selfpowered(dev);
  1055. return 0;
  1056. }
  1057. /**
  1058. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1059. * visible/invisible to the host
  1060. * @gadget: Reference to the gadget driver
  1061. * @is_on: Specifies whether the pull up is made active or inactive
  1062. *
  1063. * Return codes:
  1064. * 0: Success
  1065. * -EINVAL: If the gadget passed is NULL
  1066. */
  1067. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1068. {
  1069. struct pch_udc_dev *dev;
  1070. if (!gadget)
  1071. return -EINVAL;
  1072. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1073. if (is_on) {
  1074. pch_udc_reconnect(dev);
  1075. } else {
  1076. if (dev->driver && dev->driver->disconnect) {
  1077. spin_lock(&dev->lock);
  1078. dev->driver->disconnect(&dev->gadget);
  1079. spin_unlock(&dev->lock);
  1080. }
  1081. pch_udc_set_disconnect(dev);
  1082. }
  1083. return 0;
  1084. }
  1085. /**
  1086. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1087. * transceiver (or GPIO) that
  1088. * detects a VBUS power session starting/ending
  1089. * @gadget: Reference to the gadget driver
  1090. * @is_active: specifies whether the session is starting or ending
  1091. *
  1092. * Return codes:
  1093. * 0: Success
  1094. * -EINVAL: If the gadget passed is NULL
  1095. */
  1096. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1097. {
  1098. struct pch_udc_dev *dev;
  1099. if (!gadget)
  1100. return -EINVAL;
  1101. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1102. pch_udc_vbus_session(dev, is_active);
  1103. return 0;
  1104. }
  1105. /**
  1106. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1107. * SET_CONFIGURATION calls to
  1108. * specify how much power the device can consume
  1109. * @gadget: Reference to the gadget driver
  1110. * @mA: specifies the current limit in 2mA unit
  1111. *
  1112. * Return codes:
  1113. * -EINVAL: If the gadget passed is NULL
  1114. * -EOPNOTSUPP:
  1115. */
  1116. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1117. {
  1118. return -EOPNOTSUPP;
  1119. }
  1120. static int pch_udc_start(struct usb_gadget *g,
  1121. struct usb_gadget_driver *driver);
  1122. static int pch_udc_stop(struct usb_gadget *g);
  1123. static const struct usb_gadget_ops pch_udc_ops = {
  1124. .get_frame = pch_udc_pcd_get_frame,
  1125. .wakeup = pch_udc_pcd_wakeup,
  1126. .set_selfpowered = pch_udc_pcd_selfpowered,
  1127. .pullup = pch_udc_pcd_pullup,
  1128. .vbus_session = pch_udc_pcd_vbus_session,
  1129. .vbus_draw = pch_udc_pcd_vbus_draw,
  1130. .udc_start = pch_udc_start,
  1131. .udc_stop = pch_udc_stop,
  1132. };
  1133. /**
  1134. * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
  1135. * @dev: Reference to the driver structure
  1136. *
  1137. * Return value:
  1138. * 1: VBUS is high
  1139. * 0: VBUS is low
  1140. * -1: It is not enable to detect VBUS using GPIO
  1141. */
  1142. static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
  1143. {
  1144. int vbus = 0;
  1145. if (dev->vbus_gpio.port)
  1146. vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
  1147. else
  1148. vbus = -1;
  1149. return vbus;
  1150. }
  1151. /**
  1152. * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
  1153. * If VBUS is Low, disconnect is processed
  1154. * @irq_work: Structure for WorkQueue
  1155. *
  1156. */
  1157. static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
  1158. {
  1159. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1160. struct pch_vbus_gpio_data, irq_work_fall);
  1161. struct pch_udc_dev *dev =
  1162. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1163. int vbus_saved = -1;
  1164. int vbus;
  1165. int count;
  1166. if (!dev->vbus_gpio.port)
  1167. return;
  1168. for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
  1169. count++) {
  1170. vbus = pch_vbus_gpio_get_value(dev);
  1171. if ((vbus_saved == vbus) && (vbus == 0)) {
  1172. dev_dbg(&dev->pdev->dev, "VBUS fell");
  1173. if (dev->driver
  1174. && dev->driver->disconnect) {
  1175. dev->driver->disconnect(
  1176. &dev->gadget);
  1177. }
  1178. if (dev->vbus_gpio.intr)
  1179. pch_udc_init(dev);
  1180. else
  1181. pch_udc_reconnect(dev);
  1182. return;
  1183. }
  1184. vbus_saved = vbus;
  1185. mdelay(PCH_VBUS_INTERVAL);
  1186. }
  1187. }
  1188. /**
  1189. * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
  1190. * If VBUS is High, connect is processed
  1191. * @irq_work: Structure for WorkQueue
  1192. *
  1193. */
  1194. static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
  1195. {
  1196. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1197. struct pch_vbus_gpio_data, irq_work_rise);
  1198. struct pch_udc_dev *dev =
  1199. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1200. int vbus;
  1201. if (!dev->vbus_gpio.port)
  1202. return;
  1203. mdelay(PCH_VBUS_INTERVAL);
  1204. vbus = pch_vbus_gpio_get_value(dev);
  1205. if (vbus == 1) {
  1206. dev_dbg(&dev->pdev->dev, "VBUS rose");
  1207. pch_udc_reconnect(dev);
  1208. return;
  1209. }
  1210. }
  1211. /**
  1212. * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
  1213. * @irq: Interrupt request number
  1214. * @dev: Reference to the device structure
  1215. *
  1216. * Return codes:
  1217. * 0: Success
  1218. * -EINVAL: GPIO port is invalid or can't be initialized.
  1219. */
  1220. static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
  1221. {
  1222. struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
  1223. if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
  1224. return IRQ_NONE;
  1225. if (pch_vbus_gpio_get_value(dev))
  1226. schedule_work(&dev->vbus_gpio.irq_work_rise);
  1227. else
  1228. schedule_work(&dev->vbus_gpio.irq_work_fall);
  1229. return IRQ_HANDLED;
  1230. }
  1231. /**
  1232. * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
  1233. * @dev: Reference to the driver structure
  1234. * @vbus_gpio Number of GPIO port to detect gpio
  1235. *
  1236. * Return codes:
  1237. * 0: Success
  1238. * -EINVAL: GPIO port is invalid or can't be initialized.
  1239. */
  1240. static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
  1241. {
  1242. int err;
  1243. int irq_num = 0;
  1244. dev->vbus_gpio.port = 0;
  1245. dev->vbus_gpio.intr = 0;
  1246. if (vbus_gpio_port <= -1)
  1247. return -EINVAL;
  1248. err = gpio_is_valid(vbus_gpio_port);
  1249. if (!err) {
  1250. pr_err("%s: gpio port %d is invalid\n",
  1251. __func__, vbus_gpio_port);
  1252. return -EINVAL;
  1253. }
  1254. err = gpio_request(vbus_gpio_port, "pch_vbus");
  1255. if (err) {
  1256. pr_err("%s: can't request gpio port %d, err: %d\n",
  1257. __func__, vbus_gpio_port, err);
  1258. return -EINVAL;
  1259. }
  1260. dev->vbus_gpio.port = vbus_gpio_port;
  1261. gpio_direction_input(vbus_gpio_port);
  1262. INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
  1263. irq_num = gpio_to_irq(vbus_gpio_port);
  1264. if (irq_num > 0) {
  1265. irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
  1266. err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
  1267. "vbus_detect", dev);
  1268. if (!err) {
  1269. dev->vbus_gpio.intr = irq_num;
  1270. INIT_WORK(&dev->vbus_gpio.irq_work_rise,
  1271. pch_vbus_gpio_work_rise);
  1272. } else {
  1273. pr_err("%s: can't request irq %d, err: %d\n",
  1274. __func__, irq_num, err);
  1275. }
  1276. }
  1277. return 0;
  1278. }
  1279. /**
  1280. * pch_vbus_gpio_free() - This API frees resources of GPIO port
  1281. * @dev: Reference to the driver structure
  1282. */
  1283. static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
  1284. {
  1285. if (dev->vbus_gpio.intr)
  1286. free_irq(dev->vbus_gpio.intr, dev);
  1287. if (dev->vbus_gpio.port)
  1288. gpio_free(dev->vbus_gpio.port);
  1289. }
  1290. /**
  1291. * complete_req() - This API is invoked from the driver when processing
  1292. * of a request is complete
  1293. * @ep: Reference to the endpoint structure
  1294. * @req: Reference to the request structure
  1295. * @status: Indicates the success/failure of completion
  1296. */
  1297. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1298. int status)
  1299. __releases(&dev->lock)
  1300. __acquires(&dev->lock)
  1301. {
  1302. struct pch_udc_dev *dev;
  1303. unsigned halted = ep->halted;
  1304. list_del_init(&req->queue);
  1305. /* set new status if pending */
  1306. if (req->req.status == -EINPROGRESS)
  1307. req->req.status = status;
  1308. else
  1309. status = req->req.status;
  1310. dev = ep->dev;
  1311. if (req->dma_mapped) {
  1312. if (req->dma == DMA_ADDR_INVALID) {
  1313. if (ep->in)
  1314. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1315. req->req.length,
  1316. DMA_TO_DEVICE);
  1317. else
  1318. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1319. req->req.length,
  1320. DMA_FROM_DEVICE);
  1321. req->req.dma = DMA_ADDR_INVALID;
  1322. } else {
  1323. if (ep->in)
  1324. dma_unmap_single(&dev->pdev->dev, req->dma,
  1325. req->req.length,
  1326. DMA_TO_DEVICE);
  1327. else {
  1328. dma_unmap_single(&dev->pdev->dev, req->dma,
  1329. req->req.length,
  1330. DMA_FROM_DEVICE);
  1331. memcpy(req->req.buf, req->buf, req->req.length);
  1332. }
  1333. kfree(req->buf);
  1334. req->dma = DMA_ADDR_INVALID;
  1335. }
  1336. req->dma_mapped = 0;
  1337. }
  1338. ep->halted = 1;
  1339. spin_unlock(&dev->lock);
  1340. if (!ep->in)
  1341. pch_udc_ep_clear_rrdy(ep);
  1342. usb_gadget_giveback_request(&ep->ep, &req->req);
  1343. spin_lock(&dev->lock);
  1344. ep->halted = halted;
  1345. }
  1346. /**
  1347. * empty_req_queue() - This API empties the request queue of an endpoint
  1348. * @ep: Reference to the endpoint structure
  1349. */
  1350. static void empty_req_queue(struct pch_udc_ep *ep)
  1351. {
  1352. struct pch_udc_request *req;
  1353. ep->halted = 1;
  1354. while (!list_empty(&ep->queue)) {
  1355. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1356. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1357. }
  1358. }
  1359. /**
  1360. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1361. * for the request
  1362. * @dev Reference to the driver structure
  1363. * @req Reference to the request to be freed
  1364. *
  1365. * Return codes:
  1366. * 0: Success
  1367. */
  1368. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1369. struct pch_udc_request *req)
  1370. {
  1371. struct pch_udc_data_dma_desc *td = req->td_data;
  1372. unsigned i = req->chain_len;
  1373. dma_addr_t addr2;
  1374. dma_addr_t addr = (dma_addr_t)td->next;
  1375. td->next = 0x00;
  1376. for (; i > 1; --i) {
  1377. /* do not free first desc., will be done by free for request */
  1378. td = phys_to_virt(addr);
  1379. addr2 = (dma_addr_t)td->next;
  1380. dma_pool_free(dev->data_requests, td, addr);
  1381. td->next = 0x00;
  1382. addr = addr2;
  1383. }
  1384. req->chain_len = 1;
  1385. }
  1386. /**
  1387. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1388. * a DMA chain
  1389. * @ep: Reference to the endpoint structure
  1390. * @req: Reference to the request
  1391. * @buf_len: The buffer length
  1392. * @gfp_flags: Flags to be used while mapping the data buffer
  1393. *
  1394. * Return codes:
  1395. * 0: success,
  1396. * -ENOMEM: dma_pool_alloc invocation fails
  1397. */
  1398. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1399. struct pch_udc_request *req,
  1400. unsigned long buf_len,
  1401. gfp_t gfp_flags)
  1402. {
  1403. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1404. unsigned long bytes = req->req.length, i = 0;
  1405. dma_addr_t dma_addr;
  1406. unsigned len = 1;
  1407. if (req->chain_len > 1)
  1408. pch_udc_free_dma_chain(ep->dev, req);
  1409. if (req->dma == DMA_ADDR_INVALID)
  1410. td->dataptr = req->req.dma;
  1411. else
  1412. td->dataptr = req->dma;
  1413. td->status = PCH_UDC_BS_HST_BSY;
  1414. for (; ; bytes -= buf_len, ++len) {
  1415. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1416. if (bytes <= buf_len)
  1417. break;
  1418. last = td;
  1419. td = dma_pool_alloc(ep->dev->data_requests, gfp_flags,
  1420. &dma_addr);
  1421. if (!td)
  1422. goto nomem;
  1423. i += buf_len;
  1424. td->dataptr = req->td_data->dataptr + i;
  1425. last->next = dma_addr;
  1426. }
  1427. req->td_data_last = td;
  1428. td->status |= PCH_UDC_DMA_LAST;
  1429. td->next = req->td_data_phys;
  1430. req->chain_len = len;
  1431. return 0;
  1432. nomem:
  1433. if (len > 1) {
  1434. req->chain_len = len;
  1435. pch_udc_free_dma_chain(ep->dev, req);
  1436. }
  1437. req->chain_len = 1;
  1438. return -ENOMEM;
  1439. }
  1440. /**
  1441. * prepare_dma() - This function creates and initializes the DMA chain
  1442. * for the request
  1443. * @ep: Reference to the endpoint structure
  1444. * @req: Reference to the request
  1445. * @gfp: Flag to be used while mapping the data buffer
  1446. *
  1447. * Return codes:
  1448. * 0: Success
  1449. * Other 0: linux error number on failure
  1450. */
  1451. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1452. gfp_t gfp)
  1453. {
  1454. int retval;
  1455. /* Allocate and create a DMA chain */
  1456. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1457. if (retval) {
  1458. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1459. return retval;
  1460. }
  1461. if (ep->in)
  1462. req->td_data->status = (req->td_data->status &
  1463. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1464. return 0;
  1465. }
  1466. /**
  1467. * process_zlp() - This function process zero length packets
  1468. * from the gadget driver
  1469. * @ep: Reference to the endpoint structure
  1470. * @req: Reference to the request
  1471. */
  1472. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1473. {
  1474. struct pch_udc_dev *dev = ep->dev;
  1475. /* IN zlp's are handled by hardware */
  1476. complete_req(ep, req, 0);
  1477. /* if set_config or set_intf is waiting for ack by zlp
  1478. * then set CSR_DONE
  1479. */
  1480. if (dev->set_cfg_not_acked) {
  1481. pch_udc_set_csr_done(dev);
  1482. dev->set_cfg_not_acked = 0;
  1483. }
  1484. /* setup command is ACK'ed now by zlp */
  1485. if (!dev->stall && dev->waiting_zlp_ack) {
  1486. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1487. dev->waiting_zlp_ack = 0;
  1488. }
  1489. }
  1490. /**
  1491. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1492. * @ep: Reference to the endpoint structure
  1493. * @req: Reference to the request structure
  1494. */
  1495. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1496. struct pch_udc_request *req)
  1497. {
  1498. struct pch_udc_data_dma_desc *td_data;
  1499. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1500. td_data = req->td_data;
  1501. /* Set the status bits for all descriptors */
  1502. while (1) {
  1503. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1504. PCH_UDC_BS_HST_RDY;
  1505. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1506. break;
  1507. td_data = phys_to_virt(td_data->next);
  1508. }
  1509. /* Write the descriptor pointer */
  1510. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1511. req->dma_going = 1;
  1512. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1513. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1514. pch_udc_ep_clear_nak(ep);
  1515. pch_udc_ep_set_rrdy(ep);
  1516. }
  1517. /**
  1518. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1519. * from gadget driver
  1520. * @usbep: Reference to the USB endpoint structure
  1521. * @desc: Reference to the USB endpoint descriptor structure
  1522. *
  1523. * Return codes:
  1524. * 0: Success
  1525. * -EINVAL:
  1526. * -ESHUTDOWN:
  1527. */
  1528. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1529. const struct usb_endpoint_descriptor *desc)
  1530. {
  1531. struct pch_udc_ep *ep;
  1532. struct pch_udc_dev *dev;
  1533. unsigned long iflags;
  1534. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1535. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1536. return -EINVAL;
  1537. ep = container_of(usbep, struct pch_udc_ep, ep);
  1538. dev = ep->dev;
  1539. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1540. return -ESHUTDOWN;
  1541. spin_lock_irqsave(&dev->lock, iflags);
  1542. ep->ep.desc = desc;
  1543. ep->halted = 0;
  1544. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1545. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1546. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1547. spin_unlock_irqrestore(&dev->lock, iflags);
  1548. return 0;
  1549. }
  1550. /**
  1551. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1552. * from gadget driver
  1553. * @usbep Reference to the USB endpoint structure
  1554. *
  1555. * Return codes:
  1556. * 0: Success
  1557. * -EINVAL:
  1558. */
  1559. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1560. {
  1561. struct pch_udc_ep *ep;
  1562. unsigned long iflags;
  1563. if (!usbep)
  1564. return -EINVAL;
  1565. ep = container_of(usbep, struct pch_udc_ep, ep);
  1566. if ((usbep->name == ep0_string) || !ep->ep.desc)
  1567. return -EINVAL;
  1568. spin_lock_irqsave(&ep->dev->lock, iflags);
  1569. empty_req_queue(ep);
  1570. ep->halted = 1;
  1571. pch_udc_ep_disable(ep);
  1572. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1573. ep->ep.desc = NULL;
  1574. INIT_LIST_HEAD(&ep->queue);
  1575. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1576. return 0;
  1577. }
  1578. /**
  1579. * pch_udc_alloc_request() - This function allocates request structure.
  1580. * It is called by gadget driver
  1581. * @usbep: Reference to the USB endpoint structure
  1582. * @gfp: Flag to be used while allocating memory
  1583. *
  1584. * Return codes:
  1585. * NULL: Failure
  1586. * Allocated address: Success
  1587. */
  1588. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1589. gfp_t gfp)
  1590. {
  1591. struct pch_udc_request *req;
  1592. struct pch_udc_ep *ep;
  1593. struct pch_udc_data_dma_desc *dma_desc;
  1594. if (!usbep)
  1595. return NULL;
  1596. ep = container_of(usbep, struct pch_udc_ep, ep);
  1597. req = kzalloc(sizeof *req, gfp);
  1598. if (!req)
  1599. return NULL;
  1600. req->req.dma = DMA_ADDR_INVALID;
  1601. req->dma = DMA_ADDR_INVALID;
  1602. INIT_LIST_HEAD(&req->queue);
  1603. if (!ep->dev->dma_addr)
  1604. return &req->req;
  1605. /* ep0 in requests are allocated from data pool here */
  1606. dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
  1607. &req->td_data_phys);
  1608. if (NULL == dma_desc) {
  1609. kfree(req);
  1610. return NULL;
  1611. }
  1612. /* prevent from using desc. - set HOST BUSY */
  1613. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1614. dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID);
  1615. req->td_data = dma_desc;
  1616. req->td_data_last = dma_desc;
  1617. req->chain_len = 1;
  1618. return &req->req;
  1619. }
  1620. /**
  1621. * pch_udc_free_request() - This function frees request structure.
  1622. * It is called by gadget driver
  1623. * @usbep: Reference to the USB endpoint structure
  1624. * @usbreq: Reference to the USB request
  1625. */
  1626. static void pch_udc_free_request(struct usb_ep *usbep,
  1627. struct usb_request *usbreq)
  1628. {
  1629. struct pch_udc_ep *ep;
  1630. struct pch_udc_request *req;
  1631. struct pch_udc_dev *dev;
  1632. if (!usbep || !usbreq)
  1633. return;
  1634. ep = container_of(usbep, struct pch_udc_ep, ep);
  1635. req = container_of(usbreq, struct pch_udc_request, req);
  1636. dev = ep->dev;
  1637. if (!list_empty(&req->queue))
  1638. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1639. __func__, usbep->name, req);
  1640. if (req->td_data != NULL) {
  1641. if (req->chain_len > 1)
  1642. pch_udc_free_dma_chain(ep->dev, req);
  1643. dma_pool_free(ep->dev->data_requests, req->td_data,
  1644. req->td_data_phys);
  1645. }
  1646. kfree(req);
  1647. }
  1648. /**
  1649. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1650. * by gadget driver
  1651. * @usbep: Reference to the USB endpoint structure
  1652. * @usbreq: Reference to the USB request
  1653. * @gfp: Flag to be used while mapping the data buffer
  1654. *
  1655. * Return codes:
  1656. * 0: Success
  1657. * linux error number: Failure
  1658. */
  1659. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1660. gfp_t gfp)
  1661. {
  1662. int retval = 0;
  1663. struct pch_udc_ep *ep;
  1664. struct pch_udc_dev *dev;
  1665. struct pch_udc_request *req;
  1666. unsigned long iflags;
  1667. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1668. return -EINVAL;
  1669. ep = container_of(usbep, struct pch_udc_ep, ep);
  1670. dev = ep->dev;
  1671. if (!ep->ep.desc && ep->num)
  1672. return -EINVAL;
  1673. req = container_of(usbreq, struct pch_udc_request, req);
  1674. if (!list_empty(&req->queue))
  1675. return -EINVAL;
  1676. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1677. return -ESHUTDOWN;
  1678. spin_lock_irqsave(&dev->lock, iflags);
  1679. /* map the buffer for dma */
  1680. if (usbreq->length &&
  1681. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1682. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1683. if (ep->in)
  1684. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1685. usbreq->buf,
  1686. usbreq->length,
  1687. DMA_TO_DEVICE);
  1688. else
  1689. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1690. usbreq->buf,
  1691. usbreq->length,
  1692. DMA_FROM_DEVICE);
  1693. } else {
  1694. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1695. if (!req->buf) {
  1696. retval = -ENOMEM;
  1697. goto probe_end;
  1698. }
  1699. if (ep->in) {
  1700. memcpy(req->buf, usbreq->buf, usbreq->length);
  1701. req->dma = dma_map_single(&dev->pdev->dev,
  1702. req->buf,
  1703. usbreq->length,
  1704. DMA_TO_DEVICE);
  1705. } else
  1706. req->dma = dma_map_single(&dev->pdev->dev,
  1707. req->buf,
  1708. usbreq->length,
  1709. DMA_FROM_DEVICE);
  1710. }
  1711. req->dma_mapped = 1;
  1712. }
  1713. if (usbreq->length > 0) {
  1714. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1715. if (retval)
  1716. goto probe_end;
  1717. }
  1718. usbreq->actual = 0;
  1719. usbreq->status = -EINPROGRESS;
  1720. req->dma_done = 0;
  1721. if (list_empty(&ep->queue) && !ep->halted) {
  1722. /* no pending transfer, so start this req */
  1723. if (!usbreq->length) {
  1724. process_zlp(ep, req);
  1725. retval = 0;
  1726. goto probe_end;
  1727. }
  1728. if (!ep->in) {
  1729. pch_udc_start_rxrequest(ep, req);
  1730. } else {
  1731. /*
  1732. * For IN trfr the descriptors will be programmed and
  1733. * P bit will be set when
  1734. * we get an IN token
  1735. */
  1736. pch_udc_wait_ep_stall(ep);
  1737. pch_udc_ep_clear_nak(ep);
  1738. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1739. }
  1740. }
  1741. /* Now add this request to the ep's pending requests */
  1742. if (req != NULL)
  1743. list_add_tail(&req->queue, &ep->queue);
  1744. probe_end:
  1745. spin_unlock_irqrestore(&dev->lock, iflags);
  1746. return retval;
  1747. }
  1748. /**
  1749. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1750. * It is called by gadget driver
  1751. * @usbep: Reference to the USB endpoint structure
  1752. * @usbreq: Reference to the USB request
  1753. *
  1754. * Return codes:
  1755. * 0: Success
  1756. * linux error number: Failure
  1757. */
  1758. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1759. struct usb_request *usbreq)
  1760. {
  1761. struct pch_udc_ep *ep;
  1762. struct pch_udc_request *req;
  1763. unsigned long flags;
  1764. int ret = -EINVAL;
  1765. ep = container_of(usbep, struct pch_udc_ep, ep);
  1766. if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
  1767. return ret;
  1768. req = container_of(usbreq, struct pch_udc_request, req);
  1769. spin_lock_irqsave(&ep->dev->lock, flags);
  1770. /* make sure it's still queued on this endpoint */
  1771. list_for_each_entry(req, &ep->queue, queue) {
  1772. if (&req->req == usbreq) {
  1773. pch_udc_ep_set_nak(ep);
  1774. if (!list_empty(&req->queue))
  1775. complete_req(ep, req, -ECONNRESET);
  1776. ret = 0;
  1777. break;
  1778. }
  1779. }
  1780. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1781. return ret;
  1782. }
  1783. /**
  1784. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1785. * feature
  1786. * @usbep: Reference to the USB endpoint structure
  1787. * @halt: Specifies whether to set or clear the feature
  1788. *
  1789. * Return codes:
  1790. * 0: Success
  1791. * linux error number: Failure
  1792. */
  1793. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1794. {
  1795. struct pch_udc_ep *ep;
  1796. unsigned long iflags;
  1797. int ret;
  1798. if (!usbep)
  1799. return -EINVAL;
  1800. ep = container_of(usbep, struct pch_udc_ep, ep);
  1801. if (!ep->ep.desc && !ep->num)
  1802. return -EINVAL;
  1803. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1804. return -ESHUTDOWN;
  1805. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1806. if (list_empty(&ep->queue)) {
  1807. if (halt) {
  1808. if (ep->num == PCH_UDC_EP0)
  1809. ep->dev->stall = 1;
  1810. pch_udc_ep_set_stall(ep);
  1811. pch_udc_enable_ep_interrupts(
  1812. ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1813. } else {
  1814. pch_udc_ep_clear_stall(ep);
  1815. }
  1816. ret = 0;
  1817. } else {
  1818. ret = -EAGAIN;
  1819. }
  1820. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1821. return ret;
  1822. }
  1823. /**
  1824. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1825. * halt feature
  1826. * @usbep: Reference to the USB endpoint structure
  1827. * @halt: Specifies whether to set or clear the feature
  1828. *
  1829. * Return codes:
  1830. * 0: Success
  1831. * linux error number: Failure
  1832. */
  1833. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1834. {
  1835. struct pch_udc_ep *ep;
  1836. unsigned long iflags;
  1837. int ret;
  1838. if (!usbep)
  1839. return -EINVAL;
  1840. ep = container_of(usbep, struct pch_udc_ep, ep);
  1841. if (!ep->ep.desc && !ep->num)
  1842. return -EINVAL;
  1843. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1844. return -ESHUTDOWN;
  1845. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1846. if (!list_empty(&ep->queue)) {
  1847. ret = -EAGAIN;
  1848. } else {
  1849. if (ep->num == PCH_UDC_EP0)
  1850. ep->dev->stall = 1;
  1851. pch_udc_ep_set_stall(ep);
  1852. pch_udc_enable_ep_interrupts(ep->dev,
  1853. PCH_UDC_EPINT(ep->in, ep->num));
  1854. ep->dev->prot_stall = 1;
  1855. ret = 0;
  1856. }
  1857. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1858. return ret;
  1859. }
  1860. /**
  1861. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1862. * @usbep: Reference to the USB endpoint structure
  1863. */
  1864. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1865. {
  1866. struct pch_udc_ep *ep;
  1867. if (!usbep)
  1868. return;
  1869. ep = container_of(usbep, struct pch_udc_ep, ep);
  1870. if (ep->ep.desc || !ep->num)
  1871. pch_udc_ep_fifo_flush(ep, ep->in);
  1872. }
  1873. static const struct usb_ep_ops pch_udc_ep_ops = {
  1874. .enable = pch_udc_pcd_ep_enable,
  1875. .disable = pch_udc_pcd_ep_disable,
  1876. .alloc_request = pch_udc_alloc_request,
  1877. .free_request = pch_udc_free_request,
  1878. .queue = pch_udc_pcd_queue,
  1879. .dequeue = pch_udc_pcd_dequeue,
  1880. .set_halt = pch_udc_pcd_set_halt,
  1881. .set_wedge = pch_udc_pcd_set_wedge,
  1882. .fifo_status = NULL,
  1883. .fifo_flush = pch_udc_pcd_fifo_flush,
  1884. };
  1885. /**
  1886. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1887. * @td_stp: Reference to the SETP buffer structure
  1888. */
  1889. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1890. {
  1891. static u32 pky_marker;
  1892. if (!td_stp)
  1893. return;
  1894. td_stp->reserved = ++pky_marker;
  1895. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1896. td_stp->status = PCH_UDC_BS_HST_RDY;
  1897. }
  1898. /**
  1899. * pch_udc_start_next_txrequest() - This function starts
  1900. * the next transmission requirement
  1901. * @ep: Reference to the endpoint structure
  1902. */
  1903. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1904. {
  1905. struct pch_udc_request *req;
  1906. struct pch_udc_data_dma_desc *td_data;
  1907. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1908. return;
  1909. if (list_empty(&ep->queue))
  1910. return;
  1911. /* next request */
  1912. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1913. if (req->dma_going)
  1914. return;
  1915. if (!req->td_data)
  1916. return;
  1917. pch_udc_wait_ep_stall(ep);
  1918. req->dma_going = 1;
  1919. pch_udc_ep_set_ddptr(ep, 0);
  1920. td_data = req->td_data;
  1921. while (1) {
  1922. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1923. PCH_UDC_BS_HST_RDY;
  1924. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1925. break;
  1926. td_data = phys_to_virt(td_data->next);
  1927. }
  1928. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1929. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1930. pch_udc_ep_set_pd(ep);
  1931. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1932. pch_udc_ep_clear_nak(ep);
  1933. }
  1934. /**
  1935. * pch_udc_complete_transfer() - This function completes a transfer
  1936. * @ep: Reference to the endpoint structure
  1937. */
  1938. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1939. {
  1940. struct pch_udc_request *req;
  1941. struct pch_udc_dev *dev = ep->dev;
  1942. if (list_empty(&ep->queue))
  1943. return;
  1944. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1945. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1946. PCH_UDC_BS_DMA_DONE)
  1947. return;
  1948. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1949. PCH_UDC_RTS_SUCC) {
  1950. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1951. "epstatus=0x%08x\n",
  1952. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1953. (int)(ep->epsts));
  1954. return;
  1955. }
  1956. req->req.actual = req->req.length;
  1957. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1958. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1959. complete_req(ep, req, 0);
  1960. req->dma_going = 0;
  1961. if (!list_empty(&ep->queue)) {
  1962. pch_udc_wait_ep_stall(ep);
  1963. pch_udc_ep_clear_nak(ep);
  1964. pch_udc_enable_ep_interrupts(ep->dev,
  1965. PCH_UDC_EPINT(ep->in, ep->num));
  1966. } else {
  1967. pch_udc_disable_ep_interrupts(ep->dev,
  1968. PCH_UDC_EPINT(ep->in, ep->num));
  1969. }
  1970. }
  1971. /**
  1972. * pch_udc_complete_receiver() - This function completes a receiver
  1973. * @ep: Reference to the endpoint structure
  1974. */
  1975. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1976. {
  1977. struct pch_udc_request *req;
  1978. struct pch_udc_dev *dev = ep->dev;
  1979. unsigned int count;
  1980. struct pch_udc_data_dma_desc *td;
  1981. dma_addr_t addr;
  1982. if (list_empty(&ep->queue))
  1983. return;
  1984. /* next request */
  1985. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1986. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1987. pch_udc_ep_set_ddptr(ep, 0);
  1988. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  1989. PCH_UDC_BS_DMA_DONE)
  1990. td = req->td_data_last;
  1991. else
  1992. td = req->td_data;
  1993. while (1) {
  1994. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  1995. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  1996. "epstatus=0x%08x\n",
  1997. (req->td_data->status & PCH_UDC_RXTX_STS),
  1998. (int)(ep->epsts));
  1999. return;
  2000. }
  2001. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  2002. if (td->status & PCH_UDC_DMA_LAST) {
  2003. count = td->status & PCH_UDC_RXTX_BYTES;
  2004. break;
  2005. }
  2006. if (td == req->td_data_last) {
  2007. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  2008. return;
  2009. }
  2010. addr = (dma_addr_t)td->next;
  2011. td = phys_to_virt(addr);
  2012. }
  2013. /* on 64k packets the RXBYTES field is zero */
  2014. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  2015. count = UDC_DMA_MAXPACKET;
  2016. req->td_data->status |= PCH_UDC_DMA_LAST;
  2017. td->status |= PCH_UDC_BS_HST_BSY;
  2018. req->dma_going = 0;
  2019. req->req.actual = count;
  2020. complete_req(ep, req, 0);
  2021. /* If there is a new/failed requests try that now */
  2022. if (!list_empty(&ep->queue)) {
  2023. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2024. pch_udc_start_rxrequest(ep, req);
  2025. }
  2026. }
  2027. /**
  2028. * pch_udc_svc_data_in() - This function process endpoint interrupts
  2029. * for IN endpoints
  2030. * @dev: Reference to the device structure
  2031. * @ep_num: Endpoint that generated the interrupt
  2032. */
  2033. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  2034. {
  2035. u32 epsts;
  2036. struct pch_udc_ep *ep;
  2037. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2038. epsts = ep->epsts;
  2039. ep->epsts = 0;
  2040. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2041. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2042. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  2043. return;
  2044. if ((epsts & UDC_EPSTS_BNA))
  2045. return;
  2046. if (epsts & UDC_EPSTS_HE)
  2047. return;
  2048. if (epsts & UDC_EPSTS_RSS) {
  2049. pch_udc_ep_set_stall(ep);
  2050. pch_udc_enable_ep_interrupts(ep->dev,
  2051. PCH_UDC_EPINT(ep->in, ep->num));
  2052. }
  2053. if (epsts & UDC_EPSTS_RCS) {
  2054. if (!dev->prot_stall) {
  2055. pch_udc_ep_clear_stall(ep);
  2056. } else {
  2057. pch_udc_ep_set_stall(ep);
  2058. pch_udc_enable_ep_interrupts(ep->dev,
  2059. PCH_UDC_EPINT(ep->in, ep->num));
  2060. }
  2061. }
  2062. if (epsts & UDC_EPSTS_TDC)
  2063. pch_udc_complete_transfer(ep);
  2064. /* On IN interrupt, provide data if we have any */
  2065. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  2066. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  2067. pch_udc_start_next_txrequest(ep);
  2068. }
  2069. /**
  2070. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  2071. * @dev: Reference to the device structure
  2072. * @ep_num: Endpoint that generated the interrupt
  2073. */
  2074. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  2075. {
  2076. u32 epsts;
  2077. struct pch_udc_ep *ep;
  2078. struct pch_udc_request *req = NULL;
  2079. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  2080. epsts = ep->epsts;
  2081. ep->epsts = 0;
  2082. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  2083. /* next request */
  2084. req = list_entry(ep->queue.next, struct pch_udc_request,
  2085. queue);
  2086. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  2087. PCH_UDC_BS_DMA_DONE) {
  2088. if (!req->dma_going)
  2089. pch_udc_start_rxrequest(ep, req);
  2090. return;
  2091. }
  2092. }
  2093. if (epsts & UDC_EPSTS_HE)
  2094. return;
  2095. if (epsts & UDC_EPSTS_RSS) {
  2096. pch_udc_ep_set_stall(ep);
  2097. pch_udc_enable_ep_interrupts(ep->dev,
  2098. PCH_UDC_EPINT(ep->in, ep->num));
  2099. }
  2100. if (epsts & UDC_EPSTS_RCS) {
  2101. if (!dev->prot_stall) {
  2102. pch_udc_ep_clear_stall(ep);
  2103. } else {
  2104. pch_udc_ep_set_stall(ep);
  2105. pch_udc_enable_ep_interrupts(ep->dev,
  2106. PCH_UDC_EPINT(ep->in, ep->num));
  2107. }
  2108. }
  2109. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2110. UDC_EPSTS_OUT_DATA) {
  2111. if (ep->dev->prot_stall == 1) {
  2112. pch_udc_ep_set_stall(ep);
  2113. pch_udc_enable_ep_interrupts(ep->dev,
  2114. PCH_UDC_EPINT(ep->in, ep->num));
  2115. } else {
  2116. pch_udc_complete_receiver(ep);
  2117. }
  2118. }
  2119. if (list_empty(&ep->queue))
  2120. pch_udc_set_dma(dev, DMA_DIR_RX);
  2121. }
  2122. /**
  2123. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  2124. * @dev: Reference to the device structure
  2125. */
  2126. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  2127. {
  2128. u32 epsts;
  2129. struct pch_udc_ep *ep;
  2130. struct pch_udc_ep *ep_out;
  2131. ep = &dev->ep[UDC_EP0IN_IDX];
  2132. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  2133. epsts = ep->epsts;
  2134. ep->epsts = 0;
  2135. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2136. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2137. UDC_EPSTS_XFERDONE)))
  2138. return;
  2139. if ((epsts & UDC_EPSTS_BNA))
  2140. return;
  2141. if (epsts & UDC_EPSTS_HE)
  2142. return;
  2143. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  2144. pch_udc_complete_transfer(ep);
  2145. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2146. ep_out->td_data->status = (ep_out->td_data->status &
  2147. ~PCH_UDC_BUFF_STS) |
  2148. PCH_UDC_BS_HST_RDY;
  2149. pch_udc_ep_clear_nak(ep_out);
  2150. pch_udc_set_dma(dev, DMA_DIR_RX);
  2151. pch_udc_ep_set_rrdy(ep_out);
  2152. }
  2153. /* On IN interrupt, provide data if we have any */
  2154. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  2155. !(epsts & UDC_EPSTS_TXEMPTY))
  2156. pch_udc_start_next_txrequest(ep);
  2157. }
  2158. /**
  2159. * pch_udc_svc_control_out() - Routine that handle Control
  2160. * OUT endpoint interrupts
  2161. * @dev: Reference to the device structure
  2162. */
  2163. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  2164. __releases(&dev->lock)
  2165. __acquires(&dev->lock)
  2166. {
  2167. u32 stat;
  2168. int setup_supported;
  2169. struct pch_udc_ep *ep;
  2170. ep = &dev->ep[UDC_EP0OUT_IDX];
  2171. stat = ep->epsts;
  2172. ep->epsts = 0;
  2173. /* If setup data */
  2174. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2175. UDC_EPSTS_OUT_SETUP) {
  2176. dev->stall = 0;
  2177. dev->ep[UDC_EP0IN_IDX].halted = 0;
  2178. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  2179. dev->setup_data = ep->td_stp->request;
  2180. pch_udc_init_setup_buff(ep->td_stp);
  2181. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2182. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  2183. dev->ep[UDC_EP0IN_IDX].in);
  2184. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  2185. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2186. else /* OUT */
  2187. dev->gadget.ep0 = &ep->ep;
  2188. spin_lock(&dev->lock);
  2189. /* If Mass storage Reset */
  2190. if ((dev->setup_data.bRequestType == 0x21) &&
  2191. (dev->setup_data.bRequest == 0xFF))
  2192. dev->prot_stall = 0;
  2193. /* call gadget with setup data received */
  2194. setup_supported = dev->driver->setup(&dev->gadget,
  2195. &dev->setup_data);
  2196. spin_unlock(&dev->lock);
  2197. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2198. ep->td_data->status = (ep->td_data->status &
  2199. ~PCH_UDC_BUFF_STS) |
  2200. PCH_UDC_BS_HST_RDY;
  2201. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2202. }
  2203. /* ep0 in returns data on IN phase */
  2204. if (setup_supported >= 0 && setup_supported <
  2205. UDC_EP0IN_MAX_PKT_SIZE) {
  2206. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2207. /* Gadget would have queued a request when
  2208. * we called the setup */
  2209. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2210. pch_udc_set_dma(dev, DMA_DIR_RX);
  2211. pch_udc_ep_clear_nak(ep);
  2212. }
  2213. } else if (setup_supported < 0) {
  2214. /* if unsupported request, then stall */
  2215. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2216. pch_udc_enable_ep_interrupts(ep->dev,
  2217. PCH_UDC_EPINT(ep->in, ep->num));
  2218. dev->stall = 0;
  2219. pch_udc_set_dma(dev, DMA_DIR_RX);
  2220. } else {
  2221. dev->waiting_zlp_ack = 1;
  2222. }
  2223. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2224. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2225. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2226. pch_udc_ep_set_ddptr(ep, 0);
  2227. if (!list_empty(&ep->queue)) {
  2228. ep->epsts = stat;
  2229. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2230. }
  2231. pch_udc_set_dma(dev, DMA_DIR_RX);
  2232. }
  2233. pch_udc_ep_set_rrdy(ep);
  2234. }
  2235. /**
  2236. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2237. * and clears NAK status
  2238. * @dev: Reference to the device structure
  2239. * @ep_num: End point number
  2240. */
  2241. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2242. {
  2243. struct pch_udc_ep *ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2244. if (list_empty(&ep->queue))
  2245. return;
  2246. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  2247. pch_udc_ep_clear_nak(ep);
  2248. }
  2249. /**
  2250. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2251. * @dev: Reference to the device structure
  2252. * @ep_intr: Status of endpoint interrupt
  2253. */
  2254. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2255. {
  2256. int i;
  2257. struct pch_udc_ep *ep;
  2258. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2259. /* IN */
  2260. if (ep_intr & (0x1 << i)) {
  2261. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2262. ep->epsts = pch_udc_read_ep_status(ep);
  2263. pch_udc_clear_ep_status(ep, ep->epsts);
  2264. }
  2265. /* OUT */
  2266. if (ep_intr & (0x10000 << i)) {
  2267. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2268. ep->epsts = pch_udc_read_ep_status(ep);
  2269. pch_udc_clear_ep_status(ep, ep->epsts);
  2270. }
  2271. }
  2272. }
  2273. /**
  2274. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2275. * for traffic after a reset
  2276. * @dev: Reference to the device structure
  2277. */
  2278. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2279. {
  2280. struct pch_udc_ep *ep;
  2281. u32 val;
  2282. /* Setup the IN endpoint */
  2283. ep = &dev->ep[UDC_EP0IN_IDX];
  2284. pch_udc_clear_ep_control(ep);
  2285. pch_udc_ep_fifo_flush(ep, ep->in);
  2286. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2287. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2288. /* Initialize the IN EP Descriptor */
  2289. ep->td_data = NULL;
  2290. ep->td_stp = NULL;
  2291. ep->td_data_phys = 0;
  2292. ep->td_stp_phys = 0;
  2293. /* Setup the OUT endpoint */
  2294. ep = &dev->ep[UDC_EP0OUT_IDX];
  2295. pch_udc_clear_ep_control(ep);
  2296. pch_udc_ep_fifo_flush(ep, ep->in);
  2297. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2298. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2299. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2300. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2301. /* Initialize the SETUP buffer */
  2302. pch_udc_init_setup_buff(ep->td_stp);
  2303. /* Write the pointer address of dma descriptor */
  2304. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2305. /* Write the pointer address of Setup descriptor */
  2306. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2307. /* Initialize the dma descriptor */
  2308. ep->td_data->status = PCH_UDC_DMA_LAST;
  2309. ep->td_data->dataptr = dev->dma_addr;
  2310. ep->td_data->next = ep->td_data_phys;
  2311. pch_udc_ep_clear_nak(ep);
  2312. }
  2313. /**
  2314. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2315. * @dev: Reference to driver structure
  2316. */
  2317. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2318. {
  2319. struct pch_udc_ep *ep;
  2320. int i;
  2321. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2322. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2323. /* Mask all endpoint interrupts */
  2324. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2325. /* clear all endpoint interrupts */
  2326. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2327. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2328. ep = &dev->ep[i];
  2329. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2330. pch_udc_clear_ep_control(ep);
  2331. pch_udc_ep_set_ddptr(ep, 0);
  2332. pch_udc_write_csr(ep->dev, 0x00, i);
  2333. }
  2334. dev->stall = 0;
  2335. dev->prot_stall = 0;
  2336. dev->waiting_zlp_ack = 0;
  2337. dev->set_cfg_not_acked = 0;
  2338. /* disable ep to empty req queue. Skip the control EP's */
  2339. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2340. ep = &dev->ep[i];
  2341. pch_udc_ep_set_nak(ep);
  2342. pch_udc_ep_fifo_flush(ep, ep->in);
  2343. /* Complete request queue */
  2344. empty_req_queue(ep);
  2345. }
  2346. if (dev->driver) {
  2347. spin_unlock(&dev->lock);
  2348. usb_gadget_udc_reset(&dev->gadget, dev->driver);
  2349. spin_lock(&dev->lock);
  2350. }
  2351. }
  2352. /**
  2353. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2354. * done interrupt
  2355. * @dev: Reference to driver structure
  2356. */
  2357. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2358. {
  2359. u32 dev_stat, dev_speed;
  2360. u32 speed = USB_SPEED_FULL;
  2361. dev_stat = pch_udc_read_device_status(dev);
  2362. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2363. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2364. switch (dev_speed) {
  2365. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2366. speed = USB_SPEED_HIGH;
  2367. break;
  2368. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2369. speed = USB_SPEED_FULL;
  2370. break;
  2371. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2372. speed = USB_SPEED_LOW;
  2373. break;
  2374. default:
  2375. BUG();
  2376. }
  2377. dev->gadget.speed = speed;
  2378. pch_udc_activate_control_ep(dev);
  2379. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2380. pch_udc_set_dma(dev, DMA_DIR_TX);
  2381. pch_udc_set_dma(dev, DMA_DIR_RX);
  2382. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2383. /* enable device interrupts */
  2384. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2385. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2386. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2387. }
  2388. /**
  2389. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2390. * interrupt
  2391. * @dev: Reference to driver structure
  2392. */
  2393. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2394. {
  2395. u32 reg, dev_stat = 0;
  2396. int i;
  2397. dev_stat = pch_udc_read_device_status(dev);
  2398. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2399. UDC_DEVSTS_INTF_SHIFT;
  2400. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2401. UDC_DEVSTS_ALT_SHIFT;
  2402. dev->set_cfg_not_acked = 1;
  2403. /* Construct the usb request for gadget driver and inform it */
  2404. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2405. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2406. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2407. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2408. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2409. /* programm the Endpoint Cfg registers */
  2410. /* Only one end point cfg register */
  2411. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2412. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2413. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2414. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2415. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2416. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2417. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2418. /* clear stall bits */
  2419. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2420. dev->ep[i].halted = 0;
  2421. }
  2422. dev->stall = 0;
  2423. spin_unlock(&dev->lock);
  2424. dev->driver->setup(&dev->gadget, &dev->setup_data);
  2425. spin_lock(&dev->lock);
  2426. }
  2427. /**
  2428. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2429. * interrupt
  2430. * @dev: Reference to driver structure
  2431. */
  2432. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2433. {
  2434. int i;
  2435. u32 reg, dev_stat = 0;
  2436. dev_stat = pch_udc_read_device_status(dev);
  2437. dev->set_cfg_not_acked = 1;
  2438. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2439. UDC_DEVSTS_CFG_SHIFT;
  2440. /* make usb request for gadget driver */
  2441. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2442. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2443. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2444. /* program the NE registers */
  2445. /* Only one end point cfg register */
  2446. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2447. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2448. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2449. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2450. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2451. /* clear stall bits */
  2452. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2453. dev->ep[i].halted = 0;
  2454. }
  2455. dev->stall = 0;
  2456. /* call gadget zero with setup data received */
  2457. spin_unlock(&dev->lock);
  2458. dev->driver->setup(&dev->gadget, &dev->setup_data);
  2459. spin_lock(&dev->lock);
  2460. }
  2461. /**
  2462. * pch_udc_dev_isr() - This function services device interrupts
  2463. * by invoking appropriate routines.
  2464. * @dev: Reference to the device structure
  2465. * @dev_intr: The Device interrupt status.
  2466. */
  2467. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2468. {
  2469. int vbus;
  2470. /* USB Reset Interrupt */
  2471. if (dev_intr & UDC_DEVINT_UR) {
  2472. pch_udc_svc_ur_interrupt(dev);
  2473. dev_dbg(&dev->pdev->dev, "USB_RESET\n");
  2474. }
  2475. /* Enumeration Done Interrupt */
  2476. if (dev_intr & UDC_DEVINT_ENUM) {
  2477. pch_udc_svc_enum_interrupt(dev);
  2478. dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
  2479. }
  2480. /* Set Interface Interrupt */
  2481. if (dev_intr & UDC_DEVINT_SI)
  2482. pch_udc_svc_intf_interrupt(dev);
  2483. /* Set Config Interrupt */
  2484. if (dev_intr & UDC_DEVINT_SC)
  2485. pch_udc_svc_cfg_interrupt(dev);
  2486. /* USB Suspend interrupt */
  2487. if (dev_intr & UDC_DEVINT_US) {
  2488. if (dev->driver
  2489. && dev->driver->suspend) {
  2490. spin_unlock(&dev->lock);
  2491. dev->driver->suspend(&dev->gadget);
  2492. spin_lock(&dev->lock);
  2493. }
  2494. vbus = pch_vbus_gpio_get_value(dev);
  2495. if ((dev->vbus_session == 0)
  2496. && (vbus != 1)) {
  2497. if (dev->driver && dev->driver->disconnect) {
  2498. spin_unlock(&dev->lock);
  2499. dev->driver->disconnect(&dev->gadget);
  2500. spin_lock(&dev->lock);
  2501. }
  2502. pch_udc_reconnect(dev);
  2503. } else if ((dev->vbus_session == 0)
  2504. && (vbus == 1)
  2505. && !dev->vbus_gpio.intr)
  2506. schedule_work(&dev->vbus_gpio.irq_work_fall);
  2507. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2508. }
  2509. /* Clear the SOF interrupt, if enabled */
  2510. if (dev_intr & UDC_DEVINT_SOF)
  2511. dev_dbg(&dev->pdev->dev, "SOF\n");
  2512. /* ES interrupt, IDLE > 3ms on the USB */
  2513. if (dev_intr & UDC_DEVINT_ES)
  2514. dev_dbg(&dev->pdev->dev, "ES\n");
  2515. /* RWKP interrupt */
  2516. if (dev_intr & UDC_DEVINT_RWKP)
  2517. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2518. }
  2519. /**
  2520. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2521. * @irq: Interrupt request number
  2522. * @dev: Reference to the device structure
  2523. */
  2524. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2525. {
  2526. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2527. u32 dev_intr, ep_intr;
  2528. int i;
  2529. dev_intr = pch_udc_read_device_interrupts(dev);
  2530. ep_intr = pch_udc_read_ep_interrupts(dev);
  2531. /* For a hot plug, this find that the controller is hung up. */
  2532. if (dev_intr == ep_intr)
  2533. if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
  2534. dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
  2535. /* The controller is reset */
  2536. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  2537. return IRQ_HANDLED;
  2538. }
  2539. if (dev_intr)
  2540. /* Clear device interrupts */
  2541. pch_udc_write_device_interrupts(dev, dev_intr);
  2542. if (ep_intr)
  2543. /* Clear ep interrupts */
  2544. pch_udc_write_ep_interrupts(dev, ep_intr);
  2545. if (!dev_intr && !ep_intr)
  2546. return IRQ_NONE;
  2547. spin_lock(&dev->lock);
  2548. if (dev_intr)
  2549. pch_udc_dev_isr(dev, dev_intr);
  2550. if (ep_intr) {
  2551. pch_udc_read_all_epstatus(dev, ep_intr);
  2552. /* Process Control In interrupts, if present */
  2553. if (ep_intr & UDC_EPINT_IN_EP0) {
  2554. pch_udc_svc_control_in(dev);
  2555. pch_udc_postsvc_epinters(dev, 0);
  2556. }
  2557. /* Process Control Out interrupts, if present */
  2558. if (ep_intr & UDC_EPINT_OUT_EP0)
  2559. pch_udc_svc_control_out(dev);
  2560. /* Process data in end point interrupts */
  2561. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2562. if (ep_intr & (1 << i)) {
  2563. pch_udc_svc_data_in(dev, i);
  2564. pch_udc_postsvc_epinters(dev, i);
  2565. }
  2566. }
  2567. /* Process data out end point interrupts */
  2568. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2569. PCH_UDC_USED_EP_NUM); i++)
  2570. if (ep_intr & (1 << i))
  2571. pch_udc_svc_data_out(dev, i -
  2572. UDC_EPINT_OUT_SHIFT);
  2573. }
  2574. spin_unlock(&dev->lock);
  2575. return IRQ_HANDLED;
  2576. }
  2577. /**
  2578. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2579. * @dev: Reference to the device structure
  2580. */
  2581. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2582. {
  2583. /* enable ep0 interrupts */
  2584. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2585. UDC_EPINT_OUT_EP0);
  2586. /* enable device interrupts */
  2587. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2588. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2589. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2590. }
  2591. /**
  2592. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2593. * @dev: Reference to the driver structure
  2594. */
  2595. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2596. {
  2597. const char *const ep_string[] = {
  2598. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2599. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2600. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2601. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2602. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2603. "ep15in", "ep15out",
  2604. };
  2605. int i;
  2606. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2607. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2608. /* Initialize the endpoints structures */
  2609. memset(dev->ep, 0, sizeof dev->ep);
  2610. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2611. struct pch_udc_ep *ep = &dev->ep[i];
  2612. ep->dev = dev;
  2613. ep->halted = 1;
  2614. ep->num = i / 2;
  2615. ep->in = ~i & 1;
  2616. ep->ep.name = ep_string[i];
  2617. ep->ep.ops = &pch_udc_ep_ops;
  2618. if (ep->in) {
  2619. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2620. ep->ep.caps.dir_in = true;
  2621. } else {
  2622. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2623. UDC_EP_REG_SHIFT;
  2624. ep->ep.caps.dir_out = true;
  2625. }
  2626. if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
  2627. ep->ep.caps.type_control = true;
  2628. } else {
  2629. ep->ep.caps.type_iso = true;
  2630. ep->ep.caps.type_bulk = true;
  2631. ep->ep.caps.type_int = true;
  2632. }
  2633. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2634. usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
  2635. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2636. INIT_LIST_HEAD(&ep->queue);
  2637. }
  2638. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
  2639. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2640. /* remove ep0 in and out from the list. They have own pointer */
  2641. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2642. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2643. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2644. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2645. }
  2646. /**
  2647. * pch_udc_pcd_init() - This API initializes the driver structure
  2648. * @dev: Reference to the driver structure
  2649. *
  2650. * Return codes:
  2651. * 0: Success
  2652. */
  2653. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2654. {
  2655. pch_udc_init(dev);
  2656. pch_udc_pcd_reinit(dev);
  2657. pch_vbus_gpio_init(dev, vbus_gpio_port);
  2658. return 0;
  2659. }
  2660. /**
  2661. * init_dma_pools() - create dma pools during initialization
  2662. * @pdev: reference to struct pci_dev
  2663. */
  2664. static int init_dma_pools(struct pch_udc_dev *dev)
  2665. {
  2666. struct pch_udc_stp_dma_desc *td_stp;
  2667. struct pch_udc_data_dma_desc *td_data;
  2668. void *ep0out_buf;
  2669. /* DMA setup */
  2670. dev->data_requests = dma_pool_create("data_requests", &dev->pdev->dev,
  2671. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2672. if (!dev->data_requests) {
  2673. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2674. __func__);
  2675. return -ENOMEM;
  2676. }
  2677. /* dma desc for setup data */
  2678. dev->stp_requests = dma_pool_create("setup requests", &dev->pdev->dev,
  2679. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2680. if (!dev->stp_requests) {
  2681. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2682. __func__);
  2683. return -ENOMEM;
  2684. }
  2685. /* setup */
  2686. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2687. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2688. if (!td_stp) {
  2689. dev_err(&dev->pdev->dev,
  2690. "%s: can't allocate setup dma descriptor\n", __func__);
  2691. return -ENOMEM;
  2692. }
  2693. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2694. /* data: 0 packets !? */
  2695. td_data = dma_pool_alloc(dev->data_requests, GFP_KERNEL,
  2696. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2697. if (!td_data) {
  2698. dev_err(&dev->pdev->dev,
  2699. "%s: can't allocate data dma descriptor\n", __func__);
  2700. return -ENOMEM;
  2701. }
  2702. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2703. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2704. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2705. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2706. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2707. ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
  2708. GFP_KERNEL);
  2709. if (!ep0out_buf)
  2710. return -ENOMEM;
  2711. dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
  2712. UDC_EP0OUT_BUFF_SIZE * 4,
  2713. DMA_FROM_DEVICE);
  2714. return 0;
  2715. }
  2716. static int pch_udc_start(struct usb_gadget *g,
  2717. struct usb_gadget_driver *driver)
  2718. {
  2719. struct pch_udc_dev *dev = to_pch_udc(g);
  2720. driver->driver.bus = NULL;
  2721. dev->driver = driver;
  2722. /* get ready for ep0 traffic */
  2723. pch_udc_setup_ep0(dev);
  2724. /* clear SD */
  2725. if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
  2726. pch_udc_clear_disconnect(dev);
  2727. dev->connected = 1;
  2728. return 0;
  2729. }
  2730. static int pch_udc_stop(struct usb_gadget *g)
  2731. {
  2732. struct pch_udc_dev *dev = to_pch_udc(g);
  2733. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2734. /* Assures that there are no pending requests with this driver */
  2735. dev->driver = NULL;
  2736. dev->connected = 0;
  2737. /* set SD */
  2738. pch_udc_set_disconnect(dev);
  2739. return 0;
  2740. }
  2741. static void pch_udc_shutdown(struct pci_dev *pdev)
  2742. {
  2743. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2744. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2745. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2746. /* disable the pullup so the host will think we're gone */
  2747. pch_udc_set_disconnect(dev);
  2748. }
  2749. static void pch_udc_remove(struct pci_dev *pdev)
  2750. {
  2751. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2752. usb_del_gadget_udc(&dev->gadget);
  2753. /* gadget driver must not be registered */
  2754. if (dev->driver)
  2755. dev_err(&pdev->dev,
  2756. "%s: gadget driver still bound!!!\n", __func__);
  2757. /* dma pool cleanup */
  2758. dma_pool_destroy(dev->data_requests);
  2759. if (dev->stp_requests) {
  2760. /* cleanup DMA desc's for ep0in */
  2761. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2762. dma_pool_free(dev->stp_requests,
  2763. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2764. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2765. }
  2766. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2767. dma_pool_free(dev->stp_requests,
  2768. dev->ep[UDC_EP0OUT_IDX].td_data,
  2769. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2770. }
  2771. dma_pool_destroy(dev->stp_requests);
  2772. }
  2773. if (dev->dma_addr)
  2774. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2775. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2776. pch_vbus_gpio_free(dev);
  2777. pch_udc_exit(dev);
  2778. }
  2779. #ifdef CONFIG_PM_SLEEP
  2780. static int pch_udc_suspend(struct device *d)
  2781. {
  2782. struct pci_dev *pdev = to_pci_dev(d);
  2783. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2784. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2785. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2786. return 0;
  2787. }
  2788. static int pch_udc_resume(struct device *d)
  2789. {
  2790. return 0;
  2791. }
  2792. static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
  2793. #define PCH_UDC_PM_OPS (&pch_udc_pm)
  2794. #else
  2795. #define PCH_UDC_PM_OPS NULL
  2796. #endif /* CONFIG_PM_SLEEP */
  2797. static int pch_udc_probe(struct pci_dev *pdev,
  2798. const struct pci_device_id *id)
  2799. {
  2800. int bar;
  2801. int retval;
  2802. struct pch_udc_dev *dev;
  2803. /* init */
  2804. dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
  2805. if (!dev)
  2806. return -ENOMEM;
  2807. /* pci setup */
  2808. retval = pcim_enable_device(pdev);
  2809. if (retval)
  2810. return retval;
  2811. pci_set_drvdata(pdev, dev);
  2812. /* Determine BAR based on PCI ID */
  2813. if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
  2814. bar = PCH_UDC_PCI_BAR_QUARK_X1000;
  2815. else
  2816. bar = PCH_UDC_PCI_BAR;
  2817. /* PCI resource allocation */
  2818. retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
  2819. if (retval)
  2820. return retval;
  2821. dev->base_addr = pcim_iomap_table(pdev)[bar];
  2822. /* initialize the hardware */
  2823. if (pch_udc_pcd_init(dev))
  2824. return -ENODEV;
  2825. pci_enable_msi(pdev);
  2826. retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
  2827. IRQF_SHARED, KBUILD_MODNAME, dev);
  2828. if (retval) {
  2829. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2830. pdev->irq);
  2831. goto finished;
  2832. }
  2833. pci_set_master(pdev);
  2834. pci_try_set_mwi(pdev);
  2835. /* device struct setup */
  2836. spin_lock_init(&dev->lock);
  2837. dev->pdev = pdev;
  2838. dev->gadget.ops = &pch_udc_ops;
  2839. retval = init_dma_pools(dev);
  2840. if (retval)
  2841. goto finished;
  2842. dev->gadget.name = KBUILD_MODNAME;
  2843. dev->gadget.max_speed = USB_SPEED_HIGH;
  2844. /* Put the device in disconnected state till a driver is bound */
  2845. pch_udc_set_disconnect(dev);
  2846. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2847. if (retval)
  2848. goto finished;
  2849. return 0;
  2850. finished:
  2851. pch_udc_remove(pdev);
  2852. return retval;
  2853. }
  2854. static const struct pci_device_id pch_udc_pcidev_id[] = {
  2855. {
  2856. PCI_DEVICE(PCI_VENDOR_ID_INTEL,
  2857. PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
  2858. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2859. .class_mask = 0xffffffff,
  2860. },
  2861. {
  2862. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2863. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2864. .class_mask = 0xffffffff,
  2865. },
  2866. {
  2867. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2868. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2869. .class_mask = 0xffffffff,
  2870. },
  2871. {
  2872. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
  2873. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2874. .class_mask = 0xffffffff,
  2875. },
  2876. { 0 },
  2877. };
  2878. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2879. static struct pci_driver pch_udc_driver = {
  2880. .name = KBUILD_MODNAME,
  2881. .id_table = pch_udc_pcidev_id,
  2882. .probe = pch_udc_probe,
  2883. .remove = pch_udc_remove,
  2884. .shutdown = pch_udc_shutdown,
  2885. .driver = {
  2886. .pm = PCH_UDC_PM_OPS,
  2887. },
  2888. };
  2889. module_pci_driver(pch_udc_driver);
  2890. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2891. MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
  2892. MODULE_LICENSE("GPL");