rtc-sc27xx.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * Copyright (C) 2017 Spreadtrum Communications Inc.
  3. *
  4. * SPDX-License-Identifier: GPL-2.0
  5. */
  6. #include <linux/bitops.h>
  7. #include <linux/delay.h>
  8. #include <linux/err.h>
  9. #include <linux/module.h>
  10. #include <linux/of.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/regmap.h>
  13. #include <linux/rtc.h>
  14. #define SPRD_RTC_SEC_CNT_VALUE 0x0
  15. #define SPRD_RTC_MIN_CNT_VALUE 0x4
  16. #define SPRD_RTC_HOUR_CNT_VALUE 0x8
  17. #define SPRD_RTC_DAY_CNT_VALUE 0xc
  18. #define SPRD_RTC_SEC_CNT_UPD 0x10
  19. #define SPRD_RTC_MIN_CNT_UPD 0x14
  20. #define SPRD_RTC_HOUR_CNT_UPD 0x18
  21. #define SPRD_RTC_DAY_CNT_UPD 0x1c
  22. #define SPRD_RTC_SEC_ALM_UPD 0x20
  23. #define SPRD_RTC_MIN_ALM_UPD 0x24
  24. #define SPRD_RTC_HOUR_ALM_UPD 0x28
  25. #define SPRD_RTC_DAY_ALM_UPD 0x2c
  26. #define SPRD_RTC_INT_EN 0x30
  27. #define SPRD_RTC_INT_RAW_STS 0x34
  28. #define SPRD_RTC_INT_CLR 0x38
  29. #define SPRD_RTC_INT_MASK_STS 0x3C
  30. #define SPRD_RTC_SEC_ALM_VALUE 0x40
  31. #define SPRD_RTC_MIN_ALM_VALUE 0x44
  32. #define SPRD_RTC_HOUR_ALM_VALUE 0x48
  33. #define SPRD_RTC_DAY_ALM_VALUE 0x4c
  34. #define SPRD_RTC_SPG_VALUE 0x50
  35. #define SPRD_RTC_SPG_UPD 0x54
  36. #define SPRD_RTC_PWR_CTRL 0x58
  37. #define SPRD_RTC_PWR_STS 0x5c
  38. #define SPRD_RTC_SEC_AUXALM_UPD 0x60
  39. #define SPRD_RTC_MIN_AUXALM_UPD 0x64
  40. #define SPRD_RTC_HOUR_AUXALM_UPD 0x68
  41. #define SPRD_RTC_DAY_AUXALM_UPD 0x6c
  42. /* BIT & MASK definition for SPRD_RTC_INT_* registers */
  43. #define SPRD_RTC_SEC_EN BIT(0)
  44. #define SPRD_RTC_MIN_EN BIT(1)
  45. #define SPRD_RTC_HOUR_EN BIT(2)
  46. #define SPRD_RTC_DAY_EN BIT(3)
  47. #define SPRD_RTC_ALARM_EN BIT(4)
  48. #define SPRD_RTC_HRS_FORMAT_EN BIT(5)
  49. #define SPRD_RTC_AUXALM_EN BIT(6)
  50. #define SPRD_RTC_SPG_UPD_EN BIT(7)
  51. #define SPRD_RTC_SEC_UPD_EN BIT(8)
  52. #define SPRD_RTC_MIN_UPD_EN BIT(9)
  53. #define SPRD_RTC_HOUR_UPD_EN BIT(10)
  54. #define SPRD_RTC_DAY_UPD_EN BIT(11)
  55. #define SPRD_RTC_ALMSEC_UPD_EN BIT(12)
  56. #define SPRD_RTC_ALMMIN_UPD_EN BIT(13)
  57. #define SPRD_RTC_ALMHOUR_UPD_EN BIT(14)
  58. #define SPRD_RTC_ALMDAY_UPD_EN BIT(15)
  59. #define SPRD_RTC_INT_MASK GENMASK(15, 0)
  60. #define SPRD_RTC_TIME_INT_MASK \
  61. (SPRD_RTC_SEC_UPD_EN | SPRD_RTC_MIN_UPD_EN | \
  62. SPRD_RTC_HOUR_UPD_EN | SPRD_RTC_DAY_UPD_EN)
  63. #define SPRD_RTC_ALMTIME_INT_MASK \
  64. (SPRD_RTC_ALMSEC_UPD_EN | SPRD_RTC_ALMMIN_UPD_EN | \
  65. SPRD_RTC_ALMHOUR_UPD_EN | SPRD_RTC_ALMDAY_UPD_EN)
  66. #define SPRD_RTC_ALM_INT_MASK \
  67. (SPRD_RTC_SEC_EN | SPRD_RTC_MIN_EN | \
  68. SPRD_RTC_HOUR_EN | SPRD_RTC_DAY_EN | \
  69. SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN)
  70. /* second/minute/hour/day values mask definition */
  71. #define SPRD_RTC_SEC_MASK GENMASK(5, 0)
  72. #define SPRD_RTC_MIN_MASK GENMASK(5, 0)
  73. #define SPRD_RTC_HOUR_MASK GENMASK(4, 0)
  74. #define SPRD_RTC_DAY_MASK GENMASK(15, 0)
  75. /* alarm lock definition for SPRD_RTC_SPG_UPD register */
  76. #define SPRD_RTC_ALMLOCK_MASK GENMASK(7, 0)
  77. #define SPRD_RTC_ALM_UNLOCK 0xa5
  78. #define SPRD_RTC_ALM_LOCK (~SPRD_RTC_ALM_UNLOCK & \
  79. SPRD_RTC_ALMLOCK_MASK)
  80. /* SPG values definition for SPRD_RTC_SPG_UPD register */
  81. #define SPRD_RTC_POWEROFF_ALM_FLAG BIT(8)
  82. /* power control/status definition */
  83. #define SPRD_RTC_POWER_RESET_VALUE 0x96
  84. #define SPRD_RTC_POWER_STS_CLEAR GENMASK(7, 0)
  85. #define SPRD_RTC_POWER_STS_SHIFT 8
  86. #define SPRD_RTC_POWER_STS_VALID \
  87. (~SPRD_RTC_POWER_RESET_VALUE << SPRD_RTC_POWER_STS_SHIFT)
  88. /* timeout of synchronizing time and alarm registers (us) */
  89. #define SPRD_RTC_POLL_TIMEOUT 200000
  90. #define SPRD_RTC_POLL_DELAY_US 20000
  91. struct sprd_rtc {
  92. struct rtc_device *rtc;
  93. struct regmap *regmap;
  94. struct device *dev;
  95. u32 base;
  96. int irq;
  97. bool valid;
  98. };
  99. /*
  100. * The Spreadtrum RTC controller has 3 groups registers, including time, normal
  101. * alarm and auxiliary alarm. The time group registers are used to set RTC time,
  102. * the normal alarm registers are used to set normal alarm, and the auxiliary
  103. * alarm registers are used to set auxiliary alarm. Both alarm event and
  104. * auxiliary alarm event can wake up system from deep sleep, but only alarm
  105. * event can power up system from power down status.
  106. */
  107. enum sprd_rtc_reg_types {
  108. SPRD_RTC_TIME,
  109. SPRD_RTC_ALARM,
  110. SPRD_RTC_AUX_ALARM,
  111. };
  112. static int sprd_rtc_clear_alarm_ints(struct sprd_rtc *rtc)
  113. {
  114. return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
  115. SPRD_RTC_ALM_INT_MASK);
  116. }
  117. static int sprd_rtc_lock_alarm(struct sprd_rtc *rtc, bool lock)
  118. {
  119. int ret;
  120. u32 val;
  121. ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
  122. if (ret)
  123. return ret;
  124. val &= ~(SPRD_RTC_ALMLOCK_MASK | SPRD_RTC_POWEROFF_ALM_FLAG);
  125. if (lock)
  126. val |= SPRD_RTC_ALM_LOCK;
  127. else
  128. val |= SPRD_RTC_ALM_UNLOCK | SPRD_RTC_POWEROFF_ALM_FLAG;
  129. ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_SPG_UPD, val);
  130. if (ret)
  131. return ret;
  132. /* wait until the SPG value is updated successfully */
  133. ret = regmap_read_poll_timeout(rtc->regmap,
  134. rtc->base + SPRD_RTC_INT_RAW_STS, val,
  135. (val & SPRD_RTC_SPG_UPD_EN),
  136. SPRD_RTC_POLL_DELAY_US,
  137. SPRD_RTC_POLL_TIMEOUT);
  138. if (ret) {
  139. dev_err(rtc->dev, "failed to update SPG value:%d\n", ret);
  140. return ret;
  141. }
  142. return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
  143. SPRD_RTC_SPG_UPD_EN);
  144. }
  145. static int sprd_rtc_get_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
  146. time64_t *secs)
  147. {
  148. u32 sec_reg, min_reg, hour_reg, day_reg;
  149. u32 val, sec, min, hour, day;
  150. int ret;
  151. switch (type) {
  152. case SPRD_RTC_TIME:
  153. sec_reg = SPRD_RTC_SEC_CNT_VALUE;
  154. min_reg = SPRD_RTC_MIN_CNT_VALUE;
  155. hour_reg = SPRD_RTC_HOUR_CNT_VALUE;
  156. day_reg = SPRD_RTC_DAY_CNT_VALUE;
  157. break;
  158. case SPRD_RTC_ALARM:
  159. sec_reg = SPRD_RTC_SEC_ALM_VALUE;
  160. min_reg = SPRD_RTC_MIN_ALM_VALUE;
  161. hour_reg = SPRD_RTC_HOUR_ALM_VALUE;
  162. day_reg = SPRD_RTC_DAY_ALM_VALUE;
  163. break;
  164. case SPRD_RTC_AUX_ALARM:
  165. sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
  166. min_reg = SPRD_RTC_MIN_AUXALM_UPD;
  167. hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
  168. day_reg = SPRD_RTC_DAY_AUXALM_UPD;
  169. break;
  170. default:
  171. return -EINVAL;
  172. }
  173. ret = regmap_read(rtc->regmap, rtc->base + sec_reg, &val);
  174. if (ret)
  175. return ret;
  176. sec = val & SPRD_RTC_SEC_MASK;
  177. ret = regmap_read(rtc->regmap, rtc->base + min_reg, &val);
  178. if (ret)
  179. return ret;
  180. min = val & SPRD_RTC_MIN_MASK;
  181. ret = regmap_read(rtc->regmap, rtc->base + hour_reg, &val);
  182. if (ret)
  183. return ret;
  184. hour = val & SPRD_RTC_HOUR_MASK;
  185. ret = regmap_read(rtc->regmap, rtc->base + day_reg, &val);
  186. if (ret)
  187. return ret;
  188. day = val & SPRD_RTC_DAY_MASK;
  189. *secs = (((time64_t)(day * 24) + hour) * 60 + min) * 60 + sec;
  190. return 0;
  191. }
  192. static int sprd_rtc_set_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
  193. time64_t secs)
  194. {
  195. u32 sec_reg, min_reg, hour_reg, day_reg, sts_mask;
  196. u32 sec, min, hour, day, val;
  197. int ret, rem;
  198. /* convert seconds to RTC time format */
  199. day = div_s64_rem(secs, 86400, &rem);
  200. hour = rem / 3600;
  201. rem -= hour * 3600;
  202. min = rem / 60;
  203. sec = rem - min * 60;
  204. switch (type) {
  205. case SPRD_RTC_TIME:
  206. sec_reg = SPRD_RTC_SEC_CNT_UPD;
  207. min_reg = SPRD_RTC_MIN_CNT_UPD;
  208. hour_reg = SPRD_RTC_HOUR_CNT_UPD;
  209. day_reg = SPRD_RTC_DAY_CNT_UPD;
  210. sts_mask = SPRD_RTC_TIME_INT_MASK;
  211. break;
  212. case SPRD_RTC_ALARM:
  213. sec_reg = SPRD_RTC_SEC_ALM_UPD;
  214. min_reg = SPRD_RTC_MIN_ALM_UPD;
  215. hour_reg = SPRD_RTC_HOUR_ALM_UPD;
  216. day_reg = SPRD_RTC_DAY_ALM_UPD;
  217. sts_mask = SPRD_RTC_ALMTIME_INT_MASK;
  218. break;
  219. case SPRD_RTC_AUX_ALARM:
  220. sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
  221. min_reg = SPRD_RTC_MIN_AUXALM_UPD;
  222. hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
  223. day_reg = SPRD_RTC_DAY_AUXALM_UPD;
  224. sts_mask = 0;
  225. break;
  226. default:
  227. return -EINVAL;
  228. }
  229. ret = regmap_write(rtc->regmap, rtc->base + sec_reg, sec);
  230. if (ret)
  231. return ret;
  232. ret = regmap_write(rtc->regmap, rtc->base + min_reg, min);
  233. if (ret)
  234. return ret;
  235. ret = regmap_write(rtc->regmap, rtc->base + hour_reg, hour);
  236. if (ret)
  237. return ret;
  238. ret = regmap_write(rtc->regmap, rtc->base + day_reg, day);
  239. if (ret)
  240. return ret;
  241. if (type == SPRD_RTC_AUX_ALARM)
  242. return 0;
  243. /*
  244. * Since the time and normal alarm registers are put in always-power-on
  245. * region supplied by VDDRTC, then these registers changing time will
  246. * be very long, about 125ms. Thus here we should wait until all
  247. * values are updated successfully.
  248. */
  249. ret = regmap_read_poll_timeout(rtc->regmap,
  250. rtc->base + SPRD_RTC_INT_RAW_STS, val,
  251. ((val & sts_mask) == sts_mask),
  252. SPRD_RTC_POLL_DELAY_US,
  253. SPRD_RTC_POLL_TIMEOUT);
  254. if (ret < 0) {
  255. dev_err(rtc->dev, "set time/alarm values timeout\n");
  256. return ret;
  257. }
  258. return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
  259. sts_mask);
  260. }
  261. static int sprd_rtc_read_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  262. {
  263. struct sprd_rtc *rtc = dev_get_drvdata(dev);
  264. time64_t secs;
  265. u32 val;
  266. int ret;
  267. ret = sprd_rtc_get_secs(rtc, SPRD_RTC_AUX_ALARM, &secs);
  268. if (ret)
  269. return ret;
  270. rtc_time64_to_tm(secs, &alrm->time);
  271. ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
  272. if (ret)
  273. return ret;
  274. alrm->enabled = !!(val & SPRD_RTC_AUXALM_EN);
  275. ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
  276. if (ret)
  277. return ret;
  278. alrm->pending = !!(val & SPRD_RTC_AUXALM_EN);
  279. return 0;
  280. }
  281. static int sprd_rtc_set_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  282. {
  283. struct sprd_rtc *rtc = dev_get_drvdata(dev);
  284. time64_t secs = rtc_tm_to_time64(&alrm->time);
  285. int ret;
  286. /* clear the auxiliary alarm interrupt status */
  287. ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
  288. SPRD_RTC_AUXALM_EN);
  289. if (ret)
  290. return ret;
  291. ret = sprd_rtc_set_secs(rtc, SPRD_RTC_AUX_ALARM, secs);
  292. if (ret)
  293. return ret;
  294. if (alrm->enabled) {
  295. ret = regmap_update_bits(rtc->regmap,
  296. rtc->base + SPRD_RTC_INT_EN,
  297. SPRD_RTC_AUXALM_EN,
  298. SPRD_RTC_AUXALM_EN);
  299. } else {
  300. ret = regmap_update_bits(rtc->regmap,
  301. rtc->base + SPRD_RTC_INT_EN,
  302. SPRD_RTC_AUXALM_EN, 0);
  303. }
  304. return ret;
  305. }
  306. static int sprd_rtc_read_time(struct device *dev, struct rtc_time *tm)
  307. {
  308. struct sprd_rtc *rtc = dev_get_drvdata(dev);
  309. time64_t secs;
  310. int ret;
  311. if (!rtc->valid) {
  312. dev_warn(dev, "RTC values are invalid\n");
  313. return -EINVAL;
  314. }
  315. ret = sprd_rtc_get_secs(rtc, SPRD_RTC_TIME, &secs);
  316. if (ret)
  317. return ret;
  318. rtc_time64_to_tm(secs, tm);
  319. return 0;
  320. }
  321. static int sprd_rtc_set_time(struct device *dev, struct rtc_time *tm)
  322. {
  323. struct sprd_rtc *rtc = dev_get_drvdata(dev);
  324. time64_t secs = rtc_tm_to_time64(tm);
  325. int ret;
  326. ret = sprd_rtc_set_secs(rtc, SPRD_RTC_TIME, secs);
  327. if (ret)
  328. return ret;
  329. if (!rtc->valid) {
  330. /* Clear RTC power status firstly */
  331. ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
  332. SPRD_RTC_POWER_STS_CLEAR);
  333. if (ret)
  334. return ret;
  335. /*
  336. * Set RTC power status to indicate now RTC has valid time
  337. * values.
  338. */
  339. ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
  340. SPRD_RTC_POWER_STS_VALID);
  341. if (ret)
  342. return ret;
  343. rtc->valid = true;
  344. }
  345. return 0;
  346. }
  347. static int sprd_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  348. {
  349. struct sprd_rtc *rtc = dev_get_drvdata(dev);
  350. time64_t secs;
  351. int ret;
  352. u32 val;
  353. /*
  354. * Before RTC device is registered, it will check to see if there is an
  355. * alarm already set in RTC hardware, and we always read the normal
  356. * alarm at this time.
  357. *
  358. * Or if aie_timer is enabled, we should get the normal alarm time.
  359. * Otherwise we should get auxiliary alarm time.
  360. */
  361. if (rtc->rtc && rtc->rtc->registered && rtc->rtc->aie_timer.enabled == 0)
  362. return sprd_rtc_read_aux_alarm(dev, alrm);
  363. ret = sprd_rtc_get_secs(rtc, SPRD_RTC_ALARM, &secs);
  364. if (ret)
  365. return ret;
  366. rtc_time64_to_tm(secs, &alrm->time);
  367. ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
  368. if (ret)
  369. return ret;
  370. alrm->enabled = !!(val & SPRD_RTC_ALARM_EN);
  371. ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
  372. if (ret)
  373. return ret;
  374. alrm->pending = !!(val & SPRD_RTC_ALARM_EN);
  375. return 0;
  376. }
  377. static int sprd_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  378. {
  379. struct sprd_rtc *rtc = dev_get_drvdata(dev);
  380. time64_t secs = rtc_tm_to_time64(&alrm->time);
  381. struct rtc_time aie_time =
  382. rtc_ktime_to_tm(rtc->rtc->aie_timer.node.expires);
  383. int ret;
  384. /*
  385. * We have 2 groups alarms: normal alarm and auxiliary alarm. Since
  386. * both normal alarm event and auxiliary alarm event can wake up system
  387. * from deep sleep, but only alarm event can power up system from power
  388. * down status. Moreover we do not need to poll about 125ms when
  389. * updating auxiliary alarm registers. Thus we usually set auxiliary
  390. * alarm when wake up system from deep sleep, and for other scenarios,
  391. * we should set normal alarm with polling status.
  392. *
  393. * So here we check if the alarm time is set by aie_timer, if yes, we
  394. * should set normal alarm, if not, we should set auxiliary alarm which
  395. * means it is just a wake event.
  396. */
  397. if (!rtc->rtc->aie_timer.enabled || rtc_tm_sub(&aie_time, &alrm->time))
  398. return sprd_rtc_set_aux_alarm(dev, alrm);
  399. /* clear the alarm interrupt status firstly */
  400. ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
  401. SPRD_RTC_ALARM_EN);
  402. if (ret)
  403. return ret;
  404. ret = sprd_rtc_set_secs(rtc, SPRD_RTC_ALARM, secs);
  405. if (ret)
  406. return ret;
  407. if (alrm->enabled) {
  408. ret = regmap_update_bits(rtc->regmap,
  409. rtc->base + SPRD_RTC_INT_EN,
  410. SPRD_RTC_ALARM_EN,
  411. SPRD_RTC_ALARM_EN);
  412. if (ret)
  413. return ret;
  414. /* unlock the alarm to enable the alarm function. */
  415. ret = sprd_rtc_lock_alarm(rtc, false);
  416. } else {
  417. regmap_update_bits(rtc->regmap,
  418. rtc->base + SPRD_RTC_INT_EN,
  419. SPRD_RTC_ALARM_EN, 0);
  420. /*
  421. * Lock the alarm function in case fake alarm event will power
  422. * up systems.
  423. */
  424. ret = sprd_rtc_lock_alarm(rtc, true);
  425. }
  426. return ret;
  427. }
  428. static int sprd_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
  429. {
  430. struct sprd_rtc *rtc = dev_get_drvdata(dev);
  431. int ret;
  432. if (enabled) {
  433. ret = regmap_update_bits(rtc->regmap,
  434. rtc->base + SPRD_RTC_INT_EN,
  435. SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN,
  436. SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN);
  437. if (ret)
  438. return ret;
  439. ret = sprd_rtc_lock_alarm(rtc, false);
  440. } else {
  441. regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
  442. SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN, 0);
  443. ret = sprd_rtc_lock_alarm(rtc, true);
  444. }
  445. return ret;
  446. }
  447. static const struct rtc_class_ops sprd_rtc_ops = {
  448. .read_time = sprd_rtc_read_time,
  449. .set_time = sprd_rtc_set_time,
  450. .read_alarm = sprd_rtc_read_alarm,
  451. .set_alarm = sprd_rtc_set_alarm,
  452. .alarm_irq_enable = sprd_rtc_alarm_irq_enable,
  453. };
  454. static irqreturn_t sprd_rtc_handler(int irq, void *dev_id)
  455. {
  456. struct sprd_rtc *rtc = dev_id;
  457. int ret;
  458. ret = sprd_rtc_clear_alarm_ints(rtc);
  459. if (ret)
  460. return IRQ_RETVAL(ret);
  461. rtc_update_irq(rtc->rtc, 1, RTC_AF | RTC_IRQF);
  462. return IRQ_HANDLED;
  463. }
  464. static int sprd_rtc_check_power_down(struct sprd_rtc *rtc)
  465. {
  466. u32 val;
  467. int ret;
  468. ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_PWR_STS, &val);
  469. if (ret)
  470. return ret;
  471. /*
  472. * If the RTC power status value is SPRD_RTC_POWER_RESET_VALUE, which
  473. * means the RTC has been powered down, so the RTC time values are
  474. * invalid.
  475. */
  476. rtc->valid = val == SPRD_RTC_POWER_RESET_VALUE ? false : true;
  477. return 0;
  478. }
  479. static int sprd_rtc_check_alarm_int(struct sprd_rtc *rtc)
  480. {
  481. u32 val;
  482. int ret;
  483. ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
  484. if (ret)
  485. return ret;
  486. /*
  487. * The SPRD_RTC_INT_EN register is not put in always-power-on region
  488. * supplied by VDDRTC, so we should check if we need enable the alarm
  489. * interrupt when system booting.
  490. *
  491. * If we have set SPRD_RTC_POWEROFF_ALM_FLAG which is saved in
  492. * always-power-on region, that means we have set one alarm last time,
  493. * so we should enable the alarm interrupt to help RTC core to see if
  494. * there is an alarm already set in RTC hardware.
  495. */
  496. if (!(val & SPRD_RTC_POWEROFF_ALM_FLAG))
  497. return 0;
  498. return regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
  499. SPRD_RTC_ALARM_EN, SPRD_RTC_ALARM_EN);
  500. }
  501. static int sprd_rtc_probe(struct platform_device *pdev)
  502. {
  503. struct device_node *node = pdev->dev.of_node;
  504. struct sprd_rtc *rtc;
  505. int ret;
  506. rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
  507. if (!rtc)
  508. return -ENOMEM;
  509. rtc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
  510. if (!rtc->regmap)
  511. return -ENODEV;
  512. ret = of_property_read_u32(node, "reg", &rtc->base);
  513. if (ret) {
  514. dev_err(&pdev->dev, "failed to get RTC base address\n");
  515. return ret;
  516. }
  517. rtc->irq = platform_get_irq(pdev, 0);
  518. if (rtc->irq < 0) {
  519. dev_err(&pdev->dev, "failed to get RTC irq number\n");
  520. return rtc->irq;
  521. }
  522. rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
  523. if (IS_ERR(rtc->rtc))
  524. return PTR_ERR(rtc->rtc);
  525. rtc->dev = &pdev->dev;
  526. platform_set_drvdata(pdev, rtc);
  527. /* check if we need set the alarm interrupt */
  528. ret = sprd_rtc_check_alarm_int(rtc);
  529. if (ret) {
  530. dev_err(&pdev->dev, "failed to check RTC alarm interrupt\n");
  531. return ret;
  532. }
  533. /* check if RTC time values are valid */
  534. ret = sprd_rtc_check_power_down(rtc);
  535. if (ret) {
  536. dev_err(&pdev->dev, "failed to check RTC time values\n");
  537. return ret;
  538. }
  539. ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
  540. sprd_rtc_handler,
  541. IRQF_ONESHOT | IRQF_EARLY_RESUME,
  542. pdev->name, rtc);
  543. if (ret < 0) {
  544. dev_err(&pdev->dev, "failed to request RTC irq\n");
  545. return ret;
  546. }
  547. device_init_wakeup(&pdev->dev, 1);
  548. rtc->rtc->ops = &sprd_rtc_ops;
  549. rtc->rtc->range_min = 0;
  550. rtc->rtc->range_max = 5662310399LL;
  551. ret = rtc_register_device(rtc->rtc);
  552. if (ret) {
  553. dev_err(&pdev->dev, "failed to register rtc device\n");
  554. device_init_wakeup(&pdev->dev, 0);
  555. return ret;
  556. }
  557. return 0;
  558. }
  559. static int sprd_rtc_remove(struct platform_device *pdev)
  560. {
  561. device_init_wakeup(&pdev->dev, 0);
  562. return 0;
  563. }
  564. static const struct of_device_id sprd_rtc_of_match[] = {
  565. { .compatible = "sprd,sc2731-rtc", },
  566. { },
  567. };
  568. MODULE_DEVICE_TABLE(of, sprd_rtc_of_match);
  569. static struct platform_driver sprd_rtc_driver = {
  570. .driver = {
  571. .name = "sprd-rtc",
  572. .of_match_table = sprd_rtc_of_match,
  573. },
  574. .probe = sprd_rtc_probe,
  575. .remove = sprd_rtc_remove,
  576. };
  577. module_platform_driver(sprd_rtc_driver);
  578. MODULE_LICENSE("GPL v2");
  579. MODULE_DESCRIPTION("Spreadtrum RTC Device Driver");
  580. MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");