ibmphp_ebda.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * IBM Hot Plug Controller Driver
  4. *
  5. * Written By: Tong Yu, IBM Corporation
  6. *
  7. * Copyright (C) 2001,2003 Greg Kroah-Hartman (greg@kroah.com)
  8. * Copyright (C) 2001-2003 IBM Corp.
  9. *
  10. * All rights reserved.
  11. *
  12. * Send feedback to <gregkh@us.ibm.com>
  13. *
  14. */
  15. #include <linux/module.h>
  16. #include <linux/errno.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/pci.h>
  20. #include <linux/list.h>
  21. #include <linux/init.h>
  22. #include "ibmphp.h"
  23. /*
  24. * POST builds data blocks(in this data block definition, a char-1
  25. * byte, short(or word)-2 byte, long(dword)-4 byte) in the Extended
  26. * BIOS Data Area which describe the configuration of the hot-plug
  27. * controllers and resources used by the PCI Hot-Plug devices.
  28. *
  29. * This file walks EBDA, maps data block from physical addr,
  30. * reconstruct linked lists about all system resource(MEM, PFM, IO)
  31. * already assigned by POST, as well as linked lists about hot plug
  32. * controllers (ctlr#, slot#, bus&slot features...)
  33. */
  34. /* Global lists */
  35. LIST_HEAD(ibmphp_ebda_pci_rsrc_head);
  36. LIST_HEAD(ibmphp_slot_head);
  37. /* Local variables */
  38. static struct ebda_hpc_list *hpc_list_ptr;
  39. static struct ebda_rsrc_list *rsrc_list_ptr;
  40. static struct rio_table_hdr *rio_table_ptr = NULL;
  41. static LIST_HEAD(ebda_hpc_head);
  42. static LIST_HEAD(bus_info_head);
  43. static LIST_HEAD(rio_vg_head);
  44. static LIST_HEAD(rio_lo_head);
  45. static LIST_HEAD(opt_vg_head);
  46. static LIST_HEAD(opt_lo_head);
  47. static void __iomem *io_mem;
  48. /* Local functions */
  49. static int ebda_rsrc_controller(void);
  50. static int ebda_rsrc_rsrc(void);
  51. static int ebda_rio_table(void);
  52. static struct ebda_hpc_list * __init alloc_ebda_hpc_list(void)
  53. {
  54. return kzalloc(sizeof(struct ebda_hpc_list), GFP_KERNEL);
  55. }
  56. static struct controller *alloc_ebda_hpc(u32 slot_count, u32 bus_count)
  57. {
  58. struct controller *controller;
  59. struct ebda_hpc_slot *slots;
  60. struct ebda_hpc_bus *buses;
  61. controller = kzalloc(sizeof(struct controller), GFP_KERNEL);
  62. if (!controller)
  63. goto error;
  64. slots = kcalloc(slot_count, sizeof(struct ebda_hpc_slot), GFP_KERNEL);
  65. if (!slots)
  66. goto error_contr;
  67. controller->slots = slots;
  68. buses = kcalloc(bus_count, sizeof(struct ebda_hpc_bus), GFP_KERNEL);
  69. if (!buses)
  70. goto error_slots;
  71. controller->buses = buses;
  72. return controller;
  73. error_slots:
  74. kfree(controller->slots);
  75. error_contr:
  76. kfree(controller);
  77. error:
  78. return NULL;
  79. }
  80. static void free_ebda_hpc(struct controller *controller)
  81. {
  82. kfree(controller->slots);
  83. kfree(controller->buses);
  84. kfree(controller);
  85. }
  86. static struct ebda_rsrc_list * __init alloc_ebda_rsrc_list(void)
  87. {
  88. return kzalloc(sizeof(struct ebda_rsrc_list), GFP_KERNEL);
  89. }
  90. static struct ebda_pci_rsrc *alloc_ebda_pci_rsrc(void)
  91. {
  92. return kzalloc(sizeof(struct ebda_pci_rsrc), GFP_KERNEL);
  93. }
  94. static void __init print_bus_info(void)
  95. {
  96. struct bus_info *ptr;
  97. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  98. debug("%s - slot_min = %x\n", __func__, ptr->slot_min);
  99. debug("%s - slot_max = %x\n", __func__, ptr->slot_max);
  100. debug("%s - slot_count = %x\n", __func__, ptr->slot_count);
  101. debug("%s - bus# = %x\n", __func__, ptr->busno);
  102. debug("%s - current_speed = %x\n", __func__, ptr->current_speed);
  103. debug("%s - controller_id = %x\n", __func__, ptr->controller_id);
  104. debug("%s - slots_at_33_conv = %x\n", __func__, ptr->slots_at_33_conv);
  105. debug("%s - slots_at_66_conv = %x\n", __func__, ptr->slots_at_66_conv);
  106. debug("%s - slots_at_66_pcix = %x\n", __func__, ptr->slots_at_66_pcix);
  107. debug("%s - slots_at_100_pcix = %x\n", __func__, ptr->slots_at_100_pcix);
  108. debug("%s - slots_at_133_pcix = %x\n", __func__, ptr->slots_at_133_pcix);
  109. }
  110. }
  111. static void print_lo_info(void)
  112. {
  113. struct rio_detail *ptr;
  114. debug("print_lo_info ----\n");
  115. list_for_each_entry(ptr, &rio_lo_head, rio_detail_list) {
  116. debug("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
  117. debug("%s - rio_type = %x\n", __func__, ptr->rio_type);
  118. debug("%s - owner_id = %x\n", __func__, ptr->owner_id);
  119. debug("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
  120. debug("%s - wpindex = %x\n", __func__, ptr->wpindex);
  121. debug("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
  122. }
  123. }
  124. static void print_vg_info(void)
  125. {
  126. struct rio_detail *ptr;
  127. debug("%s ---\n", __func__);
  128. list_for_each_entry(ptr, &rio_vg_head, rio_detail_list) {
  129. debug("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
  130. debug("%s - rio_type = %x\n", __func__, ptr->rio_type);
  131. debug("%s - owner_id = %x\n", __func__, ptr->owner_id);
  132. debug("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
  133. debug("%s - wpindex = %x\n", __func__, ptr->wpindex);
  134. debug("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
  135. }
  136. }
  137. static void __init print_ebda_pci_rsrc(void)
  138. {
  139. struct ebda_pci_rsrc *ptr;
  140. list_for_each_entry(ptr, &ibmphp_ebda_pci_rsrc_head, ebda_pci_rsrc_list) {
  141. debug("%s - rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  142. __func__, ptr->rsrc_type, ptr->bus_num, ptr->dev_fun, ptr->start_addr, ptr->end_addr);
  143. }
  144. }
  145. static void __init print_ibm_slot(void)
  146. {
  147. struct slot *ptr;
  148. list_for_each_entry(ptr, &ibmphp_slot_head, ibm_slot_list) {
  149. debug("%s - slot_number: %x\n", __func__, ptr->number);
  150. }
  151. }
  152. static void __init print_opt_vg(void)
  153. {
  154. struct opt_rio *ptr;
  155. debug("%s ---\n", __func__);
  156. list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
  157. debug("%s - rio_type %x\n", __func__, ptr->rio_type);
  158. debug("%s - chassis_num: %x\n", __func__, ptr->chassis_num);
  159. debug("%s - first_slot_num: %x\n", __func__, ptr->first_slot_num);
  160. debug("%s - middle_num: %x\n", __func__, ptr->middle_num);
  161. }
  162. }
  163. static void __init print_ebda_hpc(void)
  164. {
  165. struct controller *hpc_ptr;
  166. u16 index;
  167. list_for_each_entry(hpc_ptr, &ebda_hpc_head, ebda_hpc_list) {
  168. for (index = 0; index < hpc_ptr->slot_count; index++) {
  169. debug("%s - physical slot#: %x\n", __func__, hpc_ptr->slots[index].slot_num);
  170. debug("%s - pci bus# of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_bus_num);
  171. debug("%s - index into ctlr addr: %x\n", __func__, hpc_ptr->slots[index].ctl_index);
  172. debug("%s - cap of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_cap);
  173. }
  174. for (index = 0; index < hpc_ptr->bus_count; index++)
  175. debug("%s - bus# of each bus controlled by this ctlr: %x\n", __func__, hpc_ptr->buses[index].bus_num);
  176. debug("%s - type of hpc: %x\n", __func__, hpc_ptr->ctlr_type);
  177. switch (hpc_ptr->ctlr_type) {
  178. case 1:
  179. debug("%s - bus: %x\n", __func__, hpc_ptr->u.pci_ctlr.bus);
  180. debug("%s - dev_fun: %x\n", __func__, hpc_ptr->u.pci_ctlr.dev_fun);
  181. debug("%s - irq: %x\n", __func__, hpc_ptr->irq);
  182. break;
  183. case 0:
  184. debug("%s - io_start: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_start);
  185. debug("%s - io_end: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_end);
  186. debug("%s - irq: %x\n", __func__, hpc_ptr->irq);
  187. break;
  188. case 2:
  189. case 4:
  190. debug("%s - wpegbbar: %lx\n", __func__, hpc_ptr->u.wpeg_ctlr.wpegbbar);
  191. debug("%s - i2c_addr: %x\n", __func__, hpc_ptr->u.wpeg_ctlr.i2c_addr);
  192. debug("%s - irq: %x\n", __func__, hpc_ptr->irq);
  193. break;
  194. }
  195. }
  196. }
  197. int __init ibmphp_access_ebda(void)
  198. {
  199. u8 format, num_ctlrs, rio_complete, hs_complete, ebda_sz;
  200. u16 ebda_seg, num_entries, next_offset, offset, blk_id, sub_addr, re, rc_id, re_id, base;
  201. int rc = 0;
  202. rio_complete = 0;
  203. hs_complete = 0;
  204. io_mem = ioremap((0x40 << 4) + 0x0e, 2);
  205. if (!io_mem)
  206. return -ENOMEM;
  207. ebda_seg = readw(io_mem);
  208. iounmap(io_mem);
  209. debug("returned ebda segment: %x\n", ebda_seg);
  210. io_mem = ioremap(ebda_seg<<4, 1);
  211. if (!io_mem)
  212. return -ENOMEM;
  213. ebda_sz = readb(io_mem);
  214. iounmap(io_mem);
  215. debug("ebda size: %d(KiB)\n", ebda_sz);
  216. if (ebda_sz == 0)
  217. return -ENOMEM;
  218. io_mem = ioremap(ebda_seg<<4, (ebda_sz * 1024));
  219. if (!io_mem)
  220. return -ENOMEM;
  221. next_offset = 0x180;
  222. for (;;) {
  223. offset = next_offset;
  224. /* Make sure what we read is still in the mapped section */
  225. if (WARN(offset > (ebda_sz * 1024 - 4),
  226. "ibmphp_ebda: next read is beyond ebda_sz\n"))
  227. break;
  228. next_offset = readw(io_mem + offset); /* offset of next blk */
  229. offset += 2;
  230. if (next_offset == 0) /* 0 indicate it's last blk */
  231. break;
  232. blk_id = readw(io_mem + offset); /* this blk id */
  233. offset += 2;
  234. /* check if it is hot swap block or rio block */
  235. if (blk_id != 0x4853 && blk_id != 0x4752)
  236. continue;
  237. /* found hs table */
  238. if (blk_id == 0x4853) {
  239. debug("now enter hot swap block---\n");
  240. debug("hot blk id: %x\n", blk_id);
  241. format = readb(io_mem + offset);
  242. offset += 1;
  243. if (format != 4)
  244. goto error_nodev;
  245. debug("hot blk format: %x\n", format);
  246. /* hot swap sub blk */
  247. base = offset;
  248. sub_addr = base;
  249. re = readw(io_mem + sub_addr); /* next sub blk */
  250. sub_addr += 2;
  251. rc_id = readw(io_mem + sub_addr); /* sub blk id */
  252. sub_addr += 2;
  253. if (rc_id != 0x5243)
  254. goto error_nodev;
  255. /* rc sub blk signature */
  256. num_ctlrs = readb(io_mem + sub_addr);
  257. sub_addr += 1;
  258. hpc_list_ptr = alloc_ebda_hpc_list();
  259. if (!hpc_list_ptr) {
  260. rc = -ENOMEM;
  261. goto out;
  262. }
  263. hpc_list_ptr->format = format;
  264. hpc_list_ptr->num_ctlrs = num_ctlrs;
  265. hpc_list_ptr->phys_addr = sub_addr; /* offset of RSRC_CONTROLLER blk */
  266. debug("info about hpc descriptor---\n");
  267. debug("hot blk format: %x\n", format);
  268. debug("num of controller: %x\n", num_ctlrs);
  269. debug("offset of hpc data structure entries: %x\n ", sub_addr);
  270. sub_addr = base + re; /* re sub blk */
  271. /* FIXME: rc is never used/checked */
  272. rc = readw(io_mem + sub_addr); /* next sub blk */
  273. sub_addr += 2;
  274. re_id = readw(io_mem + sub_addr); /* sub blk id */
  275. sub_addr += 2;
  276. if (re_id != 0x5245)
  277. goto error_nodev;
  278. /* signature of re */
  279. num_entries = readw(io_mem + sub_addr);
  280. sub_addr += 2; /* offset of RSRC_ENTRIES blk */
  281. rsrc_list_ptr = alloc_ebda_rsrc_list();
  282. if (!rsrc_list_ptr) {
  283. rc = -ENOMEM;
  284. goto out;
  285. }
  286. rsrc_list_ptr->format = format;
  287. rsrc_list_ptr->num_entries = num_entries;
  288. rsrc_list_ptr->phys_addr = sub_addr;
  289. debug("info about rsrc descriptor---\n");
  290. debug("format: %x\n", format);
  291. debug("num of rsrc: %x\n", num_entries);
  292. debug("offset of rsrc data structure entries: %x\n ", sub_addr);
  293. hs_complete = 1;
  294. } else {
  295. /* found rio table, blk_id == 0x4752 */
  296. debug("now enter io table ---\n");
  297. debug("rio blk id: %x\n", blk_id);
  298. rio_table_ptr = kzalloc(sizeof(struct rio_table_hdr), GFP_KERNEL);
  299. if (!rio_table_ptr) {
  300. rc = -ENOMEM;
  301. goto out;
  302. }
  303. rio_table_ptr->ver_num = readb(io_mem + offset);
  304. rio_table_ptr->scal_count = readb(io_mem + offset + 1);
  305. rio_table_ptr->riodev_count = readb(io_mem + offset + 2);
  306. rio_table_ptr->offset = offset + 3 ;
  307. debug("info about rio table hdr ---\n");
  308. debug("ver_num: %x\nscal_count: %x\nriodev_count: %x\noffset of rio table: %x\n ",
  309. rio_table_ptr->ver_num, rio_table_ptr->scal_count,
  310. rio_table_ptr->riodev_count, rio_table_ptr->offset);
  311. rio_complete = 1;
  312. }
  313. }
  314. if (!hs_complete && !rio_complete)
  315. goto error_nodev;
  316. if (rio_table_ptr) {
  317. if (rio_complete && rio_table_ptr->ver_num == 3) {
  318. rc = ebda_rio_table();
  319. if (rc)
  320. goto out;
  321. }
  322. }
  323. rc = ebda_rsrc_controller();
  324. if (rc)
  325. goto out;
  326. rc = ebda_rsrc_rsrc();
  327. goto out;
  328. error_nodev:
  329. rc = -ENODEV;
  330. out:
  331. iounmap(io_mem);
  332. return rc;
  333. }
  334. /*
  335. * map info of scalability details and rio details from physical address
  336. */
  337. static int __init ebda_rio_table(void)
  338. {
  339. u16 offset;
  340. u8 i;
  341. struct rio_detail *rio_detail_ptr;
  342. offset = rio_table_ptr->offset;
  343. offset += 12 * rio_table_ptr->scal_count;
  344. // we do concern about rio details
  345. for (i = 0; i < rio_table_ptr->riodev_count; i++) {
  346. rio_detail_ptr = kzalloc(sizeof(struct rio_detail), GFP_KERNEL);
  347. if (!rio_detail_ptr)
  348. return -ENOMEM;
  349. rio_detail_ptr->rio_node_id = readb(io_mem + offset);
  350. rio_detail_ptr->bbar = readl(io_mem + offset + 1);
  351. rio_detail_ptr->rio_type = readb(io_mem + offset + 5);
  352. rio_detail_ptr->owner_id = readb(io_mem + offset + 6);
  353. rio_detail_ptr->port0_node_connect = readb(io_mem + offset + 7);
  354. rio_detail_ptr->port0_port_connect = readb(io_mem + offset + 8);
  355. rio_detail_ptr->port1_node_connect = readb(io_mem + offset + 9);
  356. rio_detail_ptr->port1_port_connect = readb(io_mem + offset + 10);
  357. rio_detail_ptr->first_slot_num = readb(io_mem + offset + 11);
  358. rio_detail_ptr->status = readb(io_mem + offset + 12);
  359. rio_detail_ptr->wpindex = readb(io_mem + offset + 13);
  360. rio_detail_ptr->chassis_num = readb(io_mem + offset + 14);
  361. // debug("rio_node_id: %x\nbbar: %x\nrio_type: %x\nowner_id: %x\nport0_node: %x\nport0_port: %x\nport1_node: %x\nport1_port: %x\nfirst_slot_num: %x\nstatus: %x\n", rio_detail_ptr->rio_node_id, rio_detail_ptr->bbar, rio_detail_ptr->rio_type, rio_detail_ptr->owner_id, rio_detail_ptr->port0_node_connect, rio_detail_ptr->port0_port_connect, rio_detail_ptr->port1_node_connect, rio_detail_ptr->port1_port_connect, rio_detail_ptr->first_slot_num, rio_detail_ptr->status);
  362. //create linked list of chassis
  363. if (rio_detail_ptr->rio_type == 4 || rio_detail_ptr->rio_type == 5)
  364. list_add(&rio_detail_ptr->rio_detail_list, &rio_vg_head);
  365. //create linked list of expansion box
  366. else if (rio_detail_ptr->rio_type == 6 || rio_detail_ptr->rio_type == 7)
  367. list_add(&rio_detail_ptr->rio_detail_list, &rio_lo_head);
  368. else
  369. // not in my concern
  370. kfree(rio_detail_ptr);
  371. offset += 15;
  372. }
  373. print_lo_info();
  374. print_vg_info();
  375. return 0;
  376. }
  377. /*
  378. * reorganizing linked list of chassis
  379. */
  380. static struct opt_rio *search_opt_vg(u8 chassis_num)
  381. {
  382. struct opt_rio *ptr;
  383. list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
  384. if (ptr->chassis_num == chassis_num)
  385. return ptr;
  386. }
  387. return NULL;
  388. }
  389. static int __init combine_wpg_for_chassis(void)
  390. {
  391. struct opt_rio *opt_rio_ptr = NULL;
  392. struct rio_detail *rio_detail_ptr = NULL;
  393. list_for_each_entry(rio_detail_ptr, &rio_vg_head, rio_detail_list) {
  394. opt_rio_ptr = search_opt_vg(rio_detail_ptr->chassis_num);
  395. if (!opt_rio_ptr) {
  396. opt_rio_ptr = kzalloc(sizeof(struct opt_rio), GFP_KERNEL);
  397. if (!opt_rio_ptr)
  398. return -ENOMEM;
  399. opt_rio_ptr->rio_type = rio_detail_ptr->rio_type;
  400. opt_rio_ptr->chassis_num = rio_detail_ptr->chassis_num;
  401. opt_rio_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
  402. opt_rio_ptr->middle_num = rio_detail_ptr->first_slot_num;
  403. list_add(&opt_rio_ptr->opt_rio_list, &opt_vg_head);
  404. } else {
  405. opt_rio_ptr->first_slot_num = min(opt_rio_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
  406. opt_rio_ptr->middle_num = max(opt_rio_ptr->middle_num, rio_detail_ptr->first_slot_num);
  407. }
  408. }
  409. print_opt_vg();
  410. return 0;
  411. }
  412. /*
  413. * reorganizing linked list of expansion box
  414. */
  415. static struct opt_rio_lo *search_opt_lo(u8 chassis_num)
  416. {
  417. struct opt_rio_lo *ptr;
  418. list_for_each_entry(ptr, &opt_lo_head, opt_rio_lo_list) {
  419. if (ptr->chassis_num == chassis_num)
  420. return ptr;
  421. }
  422. return NULL;
  423. }
  424. static int combine_wpg_for_expansion(void)
  425. {
  426. struct opt_rio_lo *opt_rio_lo_ptr = NULL;
  427. struct rio_detail *rio_detail_ptr = NULL;
  428. list_for_each_entry(rio_detail_ptr, &rio_lo_head, rio_detail_list) {
  429. opt_rio_lo_ptr = search_opt_lo(rio_detail_ptr->chassis_num);
  430. if (!opt_rio_lo_ptr) {
  431. opt_rio_lo_ptr = kzalloc(sizeof(struct opt_rio_lo), GFP_KERNEL);
  432. if (!opt_rio_lo_ptr)
  433. return -ENOMEM;
  434. opt_rio_lo_ptr->rio_type = rio_detail_ptr->rio_type;
  435. opt_rio_lo_ptr->chassis_num = rio_detail_ptr->chassis_num;
  436. opt_rio_lo_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
  437. opt_rio_lo_ptr->middle_num = rio_detail_ptr->first_slot_num;
  438. opt_rio_lo_ptr->pack_count = 1;
  439. list_add(&opt_rio_lo_ptr->opt_rio_lo_list, &opt_lo_head);
  440. } else {
  441. opt_rio_lo_ptr->first_slot_num = min(opt_rio_lo_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
  442. opt_rio_lo_ptr->middle_num = max(opt_rio_lo_ptr->middle_num, rio_detail_ptr->first_slot_num);
  443. opt_rio_lo_ptr->pack_count = 2;
  444. }
  445. }
  446. return 0;
  447. }
  448. /* Since we don't know the max slot number per each chassis, hence go
  449. * through the list of all chassis to find out the range
  450. * Arguments: slot_num, 1st slot number of the chassis we think we are on,
  451. * var (0 = chassis, 1 = expansion box)
  452. */
  453. static int first_slot_num(u8 slot_num, u8 first_slot, u8 var)
  454. {
  455. struct opt_rio *opt_vg_ptr = NULL;
  456. struct opt_rio_lo *opt_lo_ptr = NULL;
  457. int rc = 0;
  458. if (!var) {
  459. list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
  460. if ((first_slot < opt_vg_ptr->first_slot_num) && (slot_num >= opt_vg_ptr->first_slot_num)) {
  461. rc = -ENODEV;
  462. break;
  463. }
  464. }
  465. } else {
  466. list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
  467. if ((first_slot < opt_lo_ptr->first_slot_num) && (slot_num >= opt_lo_ptr->first_slot_num)) {
  468. rc = -ENODEV;
  469. break;
  470. }
  471. }
  472. }
  473. return rc;
  474. }
  475. static struct opt_rio_lo *find_rxe_num(u8 slot_num)
  476. {
  477. struct opt_rio_lo *opt_lo_ptr;
  478. list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
  479. //check to see if this slot_num belongs to expansion box
  480. if ((slot_num >= opt_lo_ptr->first_slot_num) && (!first_slot_num(slot_num, opt_lo_ptr->first_slot_num, 1)))
  481. return opt_lo_ptr;
  482. }
  483. return NULL;
  484. }
  485. static struct opt_rio *find_chassis_num(u8 slot_num)
  486. {
  487. struct opt_rio *opt_vg_ptr;
  488. list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
  489. //check to see if this slot_num belongs to chassis
  490. if ((slot_num >= opt_vg_ptr->first_slot_num) && (!first_slot_num(slot_num, opt_vg_ptr->first_slot_num, 0)))
  491. return opt_vg_ptr;
  492. }
  493. return NULL;
  494. }
  495. /* This routine will find out how many slots are in the chassis, so that
  496. * the slot numbers for rxe100 would start from 1, and not from 7, or 6 etc
  497. */
  498. static u8 calculate_first_slot(u8 slot_num)
  499. {
  500. u8 first_slot = 1;
  501. struct slot *slot_cur;
  502. list_for_each_entry(slot_cur, &ibmphp_slot_head, ibm_slot_list) {
  503. if (slot_cur->ctrl) {
  504. if ((slot_cur->ctrl->ctlr_type != 4) && (slot_cur->ctrl->ending_slot_num > first_slot) && (slot_num > slot_cur->ctrl->ending_slot_num))
  505. first_slot = slot_cur->ctrl->ending_slot_num;
  506. }
  507. }
  508. return first_slot + 1;
  509. }
  510. #define SLOT_NAME_SIZE 30
  511. static char *create_file_name(struct slot *slot_cur)
  512. {
  513. struct opt_rio *opt_vg_ptr = NULL;
  514. struct opt_rio_lo *opt_lo_ptr = NULL;
  515. static char str[SLOT_NAME_SIZE];
  516. int which = 0; /* rxe = 1, chassis = 0 */
  517. u8 number = 1; /* either chassis or rxe # */
  518. u8 first_slot = 1;
  519. u8 slot_num;
  520. u8 flag = 0;
  521. if (!slot_cur) {
  522. err("Structure passed is empty\n");
  523. return NULL;
  524. }
  525. slot_num = slot_cur->number;
  526. memset(str, 0, sizeof(str));
  527. if (rio_table_ptr) {
  528. if (rio_table_ptr->ver_num == 3) {
  529. opt_vg_ptr = find_chassis_num(slot_num);
  530. opt_lo_ptr = find_rxe_num(slot_num);
  531. }
  532. }
  533. if (opt_vg_ptr) {
  534. if (opt_lo_ptr) {
  535. if ((slot_num - opt_vg_ptr->first_slot_num) > (slot_num - opt_lo_ptr->first_slot_num)) {
  536. number = opt_lo_ptr->chassis_num;
  537. first_slot = opt_lo_ptr->first_slot_num;
  538. which = 1; /* it is RXE */
  539. } else {
  540. first_slot = opt_vg_ptr->first_slot_num;
  541. number = opt_vg_ptr->chassis_num;
  542. which = 0;
  543. }
  544. } else {
  545. first_slot = opt_vg_ptr->first_slot_num;
  546. number = opt_vg_ptr->chassis_num;
  547. which = 0;
  548. }
  549. ++flag;
  550. } else if (opt_lo_ptr) {
  551. number = opt_lo_ptr->chassis_num;
  552. first_slot = opt_lo_ptr->first_slot_num;
  553. which = 1;
  554. ++flag;
  555. } else if (rio_table_ptr) {
  556. if (rio_table_ptr->ver_num == 3) {
  557. /* if both NULL and we DO have correct RIO table in BIOS */
  558. return NULL;
  559. }
  560. }
  561. if (!flag) {
  562. if (slot_cur->ctrl->ctlr_type == 4) {
  563. first_slot = calculate_first_slot(slot_num);
  564. which = 1;
  565. } else {
  566. which = 0;
  567. }
  568. }
  569. sprintf(str, "%s%dslot%d",
  570. which == 0 ? "chassis" : "rxe",
  571. number, slot_num - first_slot + 1);
  572. return str;
  573. }
  574. static int fillslotinfo(struct hotplug_slot *hotplug_slot)
  575. {
  576. struct slot *slot;
  577. int rc = 0;
  578. slot = to_slot(hotplug_slot);
  579. rc = ibmphp_hpc_readslot(slot, READ_ALLSTAT, NULL);
  580. return rc;
  581. }
  582. static struct pci_driver ibmphp_driver;
  583. /*
  584. * map info (ctlr-id, slot count, slot#.. bus count, bus#, ctlr type...) of
  585. * each hpc from physical address to a list of hot plug controllers based on
  586. * hpc descriptors.
  587. */
  588. static int __init ebda_rsrc_controller(void)
  589. {
  590. u16 addr, addr_slot, addr_bus;
  591. u8 ctlr_id, temp, bus_index;
  592. u16 ctlr, slot, bus;
  593. u16 slot_num, bus_num, index;
  594. struct controller *hpc_ptr;
  595. struct ebda_hpc_bus *bus_ptr;
  596. struct ebda_hpc_slot *slot_ptr;
  597. struct bus_info *bus_info_ptr1, *bus_info_ptr2;
  598. int rc;
  599. struct slot *tmp_slot;
  600. char name[SLOT_NAME_SIZE];
  601. addr = hpc_list_ptr->phys_addr;
  602. for (ctlr = 0; ctlr < hpc_list_ptr->num_ctlrs; ctlr++) {
  603. bus_index = 1;
  604. ctlr_id = readb(io_mem + addr);
  605. addr += 1;
  606. slot_num = readb(io_mem + addr);
  607. addr += 1;
  608. addr_slot = addr; /* offset of slot structure */
  609. addr += (slot_num * 4);
  610. bus_num = readb(io_mem + addr);
  611. addr += 1;
  612. addr_bus = addr; /* offset of bus */
  613. addr += (bus_num * 9); /* offset of ctlr_type */
  614. temp = readb(io_mem + addr);
  615. addr += 1;
  616. /* init hpc structure */
  617. hpc_ptr = alloc_ebda_hpc(slot_num, bus_num);
  618. if (!hpc_ptr) {
  619. rc = -ENOMEM;
  620. goto error_no_hpc;
  621. }
  622. hpc_ptr->ctlr_id = ctlr_id;
  623. hpc_ptr->ctlr_relative_id = ctlr;
  624. hpc_ptr->slot_count = slot_num;
  625. hpc_ptr->bus_count = bus_num;
  626. debug("now enter ctlr data structure ---\n");
  627. debug("ctlr id: %x\n", ctlr_id);
  628. debug("ctlr_relative_id: %x\n", hpc_ptr->ctlr_relative_id);
  629. debug("count of slots controlled by this ctlr: %x\n", slot_num);
  630. debug("count of buses controlled by this ctlr: %x\n", bus_num);
  631. /* init slot structure, fetch slot, bus, cap... */
  632. slot_ptr = hpc_ptr->slots;
  633. for (slot = 0; slot < slot_num; slot++) {
  634. slot_ptr->slot_num = readb(io_mem + addr_slot);
  635. slot_ptr->slot_bus_num = readb(io_mem + addr_slot + slot_num);
  636. slot_ptr->ctl_index = readb(io_mem + addr_slot + 2*slot_num);
  637. slot_ptr->slot_cap = readb(io_mem + addr_slot + 3*slot_num);
  638. // create bus_info lined list --- if only one slot per bus: slot_min = slot_max
  639. bus_info_ptr2 = ibmphp_find_same_bus_num(slot_ptr->slot_bus_num);
  640. if (!bus_info_ptr2) {
  641. bus_info_ptr1 = kzalloc(sizeof(struct bus_info), GFP_KERNEL);
  642. if (!bus_info_ptr1) {
  643. rc = -ENOMEM;
  644. goto error_no_slot;
  645. }
  646. bus_info_ptr1->slot_min = slot_ptr->slot_num;
  647. bus_info_ptr1->slot_max = slot_ptr->slot_num;
  648. bus_info_ptr1->slot_count += 1;
  649. bus_info_ptr1->busno = slot_ptr->slot_bus_num;
  650. bus_info_ptr1->index = bus_index++;
  651. bus_info_ptr1->current_speed = 0xff;
  652. bus_info_ptr1->current_bus_mode = 0xff;
  653. bus_info_ptr1->controller_id = hpc_ptr->ctlr_id;
  654. list_add_tail(&bus_info_ptr1->bus_info_list, &bus_info_head);
  655. } else {
  656. bus_info_ptr2->slot_min = min(bus_info_ptr2->slot_min, slot_ptr->slot_num);
  657. bus_info_ptr2->slot_max = max(bus_info_ptr2->slot_max, slot_ptr->slot_num);
  658. bus_info_ptr2->slot_count += 1;
  659. }
  660. // end of creating the bus_info linked list
  661. slot_ptr++;
  662. addr_slot += 1;
  663. }
  664. /* init bus structure */
  665. bus_ptr = hpc_ptr->buses;
  666. for (bus = 0; bus < bus_num; bus++) {
  667. bus_ptr->bus_num = readb(io_mem + addr_bus + bus);
  668. bus_ptr->slots_at_33_conv = readb(io_mem + addr_bus + bus_num + 8 * bus);
  669. bus_ptr->slots_at_66_conv = readb(io_mem + addr_bus + bus_num + 8 * bus + 1);
  670. bus_ptr->slots_at_66_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 2);
  671. bus_ptr->slots_at_100_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 3);
  672. bus_ptr->slots_at_133_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 4);
  673. bus_info_ptr2 = ibmphp_find_same_bus_num(bus_ptr->bus_num);
  674. if (bus_info_ptr2) {
  675. bus_info_ptr2->slots_at_33_conv = bus_ptr->slots_at_33_conv;
  676. bus_info_ptr2->slots_at_66_conv = bus_ptr->slots_at_66_conv;
  677. bus_info_ptr2->slots_at_66_pcix = bus_ptr->slots_at_66_pcix;
  678. bus_info_ptr2->slots_at_100_pcix = bus_ptr->slots_at_100_pcix;
  679. bus_info_ptr2->slots_at_133_pcix = bus_ptr->slots_at_133_pcix;
  680. }
  681. bus_ptr++;
  682. }
  683. hpc_ptr->ctlr_type = temp;
  684. switch (hpc_ptr->ctlr_type) {
  685. case 1:
  686. hpc_ptr->u.pci_ctlr.bus = readb(io_mem + addr);
  687. hpc_ptr->u.pci_ctlr.dev_fun = readb(io_mem + addr + 1);
  688. hpc_ptr->irq = readb(io_mem + addr + 2);
  689. addr += 3;
  690. debug("ctrl bus = %x, ctlr devfun = %x, irq = %x\n",
  691. hpc_ptr->u.pci_ctlr.bus,
  692. hpc_ptr->u.pci_ctlr.dev_fun, hpc_ptr->irq);
  693. break;
  694. case 0:
  695. hpc_ptr->u.isa_ctlr.io_start = readw(io_mem + addr);
  696. hpc_ptr->u.isa_ctlr.io_end = readw(io_mem + addr + 2);
  697. if (!request_region(hpc_ptr->u.isa_ctlr.io_start,
  698. (hpc_ptr->u.isa_ctlr.io_end - hpc_ptr->u.isa_ctlr.io_start + 1),
  699. "ibmphp")) {
  700. rc = -ENODEV;
  701. goto error_no_slot;
  702. }
  703. hpc_ptr->irq = readb(io_mem + addr + 4);
  704. addr += 5;
  705. break;
  706. case 2:
  707. case 4:
  708. hpc_ptr->u.wpeg_ctlr.wpegbbar = readl(io_mem + addr);
  709. hpc_ptr->u.wpeg_ctlr.i2c_addr = readb(io_mem + addr + 4);
  710. hpc_ptr->irq = readb(io_mem + addr + 5);
  711. addr += 6;
  712. break;
  713. default:
  714. rc = -ENODEV;
  715. goto error_no_slot;
  716. }
  717. //reorganize chassis' linked list
  718. combine_wpg_for_chassis();
  719. combine_wpg_for_expansion();
  720. hpc_ptr->revision = 0xff;
  721. hpc_ptr->options = 0xff;
  722. hpc_ptr->starting_slot_num = hpc_ptr->slots[0].slot_num;
  723. hpc_ptr->ending_slot_num = hpc_ptr->slots[slot_num-1].slot_num;
  724. // register slots with hpc core as well as create linked list of ibm slot
  725. for (index = 0; index < hpc_ptr->slot_count; index++) {
  726. tmp_slot = kzalloc(sizeof(*tmp_slot), GFP_KERNEL);
  727. if (!tmp_slot) {
  728. rc = -ENOMEM;
  729. goto error_no_slot;
  730. }
  731. tmp_slot->flag = 1;
  732. tmp_slot->capabilities = hpc_ptr->slots[index].slot_cap;
  733. if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_133_MAX) == EBDA_SLOT_133_MAX)
  734. tmp_slot->supported_speed = 3;
  735. else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_100_MAX) == EBDA_SLOT_100_MAX)
  736. tmp_slot->supported_speed = 2;
  737. else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_66_MAX) == EBDA_SLOT_66_MAX)
  738. tmp_slot->supported_speed = 1;
  739. if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_PCIX_CAP) == EBDA_SLOT_PCIX_CAP)
  740. tmp_slot->supported_bus_mode = 1;
  741. else
  742. tmp_slot->supported_bus_mode = 0;
  743. tmp_slot->bus = hpc_ptr->slots[index].slot_bus_num;
  744. bus_info_ptr1 = ibmphp_find_same_bus_num(hpc_ptr->slots[index].slot_bus_num);
  745. if (!bus_info_ptr1) {
  746. rc = -ENODEV;
  747. goto error;
  748. }
  749. tmp_slot->bus_on = bus_info_ptr1;
  750. bus_info_ptr1 = NULL;
  751. tmp_slot->ctrl = hpc_ptr;
  752. tmp_slot->ctlr_index = hpc_ptr->slots[index].ctl_index;
  753. tmp_slot->number = hpc_ptr->slots[index].slot_num;
  754. rc = fillslotinfo(&tmp_slot->hotplug_slot);
  755. if (rc)
  756. goto error;
  757. rc = ibmphp_init_devno(&tmp_slot);
  758. if (rc)
  759. goto error;
  760. tmp_slot->hotplug_slot.ops = &ibmphp_hotplug_slot_ops;
  761. // end of registering ibm slot with hotplug core
  762. list_add(&tmp_slot->ibm_slot_list, &ibmphp_slot_head);
  763. }
  764. print_bus_info();
  765. list_add(&hpc_ptr->ebda_hpc_list, &ebda_hpc_head);
  766. } /* each hpc */
  767. list_for_each_entry(tmp_slot, &ibmphp_slot_head, ibm_slot_list) {
  768. snprintf(name, SLOT_NAME_SIZE, "%s", create_file_name(tmp_slot));
  769. pci_hp_register(&tmp_slot->hotplug_slot,
  770. pci_find_bus(0, tmp_slot->bus), tmp_slot->device, name);
  771. }
  772. print_ebda_hpc();
  773. print_ibm_slot();
  774. return 0;
  775. error:
  776. kfree(tmp_slot);
  777. error_no_slot:
  778. free_ebda_hpc(hpc_ptr);
  779. error_no_hpc:
  780. iounmap(io_mem);
  781. return rc;
  782. }
  783. /*
  784. * map info (bus, devfun, start addr, end addr..) of i/o, memory,
  785. * pfm from the physical addr to a list of resource.
  786. */
  787. static int __init ebda_rsrc_rsrc(void)
  788. {
  789. u16 addr;
  790. short rsrc;
  791. u8 type, rsrc_type;
  792. struct ebda_pci_rsrc *rsrc_ptr;
  793. addr = rsrc_list_ptr->phys_addr;
  794. debug("now entering rsrc land\n");
  795. debug("offset of rsrc: %x\n", rsrc_list_ptr->phys_addr);
  796. for (rsrc = 0; rsrc < rsrc_list_ptr->num_entries; rsrc++) {
  797. type = readb(io_mem + addr);
  798. addr += 1;
  799. rsrc_type = type & EBDA_RSRC_TYPE_MASK;
  800. if (rsrc_type == EBDA_IO_RSRC_TYPE) {
  801. rsrc_ptr = alloc_ebda_pci_rsrc();
  802. if (!rsrc_ptr) {
  803. iounmap(io_mem);
  804. return -ENOMEM;
  805. }
  806. rsrc_ptr->rsrc_type = type;
  807. rsrc_ptr->bus_num = readb(io_mem + addr);
  808. rsrc_ptr->dev_fun = readb(io_mem + addr + 1);
  809. rsrc_ptr->start_addr = readw(io_mem + addr + 2);
  810. rsrc_ptr->end_addr = readw(io_mem + addr + 4);
  811. addr += 6;
  812. debug("rsrc from io type ----\n");
  813. debug("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  814. rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
  815. list_add(&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
  816. }
  817. if (rsrc_type == EBDA_MEM_RSRC_TYPE || rsrc_type == EBDA_PFM_RSRC_TYPE) {
  818. rsrc_ptr = alloc_ebda_pci_rsrc();
  819. if (!rsrc_ptr) {
  820. iounmap(io_mem);
  821. return -ENOMEM;
  822. }
  823. rsrc_ptr->rsrc_type = type;
  824. rsrc_ptr->bus_num = readb(io_mem + addr);
  825. rsrc_ptr->dev_fun = readb(io_mem + addr + 1);
  826. rsrc_ptr->start_addr = readl(io_mem + addr + 2);
  827. rsrc_ptr->end_addr = readl(io_mem + addr + 6);
  828. addr += 10;
  829. debug("rsrc from mem or pfm ---\n");
  830. debug("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  831. rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
  832. list_add(&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
  833. }
  834. }
  835. kfree(rsrc_list_ptr);
  836. rsrc_list_ptr = NULL;
  837. print_ebda_pci_rsrc();
  838. return 0;
  839. }
  840. u16 ibmphp_get_total_controllers(void)
  841. {
  842. return hpc_list_ptr->num_ctlrs;
  843. }
  844. struct slot *ibmphp_get_slot_from_physical_num(u8 physical_num)
  845. {
  846. struct slot *slot;
  847. list_for_each_entry(slot, &ibmphp_slot_head, ibm_slot_list) {
  848. if (slot->number == physical_num)
  849. return slot;
  850. }
  851. return NULL;
  852. }
  853. /* To find:
  854. * - the smallest slot number
  855. * - the largest slot number
  856. * - the total number of the slots based on each bus
  857. * (if only one slot per bus slot_min = slot_max )
  858. */
  859. struct bus_info *ibmphp_find_same_bus_num(u32 num)
  860. {
  861. struct bus_info *ptr;
  862. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  863. if (ptr->busno == num)
  864. return ptr;
  865. }
  866. return NULL;
  867. }
  868. /* Finding relative bus number, in order to map corresponding
  869. * bus register
  870. */
  871. int ibmphp_get_bus_index(u8 num)
  872. {
  873. struct bus_info *ptr;
  874. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  875. if (ptr->busno == num)
  876. return ptr->index;
  877. }
  878. return -ENODEV;
  879. }
  880. void ibmphp_free_bus_info_queue(void)
  881. {
  882. struct bus_info *bus_info, *next;
  883. list_for_each_entry_safe(bus_info, next, &bus_info_head,
  884. bus_info_list) {
  885. kfree (bus_info);
  886. }
  887. }
  888. void ibmphp_free_ebda_hpc_queue(void)
  889. {
  890. struct controller *controller = NULL, *next;
  891. int pci_flag = 0;
  892. list_for_each_entry_safe(controller, next, &ebda_hpc_head,
  893. ebda_hpc_list) {
  894. if (controller->ctlr_type == 0)
  895. release_region(controller->u.isa_ctlr.io_start, (controller->u.isa_ctlr.io_end - controller->u.isa_ctlr.io_start + 1));
  896. else if ((controller->ctlr_type == 1) && (!pci_flag)) {
  897. ++pci_flag;
  898. pci_unregister_driver(&ibmphp_driver);
  899. }
  900. free_ebda_hpc(controller);
  901. }
  902. }
  903. void ibmphp_free_ebda_pci_rsrc_queue(void)
  904. {
  905. struct ebda_pci_rsrc *resource, *next;
  906. list_for_each_entry_safe(resource, next, &ibmphp_ebda_pci_rsrc_head,
  907. ebda_pci_rsrc_list) {
  908. kfree (resource);
  909. resource = NULL;
  910. }
  911. }
  912. static const struct pci_device_id id_table[] = {
  913. {
  914. .vendor = PCI_VENDOR_ID_IBM,
  915. .device = HPC_DEVICE_ID,
  916. .subvendor = PCI_VENDOR_ID_IBM,
  917. .subdevice = HPC_SUBSYSTEM_ID,
  918. .class = ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00),
  919. }, {}
  920. };
  921. MODULE_DEVICE_TABLE(pci, id_table);
  922. static int ibmphp_probe(struct pci_dev *, const struct pci_device_id *);
  923. static struct pci_driver ibmphp_driver = {
  924. .name = "ibmphp",
  925. .id_table = id_table,
  926. .probe = ibmphp_probe,
  927. };
  928. int ibmphp_register_pci(void)
  929. {
  930. struct controller *ctrl;
  931. int rc = 0;
  932. list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
  933. if (ctrl->ctlr_type == 1) {
  934. rc = pci_register_driver(&ibmphp_driver);
  935. break;
  936. }
  937. }
  938. return rc;
  939. }
  940. static int ibmphp_probe(struct pci_dev *dev, const struct pci_device_id *ids)
  941. {
  942. struct controller *ctrl;
  943. debug("inside ibmphp_probe\n");
  944. list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
  945. if (ctrl->ctlr_type == 1) {
  946. if ((dev->devfn == ctrl->u.pci_ctlr.dev_fun) && (dev->bus->number == ctrl->u.pci_ctlr.bus)) {
  947. ctrl->ctrl_dev = dev;
  948. debug("found device!!!\n");
  949. debug("dev->device = %x, dev->subsystem_device = %x\n", dev->device, dev->subsystem_device);
  950. return 0;
  951. }
  952. }
  953. }
  954. return -ENODEV;
  955. }