bus.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206
  1. /*
  2. * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. */
  13. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14. #include <linux/libnvdimm.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/uaccess.h>
  18. #include <linux/module.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/fcntl.h>
  21. #include <linux/async.h>
  22. #include <linux/genhd.h>
  23. #include <linux/ndctl.h>
  24. #include <linux/sched.h>
  25. #include <linux/slab.h>
  26. #include <linux/fs.h>
  27. #include <linux/io.h>
  28. #include <linux/mm.h>
  29. #include <linux/nd.h>
  30. #include "nd-core.h"
  31. #include "nd.h"
  32. #include "pfn.h"
  33. int nvdimm_major;
  34. static int nvdimm_bus_major;
  35. static struct class *nd_class;
  36. static DEFINE_IDA(nd_ida);
  37. static int to_nd_device_type(struct device *dev)
  38. {
  39. if (is_nvdimm(dev))
  40. return ND_DEVICE_DIMM;
  41. else if (is_memory(dev))
  42. return ND_DEVICE_REGION_PMEM;
  43. else if (is_nd_blk(dev))
  44. return ND_DEVICE_REGION_BLK;
  45. else if (is_nd_dax(dev))
  46. return ND_DEVICE_DAX_PMEM;
  47. else if (is_nd_region(dev->parent))
  48. return nd_region_to_nstype(to_nd_region(dev->parent));
  49. return 0;
  50. }
  51. static int nvdimm_bus_uevent(struct device *dev, struct kobj_uevent_env *env)
  52. {
  53. return add_uevent_var(env, "MODALIAS=" ND_DEVICE_MODALIAS_FMT,
  54. to_nd_device_type(dev));
  55. }
  56. static struct module *to_bus_provider(struct device *dev)
  57. {
  58. /* pin bus providers while regions are enabled */
  59. if (is_nd_region(dev)) {
  60. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
  61. return nvdimm_bus->nd_desc->module;
  62. }
  63. return NULL;
  64. }
  65. static void nvdimm_bus_probe_start(struct nvdimm_bus *nvdimm_bus)
  66. {
  67. nvdimm_bus_lock(&nvdimm_bus->dev);
  68. nvdimm_bus->probe_active++;
  69. nvdimm_bus_unlock(&nvdimm_bus->dev);
  70. }
  71. static void nvdimm_bus_probe_end(struct nvdimm_bus *nvdimm_bus)
  72. {
  73. nvdimm_bus_lock(&nvdimm_bus->dev);
  74. if (--nvdimm_bus->probe_active == 0)
  75. wake_up(&nvdimm_bus->probe_wait);
  76. nvdimm_bus_unlock(&nvdimm_bus->dev);
  77. }
  78. static int nvdimm_bus_probe(struct device *dev)
  79. {
  80. struct nd_device_driver *nd_drv = to_nd_device_driver(dev->driver);
  81. struct module *provider = to_bus_provider(dev);
  82. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
  83. int rc;
  84. if (!try_module_get(provider))
  85. return -ENXIO;
  86. dev_dbg(&nvdimm_bus->dev, "START: %s.probe(%s)\n",
  87. dev->driver->name, dev_name(dev));
  88. nvdimm_bus_probe_start(nvdimm_bus);
  89. rc = nd_drv->probe(dev);
  90. if (rc == 0)
  91. nd_region_probe_success(nvdimm_bus, dev);
  92. else
  93. nd_region_disable(nvdimm_bus, dev);
  94. nvdimm_bus_probe_end(nvdimm_bus);
  95. dev_dbg(&nvdimm_bus->dev, "END: %s.probe(%s) = %d\n", dev->driver->name,
  96. dev_name(dev), rc);
  97. if (rc != 0)
  98. module_put(provider);
  99. return rc;
  100. }
  101. static int nvdimm_bus_remove(struct device *dev)
  102. {
  103. struct nd_device_driver *nd_drv = to_nd_device_driver(dev->driver);
  104. struct module *provider = to_bus_provider(dev);
  105. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
  106. int rc = 0;
  107. if (nd_drv->remove)
  108. rc = nd_drv->remove(dev);
  109. nd_region_disable(nvdimm_bus, dev);
  110. dev_dbg(&nvdimm_bus->dev, "%s.remove(%s) = %d\n", dev->driver->name,
  111. dev_name(dev), rc);
  112. module_put(provider);
  113. return rc;
  114. }
  115. static void nvdimm_bus_shutdown(struct device *dev)
  116. {
  117. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
  118. struct nd_device_driver *nd_drv = NULL;
  119. if (dev->driver)
  120. nd_drv = to_nd_device_driver(dev->driver);
  121. if (nd_drv && nd_drv->shutdown) {
  122. nd_drv->shutdown(dev);
  123. dev_dbg(&nvdimm_bus->dev, "%s.shutdown(%s)\n",
  124. dev->driver->name, dev_name(dev));
  125. }
  126. }
  127. void nd_device_notify(struct device *dev, enum nvdimm_event event)
  128. {
  129. device_lock(dev);
  130. if (dev->driver) {
  131. struct nd_device_driver *nd_drv;
  132. nd_drv = to_nd_device_driver(dev->driver);
  133. if (nd_drv->notify)
  134. nd_drv->notify(dev, event);
  135. }
  136. device_unlock(dev);
  137. }
  138. EXPORT_SYMBOL(nd_device_notify);
  139. void nvdimm_region_notify(struct nd_region *nd_region, enum nvdimm_event event)
  140. {
  141. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
  142. if (!nvdimm_bus)
  143. return;
  144. /* caller is responsible for holding a reference on the device */
  145. nd_device_notify(&nd_region->dev, event);
  146. }
  147. EXPORT_SYMBOL_GPL(nvdimm_region_notify);
  148. struct clear_badblocks_context {
  149. resource_size_t phys, cleared;
  150. };
  151. static int nvdimm_clear_badblocks_region(struct device *dev, void *data)
  152. {
  153. struct clear_badblocks_context *ctx = data;
  154. struct nd_region *nd_region;
  155. resource_size_t ndr_end;
  156. sector_t sector;
  157. /* make sure device is a region */
  158. if (!is_nd_pmem(dev))
  159. return 0;
  160. nd_region = to_nd_region(dev);
  161. ndr_end = nd_region->ndr_start + nd_region->ndr_size - 1;
  162. /* make sure we are in the region */
  163. if (ctx->phys < nd_region->ndr_start
  164. || (ctx->phys + ctx->cleared) > ndr_end)
  165. return 0;
  166. sector = (ctx->phys - nd_region->ndr_start) / 512;
  167. badblocks_clear(&nd_region->bb, sector, ctx->cleared / 512);
  168. if (nd_region->bb_state)
  169. sysfs_notify_dirent(nd_region->bb_state);
  170. return 0;
  171. }
  172. static void nvdimm_clear_badblocks_regions(struct nvdimm_bus *nvdimm_bus,
  173. phys_addr_t phys, u64 cleared)
  174. {
  175. struct clear_badblocks_context ctx = {
  176. .phys = phys,
  177. .cleared = cleared,
  178. };
  179. device_for_each_child(&nvdimm_bus->dev, &ctx,
  180. nvdimm_clear_badblocks_region);
  181. }
  182. static void nvdimm_account_cleared_poison(struct nvdimm_bus *nvdimm_bus,
  183. phys_addr_t phys, u64 cleared)
  184. {
  185. if (cleared > 0)
  186. badrange_forget(&nvdimm_bus->badrange, phys, cleared);
  187. if (cleared > 0 && cleared / 512)
  188. nvdimm_clear_badblocks_regions(nvdimm_bus, phys, cleared);
  189. }
  190. long nvdimm_clear_poison(struct device *dev, phys_addr_t phys,
  191. unsigned int len)
  192. {
  193. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
  194. struct nvdimm_bus_descriptor *nd_desc;
  195. struct nd_cmd_clear_error clear_err;
  196. struct nd_cmd_ars_cap ars_cap;
  197. u32 clear_err_unit, mask;
  198. unsigned int noio_flag;
  199. int cmd_rc, rc;
  200. if (!nvdimm_bus)
  201. return -ENXIO;
  202. nd_desc = nvdimm_bus->nd_desc;
  203. /*
  204. * if ndctl does not exist, it's PMEM_LEGACY and
  205. * we want to just pretend everything is handled.
  206. */
  207. if (!nd_desc->ndctl)
  208. return len;
  209. memset(&ars_cap, 0, sizeof(ars_cap));
  210. ars_cap.address = phys;
  211. ars_cap.length = len;
  212. noio_flag = memalloc_noio_save();
  213. rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, &ars_cap,
  214. sizeof(ars_cap), &cmd_rc);
  215. memalloc_noio_restore(noio_flag);
  216. if (rc < 0)
  217. return rc;
  218. if (cmd_rc < 0)
  219. return cmd_rc;
  220. clear_err_unit = ars_cap.clear_err_unit;
  221. if (!clear_err_unit || !is_power_of_2(clear_err_unit))
  222. return -ENXIO;
  223. mask = clear_err_unit - 1;
  224. if ((phys | len) & mask)
  225. return -ENXIO;
  226. memset(&clear_err, 0, sizeof(clear_err));
  227. clear_err.address = phys;
  228. clear_err.length = len;
  229. noio_flag = memalloc_noio_save();
  230. rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_CLEAR_ERROR, &clear_err,
  231. sizeof(clear_err), &cmd_rc);
  232. memalloc_noio_restore(noio_flag);
  233. if (rc < 0)
  234. return rc;
  235. if (cmd_rc < 0)
  236. return cmd_rc;
  237. nvdimm_account_cleared_poison(nvdimm_bus, phys, clear_err.cleared);
  238. return clear_err.cleared;
  239. }
  240. EXPORT_SYMBOL_GPL(nvdimm_clear_poison);
  241. static int nvdimm_bus_match(struct device *dev, struct device_driver *drv);
  242. static struct bus_type nvdimm_bus_type = {
  243. .name = "nd",
  244. .uevent = nvdimm_bus_uevent,
  245. .match = nvdimm_bus_match,
  246. .probe = nvdimm_bus_probe,
  247. .remove = nvdimm_bus_remove,
  248. .shutdown = nvdimm_bus_shutdown,
  249. };
  250. static void nvdimm_bus_release(struct device *dev)
  251. {
  252. struct nvdimm_bus *nvdimm_bus;
  253. nvdimm_bus = container_of(dev, struct nvdimm_bus, dev);
  254. ida_simple_remove(&nd_ida, nvdimm_bus->id);
  255. kfree(nvdimm_bus);
  256. }
  257. static bool is_nvdimm_bus(struct device *dev)
  258. {
  259. return dev->release == nvdimm_bus_release;
  260. }
  261. struct nvdimm_bus *walk_to_nvdimm_bus(struct device *nd_dev)
  262. {
  263. struct device *dev;
  264. for (dev = nd_dev; dev; dev = dev->parent)
  265. if (is_nvdimm_bus(dev))
  266. break;
  267. dev_WARN_ONCE(nd_dev, !dev, "invalid dev, not on nd bus\n");
  268. if (dev)
  269. return to_nvdimm_bus(dev);
  270. return NULL;
  271. }
  272. struct nvdimm_bus *to_nvdimm_bus(struct device *dev)
  273. {
  274. struct nvdimm_bus *nvdimm_bus;
  275. nvdimm_bus = container_of(dev, struct nvdimm_bus, dev);
  276. WARN_ON(!is_nvdimm_bus(dev));
  277. return nvdimm_bus;
  278. }
  279. EXPORT_SYMBOL_GPL(to_nvdimm_bus);
  280. struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
  281. struct nvdimm_bus_descriptor *nd_desc)
  282. {
  283. struct nvdimm_bus *nvdimm_bus;
  284. int rc;
  285. nvdimm_bus = kzalloc(sizeof(*nvdimm_bus), GFP_KERNEL);
  286. if (!nvdimm_bus)
  287. return NULL;
  288. INIT_LIST_HEAD(&nvdimm_bus->list);
  289. INIT_LIST_HEAD(&nvdimm_bus->mapping_list);
  290. init_waitqueue_head(&nvdimm_bus->probe_wait);
  291. nvdimm_bus->id = ida_simple_get(&nd_ida, 0, 0, GFP_KERNEL);
  292. mutex_init(&nvdimm_bus->reconfig_mutex);
  293. badrange_init(&nvdimm_bus->badrange);
  294. if (nvdimm_bus->id < 0) {
  295. kfree(nvdimm_bus);
  296. return NULL;
  297. }
  298. nvdimm_bus->nd_desc = nd_desc;
  299. nvdimm_bus->dev.parent = parent;
  300. nvdimm_bus->dev.release = nvdimm_bus_release;
  301. nvdimm_bus->dev.groups = nd_desc->attr_groups;
  302. nvdimm_bus->dev.bus = &nvdimm_bus_type;
  303. nvdimm_bus->dev.of_node = nd_desc->of_node;
  304. dev_set_name(&nvdimm_bus->dev, "ndbus%d", nvdimm_bus->id);
  305. rc = device_register(&nvdimm_bus->dev);
  306. if (rc) {
  307. dev_dbg(&nvdimm_bus->dev, "registration failed: %d\n", rc);
  308. goto err;
  309. }
  310. return nvdimm_bus;
  311. err:
  312. put_device(&nvdimm_bus->dev);
  313. return NULL;
  314. }
  315. EXPORT_SYMBOL_GPL(nvdimm_bus_register);
  316. void nvdimm_bus_unregister(struct nvdimm_bus *nvdimm_bus)
  317. {
  318. if (!nvdimm_bus)
  319. return;
  320. device_unregister(&nvdimm_bus->dev);
  321. }
  322. EXPORT_SYMBOL_GPL(nvdimm_bus_unregister);
  323. static int child_unregister(struct device *dev, void *data)
  324. {
  325. /*
  326. * the singular ndctl class device per bus needs to be
  327. * "device_destroy"ed, so skip it here
  328. *
  329. * i.e. remove classless children
  330. */
  331. if (dev->class)
  332. /* pass */;
  333. else
  334. nd_device_unregister(dev, ND_SYNC);
  335. return 0;
  336. }
  337. static void free_badrange_list(struct list_head *badrange_list)
  338. {
  339. struct badrange_entry *bre, *next;
  340. list_for_each_entry_safe(bre, next, badrange_list, list) {
  341. list_del(&bre->list);
  342. kfree(bre);
  343. }
  344. list_del_init(badrange_list);
  345. }
  346. static int nd_bus_remove(struct device *dev)
  347. {
  348. struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
  349. mutex_lock(&nvdimm_bus_list_mutex);
  350. list_del_init(&nvdimm_bus->list);
  351. mutex_unlock(&nvdimm_bus_list_mutex);
  352. nd_synchronize();
  353. device_for_each_child(&nvdimm_bus->dev, NULL, child_unregister);
  354. spin_lock(&nvdimm_bus->badrange.lock);
  355. free_badrange_list(&nvdimm_bus->badrange.list);
  356. spin_unlock(&nvdimm_bus->badrange.lock);
  357. nvdimm_bus_destroy_ndctl(nvdimm_bus);
  358. return 0;
  359. }
  360. static int nd_bus_probe(struct device *dev)
  361. {
  362. struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
  363. int rc;
  364. rc = nvdimm_bus_create_ndctl(nvdimm_bus);
  365. if (rc)
  366. return rc;
  367. mutex_lock(&nvdimm_bus_list_mutex);
  368. list_add_tail(&nvdimm_bus->list, &nvdimm_bus_list);
  369. mutex_unlock(&nvdimm_bus_list_mutex);
  370. /* enable bus provider attributes to look up their local context */
  371. dev_set_drvdata(dev, nvdimm_bus->nd_desc);
  372. return 0;
  373. }
  374. static struct nd_device_driver nd_bus_driver = {
  375. .probe = nd_bus_probe,
  376. .remove = nd_bus_remove,
  377. .drv = {
  378. .name = "nd_bus",
  379. .suppress_bind_attrs = true,
  380. .bus = &nvdimm_bus_type,
  381. .owner = THIS_MODULE,
  382. .mod_name = KBUILD_MODNAME,
  383. },
  384. };
  385. static int nvdimm_bus_match(struct device *dev, struct device_driver *drv)
  386. {
  387. struct nd_device_driver *nd_drv = to_nd_device_driver(drv);
  388. if (is_nvdimm_bus(dev) && nd_drv == &nd_bus_driver)
  389. return true;
  390. return !!test_bit(to_nd_device_type(dev), &nd_drv->type);
  391. }
  392. static ASYNC_DOMAIN_EXCLUSIVE(nd_async_domain);
  393. void nd_synchronize(void)
  394. {
  395. async_synchronize_full_domain(&nd_async_domain);
  396. }
  397. EXPORT_SYMBOL_GPL(nd_synchronize);
  398. static void nd_async_device_register(void *d, async_cookie_t cookie)
  399. {
  400. struct device *dev = d;
  401. if (device_add(dev) != 0) {
  402. dev_err(dev, "%s: failed\n", __func__);
  403. put_device(dev);
  404. }
  405. put_device(dev);
  406. if (dev->parent)
  407. put_device(dev->parent);
  408. }
  409. static void nd_async_device_unregister(void *d, async_cookie_t cookie)
  410. {
  411. struct device *dev = d;
  412. /* flush bus operations before delete */
  413. nvdimm_bus_lock(dev);
  414. nvdimm_bus_unlock(dev);
  415. device_unregister(dev);
  416. put_device(dev);
  417. }
  418. void __nd_device_register(struct device *dev)
  419. {
  420. if (!dev)
  421. return;
  422. /*
  423. * Ensure that region devices always have their NUMA node set as
  424. * early as possible. This way we are able to make certain that
  425. * any memory associated with the creation and the creation
  426. * itself of the region is associated with the correct node.
  427. */
  428. if (is_nd_region(dev))
  429. set_dev_node(dev, to_nd_region(dev)->numa_node);
  430. dev->bus = &nvdimm_bus_type;
  431. if (dev->parent)
  432. get_device(dev->parent);
  433. get_device(dev);
  434. async_schedule_domain(nd_async_device_register, dev,
  435. &nd_async_domain);
  436. }
  437. void nd_device_register(struct device *dev)
  438. {
  439. device_initialize(dev);
  440. __nd_device_register(dev);
  441. }
  442. EXPORT_SYMBOL(nd_device_register);
  443. void nd_device_unregister(struct device *dev, enum nd_async_mode mode)
  444. {
  445. switch (mode) {
  446. case ND_ASYNC:
  447. get_device(dev);
  448. async_schedule_domain(nd_async_device_unregister, dev,
  449. &nd_async_domain);
  450. break;
  451. case ND_SYNC:
  452. nd_synchronize();
  453. device_unregister(dev);
  454. break;
  455. }
  456. }
  457. EXPORT_SYMBOL(nd_device_unregister);
  458. /**
  459. * __nd_driver_register() - register a region or a namespace driver
  460. * @nd_drv: driver to register
  461. * @owner: automatically set by nd_driver_register() macro
  462. * @mod_name: automatically set by nd_driver_register() macro
  463. */
  464. int __nd_driver_register(struct nd_device_driver *nd_drv, struct module *owner,
  465. const char *mod_name)
  466. {
  467. struct device_driver *drv = &nd_drv->drv;
  468. if (!nd_drv->type) {
  469. pr_debug("driver type bitmask not set (%pf)\n",
  470. __builtin_return_address(0));
  471. return -EINVAL;
  472. }
  473. if (!nd_drv->probe) {
  474. pr_debug("%s ->probe() must be specified\n", mod_name);
  475. return -EINVAL;
  476. }
  477. drv->bus = &nvdimm_bus_type;
  478. drv->owner = owner;
  479. drv->mod_name = mod_name;
  480. return driver_register(drv);
  481. }
  482. EXPORT_SYMBOL(__nd_driver_register);
  483. int nvdimm_revalidate_disk(struct gendisk *disk)
  484. {
  485. struct device *dev = disk_to_dev(disk)->parent;
  486. struct nd_region *nd_region = to_nd_region(dev->parent);
  487. int disk_ro = get_disk_ro(disk);
  488. /*
  489. * Upgrade to read-only if the region is read-only preserve as
  490. * read-only if the disk is already read-only.
  491. */
  492. if (disk_ro || nd_region->ro == disk_ro)
  493. return 0;
  494. dev_info(dev, "%s read-only, marking %s read-only\n",
  495. dev_name(&nd_region->dev), disk->disk_name);
  496. set_disk_ro(disk, 1);
  497. return 0;
  498. }
  499. EXPORT_SYMBOL(nvdimm_revalidate_disk);
  500. static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
  501. char *buf)
  502. {
  503. return sprintf(buf, ND_DEVICE_MODALIAS_FMT "\n",
  504. to_nd_device_type(dev));
  505. }
  506. static DEVICE_ATTR_RO(modalias);
  507. static ssize_t devtype_show(struct device *dev, struct device_attribute *attr,
  508. char *buf)
  509. {
  510. return sprintf(buf, "%s\n", dev->type->name);
  511. }
  512. static DEVICE_ATTR_RO(devtype);
  513. static struct attribute *nd_device_attributes[] = {
  514. &dev_attr_modalias.attr,
  515. &dev_attr_devtype.attr,
  516. NULL,
  517. };
  518. /**
  519. * nd_device_attribute_group - generic attributes for all devices on an nd bus
  520. */
  521. struct attribute_group nd_device_attribute_group = {
  522. .attrs = nd_device_attributes,
  523. };
  524. EXPORT_SYMBOL_GPL(nd_device_attribute_group);
  525. static ssize_t numa_node_show(struct device *dev,
  526. struct device_attribute *attr, char *buf)
  527. {
  528. return sprintf(buf, "%d\n", dev_to_node(dev));
  529. }
  530. static DEVICE_ATTR_RO(numa_node);
  531. static struct attribute *nd_numa_attributes[] = {
  532. &dev_attr_numa_node.attr,
  533. NULL,
  534. };
  535. static umode_t nd_numa_attr_visible(struct kobject *kobj, struct attribute *a,
  536. int n)
  537. {
  538. if (!IS_ENABLED(CONFIG_NUMA))
  539. return 0;
  540. return a->mode;
  541. }
  542. /**
  543. * nd_numa_attribute_group - NUMA attributes for all devices on an nd bus
  544. */
  545. struct attribute_group nd_numa_attribute_group = {
  546. .attrs = nd_numa_attributes,
  547. .is_visible = nd_numa_attr_visible,
  548. };
  549. EXPORT_SYMBOL_GPL(nd_numa_attribute_group);
  550. int nvdimm_bus_create_ndctl(struct nvdimm_bus *nvdimm_bus)
  551. {
  552. dev_t devt = MKDEV(nvdimm_bus_major, nvdimm_bus->id);
  553. struct device *dev;
  554. dev = device_create(nd_class, &nvdimm_bus->dev, devt, nvdimm_bus,
  555. "ndctl%d", nvdimm_bus->id);
  556. if (IS_ERR(dev))
  557. dev_dbg(&nvdimm_bus->dev, "failed to register ndctl%d: %ld\n",
  558. nvdimm_bus->id, PTR_ERR(dev));
  559. return PTR_ERR_OR_ZERO(dev);
  560. }
  561. void nvdimm_bus_destroy_ndctl(struct nvdimm_bus *nvdimm_bus)
  562. {
  563. device_destroy(nd_class, MKDEV(nvdimm_bus_major, nvdimm_bus->id));
  564. }
  565. static const struct nd_cmd_desc __nd_cmd_dimm_descs[] = {
  566. [ND_CMD_IMPLEMENTED] = { },
  567. [ND_CMD_SMART] = {
  568. .out_num = 2,
  569. .out_sizes = { 4, 128, },
  570. },
  571. [ND_CMD_SMART_THRESHOLD] = {
  572. .out_num = 2,
  573. .out_sizes = { 4, 8, },
  574. },
  575. [ND_CMD_DIMM_FLAGS] = {
  576. .out_num = 2,
  577. .out_sizes = { 4, 4 },
  578. },
  579. [ND_CMD_GET_CONFIG_SIZE] = {
  580. .out_num = 3,
  581. .out_sizes = { 4, 4, 4, },
  582. },
  583. [ND_CMD_GET_CONFIG_DATA] = {
  584. .in_num = 2,
  585. .in_sizes = { 4, 4, },
  586. .out_num = 2,
  587. .out_sizes = { 4, UINT_MAX, },
  588. },
  589. [ND_CMD_SET_CONFIG_DATA] = {
  590. .in_num = 3,
  591. .in_sizes = { 4, 4, UINT_MAX, },
  592. .out_num = 1,
  593. .out_sizes = { 4, },
  594. },
  595. [ND_CMD_VENDOR] = {
  596. .in_num = 3,
  597. .in_sizes = { 4, 4, UINT_MAX, },
  598. .out_num = 3,
  599. .out_sizes = { 4, 4, UINT_MAX, },
  600. },
  601. [ND_CMD_CALL] = {
  602. .in_num = 2,
  603. .in_sizes = { sizeof(struct nd_cmd_pkg), UINT_MAX, },
  604. .out_num = 1,
  605. .out_sizes = { UINT_MAX, },
  606. },
  607. };
  608. const struct nd_cmd_desc *nd_cmd_dimm_desc(int cmd)
  609. {
  610. if (cmd < ARRAY_SIZE(__nd_cmd_dimm_descs))
  611. return &__nd_cmd_dimm_descs[cmd];
  612. return NULL;
  613. }
  614. EXPORT_SYMBOL_GPL(nd_cmd_dimm_desc);
  615. static const struct nd_cmd_desc __nd_cmd_bus_descs[] = {
  616. [ND_CMD_IMPLEMENTED] = { },
  617. [ND_CMD_ARS_CAP] = {
  618. .in_num = 2,
  619. .in_sizes = { 8, 8, },
  620. .out_num = 4,
  621. .out_sizes = { 4, 4, 4, 4, },
  622. },
  623. [ND_CMD_ARS_START] = {
  624. .in_num = 5,
  625. .in_sizes = { 8, 8, 2, 1, 5, },
  626. .out_num = 2,
  627. .out_sizes = { 4, 4, },
  628. },
  629. [ND_CMD_ARS_STATUS] = {
  630. .out_num = 3,
  631. .out_sizes = { 4, 4, UINT_MAX, },
  632. },
  633. [ND_CMD_CLEAR_ERROR] = {
  634. .in_num = 2,
  635. .in_sizes = { 8, 8, },
  636. .out_num = 3,
  637. .out_sizes = { 4, 4, 8, },
  638. },
  639. [ND_CMD_CALL] = {
  640. .in_num = 2,
  641. .in_sizes = { sizeof(struct nd_cmd_pkg), UINT_MAX, },
  642. .out_num = 1,
  643. .out_sizes = { UINT_MAX, },
  644. },
  645. };
  646. const struct nd_cmd_desc *nd_cmd_bus_desc(int cmd)
  647. {
  648. if (cmd < ARRAY_SIZE(__nd_cmd_bus_descs))
  649. return &__nd_cmd_bus_descs[cmd];
  650. return NULL;
  651. }
  652. EXPORT_SYMBOL_GPL(nd_cmd_bus_desc);
  653. u32 nd_cmd_in_size(struct nvdimm *nvdimm, int cmd,
  654. const struct nd_cmd_desc *desc, int idx, void *buf)
  655. {
  656. if (idx >= desc->in_num)
  657. return UINT_MAX;
  658. if (desc->in_sizes[idx] < UINT_MAX)
  659. return desc->in_sizes[idx];
  660. if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA && idx == 2) {
  661. struct nd_cmd_set_config_hdr *hdr = buf;
  662. return hdr->in_length;
  663. } else if (nvdimm && cmd == ND_CMD_VENDOR && idx == 2) {
  664. struct nd_cmd_vendor_hdr *hdr = buf;
  665. return hdr->in_length;
  666. } else if (cmd == ND_CMD_CALL) {
  667. struct nd_cmd_pkg *pkg = buf;
  668. return pkg->nd_size_in;
  669. }
  670. return UINT_MAX;
  671. }
  672. EXPORT_SYMBOL_GPL(nd_cmd_in_size);
  673. u32 nd_cmd_out_size(struct nvdimm *nvdimm, int cmd,
  674. const struct nd_cmd_desc *desc, int idx, const u32 *in_field,
  675. const u32 *out_field, unsigned long remainder)
  676. {
  677. if (idx >= desc->out_num)
  678. return UINT_MAX;
  679. if (desc->out_sizes[idx] < UINT_MAX)
  680. return desc->out_sizes[idx];
  681. if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && idx == 1)
  682. return in_field[1];
  683. else if (nvdimm && cmd == ND_CMD_VENDOR && idx == 2)
  684. return out_field[1];
  685. else if (!nvdimm && cmd == ND_CMD_ARS_STATUS && idx == 2) {
  686. /*
  687. * Per table 9-276 ARS Data in ACPI 6.1, out_field[1] is
  688. * "Size of Output Buffer in bytes, including this
  689. * field."
  690. */
  691. if (out_field[1] < 4)
  692. return 0;
  693. /*
  694. * ACPI 6.1 is ambiguous if 'status' is included in the
  695. * output size. If we encounter an output size that
  696. * overshoots the remainder by 4 bytes, assume it was
  697. * including 'status'.
  698. */
  699. if (out_field[1] - 4 == remainder)
  700. return remainder;
  701. return out_field[1] - 8;
  702. } else if (cmd == ND_CMD_CALL) {
  703. struct nd_cmd_pkg *pkg = (struct nd_cmd_pkg *) in_field;
  704. return pkg->nd_size_out;
  705. }
  706. return UINT_MAX;
  707. }
  708. EXPORT_SYMBOL_GPL(nd_cmd_out_size);
  709. void wait_nvdimm_bus_probe_idle(struct device *dev)
  710. {
  711. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
  712. do {
  713. if (nvdimm_bus->probe_active == 0)
  714. break;
  715. nvdimm_bus_unlock(&nvdimm_bus->dev);
  716. wait_event(nvdimm_bus->probe_wait,
  717. nvdimm_bus->probe_active == 0);
  718. nvdimm_bus_lock(&nvdimm_bus->dev);
  719. } while (true);
  720. }
  721. static int nd_pmem_forget_poison_check(struct device *dev, void *data)
  722. {
  723. struct nd_cmd_clear_error *clear_err =
  724. (struct nd_cmd_clear_error *)data;
  725. struct nd_btt *nd_btt = is_nd_btt(dev) ? to_nd_btt(dev) : NULL;
  726. struct nd_pfn *nd_pfn = is_nd_pfn(dev) ? to_nd_pfn(dev) : NULL;
  727. struct nd_dax *nd_dax = is_nd_dax(dev) ? to_nd_dax(dev) : NULL;
  728. struct nd_namespace_common *ndns = NULL;
  729. struct nd_namespace_io *nsio;
  730. resource_size_t offset = 0, end_trunc = 0, start, end, pstart, pend;
  731. if (nd_dax || !dev->driver)
  732. return 0;
  733. start = clear_err->address;
  734. end = clear_err->address + clear_err->cleared - 1;
  735. if (nd_btt || nd_pfn || nd_dax) {
  736. if (nd_btt)
  737. ndns = nd_btt->ndns;
  738. else if (nd_pfn)
  739. ndns = nd_pfn->ndns;
  740. else if (nd_dax)
  741. ndns = nd_dax->nd_pfn.ndns;
  742. if (!ndns)
  743. return 0;
  744. } else
  745. ndns = to_ndns(dev);
  746. nsio = to_nd_namespace_io(&ndns->dev);
  747. pstart = nsio->res.start + offset;
  748. pend = nsio->res.end - end_trunc;
  749. if ((pstart >= start) && (pend <= end))
  750. return -EBUSY;
  751. return 0;
  752. }
  753. static int nd_ns_forget_poison_check(struct device *dev, void *data)
  754. {
  755. return device_for_each_child(dev, data, nd_pmem_forget_poison_check);
  756. }
  757. /* set_config requires an idle interleave set */
  758. static int nd_cmd_clear_to_send(struct nvdimm_bus *nvdimm_bus,
  759. struct nvdimm *nvdimm, unsigned int cmd, void *data)
  760. {
  761. struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
  762. /* ask the bus provider if it would like to block this request */
  763. if (nd_desc->clear_to_send) {
  764. int rc = nd_desc->clear_to_send(nd_desc, nvdimm, cmd);
  765. if (rc)
  766. return rc;
  767. }
  768. /* require clear error to go through the pmem driver */
  769. if (!nvdimm && cmd == ND_CMD_CLEAR_ERROR)
  770. return device_for_each_child(&nvdimm_bus->dev, data,
  771. nd_ns_forget_poison_check);
  772. if (!nvdimm || cmd != ND_CMD_SET_CONFIG_DATA)
  773. return 0;
  774. /* prevent label manipulation while the kernel owns label updates */
  775. wait_nvdimm_bus_probe_idle(&nvdimm_bus->dev);
  776. if (atomic_read(&nvdimm->busy))
  777. return -EBUSY;
  778. return 0;
  779. }
  780. static int __nd_ioctl(struct nvdimm_bus *nvdimm_bus, struct nvdimm *nvdimm,
  781. int read_only, unsigned int ioctl_cmd, unsigned long arg)
  782. {
  783. struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
  784. static char out_env[ND_CMD_MAX_ENVELOPE];
  785. static char in_env[ND_CMD_MAX_ENVELOPE];
  786. const struct nd_cmd_desc *desc = NULL;
  787. unsigned int cmd = _IOC_NR(ioctl_cmd);
  788. struct device *dev = &nvdimm_bus->dev;
  789. void __user *p = (void __user *) arg;
  790. const char *cmd_name, *dimm_name;
  791. u32 in_len = 0, out_len = 0;
  792. unsigned int func = cmd;
  793. unsigned long cmd_mask;
  794. struct nd_cmd_pkg pkg;
  795. int rc, i, cmd_rc;
  796. u64 buf_len = 0;
  797. void *buf;
  798. if (nvdimm) {
  799. desc = nd_cmd_dimm_desc(cmd);
  800. cmd_name = nvdimm_cmd_name(cmd);
  801. cmd_mask = nvdimm->cmd_mask;
  802. dimm_name = dev_name(&nvdimm->dev);
  803. } else {
  804. desc = nd_cmd_bus_desc(cmd);
  805. cmd_name = nvdimm_bus_cmd_name(cmd);
  806. cmd_mask = nd_desc->cmd_mask;
  807. dimm_name = "bus";
  808. }
  809. if (cmd == ND_CMD_CALL) {
  810. if (copy_from_user(&pkg, p, sizeof(pkg)))
  811. return -EFAULT;
  812. }
  813. if (!desc || (desc->out_num + desc->in_num == 0) ||
  814. !test_bit(cmd, &cmd_mask))
  815. return -ENOTTY;
  816. /* fail write commands (when read-only) */
  817. if (read_only)
  818. switch (cmd) {
  819. case ND_CMD_VENDOR:
  820. case ND_CMD_SET_CONFIG_DATA:
  821. case ND_CMD_ARS_START:
  822. case ND_CMD_CLEAR_ERROR:
  823. case ND_CMD_CALL:
  824. dev_dbg(&nvdimm_bus->dev, "'%s' command while read-only.\n",
  825. nvdimm ? nvdimm_cmd_name(cmd)
  826. : nvdimm_bus_cmd_name(cmd));
  827. return -EPERM;
  828. default:
  829. break;
  830. }
  831. /* process an input envelope */
  832. for (i = 0; i < desc->in_num; i++) {
  833. u32 in_size, copy;
  834. in_size = nd_cmd_in_size(nvdimm, cmd, desc, i, in_env);
  835. if (in_size == UINT_MAX) {
  836. dev_err(dev, "%s:%s unknown input size cmd: %s field: %d\n",
  837. __func__, dimm_name, cmd_name, i);
  838. return -ENXIO;
  839. }
  840. if (in_len < sizeof(in_env))
  841. copy = min_t(u32, sizeof(in_env) - in_len, in_size);
  842. else
  843. copy = 0;
  844. if (copy && copy_from_user(&in_env[in_len], p + in_len, copy))
  845. return -EFAULT;
  846. in_len += in_size;
  847. }
  848. if (cmd == ND_CMD_CALL) {
  849. func = pkg.nd_command;
  850. dev_dbg(dev, "%s, idx: %llu, in: %u, out: %u, len %llu\n",
  851. dimm_name, pkg.nd_command,
  852. in_len, out_len, buf_len);
  853. }
  854. /* process an output envelope */
  855. for (i = 0; i < desc->out_num; i++) {
  856. u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i,
  857. (u32 *) in_env, (u32 *) out_env, 0);
  858. u32 copy;
  859. if (out_size == UINT_MAX) {
  860. dev_dbg(dev, "%s unknown output size cmd: %s field: %d\n",
  861. dimm_name, cmd_name, i);
  862. return -EFAULT;
  863. }
  864. if (out_len < sizeof(out_env))
  865. copy = min_t(u32, sizeof(out_env) - out_len, out_size);
  866. else
  867. copy = 0;
  868. if (copy && copy_from_user(&out_env[out_len],
  869. p + in_len + out_len, copy))
  870. return -EFAULT;
  871. out_len += out_size;
  872. }
  873. buf_len = (u64) out_len + (u64) in_len;
  874. if (buf_len > ND_IOCTL_MAX_BUFLEN) {
  875. dev_dbg(dev, "%s cmd: %s buf_len: %llu > %d\n", dimm_name,
  876. cmd_name, buf_len, ND_IOCTL_MAX_BUFLEN);
  877. return -EINVAL;
  878. }
  879. buf = vmalloc(buf_len);
  880. if (!buf)
  881. return -ENOMEM;
  882. if (copy_from_user(buf, p, buf_len)) {
  883. rc = -EFAULT;
  884. goto out;
  885. }
  886. nvdimm_bus_lock(&nvdimm_bus->dev);
  887. rc = nd_cmd_clear_to_send(nvdimm_bus, nvdimm, func, buf);
  888. if (rc)
  889. goto out_unlock;
  890. rc = nd_desc->ndctl(nd_desc, nvdimm, cmd, buf, buf_len, &cmd_rc);
  891. if (rc < 0)
  892. goto out_unlock;
  893. if (!nvdimm && cmd == ND_CMD_CLEAR_ERROR && cmd_rc >= 0) {
  894. struct nd_cmd_clear_error *clear_err = buf;
  895. nvdimm_account_cleared_poison(nvdimm_bus, clear_err->address,
  896. clear_err->cleared);
  897. }
  898. nvdimm_bus_unlock(&nvdimm_bus->dev);
  899. if (copy_to_user(p, buf, buf_len))
  900. rc = -EFAULT;
  901. vfree(buf);
  902. return rc;
  903. out_unlock:
  904. nvdimm_bus_unlock(&nvdimm_bus->dev);
  905. out:
  906. vfree(buf);
  907. return rc;
  908. }
  909. static long nd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  910. {
  911. long id = (long) file->private_data;
  912. int rc = -ENXIO, ro;
  913. struct nvdimm_bus *nvdimm_bus;
  914. ro = ((file->f_flags & O_ACCMODE) == O_RDONLY);
  915. mutex_lock(&nvdimm_bus_list_mutex);
  916. list_for_each_entry(nvdimm_bus, &nvdimm_bus_list, list) {
  917. if (nvdimm_bus->id == id) {
  918. rc = __nd_ioctl(nvdimm_bus, NULL, ro, cmd, arg);
  919. break;
  920. }
  921. }
  922. mutex_unlock(&nvdimm_bus_list_mutex);
  923. return rc;
  924. }
  925. static int match_dimm(struct device *dev, void *data)
  926. {
  927. long id = (long) data;
  928. if (is_nvdimm(dev)) {
  929. struct nvdimm *nvdimm = to_nvdimm(dev);
  930. return nvdimm->id == id;
  931. }
  932. return 0;
  933. }
  934. static long nvdimm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  935. {
  936. int rc = -ENXIO, ro;
  937. struct nvdimm_bus *nvdimm_bus;
  938. ro = ((file->f_flags & O_ACCMODE) == O_RDONLY);
  939. mutex_lock(&nvdimm_bus_list_mutex);
  940. list_for_each_entry(nvdimm_bus, &nvdimm_bus_list, list) {
  941. struct device *dev = device_find_child(&nvdimm_bus->dev,
  942. file->private_data, match_dimm);
  943. struct nvdimm *nvdimm;
  944. if (!dev)
  945. continue;
  946. nvdimm = to_nvdimm(dev);
  947. rc = __nd_ioctl(nvdimm_bus, nvdimm, ro, cmd, arg);
  948. put_device(dev);
  949. break;
  950. }
  951. mutex_unlock(&nvdimm_bus_list_mutex);
  952. return rc;
  953. }
  954. static int nd_open(struct inode *inode, struct file *file)
  955. {
  956. long minor = iminor(inode);
  957. file->private_data = (void *) minor;
  958. return 0;
  959. }
  960. static const struct file_operations nvdimm_bus_fops = {
  961. .owner = THIS_MODULE,
  962. .open = nd_open,
  963. .unlocked_ioctl = nd_ioctl,
  964. .compat_ioctl = nd_ioctl,
  965. .llseek = noop_llseek,
  966. };
  967. static const struct file_operations nvdimm_fops = {
  968. .owner = THIS_MODULE,
  969. .open = nd_open,
  970. .unlocked_ioctl = nvdimm_ioctl,
  971. .compat_ioctl = nvdimm_ioctl,
  972. .llseek = noop_llseek,
  973. };
  974. int __init nvdimm_bus_init(void)
  975. {
  976. int rc;
  977. rc = bus_register(&nvdimm_bus_type);
  978. if (rc)
  979. return rc;
  980. rc = register_chrdev(0, "ndctl", &nvdimm_bus_fops);
  981. if (rc < 0)
  982. goto err_bus_chrdev;
  983. nvdimm_bus_major = rc;
  984. rc = register_chrdev(0, "dimmctl", &nvdimm_fops);
  985. if (rc < 0)
  986. goto err_dimm_chrdev;
  987. nvdimm_major = rc;
  988. nd_class = class_create(THIS_MODULE, "nd");
  989. if (IS_ERR(nd_class)) {
  990. rc = PTR_ERR(nd_class);
  991. goto err_class;
  992. }
  993. rc = driver_register(&nd_bus_driver.drv);
  994. if (rc)
  995. goto err_nd_bus;
  996. return 0;
  997. err_nd_bus:
  998. class_destroy(nd_class);
  999. err_class:
  1000. unregister_chrdev(nvdimm_major, "dimmctl");
  1001. err_dimm_chrdev:
  1002. unregister_chrdev(nvdimm_bus_major, "ndctl");
  1003. err_bus_chrdev:
  1004. bus_unregister(&nvdimm_bus_type);
  1005. return rc;
  1006. }
  1007. void nvdimm_bus_exit(void)
  1008. {
  1009. driver_unregister(&nd_bus_driver.drv);
  1010. class_destroy(nd_class);
  1011. unregister_chrdev(nvdimm_bus_major, "ndctl");
  1012. unregister_chrdev(nvdimm_major, "dimmctl");
  1013. bus_unregister(&nvdimm_bus_type);
  1014. ida_destroy(&nd_ida);
  1015. }