mtd_nandecctest.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/module.h>
  4. #include <linux/list.h>
  5. #include <linux/random.h>
  6. #include <linux/string.h>
  7. #include <linux/bitops.h>
  8. #include <linux/slab.h>
  9. #include <linux/mtd/nand_ecc.h>
  10. #include "mtd_test.h"
  11. /*
  12. * Test the implementation for software ECC
  13. *
  14. * No actual MTD device is needed, So we don't need to warry about losing
  15. * important data by human error.
  16. *
  17. * This covers possible patterns of corruption which can be reliably corrected
  18. * or detected.
  19. */
  20. #if IS_ENABLED(CONFIG_MTD_NAND)
  21. struct nand_ecc_test {
  22. const char *name;
  23. void (*prepare)(void *, void *, void *, void *, const size_t);
  24. int (*verify)(void *, void *, void *, const size_t);
  25. };
  26. /*
  27. * The reason for this __change_bit_le() instead of __change_bit() is to inject
  28. * bit error properly within the region which is not a multiple of
  29. * sizeof(unsigned long) on big-endian systems
  30. */
  31. #ifdef __LITTLE_ENDIAN
  32. #define __change_bit_le(nr, addr) __change_bit(nr, addr)
  33. #elif defined(__BIG_ENDIAN)
  34. #define __change_bit_le(nr, addr) \
  35. __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
  36. #else
  37. #error "Unknown byte order"
  38. #endif
  39. static void single_bit_error_data(void *error_data, void *correct_data,
  40. size_t size)
  41. {
  42. unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
  43. memcpy(error_data, correct_data, size);
  44. __change_bit_le(offset, error_data);
  45. }
  46. static void double_bit_error_data(void *error_data, void *correct_data,
  47. size_t size)
  48. {
  49. unsigned int offset[2];
  50. offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
  51. do {
  52. offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
  53. } while (offset[0] == offset[1]);
  54. memcpy(error_data, correct_data, size);
  55. __change_bit_le(offset[0], error_data);
  56. __change_bit_le(offset[1], error_data);
  57. }
  58. static unsigned int random_ecc_bit(size_t size)
  59. {
  60. unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
  61. if (size == 256) {
  62. /*
  63. * Don't inject a bit error into the insignificant bits (16th
  64. * and 17th bit) in ECC code for 256 byte data block
  65. */
  66. while (offset == 16 || offset == 17)
  67. offset = prandom_u32() % (3 * BITS_PER_BYTE);
  68. }
  69. return offset;
  70. }
  71. static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
  72. size_t size)
  73. {
  74. unsigned int offset = random_ecc_bit(size);
  75. memcpy(error_ecc, correct_ecc, 3);
  76. __change_bit_le(offset, error_ecc);
  77. }
  78. static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
  79. size_t size)
  80. {
  81. unsigned int offset[2];
  82. offset[0] = random_ecc_bit(size);
  83. do {
  84. offset[1] = random_ecc_bit(size);
  85. } while (offset[0] == offset[1]);
  86. memcpy(error_ecc, correct_ecc, 3);
  87. __change_bit_le(offset[0], error_ecc);
  88. __change_bit_le(offset[1], error_ecc);
  89. }
  90. static void no_bit_error(void *error_data, void *error_ecc,
  91. void *correct_data, void *correct_ecc, const size_t size)
  92. {
  93. memcpy(error_data, correct_data, size);
  94. memcpy(error_ecc, correct_ecc, 3);
  95. }
  96. static int no_bit_error_verify(void *error_data, void *error_ecc,
  97. void *correct_data, const size_t size)
  98. {
  99. unsigned char calc_ecc[3];
  100. int ret;
  101. __nand_calculate_ecc(error_data, size, calc_ecc,
  102. IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
  103. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
  104. IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
  105. if (ret == 0 && !memcmp(correct_data, error_data, size))
  106. return 0;
  107. return -EINVAL;
  108. }
  109. static void single_bit_error_in_data(void *error_data, void *error_ecc,
  110. void *correct_data, void *correct_ecc, const size_t size)
  111. {
  112. single_bit_error_data(error_data, correct_data, size);
  113. memcpy(error_ecc, correct_ecc, 3);
  114. }
  115. static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
  116. void *correct_data, void *correct_ecc, const size_t size)
  117. {
  118. memcpy(error_data, correct_data, size);
  119. single_bit_error_ecc(error_ecc, correct_ecc, size);
  120. }
  121. static int single_bit_error_correct(void *error_data, void *error_ecc,
  122. void *correct_data, const size_t size)
  123. {
  124. unsigned char calc_ecc[3];
  125. int ret;
  126. __nand_calculate_ecc(error_data, size, calc_ecc,
  127. IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
  128. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
  129. IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
  130. if (ret == 1 && !memcmp(correct_data, error_data, size))
  131. return 0;
  132. return -EINVAL;
  133. }
  134. static void double_bit_error_in_data(void *error_data, void *error_ecc,
  135. void *correct_data, void *correct_ecc, const size_t size)
  136. {
  137. double_bit_error_data(error_data, correct_data, size);
  138. memcpy(error_ecc, correct_ecc, 3);
  139. }
  140. static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
  141. void *correct_data, void *correct_ecc, const size_t size)
  142. {
  143. single_bit_error_data(error_data, correct_data, size);
  144. single_bit_error_ecc(error_ecc, correct_ecc, size);
  145. }
  146. static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
  147. void *correct_data, void *correct_ecc, const size_t size)
  148. {
  149. memcpy(error_data, correct_data, size);
  150. double_bit_error_ecc(error_ecc, correct_ecc, size);
  151. }
  152. static int double_bit_error_detect(void *error_data, void *error_ecc,
  153. void *correct_data, const size_t size)
  154. {
  155. unsigned char calc_ecc[3];
  156. int ret;
  157. __nand_calculate_ecc(error_data, size, calc_ecc,
  158. IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
  159. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
  160. IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
  161. return (ret == -EBADMSG) ? 0 : -EINVAL;
  162. }
  163. static const struct nand_ecc_test nand_ecc_test[] = {
  164. {
  165. .name = "no-bit-error",
  166. .prepare = no_bit_error,
  167. .verify = no_bit_error_verify,
  168. },
  169. {
  170. .name = "single-bit-error-in-data-correct",
  171. .prepare = single_bit_error_in_data,
  172. .verify = single_bit_error_correct,
  173. },
  174. {
  175. .name = "single-bit-error-in-ecc-correct",
  176. .prepare = single_bit_error_in_ecc,
  177. .verify = single_bit_error_correct,
  178. },
  179. {
  180. .name = "double-bit-error-in-data-detect",
  181. .prepare = double_bit_error_in_data,
  182. .verify = double_bit_error_detect,
  183. },
  184. {
  185. .name = "single-bit-error-in-data-and-ecc-detect",
  186. .prepare = single_bit_error_in_data_and_ecc,
  187. .verify = double_bit_error_detect,
  188. },
  189. {
  190. .name = "double-bit-error-in-ecc-detect",
  191. .prepare = double_bit_error_in_ecc,
  192. .verify = double_bit_error_detect,
  193. },
  194. };
  195. static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
  196. void *correct_ecc, const size_t size)
  197. {
  198. pr_info("hexdump of error data:\n");
  199. print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
  200. error_data, size, false);
  201. print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
  202. DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
  203. pr_info("hexdump of correct data:\n");
  204. print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
  205. correct_data, size, false);
  206. print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
  207. DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
  208. }
  209. static int nand_ecc_test_run(const size_t size)
  210. {
  211. int i;
  212. int err = 0;
  213. void *error_data;
  214. void *error_ecc;
  215. void *correct_data;
  216. void *correct_ecc;
  217. error_data = kmalloc(size, GFP_KERNEL);
  218. error_ecc = kmalloc(3, GFP_KERNEL);
  219. correct_data = kmalloc(size, GFP_KERNEL);
  220. correct_ecc = kmalloc(3, GFP_KERNEL);
  221. if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
  222. err = -ENOMEM;
  223. goto error;
  224. }
  225. prandom_bytes(correct_data, size);
  226. __nand_calculate_ecc(correct_data, size, correct_ecc,
  227. IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
  228. for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
  229. nand_ecc_test[i].prepare(error_data, error_ecc,
  230. correct_data, correct_ecc, size);
  231. err = nand_ecc_test[i].verify(error_data, error_ecc,
  232. correct_data, size);
  233. if (err) {
  234. pr_err("not ok - %s-%zd\n",
  235. nand_ecc_test[i].name, size);
  236. dump_data_ecc(error_data, error_ecc,
  237. correct_data, correct_ecc, size);
  238. break;
  239. }
  240. pr_info("ok - %s-%zd\n",
  241. nand_ecc_test[i].name, size);
  242. err = mtdtest_relax();
  243. if (err)
  244. break;
  245. }
  246. error:
  247. kfree(error_data);
  248. kfree(error_ecc);
  249. kfree(correct_data);
  250. kfree(correct_ecc);
  251. return err;
  252. }
  253. #else
  254. static int nand_ecc_test_run(const size_t size)
  255. {
  256. return 0;
  257. }
  258. #endif
  259. static int __init ecc_test_init(void)
  260. {
  261. int err;
  262. err = nand_ecc_test_run(256);
  263. if (err)
  264. return err;
  265. return nand_ecc_test_run(512);
  266. }
  267. static void __exit ecc_test_exit(void)
  268. {
  269. }
  270. module_init(ecc_test_init);
  271. module_exit(ecc_test_exit);
  272. MODULE_DESCRIPTION("NAND ECC function test module");
  273. MODULE_AUTHOR("Akinobu Mita");
  274. MODULE_LICENSE("GPL");