mtk_nand.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603
  1. /*
  2. * MTK NAND Flash controller driver.
  3. * Copyright (C) 2016 MediaTek Inc.
  4. * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
  5. * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. #include <linux/platform_device.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/clk.h>
  21. #include <linux/mtd/rawnand.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/module.h>
  24. #include <linux/iopoll.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include "mtk_ecc.h"
  28. /* NAND controller register definition */
  29. #define NFI_CNFG (0x00)
  30. #define CNFG_AHB BIT(0)
  31. #define CNFG_READ_EN BIT(1)
  32. #define CNFG_DMA_BURST_EN BIT(2)
  33. #define CNFG_BYTE_RW BIT(6)
  34. #define CNFG_HW_ECC_EN BIT(8)
  35. #define CNFG_AUTO_FMT_EN BIT(9)
  36. #define CNFG_OP_CUST (6 << 12)
  37. #define NFI_PAGEFMT (0x04)
  38. #define PAGEFMT_FDM_ECC_SHIFT (12)
  39. #define PAGEFMT_FDM_SHIFT (8)
  40. #define PAGEFMT_SEC_SEL_512 BIT(2)
  41. #define PAGEFMT_512_2K (0)
  42. #define PAGEFMT_2K_4K (1)
  43. #define PAGEFMT_4K_8K (2)
  44. #define PAGEFMT_8K_16K (3)
  45. /* NFI control */
  46. #define NFI_CON (0x08)
  47. #define CON_FIFO_FLUSH BIT(0)
  48. #define CON_NFI_RST BIT(1)
  49. #define CON_BRD BIT(8) /* burst read */
  50. #define CON_BWR BIT(9) /* burst write */
  51. #define CON_SEC_SHIFT (12)
  52. /* Timming control register */
  53. #define NFI_ACCCON (0x0C)
  54. #define NFI_INTR_EN (0x10)
  55. #define INTR_AHB_DONE_EN BIT(6)
  56. #define NFI_INTR_STA (0x14)
  57. #define NFI_CMD (0x20)
  58. #define NFI_ADDRNOB (0x30)
  59. #define NFI_COLADDR (0x34)
  60. #define NFI_ROWADDR (0x38)
  61. #define NFI_STRDATA (0x40)
  62. #define STAR_EN (1)
  63. #define STAR_DE (0)
  64. #define NFI_CNRNB (0x44)
  65. #define NFI_DATAW (0x50)
  66. #define NFI_DATAR (0x54)
  67. #define NFI_PIO_DIRDY (0x58)
  68. #define PIO_DI_RDY (0x01)
  69. #define NFI_STA (0x60)
  70. #define STA_CMD BIT(0)
  71. #define STA_ADDR BIT(1)
  72. #define STA_BUSY BIT(8)
  73. #define STA_EMP_PAGE BIT(12)
  74. #define NFI_FSM_CUSTDATA (0xe << 16)
  75. #define NFI_FSM_MASK (0xf << 16)
  76. #define NFI_ADDRCNTR (0x70)
  77. #define CNTR_MASK GENMASK(16, 12)
  78. #define ADDRCNTR_SEC_SHIFT (12)
  79. #define ADDRCNTR_SEC(val) \
  80. (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
  81. #define NFI_STRADDR (0x80)
  82. #define NFI_BYTELEN (0x84)
  83. #define NFI_CSEL (0x90)
  84. #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
  85. #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
  86. #define NFI_FDM_MAX_SIZE (8)
  87. #define NFI_FDM_MIN_SIZE (1)
  88. #define NFI_MASTER_STA (0x224)
  89. #define MASTER_STA_MASK (0x0FFF)
  90. #define NFI_EMPTY_THRESH (0x23C)
  91. #define MTK_NAME "mtk-nand"
  92. #define KB(x) ((x) * 1024UL)
  93. #define MB(x) (KB(x) * 1024UL)
  94. #define MTK_TIMEOUT (500000)
  95. #define MTK_RESET_TIMEOUT (1000000)
  96. #define MTK_NAND_MAX_NSELS (2)
  97. #define MTK_NFC_MIN_SPARE (16)
  98. #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
  99. ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
  100. (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
  101. struct mtk_nfc_caps {
  102. const u8 *spare_size;
  103. u8 num_spare_size;
  104. u8 pageformat_spare_shift;
  105. u8 nfi_clk_div;
  106. u8 max_sector;
  107. u32 max_sector_size;
  108. };
  109. struct mtk_nfc_bad_mark_ctl {
  110. void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
  111. u32 sec;
  112. u32 pos;
  113. };
  114. /*
  115. * FDM: region used to store free OOB data
  116. */
  117. struct mtk_nfc_fdm {
  118. u32 reg_size;
  119. u32 ecc_size;
  120. };
  121. struct mtk_nfc_nand_chip {
  122. struct list_head node;
  123. struct nand_chip nand;
  124. struct mtk_nfc_bad_mark_ctl bad_mark;
  125. struct mtk_nfc_fdm fdm;
  126. u32 spare_per_sector;
  127. int nsels;
  128. u8 sels[0];
  129. /* nothing after this field */
  130. };
  131. struct mtk_nfc_clk {
  132. struct clk *nfi_clk;
  133. struct clk *pad_clk;
  134. };
  135. struct mtk_nfc {
  136. struct nand_controller controller;
  137. struct mtk_ecc_config ecc_cfg;
  138. struct mtk_nfc_clk clk;
  139. struct mtk_ecc *ecc;
  140. struct device *dev;
  141. const struct mtk_nfc_caps *caps;
  142. void __iomem *regs;
  143. struct completion done;
  144. struct list_head chips;
  145. u8 *buffer;
  146. };
  147. /*
  148. * supported spare size of each IP.
  149. * order should be the same with the spare size bitfiled defination of
  150. * register NFI_PAGEFMT.
  151. */
  152. static const u8 spare_size_mt2701[] = {
  153. 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64
  154. };
  155. static const u8 spare_size_mt2712[] = {
  156. 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
  157. 74
  158. };
  159. static const u8 spare_size_mt7622[] = {
  160. 16, 26, 27, 28
  161. };
  162. static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
  163. {
  164. return container_of(nand, struct mtk_nfc_nand_chip, nand);
  165. }
  166. static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
  167. {
  168. return (u8 *)p + i * chip->ecc.size;
  169. }
  170. static inline u8 *oob_ptr(struct nand_chip *chip, int i)
  171. {
  172. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  173. u8 *poi;
  174. /* map the sector's FDM data to free oob:
  175. * the beginning of the oob area stores the FDM data of bad mark sectors
  176. */
  177. if (i < mtk_nand->bad_mark.sec)
  178. poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
  179. else if (i == mtk_nand->bad_mark.sec)
  180. poi = chip->oob_poi;
  181. else
  182. poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
  183. return poi;
  184. }
  185. static inline int mtk_data_len(struct nand_chip *chip)
  186. {
  187. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  188. return chip->ecc.size + mtk_nand->spare_per_sector;
  189. }
  190. static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
  191. {
  192. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  193. return nfc->buffer + i * mtk_data_len(chip);
  194. }
  195. static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
  196. {
  197. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  198. return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
  199. }
  200. static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
  201. {
  202. writel(val, nfc->regs + reg);
  203. }
  204. static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
  205. {
  206. writew(val, nfc->regs + reg);
  207. }
  208. static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
  209. {
  210. writeb(val, nfc->regs + reg);
  211. }
  212. static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
  213. {
  214. return readl_relaxed(nfc->regs + reg);
  215. }
  216. static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
  217. {
  218. return readw_relaxed(nfc->regs + reg);
  219. }
  220. static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
  221. {
  222. return readb_relaxed(nfc->regs + reg);
  223. }
  224. static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
  225. {
  226. struct device *dev = nfc->dev;
  227. u32 val;
  228. int ret;
  229. /* reset all registers and force the NFI master to terminate */
  230. nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
  231. /* wait for the master to finish the last transaction */
  232. ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
  233. !(val & MASTER_STA_MASK), 50,
  234. MTK_RESET_TIMEOUT);
  235. if (ret)
  236. dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
  237. NFI_MASTER_STA, val);
  238. /* ensure any status register affected by the NFI master is reset */
  239. nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
  240. nfi_writew(nfc, STAR_DE, NFI_STRDATA);
  241. }
  242. static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
  243. {
  244. struct device *dev = nfc->dev;
  245. u32 val;
  246. int ret;
  247. nfi_writel(nfc, command, NFI_CMD);
  248. ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
  249. !(val & STA_CMD), 10, MTK_TIMEOUT);
  250. if (ret) {
  251. dev_warn(dev, "nfi core timed out entering command mode\n");
  252. return -EIO;
  253. }
  254. return 0;
  255. }
  256. static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
  257. {
  258. struct device *dev = nfc->dev;
  259. u32 val;
  260. int ret;
  261. nfi_writel(nfc, addr, NFI_COLADDR);
  262. nfi_writel(nfc, 0, NFI_ROWADDR);
  263. nfi_writew(nfc, 1, NFI_ADDRNOB);
  264. ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
  265. !(val & STA_ADDR), 10, MTK_TIMEOUT);
  266. if (ret) {
  267. dev_warn(dev, "nfi core timed out entering address mode\n");
  268. return -EIO;
  269. }
  270. return 0;
  271. }
  272. static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
  273. {
  274. struct nand_chip *chip = mtd_to_nand(mtd);
  275. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  276. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  277. u32 fmt, spare, i;
  278. if (!mtd->writesize)
  279. return 0;
  280. spare = mtk_nand->spare_per_sector;
  281. switch (mtd->writesize) {
  282. case 512:
  283. fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
  284. break;
  285. case KB(2):
  286. if (chip->ecc.size == 512)
  287. fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
  288. else
  289. fmt = PAGEFMT_512_2K;
  290. break;
  291. case KB(4):
  292. if (chip->ecc.size == 512)
  293. fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
  294. else
  295. fmt = PAGEFMT_2K_4K;
  296. break;
  297. case KB(8):
  298. if (chip->ecc.size == 512)
  299. fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
  300. else
  301. fmt = PAGEFMT_4K_8K;
  302. break;
  303. case KB(16):
  304. fmt = PAGEFMT_8K_16K;
  305. break;
  306. default:
  307. dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
  308. return -EINVAL;
  309. }
  310. /*
  311. * the hardware will double the value for this eccsize, so we need to
  312. * halve it
  313. */
  314. if (chip->ecc.size == 1024)
  315. spare >>= 1;
  316. for (i = 0; i < nfc->caps->num_spare_size; i++) {
  317. if (nfc->caps->spare_size[i] == spare)
  318. break;
  319. }
  320. if (i == nfc->caps->num_spare_size) {
  321. dev_err(nfc->dev, "invalid spare size %d\n", spare);
  322. return -EINVAL;
  323. }
  324. fmt |= i << nfc->caps->pageformat_spare_shift;
  325. fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
  326. fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
  327. nfi_writel(nfc, fmt, NFI_PAGEFMT);
  328. nfc->ecc_cfg.strength = chip->ecc.strength;
  329. nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
  330. return 0;
  331. }
  332. static void mtk_nfc_select_chip(struct nand_chip *nand, int chip)
  333. {
  334. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  335. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
  336. if (chip < 0)
  337. return;
  338. mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
  339. nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
  340. }
  341. static int mtk_nfc_dev_ready(struct nand_chip *nand)
  342. {
  343. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  344. if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
  345. return 0;
  346. return 1;
  347. }
  348. static void mtk_nfc_cmd_ctrl(struct nand_chip *chip, int dat,
  349. unsigned int ctrl)
  350. {
  351. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  352. if (ctrl & NAND_ALE) {
  353. mtk_nfc_send_address(nfc, dat);
  354. } else if (ctrl & NAND_CLE) {
  355. mtk_nfc_hw_reset(nfc);
  356. nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
  357. mtk_nfc_send_command(nfc, dat);
  358. }
  359. }
  360. static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
  361. {
  362. int rc;
  363. u8 val;
  364. rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
  365. val & PIO_DI_RDY, 10, MTK_TIMEOUT);
  366. if (rc < 0)
  367. dev_err(nfc->dev, "data not ready\n");
  368. }
  369. static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
  370. {
  371. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  372. u32 reg;
  373. /* after each byte read, the NFI_STA reg is reset by the hardware */
  374. reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
  375. if (reg != NFI_FSM_CUSTDATA) {
  376. reg = nfi_readw(nfc, NFI_CNFG);
  377. reg |= CNFG_BYTE_RW | CNFG_READ_EN;
  378. nfi_writew(nfc, reg, NFI_CNFG);
  379. /*
  380. * set to max sector to allow the HW to continue reading over
  381. * unaligned accesses
  382. */
  383. reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
  384. nfi_writel(nfc, reg, NFI_CON);
  385. /* trigger to fetch data */
  386. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  387. }
  388. mtk_nfc_wait_ioready(nfc);
  389. return nfi_readb(nfc, NFI_DATAR);
  390. }
  391. static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
  392. {
  393. int i;
  394. for (i = 0; i < len; i++)
  395. buf[i] = mtk_nfc_read_byte(chip);
  396. }
  397. static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
  398. {
  399. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  400. u32 reg;
  401. reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
  402. if (reg != NFI_FSM_CUSTDATA) {
  403. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
  404. nfi_writew(nfc, reg, NFI_CNFG);
  405. reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
  406. nfi_writel(nfc, reg, NFI_CON);
  407. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  408. }
  409. mtk_nfc_wait_ioready(nfc);
  410. nfi_writeb(nfc, byte, NFI_DATAW);
  411. }
  412. static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
  413. {
  414. int i;
  415. for (i = 0; i < len; i++)
  416. mtk_nfc_write_byte(chip, buf[i]);
  417. }
  418. static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
  419. const struct nand_data_interface *conf)
  420. {
  421. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  422. const struct nand_sdr_timings *timings;
  423. u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
  424. timings = nand_get_sdr_timings(conf);
  425. if (IS_ERR(timings))
  426. return -ENOTSUPP;
  427. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  428. return 0;
  429. rate = clk_get_rate(nfc->clk.nfi_clk);
  430. /* There is a frequency divider in some IPs */
  431. rate /= nfc->caps->nfi_clk_div;
  432. /* turn clock rate into KHZ */
  433. rate /= 1000;
  434. tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
  435. tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
  436. tpoecs &= 0xf;
  437. tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
  438. tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
  439. tprecs &= 0x3f;
  440. /* sdr interface has no tCR which means CE# low to RE# low */
  441. tc2r = 0;
  442. tw2r = timings->tWHR_min / 1000;
  443. tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
  444. tw2r = DIV_ROUND_UP(tw2r - 1, 2);
  445. tw2r &= 0xf;
  446. twh = max(timings->tREH_min, timings->tWH_min) / 1000;
  447. twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
  448. twh &= 0xf;
  449. twst = timings->tWP_min / 1000;
  450. twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
  451. twst &= 0xf;
  452. trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
  453. trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
  454. trlt &= 0xf;
  455. /*
  456. * ACCON: access timing control register
  457. * -------------------------------------
  458. * 31:28: tpoecs, minimum required time for CS post pulling down after
  459. * accessing the device
  460. * 27:22: tprecs, minimum required time for CS pre pulling down before
  461. * accessing the device
  462. * 21:16: tc2r, minimum required time from NCEB low to NREB low
  463. * 15:12: tw2r, minimum required time from NWEB high to NREB low.
  464. * 11:08: twh, write enable hold time
  465. * 07:04: twst, write wait states
  466. * 03:00: trlt, read wait states
  467. */
  468. trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
  469. nfi_writel(nfc, trlt, NFI_ACCCON);
  470. return 0;
  471. }
  472. static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
  473. {
  474. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  475. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  476. int size = chip->ecc.size + mtk_nand->fdm.reg_size;
  477. nfc->ecc_cfg.mode = ECC_DMA_MODE;
  478. nfc->ecc_cfg.op = ECC_ENCODE;
  479. return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
  480. }
  481. static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
  482. {
  483. /* nop */
  484. }
  485. static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
  486. {
  487. struct nand_chip *chip = mtd_to_nand(mtd);
  488. struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
  489. u32 bad_pos = nand->bad_mark.pos;
  490. if (raw)
  491. bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
  492. else
  493. bad_pos += nand->bad_mark.sec * chip->ecc.size;
  494. swap(chip->oob_poi[0], buf[bad_pos]);
  495. }
  496. static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
  497. u32 len, const u8 *buf)
  498. {
  499. struct nand_chip *chip = mtd_to_nand(mtd);
  500. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  501. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  502. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  503. u32 start, end;
  504. int i, ret;
  505. start = offset / chip->ecc.size;
  506. end = DIV_ROUND_UP(offset + len, chip->ecc.size);
  507. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  508. for (i = 0; i < chip->ecc.steps; i++) {
  509. memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
  510. chip->ecc.size);
  511. if (start > i || i >= end)
  512. continue;
  513. if (i == mtk_nand->bad_mark.sec)
  514. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  515. memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
  516. /* program the CRC back to the OOB */
  517. ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
  518. if (ret < 0)
  519. return ret;
  520. }
  521. return 0;
  522. }
  523. static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
  524. {
  525. struct nand_chip *chip = mtd_to_nand(mtd);
  526. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  527. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  528. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  529. u32 i;
  530. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  531. for (i = 0; i < chip->ecc.steps; i++) {
  532. if (buf)
  533. memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
  534. chip->ecc.size);
  535. if (i == mtk_nand->bad_mark.sec)
  536. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  537. memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
  538. }
  539. }
  540. static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
  541. u32 sectors)
  542. {
  543. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  544. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  545. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  546. u32 vall, valm;
  547. u8 *oobptr;
  548. int i, j;
  549. for (i = 0; i < sectors; i++) {
  550. oobptr = oob_ptr(chip, start + i);
  551. vall = nfi_readl(nfc, NFI_FDML(i));
  552. valm = nfi_readl(nfc, NFI_FDMM(i));
  553. for (j = 0; j < fdm->reg_size; j++)
  554. oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
  555. }
  556. }
  557. static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
  558. {
  559. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  560. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  561. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  562. u32 vall, valm;
  563. u8 *oobptr;
  564. int i, j;
  565. for (i = 0; i < chip->ecc.steps; i++) {
  566. oobptr = oob_ptr(chip, i);
  567. vall = 0;
  568. valm = 0;
  569. for (j = 0; j < 8; j++) {
  570. if (j < 4)
  571. vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
  572. << (j * 8);
  573. else
  574. valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
  575. << ((j - 4) * 8);
  576. }
  577. nfi_writel(nfc, vall, NFI_FDML(i));
  578. nfi_writel(nfc, valm, NFI_FDMM(i));
  579. }
  580. }
  581. static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  582. const u8 *buf, int page, int len)
  583. {
  584. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  585. struct device *dev = nfc->dev;
  586. dma_addr_t addr;
  587. u32 reg;
  588. int ret;
  589. addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
  590. ret = dma_mapping_error(nfc->dev, addr);
  591. if (ret) {
  592. dev_err(nfc->dev, "dma mapping error\n");
  593. return -EINVAL;
  594. }
  595. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
  596. nfi_writew(nfc, reg, NFI_CNFG);
  597. nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
  598. nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
  599. nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
  600. init_completion(&nfc->done);
  601. reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
  602. nfi_writel(nfc, reg, NFI_CON);
  603. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  604. ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
  605. if (!ret) {
  606. dev_err(dev, "program ahb done timeout\n");
  607. nfi_writew(nfc, 0, NFI_INTR_EN);
  608. ret = -ETIMEDOUT;
  609. goto timeout;
  610. }
  611. ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
  612. ADDRCNTR_SEC(reg) >= chip->ecc.steps,
  613. 10, MTK_TIMEOUT);
  614. if (ret)
  615. dev_err(dev, "hwecc write timeout\n");
  616. timeout:
  617. dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
  618. nfi_writel(nfc, 0, NFI_CON);
  619. return ret;
  620. }
  621. static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  622. const u8 *buf, int page, int raw)
  623. {
  624. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  625. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  626. size_t len;
  627. const u8 *bufpoi;
  628. u32 reg;
  629. int ret;
  630. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  631. if (!raw) {
  632. /* OOB => FDM: from register, ECC: from HW */
  633. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
  634. nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
  635. nfc->ecc_cfg.op = ECC_ENCODE;
  636. nfc->ecc_cfg.mode = ECC_NFI_MODE;
  637. ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
  638. if (ret) {
  639. /* clear NFI config */
  640. reg = nfi_readw(nfc, NFI_CNFG);
  641. reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
  642. nfi_writew(nfc, reg, NFI_CNFG);
  643. return ret;
  644. }
  645. memcpy(nfc->buffer, buf, mtd->writesize);
  646. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
  647. bufpoi = nfc->buffer;
  648. /* write OOB into the FDM registers (OOB area in MTK NAND) */
  649. mtk_nfc_write_fdm(chip);
  650. } else {
  651. bufpoi = buf;
  652. }
  653. len = mtd->writesize + (raw ? mtd->oobsize : 0);
  654. ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
  655. if (!raw)
  656. mtk_ecc_disable(nfc->ecc);
  657. if (ret)
  658. return ret;
  659. return nand_prog_page_end_op(chip);
  660. }
  661. static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
  662. int oob_on, int page)
  663. {
  664. return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
  665. }
  666. static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
  667. int oob_on, int pg)
  668. {
  669. struct mtd_info *mtd = nand_to_mtd(chip);
  670. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  671. mtk_nfc_format_page(mtd, buf);
  672. return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
  673. }
  674. static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
  675. u32 data_len, const u8 *buf,
  676. int oob_on, int page)
  677. {
  678. struct mtd_info *mtd = nand_to_mtd(chip);
  679. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  680. int ret;
  681. ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
  682. if (ret < 0)
  683. return ret;
  684. /* use the data in the private buffer (now with FDM and CRC) */
  685. return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
  686. }
  687. static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
  688. {
  689. return mtk_nfc_write_page_raw(chip, NULL, 1, page);
  690. }
  691. static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
  692. {
  693. struct nand_chip *chip = mtd_to_nand(mtd);
  694. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  695. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  696. struct mtk_ecc_stats stats;
  697. int rc, i;
  698. rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
  699. if (rc) {
  700. memset(buf, 0xff, sectors * chip->ecc.size);
  701. for (i = 0; i < sectors; i++)
  702. memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
  703. return 0;
  704. }
  705. mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
  706. mtd->ecc_stats.corrected += stats.corrected;
  707. mtd->ecc_stats.failed += stats.failed;
  708. return stats.bitflips;
  709. }
  710. static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
  711. u32 data_offs, u32 readlen,
  712. u8 *bufpoi, int page, int raw)
  713. {
  714. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  715. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  716. u32 spare = mtk_nand->spare_per_sector;
  717. u32 column, sectors, start, end, reg;
  718. dma_addr_t addr;
  719. int bitflips;
  720. size_t len;
  721. u8 *buf;
  722. int rc;
  723. start = data_offs / chip->ecc.size;
  724. end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
  725. sectors = end - start;
  726. column = start * (chip->ecc.size + spare);
  727. len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
  728. buf = bufpoi + start * chip->ecc.size;
  729. nand_read_page_op(chip, page, column, NULL, 0);
  730. addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
  731. rc = dma_mapping_error(nfc->dev, addr);
  732. if (rc) {
  733. dev_err(nfc->dev, "dma mapping error\n");
  734. return -EINVAL;
  735. }
  736. reg = nfi_readw(nfc, NFI_CNFG);
  737. reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
  738. if (!raw) {
  739. reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
  740. nfi_writew(nfc, reg, NFI_CNFG);
  741. nfc->ecc_cfg.mode = ECC_NFI_MODE;
  742. nfc->ecc_cfg.sectors = sectors;
  743. nfc->ecc_cfg.op = ECC_DECODE;
  744. rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
  745. if (rc) {
  746. dev_err(nfc->dev, "ecc enable\n");
  747. /* clear NFI_CNFG */
  748. reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
  749. CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
  750. nfi_writew(nfc, reg, NFI_CNFG);
  751. dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
  752. return rc;
  753. }
  754. } else {
  755. nfi_writew(nfc, reg, NFI_CNFG);
  756. }
  757. nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
  758. nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
  759. nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
  760. init_completion(&nfc->done);
  761. reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
  762. nfi_writel(nfc, reg, NFI_CON);
  763. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  764. rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
  765. if (!rc)
  766. dev_warn(nfc->dev, "read ahb/dma done timeout\n");
  767. rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
  768. ADDRCNTR_SEC(reg) >= sectors, 10,
  769. MTK_TIMEOUT);
  770. if (rc < 0) {
  771. dev_err(nfc->dev, "subpage done timeout\n");
  772. bitflips = -EIO;
  773. } else {
  774. bitflips = 0;
  775. if (!raw) {
  776. rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
  777. bitflips = rc < 0 ? -ETIMEDOUT :
  778. mtk_nfc_update_ecc_stats(mtd, buf, sectors);
  779. mtk_nfc_read_fdm(chip, start, sectors);
  780. }
  781. }
  782. dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
  783. if (raw)
  784. goto done;
  785. mtk_ecc_disable(nfc->ecc);
  786. if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
  787. mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
  788. done:
  789. nfi_writel(nfc, 0, NFI_CON);
  790. return bitflips;
  791. }
  792. static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
  793. u32 len, u8 *p, int pg)
  794. {
  795. return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
  796. 0);
  797. }
  798. static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
  799. int pg)
  800. {
  801. struct mtd_info *mtd = nand_to_mtd(chip);
  802. return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
  803. }
  804. static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
  805. int page)
  806. {
  807. struct mtd_info *mtd = nand_to_mtd(chip);
  808. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  809. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  810. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  811. int i, ret;
  812. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  813. ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
  814. page, 1);
  815. if (ret < 0)
  816. return ret;
  817. for (i = 0; i < chip->ecc.steps; i++) {
  818. memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
  819. if (i == mtk_nand->bad_mark.sec)
  820. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  821. if (buf)
  822. memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
  823. chip->ecc.size);
  824. }
  825. return ret;
  826. }
  827. static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
  828. {
  829. return mtk_nfc_read_page_raw(chip, NULL, 1, page);
  830. }
  831. static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
  832. {
  833. /*
  834. * CNRNB: nand ready/busy register
  835. * -------------------------------
  836. * 7:4: timeout register for polling the NAND busy/ready signal
  837. * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
  838. */
  839. nfi_writew(nfc, 0xf1, NFI_CNRNB);
  840. nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
  841. mtk_nfc_hw_reset(nfc);
  842. nfi_readl(nfc, NFI_INTR_STA);
  843. nfi_writel(nfc, 0, NFI_INTR_EN);
  844. }
  845. static irqreturn_t mtk_nfc_irq(int irq, void *id)
  846. {
  847. struct mtk_nfc *nfc = id;
  848. u16 sta, ien;
  849. sta = nfi_readw(nfc, NFI_INTR_STA);
  850. ien = nfi_readw(nfc, NFI_INTR_EN);
  851. if (!(sta & ien))
  852. return IRQ_NONE;
  853. nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
  854. complete(&nfc->done);
  855. return IRQ_HANDLED;
  856. }
  857. static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
  858. {
  859. int ret;
  860. ret = clk_prepare_enable(clk->nfi_clk);
  861. if (ret) {
  862. dev_err(dev, "failed to enable nfi clk\n");
  863. return ret;
  864. }
  865. ret = clk_prepare_enable(clk->pad_clk);
  866. if (ret) {
  867. dev_err(dev, "failed to enable pad clk\n");
  868. clk_disable_unprepare(clk->nfi_clk);
  869. return ret;
  870. }
  871. return 0;
  872. }
  873. static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
  874. {
  875. clk_disable_unprepare(clk->nfi_clk);
  876. clk_disable_unprepare(clk->pad_clk);
  877. }
  878. static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
  879. struct mtd_oob_region *oob_region)
  880. {
  881. struct nand_chip *chip = mtd_to_nand(mtd);
  882. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  883. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  884. u32 eccsteps;
  885. eccsteps = mtd->writesize / chip->ecc.size;
  886. if (section >= eccsteps)
  887. return -ERANGE;
  888. oob_region->length = fdm->reg_size - fdm->ecc_size;
  889. oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
  890. return 0;
  891. }
  892. static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
  893. struct mtd_oob_region *oob_region)
  894. {
  895. struct nand_chip *chip = mtd_to_nand(mtd);
  896. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  897. u32 eccsteps;
  898. if (section)
  899. return -ERANGE;
  900. eccsteps = mtd->writesize / chip->ecc.size;
  901. oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
  902. oob_region->length = mtd->oobsize - oob_region->offset;
  903. return 0;
  904. }
  905. static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
  906. .free = mtk_nfc_ooblayout_free,
  907. .ecc = mtk_nfc_ooblayout_ecc,
  908. };
  909. static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
  910. {
  911. struct nand_chip *nand = mtd_to_nand(mtd);
  912. struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
  913. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  914. u32 ecc_bytes;
  915. ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
  916. mtk_ecc_get_parity_bits(nfc->ecc), 8);
  917. fdm->reg_size = chip->spare_per_sector - ecc_bytes;
  918. if (fdm->reg_size > NFI_FDM_MAX_SIZE)
  919. fdm->reg_size = NFI_FDM_MAX_SIZE;
  920. /* bad block mark storage */
  921. fdm->ecc_size = 1;
  922. }
  923. static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
  924. struct mtd_info *mtd)
  925. {
  926. struct nand_chip *nand = mtd_to_nand(mtd);
  927. if (mtd->writesize == 512) {
  928. bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
  929. } else {
  930. bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
  931. bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
  932. bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
  933. }
  934. }
  935. static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
  936. {
  937. struct nand_chip *nand = mtd_to_nand(mtd);
  938. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  939. const u8 *spare = nfc->caps->spare_size;
  940. u32 eccsteps, i, closest_spare = 0;
  941. eccsteps = mtd->writesize / nand->ecc.size;
  942. *sps = mtd->oobsize / eccsteps;
  943. if (nand->ecc.size == 1024)
  944. *sps >>= 1;
  945. if (*sps < MTK_NFC_MIN_SPARE)
  946. return -EINVAL;
  947. for (i = 0; i < nfc->caps->num_spare_size; i++) {
  948. if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
  949. closest_spare = i;
  950. if (*sps == spare[i])
  951. break;
  952. }
  953. }
  954. *sps = spare[closest_spare];
  955. if (nand->ecc.size == 1024)
  956. *sps <<= 1;
  957. return 0;
  958. }
  959. static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
  960. {
  961. struct nand_chip *nand = mtd_to_nand(mtd);
  962. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  963. u32 spare;
  964. int free, ret;
  965. /* support only ecc hw mode */
  966. if (nand->ecc.mode != NAND_ECC_HW) {
  967. dev_err(dev, "ecc.mode not supported\n");
  968. return -EINVAL;
  969. }
  970. /* if optional dt settings not present */
  971. if (!nand->ecc.size || !nand->ecc.strength) {
  972. /* use datasheet requirements */
  973. nand->ecc.strength = nand->ecc_strength_ds;
  974. nand->ecc.size = nand->ecc_step_ds;
  975. /*
  976. * align eccstrength and eccsize
  977. * this controller only supports 512 and 1024 sizes
  978. */
  979. if (nand->ecc.size < 1024) {
  980. if (mtd->writesize > 512 &&
  981. nfc->caps->max_sector_size > 512) {
  982. nand->ecc.size = 1024;
  983. nand->ecc.strength <<= 1;
  984. } else {
  985. nand->ecc.size = 512;
  986. }
  987. } else {
  988. nand->ecc.size = 1024;
  989. }
  990. ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
  991. if (ret)
  992. return ret;
  993. /* calculate oob bytes except ecc parity data */
  994. free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
  995. + 7) >> 3;
  996. free = spare - free;
  997. /*
  998. * enhance ecc strength if oob left is bigger than max FDM size
  999. * or reduce ecc strength if oob size is not enough for ecc
  1000. * parity data.
  1001. */
  1002. if (free > NFI_FDM_MAX_SIZE) {
  1003. spare -= NFI_FDM_MAX_SIZE;
  1004. nand->ecc.strength = (spare << 3) /
  1005. mtk_ecc_get_parity_bits(nfc->ecc);
  1006. } else if (free < 0) {
  1007. spare -= NFI_FDM_MIN_SIZE;
  1008. nand->ecc.strength = (spare << 3) /
  1009. mtk_ecc_get_parity_bits(nfc->ecc);
  1010. }
  1011. }
  1012. mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
  1013. dev_info(dev, "eccsize %d eccstrength %d\n",
  1014. nand->ecc.size, nand->ecc.strength);
  1015. return 0;
  1016. }
  1017. static int mtk_nfc_attach_chip(struct nand_chip *chip)
  1018. {
  1019. struct mtd_info *mtd = nand_to_mtd(chip);
  1020. struct device *dev = mtd->dev.parent;
  1021. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  1022. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  1023. int len;
  1024. int ret;
  1025. if (chip->options & NAND_BUSWIDTH_16) {
  1026. dev_err(dev, "16bits buswidth not supported");
  1027. return -EINVAL;
  1028. }
  1029. /* store bbt magic in page, cause OOB is not protected */
  1030. if (chip->bbt_options & NAND_BBT_USE_FLASH)
  1031. chip->bbt_options |= NAND_BBT_NO_OOB;
  1032. ret = mtk_nfc_ecc_init(dev, mtd);
  1033. if (ret)
  1034. return ret;
  1035. ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
  1036. if (ret)
  1037. return ret;
  1038. mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
  1039. mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
  1040. len = mtd->writesize + mtd->oobsize;
  1041. nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
  1042. if (!nfc->buffer)
  1043. return -ENOMEM;
  1044. return 0;
  1045. }
  1046. static const struct nand_controller_ops mtk_nfc_controller_ops = {
  1047. .attach_chip = mtk_nfc_attach_chip,
  1048. };
  1049. static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
  1050. struct device_node *np)
  1051. {
  1052. struct mtk_nfc_nand_chip *chip;
  1053. struct nand_chip *nand;
  1054. struct mtd_info *mtd;
  1055. int nsels;
  1056. u32 tmp;
  1057. int ret;
  1058. int i;
  1059. if (!of_get_property(np, "reg", &nsels))
  1060. return -ENODEV;
  1061. nsels /= sizeof(u32);
  1062. if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
  1063. dev_err(dev, "invalid reg property size %d\n", nsels);
  1064. return -EINVAL;
  1065. }
  1066. chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
  1067. GFP_KERNEL);
  1068. if (!chip)
  1069. return -ENOMEM;
  1070. chip->nsels = nsels;
  1071. for (i = 0; i < nsels; i++) {
  1072. ret = of_property_read_u32_index(np, "reg", i, &tmp);
  1073. if (ret) {
  1074. dev_err(dev, "reg property failure : %d\n", ret);
  1075. return ret;
  1076. }
  1077. chip->sels[i] = tmp;
  1078. }
  1079. nand = &chip->nand;
  1080. nand->controller = &nfc->controller;
  1081. nand_set_flash_node(nand, np);
  1082. nand_set_controller_data(nand, nfc);
  1083. nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
  1084. nand->legacy.dev_ready = mtk_nfc_dev_ready;
  1085. nand->select_chip = mtk_nfc_select_chip;
  1086. nand->legacy.write_byte = mtk_nfc_write_byte;
  1087. nand->legacy.write_buf = mtk_nfc_write_buf;
  1088. nand->legacy.read_byte = mtk_nfc_read_byte;
  1089. nand->legacy.read_buf = mtk_nfc_read_buf;
  1090. nand->legacy.cmd_ctrl = mtk_nfc_cmd_ctrl;
  1091. nand->setup_data_interface = mtk_nfc_setup_data_interface;
  1092. /* set default mode in case dt entry is missing */
  1093. nand->ecc.mode = NAND_ECC_HW;
  1094. nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
  1095. nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
  1096. nand->ecc.write_page = mtk_nfc_write_page_hwecc;
  1097. nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
  1098. nand->ecc.write_oob = mtk_nfc_write_oob_std;
  1099. nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
  1100. nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
  1101. nand->ecc.read_page = mtk_nfc_read_page_hwecc;
  1102. nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
  1103. nand->ecc.read_oob = mtk_nfc_read_oob_std;
  1104. mtd = nand_to_mtd(nand);
  1105. mtd->owner = THIS_MODULE;
  1106. mtd->dev.parent = dev;
  1107. mtd->name = MTK_NAME;
  1108. mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
  1109. mtk_nfc_hw_init(nfc);
  1110. ret = nand_scan(nand, nsels);
  1111. if (ret)
  1112. return ret;
  1113. ret = mtd_device_register(mtd, NULL, 0);
  1114. if (ret) {
  1115. dev_err(dev, "mtd parse partition error\n");
  1116. nand_release(nand);
  1117. return ret;
  1118. }
  1119. list_add_tail(&chip->node, &nfc->chips);
  1120. return 0;
  1121. }
  1122. static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
  1123. {
  1124. struct device_node *np = dev->of_node;
  1125. struct device_node *nand_np;
  1126. int ret;
  1127. for_each_child_of_node(np, nand_np) {
  1128. ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
  1129. if (ret) {
  1130. of_node_put(nand_np);
  1131. return ret;
  1132. }
  1133. }
  1134. return 0;
  1135. }
  1136. static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
  1137. .spare_size = spare_size_mt2701,
  1138. .num_spare_size = 16,
  1139. .pageformat_spare_shift = 4,
  1140. .nfi_clk_div = 1,
  1141. .max_sector = 16,
  1142. .max_sector_size = 1024,
  1143. };
  1144. static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
  1145. .spare_size = spare_size_mt2712,
  1146. .num_spare_size = 19,
  1147. .pageformat_spare_shift = 16,
  1148. .nfi_clk_div = 2,
  1149. .max_sector = 16,
  1150. .max_sector_size = 1024,
  1151. };
  1152. static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
  1153. .spare_size = spare_size_mt7622,
  1154. .num_spare_size = 4,
  1155. .pageformat_spare_shift = 4,
  1156. .nfi_clk_div = 1,
  1157. .max_sector = 8,
  1158. .max_sector_size = 512,
  1159. };
  1160. static const struct of_device_id mtk_nfc_id_table[] = {
  1161. {
  1162. .compatible = "mediatek,mt2701-nfc",
  1163. .data = &mtk_nfc_caps_mt2701,
  1164. }, {
  1165. .compatible = "mediatek,mt2712-nfc",
  1166. .data = &mtk_nfc_caps_mt2712,
  1167. }, {
  1168. .compatible = "mediatek,mt7622-nfc",
  1169. .data = &mtk_nfc_caps_mt7622,
  1170. },
  1171. {}
  1172. };
  1173. MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
  1174. static int mtk_nfc_probe(struct platform_device *pdev)
  1175. {
  1176. struct device *dev = &pdev->dev;
  1177. struct device_node *np = dev->of_node;
  1178. struct mtk_nfc *nfc;
  1179. struct resource *res;
  1180. int ret, irq;
  1181. nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
  1182. if (!nfc)
  1183. return -ENOMEM;
  1184. spin_lock_init(&nfc->controller.lock);
  1185. init_waitqueue_head(&nfc->controller.wq);
  1186. INIT_LIST_HEAD(&nfc->chips);
  1187. nfc->controller.ops = &mtk_nfc_controller_ops;
  1188. /* probe defer if not ready */
  1189. nfc->ecc = of_mtk_ecc_get(np);
  1190. if (IS_ERR(nfc->ecc))
  1191. return PTR_ERR(nfc->ecc);
  1192. else if (!nfc->ecc)
  1193. return -ENODEV;
  1194. nfc->caps = of_device_get_match_data(dev);
  1195. nfc->dev = dev;
  1196. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1197. nfc->regs = devm_ioremap_resource(dev, res);
  1198. if (IS_ERR(nfc->regs)) {
  1199. ret = PTR_ERR(nfc->regs);
  1200. goto release_ecc;
  1201. }
  1202. nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
  1203. if (IS_ERR(nfc->clk.nfi_clk)) {
  1204. dev_err(dev, "no clk\n");
  1205. ret = PTR_ERR(nfc->clk.nfi_clk);
  1206. goto release_ecc;
  1207. }
  1208. nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
  1209. if (IS_ERR(nfc->clk.pad_clk)) {
  1210. dev_err(dev, "no pad clk\n");
  1211. ret = PTR_ERR(nfc->clk.pad_clk);
  1212. goto release_ecc;
  1213. }
  1214. ret = mtk_nfc_enable_clk(dev, &nfc->clk);
  1215. if (ret)
  1216. goto release_ecc;
  1217. irq = platform_get_irq(pdev, 0);
  1218. if (irq < 0) {
  1219. dev_err(dev, "no nfi irq resource\n");
  1220. ret = -EINVAL;
  1221. goto clk_disable;
  1222. }
  1223. ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
  1224. if (ret) {
  1225. dev_err(dev, "failed to request nfi irq\n");
  1226. goto clk_disable;
  1227. }
  1228. ret = dma_set_mask(dev, DMA_BIT_MASK(32));
  1229. if (ret) {
  1230. dev_err(dev, "failed to set dma mask\n");
  1231. goto clk_disable;
  1232. }
  1233. platform_set_drvdata(pdev, nfc);
  1234. ret = mtk_nfc_nand_chips_init(dev, nfc);
  1235. if (ret) {
  1236. dev_err(dev, "failed to init nand chips\n");
  1237. goto clk_disable;
  1238. }
  1239. return 0;
  1240. clk_disable:
  1241. mtk_nfc_disable_clk(&nfc->clk);
  1242. release_ecc:
  1243. mtk_ecc_release(nfc->ecc);
  1244. return ret;
  1245. }
  1246. static int mtk_nfc_remove(struct platform_device *pdev)
  1247. {
  1248. struct mtk_nfc *nfc = platform_get_drvdata(pdev);
  1249. struct mtk_nfc_nand_chip *chip;
  1250. while (!list_empty(&nfc->chips)) {
  1251. chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
  1252. node);
  1253. nand_release(&chip->nand);
  1254. list_del(&chip->node);
  1255. }
  1256. mtk_ecc_release(nfc->ecc);
  1257. mtk_nfc_disable_clk(&nfc->clk);
  1258. return 0;
  1259. }
  1260. #ifdef CONFIG_PM_SLEEP
  1261. static int mtk_nfc_suspend(struct device *dev)
  1262. {
  1263. struct mtk_nfc *nfc = dev_get_drvdata(dev);
  1264. mtk_nfc_disable_clk(&nfc->clk);
  1265. return 0;
  1266. }
  1267. static int mtk_nfc_resume(struct device *dev)
  1268. {
  1269. struct mtk_nfc *nfc = dev_get_drvdata(dev);
  1270. struct mtk_nfc_nand_chip *chip;
  1271. struct nand_chip *nand;
  1272. int ret;
  1273. u32 i;
  1274. udelay(200);
  1275. ret = mtk_nfc_enable_clk(dev, &nfc->clk);
  1276. if (ret)
  1277. return ret;
  1278. /* reset NAND chip if VCC was powered off */
  1279. list_for_each_entry(chip, &nfc->chips, node) {
  1280. nand = &chip->nand;
  1281. for (i = 0; i < chip->nsels; i++)
  1282. nand_reset(nand, i);
  1283. }
  1284. return 0;
  1285. }
  1286. static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
  1287. #endif
  1288. static struct platform_driver mtk_nfc_driver = {
  1289. .probe = mtk_nfc_probe,
  1290. .remove = mtk_nfc_remove,
  1291. .driver = {
  1292. .name = MTK_NAME,
  1293. .of_match_table = mtk_nfc_id_table,
  1294. #ifdef CONFIG_PM_SLEEP
  1295. .pm = &mtk_nfc_pm_ops,
  1296. #endif
  1297. },
  1298. };
  1299. module_platform_driver(mtk_nfc_driver);
  1300. MODULE_LICENSE("GPL");
  1301. MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
  1302. MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");