jz4780_nand.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. /*
  2. * JZ4780 NAND driver
  3. *
  4. * Copyright (c) 2015 Imagination Technologies
  5. * Author: Alex Smith <alex.smith@imgtec.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published
  9. * by the Free Software Foundation.
  10. */
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/io.h>
  14. #include <linux/list.h>
  15. #include <linux/module.h>
  16. #include <linux/of.h>
  17. #include <linux/of_address.h>
  18. #include <linux/gpio/consumer.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/slab.h>
  21. #include <linux/mtd/mtd.h>
  22. #include <linux/mtd/rawnand.h>
  23. #include <linux/mtd/partitions.h>
  24. #include <linux/jz4780-nemc.h>
  25. #include "jz4780_bch.h"
  26. #define DRV_NAME "jz4780-nand"
  27. #define OFFSET_DATA 0x00000000
  28. #define OFFSET_CMD 0x00400000
  29. #define OFFSET_ADDR 0x00800000
  30. /* Command delay when there is no R/B pin. */
  31. #define RB_DELAY_US 100
  32. struct jz4780_nand_cs {
  33. unsigned int bank;
  34. void __iomem *base;
  35. };
  36. struct jz4780_nand_controller {
  37. struct device *dev;
  38. struct jz4780_bch *bch;
  39. struct nand_controller controller;
  40. unsigned int num_banks;
  41. struct list_head chips;
  42. int selected;
  43. struct jz4780_nand_cs cs[];
  44. };
  45. struct jz4780_nand_chip {
  46. struct nand_chip chip;
  47. struct list_head chip_list;
  48. struct gpio_desc *busy_gpio;
  49. struct gpio_desc *wp_gpio;
  50. unsigned int reading: 1;
  51. };
  52. static inline struct jz4780_nand_chip *to_jz4780_nand_chip(struct mtd_info *mtd)
  53. {
  54. return container_of(mtd_to_nand(mtd), struct jz4780_nand_chip, chip);
  55. }
  56. static inline struct jz4780_nand_controller
  57. *to_jz4780_nand_controller(struct nand_controller *ctrl)
  58. {
  59. return container_of(ctrl, struct jz4780_nand_controller, controller);
  60. }
  61. static void jz4780_nand_select_chip(struct nand_chip *chip, int chipnr)
  62. {
  63. struct jz4780_nand_chip *nand = to_jz4780_nand_chip(nand_to_mtd(chip));
  64. struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
  65. struct jz4780_nand_cs *cs;
  66. /* Ensure the currently selected chip is deasserted. */
  67. if (chipnr == -1 && nfc->selected >= 0) {
  68. cs = &nfc->cs[nfc->selected];
  69. jz4780_nemc_assert(nfc->dev, cs->bank, false);
  70. }
  71. nfc->selected = chipnr;
  72. }
  73. static void jz4780_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
  74. unsigned int ctrl)
  75. {
  76. struct jz4780_nand_chip *nand = to_jz4780_nand_chip(nand_to_mtd(chip));
  77. struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
  78. struct jz4780_nand_cs *cs;
  79. if (WARN_ON(nfc->selected < 0))
  80. return;
  81. cs = &nfc->cs[nfc->selected];
  82. jz4780_nemc_assert(nfc->dev, cs->bank, ctrl & NAND_NCE);
  83. if (cmd == NAND_CMD_NONE)
  84. return;
  85. if (ctrl & NAND_ALE)
  86. writeb(cmd, cs->base + OFFSET_ADDR);
  87. else if (ctrl & NAND_CLE)
  88. writeb(cmd, cs->base + OFFSET_CMD);
  89. }
  90. static int jz4780_nand_dev_ready(struct nand_chip *chip)
  91. {
  92. struct jz4780_nand_chip *nand = to_jz4780_nand_chip(nand_to_mtd(chip));
  93. return !gpiod_get_value_cansleep(nand->busy_gpio);
  94. }
  95. static void jz4780_nand_ecc_hwctl(struct nand_chip *chip, int mode)
  96. {
  97. struct jz4780_nand_chip *nand = to_jz4780_nand_chip(nand_to_mtd(chip));
  98. nand->reading = (mode == NAND_ECC_READ);
  99. }
  100. static int jz4780_nand_ecc_calculate(struct nand_chip *chip, const u8 *dat,
  101. u8 *ecc_code)
  102. {
  103. struct jz4780_nand_chip *nand = to_jz4780_nand_chip(nand_to_mtd(chip));
  104. struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
  105. struct jz4780_bch_params params;
  106. /*
  107. * Don't need to generate the ECC when reading, BCH does it for us as
  108. * part of decoding/correction.
  109. */
  110. if (nand->reading)
  111. return 0;
  112. params.size = nand->chip.ecc.size;
  113. params.bytes = nand->chip.ecc.bytes;
  114. params.strength = nand->chip.ecc.strength;
  115. return jz4780_bch_calculate(nfc->bch, &params, dat, ecc_code);
  116. }
  117. static int jz4780_nand_ecc_correct(struct nand_chip *chip, u8 *dat,
  118. u8 *read_ecc, u8 *calc_ecc)
  119. {
  120. struct jz4780_nand_chip *nand = to_jz4780_nand_chip(nand_to_mtd(chip));
  121. struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
  122. struct jz4780_bch_params params;
  123. params.size = nand->chip.ecc.size;
  124. params.bytes = nand->chip.ecc.bytes;
  125. params.strength = nand->chip.ecc.strength;
  126. return jz4780_bch_correct(nfc->bch, &params, dat, read_ecc);
  127. }
  128. static int jz4780_nand_attach_chip(struct nand_chip *chip)
  129. {
  130. struct mtd_info *mtd = nand_to_mtd(chip);
  131. struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(chip->controller);
  132. int eccbytes;
  133. chip->ecc.bytes = fls((1 + 8) * chip->ecc.size) *
  134. (chip->ecc.strength / 8);
  135. switch (chip->ecc.mode) {
  136. case NAND_ECC_HW:
  137. if (!nfc->bch) {
  138. dev_err(nfc->dev,
  139. "HW BCH selected, but BCH controller not found\n");
  140. return -ENODEV;
  141. }
  142. chip->ecc.hwctl = jz4780_nand_ecc_hwctl;
  143. chip->ecc.calculate = jz4780_nand_ecc_calculate;
  144. chip->ecc.correct = jz4780_nand_ecc_correct;
  145. /* fall through */
  146. case NAND_ECC_SOFT:
  147. dev_info(nfc->dev, "using %s (strength %d, size %d, bytes %d)\n",
  148. (nfc->bch) ? "hardware BCH" : "software ECC",
  149. chip->ecc.strength, chip->ecc.size, chip->ecc.bytes);
  150. break;
  151. case NAND_ECC_NONE:
  152. dev_info(nfc->dev, "not using ECC\n");
  153. break;
  154. default:
  155. dev_err(nfc->dev, "ECC mode %d not supported\n",
  156. chip->ecc.mode);
  157. return -EINVAL;
  158. }
  159. /* The NAND core will generate the ECC layout for SW ECC */
  160. if (chip->ecc.mode != NAND_ECC_HW)
  161. return 0;
  162. /* Generate ECC layout. ECC codes are right aligned in the OOB area. */
  163. eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes;
  164. if (eccbytes > mtd->oobsize - 2) {
  165. dev_err(nfc->dev,
  166. "invalid ECC config: required %d ECC bytes, but only %d are available",
  167. eccbytes, mtd->oobsize - 2);
  168. return -EINVAL;
  169. }
  170. mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
  171. return 0;
  172. }
  173. static const struct nand_controller_ops jz4780_nand_controller_ops = {
  174. .attach_chip = jz4780_nand_attach_chip,
  175. };
  176. static int jz4780_nand_init_chip(struct platform_device *pdev,
  177. struct jz4780_nand_controller *nfc,
  178. struct device_node *np,
  179. unsigned int chipnr)
  180. {
  181. struct device *dev = &pdev->dev;
  182. struct jz4780_nand_chip *nand;
  183. struct jz4780_nand_cs *cs;
  184. struct resource *res;
  185. struct nand_chip *chip;
  186. struct mtd_info *mtd;
  187. const __be32 *reg;
  188. int ret = 0;
  189. cs = &nfc->cs[chipnr];
  190. reg = of_get_property(np, "reg", NULL);
  191. if (!reg)
  192. return -EINVAL;
  193. cs->bank = be32_to_cpu(*reg);
  194. jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND);
  195. res = platform_get_resource(pdev, IORESOURCE_MEM, chipnr);
  196. cs->base = devm_ioremap_resource(dev, res);
  197. if (IS_ERR(cs->base))
  198. return PTR_ERR(cs->base);
  199. nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
  200. if (!nand)
  201. return -ENOMEM;
  202. nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN);
  203. if (IS_ERR(nand->busy_gpio)) {
  204. ret = PTR_ERR(nand->busy_gpio);
  205. dev_err(dev, "failed to request busy GPIO: %d\n", ret);
  206. return ret;
  207. } else if (nand->busy_gpio) {
  208. nand->chip.legacy.dev_ready = jz4780_nand_dev_ready;
  209. }
  210. nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
  211. if (IS_ERR(nand->wp_gpio)) {
  212. ret = PTR_ERR(nand->wp_gpio);
  213. dev_err(dev, "failed to request WP GPIO: %d\n", ret);
  214. return ret;
  215. }
  216. chip = &nand->chip;
  217. mtd = nand_to_mtd(chip);
  218. mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
  219. cs->bank);
  220. if (!mtd->name)
  221. return -ENOMEM;
  222. mtd->dev.parent = dev;
  223. chip->legacy.IO_ADDR_R = cs->base + OFFSET_DATA;
  224. chip->legacy.IO_ADDR_W = cs->base + OFFSET_DATA;
  225. chip->legacy.chip_delay = RB_DELAY_US;
  226. chip->options = NAND_NO_SUBPAGE_WRITE;
  227. chip->select_chip = jz4780_nand_select_chip;
  228. chip->legacy.cmd_ctrl = jz4780_nand_cmd_ctrl;
  229. chip->ecc.mode = NAND_ECC_HW;
  230. chip->controller = &nfc->controller;
  231. nand_set_flash_node(chip, np);
  232. chip->controller->ops = &jz4780_nand_controller_ops;
  233. ret = nand_scan(chip, 1);
  234. if (ret)
  235. return ret;
  236. ret = mtd_device_register(mtd, NULL, 0);
  237. if (ret) {
  238. nand_release(chip);
  239. return ret;
  240. }
  241. list_add_tail(&nand->chip_list, &nfc->chips);
  242. return 0;
  243. }
  244. static void jz4780_nand_cleanup_chips(struct jz4780_nand_controller *nfc)
  245. {
  246. struct jz4780_nand_chip *chip;
  247. while (!list_empty(&nfc->chips)) {
  248. chip = list_first_entry(&nfc->chips, struct jz4780_nand_chip, chip_list);
  249. nand_release(&chip->chip);
  250. list_del(&chip->chip_list);
  251. }
  252. }
  253. static int jz4780_nand_init_chips(struct jz4780_nand_controller *nfc,
  254. struct platform_device *pdev)
  255. {
  256. struct device *dev = &pdev->dev;
  257. struct device_node *np;
  258. int i = 0;
  259. int ret;
  260. int num_chips = of_get_child_count(dev->of_node);
  261. if (num_chips > nfc->num_banks) {
  262. dev_err(dev, "found %d chips but only %d banks\n", num_chips, nfc->num_banks);
  263. return -EINVAL;
  264. }
  265. for_each_child_of_node(dev->of_node, np) {
  266. ret = jz4780_nand_init_chip(pdev, nfc, np, i);
  267. if (ret) {
  268. jz4780_nand_cleanup_chips(nfc);
  269. return ret;
  270. }
  271. i++;
  272. }
  273. return 0;
  274. }
  275. static int jz4780_nand_probe(struct platform_device *pdev)
  276. {
  277. struct device *dev = &pdev->dev;
  278. unsigned int num_banks;
  279. struct jz4780_nand_controller *nfc;
  280. int ret;
  281. num_banks = jz4780_nemc_num_banks(dev);
  282. if (num_banks == 0) {
  283. dev_err(dev, "no banks found\n");
  284. return -ENODEV;
  285. }
  286. nfc = devm_kzalloc(dev, struct_size(nfc, cs, num_banks), GFP_KERNEL);
  287. if (!nfc)
  288. return -ENOMEM;
  289. /*
  290. * Check for BCH HW before we call nand_scan_ident, to prevent us from
  291. * having to call it again if the BCH driver returns -EPROBE_DEFER.
  292. */
  293. nfc->bch = of_jz4780_bch_get(dev->of_node);
  294. if (IS_ERR(nfc->bch))
  295. return PTR_ERR(nfc->bch);
  296. nfc->dev = dev;
  297. nfc->num_banks = num_banks;
  298. nand_controller_init(&nfc->controller);
  299. INIT_LIST_HEAD(&nfc->chips);
  300. ret = jz4780_nand_init_chips(nfc, pdev);
  301. if (ret) {
  302. if (nfc->bch)
  303. jz4780_bch_release(nfc->bch);
  304. return ret;
  305. }
  306. platform_set_drvdata(pdev, nfc);
  307. return 0;
  308. }
  309. static int jz4780_nand_remove(struct platform_device *pdev)
  310. {
  311. struct jz4780_nand_controller *nfc = platform_get_drvdata(pdev);
  312. if (nfc->bch)
  313. jz4780_bch_release(nfc->bch);
  314. jz4780_nand_cleanup_chips(nfc);
  315. return 0;
  316. }
  317. static const struct of_device_id jz4780_nand_dt_match[] = {
  318. { .compatible = "ingenic,jz4780-nand" },
  319. {},
  320. };
  321. MODULE_DEVICE_TABLE(of, jz4780_nand_dt_match);
  322. static struct platform_driver jz4780_nand_driver = {
  323. .probe = jz4780_nand_probe,
  324. .remove = jz4780_nand_remove,
  325. .driver = {
  326. .name = DRV_NAME,
  327. .of_match_table = of_match_ptr(jz4780_nand_dt_match),
  328. },
  329. };
  330. module_platform_driver(jz4780_nand_driver);
  331. MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
  332. MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
  333. MODULE_DESCRIPTION("Ingenic JZ4780 NAND driver");
  334. MODULE_LICENSE("GPL v2");