brcmnand.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630
  1. /*
  2. * Copyright © 2010-2015 Broadcom Corporation
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/clk.h>
  14. #include <linux/version.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/delay.h>
  18. #include <linux/device.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/err.h>
  21. #include <linux/completion.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/ioport.h>
  26. #include <linux/bug.h>
  27. #include <linux/kernel.h>
  28. #include <linux/bitops.h>
  29. #include <linux/mm.h>
  30. #include <linux/mtd/mtd.h>
  31. #include <linux/mtd/rawnand.h>
  32. #include <linux/mtd/partitions.h>
  33. #include <linux/of.h>
  34. #include <linux/of_platform.h>
  35. #include <linux/slab.h>
  36. #include <linux/list.h>
  37. #include <linux/log2.h>
  38. #include "brcmnand.h"
  39. /*
  40. * This flag controls if WP stays on between erase/write commands to mitigate
  41. * flash corruption due to power glitches. Values:
  42. * 0: NAND_WP is not used or not available
  43. * 1: NAND_WP is set by default, cleared for erase/write operations
  44. * 2: NAND_WP is always cleared
  45. */
  46. static int wp_on = 1;
  47. module_param(wp_on, int, 0444);
  48. /***********************************************************************
  49. * Definitions
  50. ***********************************************************************/
  51. #define DRV_NAME "brcmnand"
  52. #define CMD_NULL 0x00
  53. #define CMD_PAGE_READ 0x01
  54. #define CMD_SPARE_AREA_READ 0x02
  55. #define CMD_STATUS_READ 0x03
  56. #define CMD_PROGRAM_PAGE 0x04
  57. #define CMD_PROGRAM_SPARE_AREA 0x05
  58. #define CMD_COPY_BACK 0x06
  59. #define CMD_DEVICE_ID_READ 0x07
  60. #define CMD_BLOCK_ERASE 0x08
  61. #define CMD_FLASH_RESET 0x09
  62. #define CMD_BLOCKS_LOCK 0x0a
  63. #define CMD_BLOCKS_LOCK_DOWN 0x0b
  64. #define CMD_BLOCKS_UNLOCK 0x0c
  65. #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
  66. #define CMD_PARAMETER_READ 0x0e
  67. #define CMD_PARAMETER_CHANGE_COL 0x0f
  68. #define CMD_LOW_LEVEL_OP 0x10
  69. struct brcm_nand_dma_desc {
  70. u32 next_desc;
  71. u32 next_desc_ext;
  72. u32 cmd_irq;
  73. u32 dram_addr;
  74. u32 dram_addr_ext;
  75. u32 tfr_len;
  76. u32 total_len;
  77. u32 flash_addr;
  78. u32 flash_addr_ext;
  79. u32 cs;
  80. u32 pad2[5];
  81. u32 status_valid;
  82. } __packed;
  83. /* Bitfields for brcm_nand_dma_desc::status_valid */
  84. #define FLASH_DMA_ECC_ERROR (1 << 8)
  85. #define FLASH_DMA_CORR_ERROR (1 << 9)
  86. /* 512B flash cache in the NAND controller HW */
  87. #define FC_SHIFT 9U
  88. #define FC_BYTES 512U
  89. #define FC_WORDS (FC_BYTES >> 2)
  90. #define BRCMNAND_MIN_PAGESIZE 512
  91. #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
  92. #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
  93. #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
  94. #define NAND_POLL_STATUS_TIMEOUT_MS 100
  95. /* Controller feature flags */
  96. enum {
  97. BRCMNAND_HAS_1K_SECTORS = BIT(0),
  98. BRCMNAND_HAS_PREFETCH = BIT(1),
  99. BRCMNAND_HAS_CACHE_MODE = BIT(2),
  100. BRCMNAND_HAS_WP = BIT(3),
  101. };
  102. struct brcmnand_controller {
  103. struct device *dev;
  104. struct nand_controller controller;
  105. void __iomem *nand_base;
  106. void __iomem *nand_fc; /* flash cache */
  107. void __iomem *flash_dma_base;
  108. unsigned int irq;
  109. unsigned int dma_irq;
  110. int nand_version;
  111. /* Some SoCs provide custom interrupt status register(s) */
  112. struct brcmnand_soc *soc;
  113. /* Some SoCs have a gateable clock for the controller */
  114. struct clk *clk;
  115. int cmd_pending;
  116. bool dma_pending;
  117. struct completion done;
  118. struct completion dma_done;
  119. /* List of NAND hosts (one for each chip-select) */
  120. struct list_head host_list;
  121. struct brcm_nand_dma_desc *dma_desc;
  122. dma_addr_t dma_pa;
  123. /* in-memory cache of the FLASH_CACHE, used only for some commands */
  124. u8 flash_cache[FC_BYTES];
  125. /* Controller revision details */
  126. const u16 *reg_offsets;
  127. unsigned int reg_spacing; /* between CS1, CS2, ... regs */
  128. const u8 *cs_offsets; /* within each chip-select */
  129. const u8 *cs0_offsets; /* within CS0, if different */
  130. unsigned int max_block_size;
  131. const unsigned int *block_sizes;
  132. unsigned int max_page_size;
  133. const unsigned int *page_sizes;
  134. unsigned int max_oob;
  135. u32 features;
  136. /* for low-power standby/resume only */
  137. u32 nand_cs_nand_select;
  138. u32 nand_cs_nand_xor;
  139. u32 corr_stat_threshold;
  140. u32 flash_dma_mode;
  141. };
  142. struct brcmnand_cfg {
  143. u64 device_size;
  144. unsigned int block_size;
  145. unsigned int page_size;
  146. unsigned int spare_area_size;
  147. unsigned int device_width;
  148. unsigned int col_adr_bytes;
  149. unsigned int blk_adr_bytes;
  150. unsigned int ful_adr_bytes;
  151. unsigned int sector_size_1k;
  152. unsigned int ecc_level;
  153. /* use for low-power standby/resume only */
  154. u32 acc_control;
  155. u32 config;
  156. u32 config_ext;
  157. u32 timing_1;
  158. u32 timing_2;
  159. };
  160. struct brcmnand_host {
  161. struct list_head node;
  162. struct nand_chip chip;
  163. struct platform_device *pdev;
  164. int cs;
  165. unsigned int last_cmd;
  166. unsigned int last_byte;
  167. u64 last_addr;
  168. struct brcmnand_cfg hwcfg;
  169. struct brcmnand_controller *ctrl;
  170. };
  171. enum brcmnand_reg {
  172. BRCMNAND_CMD_START = 0,
  173. BRCMNAND_CMD_EXT_ADDRESS,
  174. BRCMNAND_CMD_ADDRESS,
  175. BRCMNAND_INTFC_STATUS,
  176. BRCMNAND_CS_SELECT,
  177. BRCMNAND_CS_XOR,
  178. BRCMNAND_LL_OP,
  179. BRCMNAND_CS0_BASE,
  180. BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
  181. BRCMNAND_CORR_THRESHOLD,
  182. BRCMNAND_CORR_THRESHOLD_EXT,
  183. BRCMNAND_UNCORR_COUNT,
  184. BRCMNAND_CORR_COUNT,
  185. BRCMNAND_CORR_EXT_ADDR,
  186. BRCMNAND_CORR_ADDR,
  187. BRCMNAND_UNCORR_EXT_ADDR,
  188. BRCMNAND_UNCORR_ADDR,
  189. BRCMNAND_SEMAPHORE,
  190. BRCMNAND_ID,
  191. BRCMNAND_ID_EXT,
  192. BRCMNAND_LL_RDATA,
  193. BRCMNAND_OOB_READ_BASE,
  194. BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
  195. BRCMNAND_OOB_WRITE_BASE,
  196. BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
  197. BRCMNAND_FC_BASE,
  198. };
  199. /* BRCMNAND v4.0 */
  200. static const u16 brcmnand_regs_v40[] = {
  201. [BRCMNAND_CMD_START] = 0x04,
  202. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  203. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  204. [BRCMNAND_INTFC_STATUS] = 0x6c,
  205. [BRCMNAND_CS_SELECT] = 0x14,
  206. [BRCMNAND_CS_XOR] = 0x18,
  207. [BRCMNAND_LL_OP] = 0x178,
  208. [BRCMNAND_CS0_BASE] = 0x40,
  209. [BRCMNAND_CS1_BASE] = 0xd0,
  210. [BRCMNAND_CORR_THRESHOLD] = 0x84,
  211. [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
  212. [BRCMNAND_UNCORR_COUNT] = 0,
  213. [BRCMNAND_CORR_COUNT] = 0,
  214. [BRCMNAND_CORR_EXT_ADDR] = 0x70,
  215. [BRCMNAND_CORR_ADDR] = 0x74,
  216. [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
  217. [BRCMNAND_UNCORR_ADDR] = 0x7c,
  218. [BRCMNAND_SEMAPHORE] = 0x58,
  219. [BRCMNAND_ID] = 0x60,
  220. [BRCMNAND_ID_EXT] = 0x64,
  221. [BRCMNAND_LL_RDATA] = 0x17c,
  222. [BRCMNAND_OOB_READ_BASE] = 0x20,
  223. [BRCMNAND_OOB_READ_10_BASE] = 0x130,
  224. [BRCMNAND_OOB_WRITE_BASE] = 0x30,
  225. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  226. [BRCMNAND_FC_BASE] = 0x200,
  227. };
  228. /* BRCMNAND v5.0 */
  229. static const u16 brcmnand_regs_v50[] = {
  230. [BRCMNAND_CMD_START] = 0x04,
  231. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  232. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  233. [BRCMNAND_INTFC_STATUS] = 0x6c,
  234. [BRCMNAND_CS_SELECT] = 0x14,
  235. [BRCMNAND_CS_XOR] = 0x18,
  236. [BRCMNAND_LL_OP] = 0x178,
  237. [BRCMNAND_CS0_BASE] = 0x40,
  238. [BRCMNAND_CS1_BASE] = 0xd0,
  239. [BRCMNAND_CORR_THRESHOLD] = 0x84,
  240. [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
  241. [BRCMNAND_UNCORR_COUNT] = 0,
  242. [BRCMNAND_CORR_COUNT] = 0,
  243. [BRCMNAND_CORR_EXT_ADDR] = 0x70,
  244. [BRCMNAND_CORR_ADDR] = 0x74,
  245. [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
  246. [BRCMNAND_UNCORR_ADDR] = 0x7c,
  247. [BRCMNAND_SEMAPHORE] = 0x58,
  248. [BRCMNAND_ID] = 0x60,
  249. [BRCMNAND_ID_EXT] = 0x64,
  250. [BRCMNAND_LL_RDATA] = 0x17c,
  251. [BRCMNAND_OOB_READ_BASE] = 0x20,
  252. [BRCMNAND_OOB_READ_10_BASE] = 0x130,
  253. [BRCMNAND_OOB_WRITE_BASE] = 0x30,
  254. [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
  255. [BRCMNAND_FC_BASE] = 0x200,
  256. };
  257. /* BRCMNAND v6.0 - v7.1 */
  258. static const u16 brcmnand_regs_v60[] = {
  259. [BRCMNAND_CMD_START] = 0x04,
  260. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  261. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  262. [BRCMNAND_INTFC_STATUS] = 0x14,
  263. [BRCMNAND_CS_SELECT] = 0x18,
  264. [BRCMNAND_CS_XOR] = 0x1c,
  265. [BRCMNAND_LL_OP] = 0x20,
  266. [BRCMNAND_CS0_BASE] = 0x50,
  267. [BRCMNAND_CS1_BASE] = 0,
  268. [BRCMNAND_CORR_THRESHOLD] = 0xc0,
  269. [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
  270. [BRCMNAND_UNCORR_COUNT] = 0xfc,
  271. [BRCMNAND_CORR_COUNT] = 0x100,
  272. [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
  273. [BRCMNAND_CORR_ADDR] = 0x110,
  274. [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
  275. [BRCMNAND_UNCORR_ADDR] = 0x118,
  276. [BRCMNAND_SEMAPHORE] = 0x150,
  277. [BRCMNAND_ID] = 0x194,
  278. [BRCMNAND_ID_EXT] = 0x198,
  279. [BRCMNAND_LL_RDATA] = 0x19c,
  280. [BRCMNAND_OOB_READ_BASE] = 0x200,
  281. [BRCMNAND_OOB_READ_10_BASE] = 0,
  282. [BRCMNAND_OOB_WRITE_BASE] = 0x280,
  283. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  284. [BRCMNAND_FC_BASE] = 0x400,
  285. };
  286. /* BRCMNAND v7.1 */
  287. static const u16 brcmnand_regs_v71[] = {
  288. [BRCMNAND_CMD_START] = 0x04,
  289. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  290. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  291. [BRCMNAND_INTFC_STATUS] = 0x14,
  292. [BRCMNAND_CS_SELECT] = 0x18,
  293. [BRCMNAND_CS_XOR] = 0x1c,
  294. [BRCMNAND_LL_OP] = 0x20,
  295. [BRCMNAND_CS0_BASE] = 0x50,
  296. [BRCMNAND_CS1_BASE] = 0,
  297. [BRCMNAND_CORR_THRESHOLD] = 0xdc,
  298. [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
  299. [BRCMNAND_UNCORR_COUNT] = 0xfc,
  300. [BRCMNAND_CORR_COUNT] = 0x100,
  301. [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
  302. [BRCMNAND_CORR_ADDR] = 0x110,
  303. [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
  304. [BRCMNAND_UNCORR_ADDR] = 0x118,
  305. [BRCMNAND_SEMAPHORE] = 0x150,
  306. [BRCMNAND_ID] = 0x194,
  307. [BRCMNAND_ID_EXT] = 0x198,
  308. [BRCMNAND_LL_RDATA] = 0x19c,
  309. [BRCMNAND_OOB_READ_BASE] = 0x200,
  310. [BRCMNAND_OOB_READ_10_BASE] = 0,
  311. [BRCMNAND_OOB_WRITE_BASE] = 0x280,
  312. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  313. [BRCMNAND_FC_BASE] = 0x400,
  314. };
  315. /* BRCMNAND v7.2 */
  316. static const u16 brcmnand_regs_v72[] = {
  317. [BRCMNAND_CMD_START] = 0x04,
  318. [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
  319. [BRCMNAND_CMD_ADDRESS] = 0x0c,
  320. [BRCMNAND_INTFC_STATUS] = 0x14,
  321. [BRCMNAND_CS_SELECT] = 0x18,
  322. [BRCMNAND_CS_XOR] = 0x1c,
  323. [BRCMNAND_LL_OP] = 0x20,
  324. [BRCMNAND_CS0_BASE] = 0x50,
  325. [BRCMNAND_CS1_BASE] = 0,
  326. [BRCMNAND_CORR_THRESHOLD] = 0xdc,
  327. [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
  328. [BRCMNAND_UNCORR_COUNT] = 0xfc,
  329. [BRCMNAND_CORR_COUNT] = 0x100,
  330. [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
  331. [BRCMNAND_CORR_ADDR] = 0x110,
  332. [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
  333. [BRCMNAND_UNCORR_ADDR] = 0x118,
  334. [BRCMNAND_SEMAPHORE] = 0x150,
  335. [BRCMNAND_ID] = 0x194,
  336. [BRCMNAND_ID_EXT] = 0x198,
  337. [BRCMNAND_LL_RDATA] = 0x19c,
  338. [BRCMNAND_OOB_READ_BASE] = 0x200,
  339. [BRCMNAND_OOB_READ_10_BASE] = 0,
  340. [BRCMNAND_OOB_WRITE_BASE] = 0x400,
  341. [BRCMNAND_OOB_WRITE_10_BASE] = 0,
  342. [BRCMNAND_FC_BASE] = 0x600,
  343. };
  344. enum brcmnand_cs_reg {
  345. BRCMNAND_CS_CFG_EXT = 0,
  346. BRCMNAND_CS_CFG,
  347. BRCMNAND_CS_ACC_CONTROL,
  348. BRCMNAND_CS_TIMING1,
  349. BRCMNAND_CS_TIMING2,
  350. };
  351. /* Per chip-select offsets for v7.1 */
  352. static const u8 brcmnand_cs_offsets_v71[] = {
  353. [BRCMNAND_CS_ACC_CONTROL] = 0x00,
  354. [BRCMNAND_CS_CFG_EXT] = 0x04,
  355. [BRCMNAND_CS_CFG] = 0x08,
  356. [BRCMNAND_CS_TIMING1] = 0x0c,
  357. [BRCMNAND_CS_TIMING2] = 0x10,
  358. };
  359. /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
  360. static const u8 brcmnand_cs_offsets[] = {
  361. [BRCMNAND_CS_ACC_CONTROL] = 0x00,
  362. [BRCMNAND_CS_CFG_EXT] = 0x04,
  363. [BRCMNAND_CS_CFG] = 0x04,
  364. [BRCMNAND_CS_TIMING1] = 0x08,
  365. [BRCMNAND_CS_TIMING2] = 0x0c,
  366. };
  367. /* Per chip-select offset for <= v5.0 on CS0 only */
  368. static const u8 brcmnand_cs_offsets_cs0[] = {
  369. [BRCMNAND_CS_ACC_CONTROL] = 0x00,
  370. [BRCMNAND_CS_CFG_EXT] = 0x08,
  371. [BRCMNAND_CS_CFG] = 0x08,
  372. [BRCMNAND_CS_TIMING1] = 0x10,
  373. [BRCMNAND_CS_TIMING2] = 0x14,
  374. };
  375. /*
  376. * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
  377. * one config register, but once the bitfields overflowed, newer controllers
  378. * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
  379. */
  380. enum {
  381. CFG_BLK_ADR_BYTES_SHIFT = 8,
  382. CFG_COL_ADR_BYTES_SHIFT = 12,
  383. CFG_FUL_ADR_BYTES_SHIFT = 16,
  384. CFG_BUS_WIDTH_SHIFT = 23,
  385. CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
  386. CFG_DEVICE_SIZE_SHIFT = 24,
  387. /* Only for pre-v7.1 (with no CFG_EXT register) */
  388. CFG_PAGE_SIZE_SHIFT = 20,
  389. CFG_BLK_SIZE_SHIFT = 28,
  390. /* Only for v7.1+ (with CFG_EXT register) */
  391. CFG_EXT_PAGE_SIZE_SHIFT = 0,
  392. CFG_EXT_BLK_SIZE_SHIFT = 4,
  393. };
  394. /* BRCMNAND_INTFC_STATUS */
  395. enum {
  396. INTFC_FLASH_STATUS = GENMASK(7, 0),
  397. INTFC_ERASED = BIT(27),
  398. INTFC_OOB_VALID = BIT(28),
  399. INTFC_CACHE_VALID = BIT(29),
  400. INTFC_FLASH_READY = BIT(30),
  401. INTFC_CTLR_READY = BIT(31),
  402. };
  403. static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
  404. {
  405. return brcmnand_readl(ctrl->nand_base + offs);
  406. }
  407. static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
  408. u32 val)
  409. {
  410. brcmnand_writel(val, ctrl->nand_base + offs);
  411. }
  412. static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
  413. {
  414. static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
  415. static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
  416. static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
  417. ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
  418. /* Only support v4.0+? */
  419. if (ctrl->nand_version < 0x0400) {
  420. dev_err(ctrl->dev, "version %#x not supported\n",
  421. ctrl->nand_version);
  422. return -ENODEV;
  423. }
  424. /* Register offsets */
  425. if (ctrl->nand_version >= 0x0702)
  426. ctrl->reg_offsets = brcmnand_regs_v72;
  427. else if (ctrl->nand_version >= 0x0701)
  428. ctrl->reg_offsets = brcmnand_regs_v71;
  429. else if (ctrl->nand_version >= 0x0600)
  430. ctrl->reg_offsets = brcmnand_regs_v60;
  431. else if (ctrl->nand_version >= 0x0500)
  432. ctrl->reg_offsets = brcmnand_regs_v50;
  433. else if (ctrl->nand_version >= 0x0400)
  434. ctrl->reg_offsets = brcmnand_regs_v40;
  435. /* Chip-select stride */
  436. if (ctrl->nand_version >= 0x0701)
  437. ctrl->reg_spacing = 0x14;
  438. else
  439. ctrl->reg_spacing = 0x10;
  440. /* Per chip-select registers */
  441. if (ctrl->nand_version >= 0x0701) {
  442. ctrl->cs_offsets = brcmnand_cs_offsets_v71;
  443. } else {
  444. ctrl->cs_offsets = brcmnand_cs_offsets;
  445. /* v5.0 and earlier has a different CS0 offset layout */
  446. if (ctrl->nand_version <= 0x0500)
  447. ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
  448. }
  449. /* Page / block sizes */
  450. if (ctrl->nand_version >= 0x0701) {
  451. /* >= v7.1 use nice power-of-2 values! */
  452. ctrl->max_page_size = 16 * 1024;
  453. ctrl->max_block_size = 2 * 1024 * 1024;
  454. } else {
  455. ctrl->page_sizes = page_sizes;
  456. if (ctrl->nand_version >= 0x0600)
  457. ctrl->block_sizes = block_sizes_v6;
  458. else
  459. ctrl->block_sizes = block_sizes_v4;
  460. if (ctrl->nand_version < 0x0400) {
  461. ctrl->max_page_size = 4096;
  462. ctrl->max_block_size = 512 * 1024;
  463. }
  464. }
  465. /* Maximum spare area sector size (per 512B) */
  466. if (ctrl->nand_version >= 0x0702)
  467. ctrl->max_oob = 128;
  468. else if (ctrl->nand_version >= 0x0600)
  469. ctrl->max_oob = 64;
  470. else if (ctrl->nand_version >= 0x0500)
  471. ctrl->max_oob = 32;
  472. else
  473. ctrl->max_oob = 16;
  474. /* v6.0 and newer (except v6.1) have prefetch support */
  475. if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
  476. ctrl->features |= BRCMNAND_HAS_PREFETCH;
  477. /*
  478. * v6.x has cache mode, but it's implemented differently. Ignore it for
  479. * now.
  480. */
  481. if (ctrl->nand_version >= 0x0700)
  482. ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
  483. if (ctrl->nand_version >= 0x0500)
  484. ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
  485. if (ctrl->nand_version >= 0x0700)
  486. ctrl->features |= BRCMNAND_HAS_WP;
  487. else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
  488. ctrl->features |= BRCMNAND_HAS_WP;
  489. return 0;
  490. }
  491. static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
  492. enum brcmnand_reg reg)
  493. {
  494. u16 offs = ctrl->reg_offsets[reg];
  495. if (offs)
  496. return nand_readreg(ctrl, offs);
  497. else
  498. return 0;
  499. }
  500. static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
  501. enum brcmnand_reg reg, u32 val)
  502. {
  503. u16 offs = ctrl->reg_offsets[reg];
  504. if (offs)
  505. nand_writereg(ctrl, offs, val);
  506. }
  507. static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
  508. enum brcmnand_reg reg, u32 mask, unsigned
  509. int shift, u32 val)
  510. {
  511. u32 tmp = brcmnand_read_reg(ctrl, reg);
  512. tmp &= ~mask;
  513. tmp |= val << shift;
  514. brcmnand_write_reg(ctrl, reg, tmp);
  515. }
  516. static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
  517. {
  518. return __raw_readl(ctrl->nand_fc + word * 4);
  519. }
  520. static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
  521. int word, u32 val)
  522. {
  523. __raw_writel(val, ctrl->nand_fc + word * 4);
  524. }
  525. static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
  526. enum brcmnand_cs_reg reg)
  527. {
  528. u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
  529. u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
  530. u8 cs_offs;
  531. if (cs == 0 && ctrl->cs0_offsets)
  532. cs_offs = ctrl->cs0_offsets[reg];
  533. else
  534. cs_offs = ctrl->cs_offsets[reg];
  535. if (cs && offs_cs1)
  536. return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
  537. return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
  538. }
  539. static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
  540. {
  541. if (ctrl->nand_version < 0x0600)
  542. return 1;
  543. return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
  544. }
  545. static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
  546. {
  547. struct brcmnand_controller *ctrl = host->ctrl;
  548. unsigned int shift = 0, bits;
  549. enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
  550. int cs = host->cs;
  551. if (ctrl->nand_version >= 0x0702)
  552. bits = 7;
  553. else if (ctrl->nand_version >= 0x0600)
  554. bits = 6;
  555. else if (ctrl->nand_version >= 0x0500)
  556. bits = 5;
  557. else
  558. bits = 4;
  559. if (ctrl->nand_version >= 0x0702) {
  560. if (cs >= 4)
  561. reg = BRCMNAND_CORR_THRESHOLD_EXT;
  562. shift = (cs % 4) * bits;
  563. } else if (ctrl->nand_version >= 0x0600) {
  564. if (cs >= 5)
  565. reg = BRCMNAND_CORR_THRESHOLD_EXT;
  566. shift = (cs % 5) * bits;
  567. }
  568. brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
  569. }
  570. static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
  571. {
  572. if (ctrl->nand_version < 0x0602)
  573. return 24;
  574. return 0;
  575. }
  576. /***********************************************************************
  577. * NAND ACC CONTROL bitfield
  578. *
  579. * Some bits have remained constant throughout hardware revision, while
  580. * others have shifted around.
  581. ***********************************************************************/
  582. /* Constant for all versions (where supported) */
  583. enum {
  584. /* See BRCMNAND_HAS_CACHE_MODE */
  585. ACC_CONTROL_CACHE_MODE = BIT(22),
  586. /* See BRCMNAND_HAS_PREFETCH */
  587. ACC_CONTROL_PREFETCH = BIT(23),
  588. ACC_CONTROL_PAGE_HIT = BIT(24),
  589. ACC_CONTROL_WR_PREEMPT = BIT(25),
  590. ACC_CONTROL_PARTIAL_PAGE = BIT(26),
  591. ACC_CONTROL_RD_ERASED = BIT(27),
  592. ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
  593. ACC_CONTROL_WR_ECC = BIT(30),
  594. ACC_CONTROL_RD_ECC = BIT(31),
  595. };
  596. static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
  597. {
  598. if (ctrl->nand_version >= 0x0702)
  599. return GENMASK(7, 0);
  600. else if (ctrl->nand_version >= 0x0600)
  601. return GENMASK(6, 0);
  602. else
  603. return GENMASK(5, 0);
  604. }
  605. #define NAND_ACC_CONTROL_ECC_SHIFT 16
  606. #define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
  607. static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
  608. {
  609. u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
  610. mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
  611. /* v7.2 includes additional ECC levels */
  612. if (ctrl->nand_version >= 0x0702)
  613. mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
  614. return mask;
  615. }
  616. static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
  617. {
  618. struct brcmnand_controller *ctrl = host->ctrl;
  619. u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
  620. u32 acc_control = nand_readreg(ctrl, offs);
  621. u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
  622. if (en) {
  623. acc_control |= ecc_flags; /* enable RD/WR ECC */
  624. acc_control |= host->hwcfg.ecc_level
  625. << NAND_ACC_CONTROL_ECC_SHIFT;
  626. } else {
  627. acc_control &= ~ecc_flags; /* disable RD/WR ECC */
  628. acc_control &= ~brcmnand_ecc_level_mask(ctrl);
  629. }
  630. nand_writereg(ctrl, offs, acc_control);
  631. }
  632. static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
  633. {
  634. if (ctrl->nand_version >= 0x0702)
  635. return 9;
  636. else if (ctrl->nand_version >= 0x0600)
  637. return 7;
  638. else if (ctrl->nand_version >= 0x0500)
  639. return 6;
  640. else
  641. return -1;
  642. }
  643. static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
  644. {
  645. struct brcmnand_controller *ctrl = host->ctrl;
  646. int shift = brcmnand_sector_1k_shift(ctrl);
  647. u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
  648. BRCMNAND_CS_ACC_CONTROL);
  649. if (shift < 0)
  650. return 0;
  651. return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
  652. }
  653. static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
  654. {
  655. struct brcmnand_controller *ctrl = host->ctrl;
  656. int shift = brcmnand_sector_1k_shift(ctrl);
  657. u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
  658. BRCMNAND_CS_ACC_CONTROL);
  659. u32 tmp;
  660. if (shift < 0)
  661. return;
  662. tmp = nand_readreg(ctrl, acc_control_offs);
  663. tmp &= ~(1 << shift);
  664. tmp |= (!!val) << shift;
  665. nand_writereg(ctrl, acc_control_offs, tmp);
  666. }
  667. /***********************************************************************
  668. * CS_NAND_SELECT
  669. ***********************************************************************/
  670. enum {
  671. CS_SELECT_NAND_WP = BIT(29),
  672. CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
  673. };
  674. static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
  675. u32 mask, u32 expected_val,
  676. unsigned long timeout_ms)
  677. {
  678. unsigned long limit;
  679. u32 val;
  680. if (!timeout_ms)
  681. timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
  682. limit = jiffies + msecs_to_jiffies(timeout_ms);
  683. do {
  684. val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
  685. if ((val & mask) == expected_val)
  686. return 0;
  687. cpu_relax();
  688. } while (time_after(limit, jiffies));
  689. dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
  690. expected_val, val & mask);
  691. return -ETIMEDOUT;
  692. }
  693. static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
  694. {
  695. u32 val = en ? CS_SELECT_NAND_WP : 0;
  696. brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
  697. }
  698. /***********************************************************************
  699. * Flash DMA
  700. ***********************************************************************/
  701. enum flash_dma_reg {
  702. FLASH_DMA_REVISION = 0x00,
  703. FLASH_DMA_FIRST_DESC = 0x04,
  704. FLASH_DMA_FIRST_DESC_EXT = 0x08,
  705. FLASH_DMA_CTRL = 0x0c,
  706. FLASH_DMA_MODE = 0x10,
  707. FLASH_DMA_STATUS = 0x14,
  708. FLASH_DMA_INTERRUPT_DESC = 0x18,
  709. FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c,
  710. FLASH_DMA_ERROR_STATUS = 0x20,
  711. FLASH_DMA_CURRENT_DESC = 0x24,
  712. FLASH_DMA_CURRENT_DESC_EXT = 0x28,
  713. };
  714. static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
  715. {
  716. return ctrl->flash_dma_base;
  717. }
  718. static inline bool flash_dma_buf_ok(const void *buf)
  719. {
  720. return buf && !is_vmalloc_addr(buf) &&
  721. likely(IS_ALIGNED((uintptr_t)buf, 4));
  722. }
  723. static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
  724. u32 val)
  725. {
  726. brcmnand_writel(val, ctrl->flash_dma_base + offs);
  727. }
  728. static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
  729. {
  730. return brcmnand_readl(ctrl->flash_dma_base + offs);
  731. }
  732. /* Low-level operation types: command, address, write, or read */
  733. enum brcmnand_llop_type {
  734. LL_OP_CMD,
  735. LL_OP_ADDR,
  736. LL_OP_WR,
  737. LL_OP_RD,
  738. };
  739. /***********************************************************************
  740. * Internal support functions
  741. ***********************************************************************/
  742. static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
  743. struct brcmnand_cfg *cfg)
  744. {
  745. if (ctrl->nand_version <= 0x0701)
  746. return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
  747. cfg->ecc_level == 15;
  748. else
  749. return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
  750. cfg->ecc_level == 15) ||
  751. (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
  752. }
  753. /*
  754. * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
  755. * the layout/configuration.
  756. * Returns -ERRCODE on failure.
  757. */
  758. static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
  759. struct mtd_oob_region *oobregion)
  760. {
  761. struct nand_chip *chip = mtd_to_nand(mtd);
  762. struct brcmnand_host *host = nand_get_controller_data(chip);
  763. struct brcmnand_cfg *cfg = &host->hwcfg;
  764. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  765. int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
  766. if (section >= sectors)
  767. return -ERANGE;
  768. oobregion->offset = (section * sas) + 6;
  769. oobregion->length = 3;
  770. return 0;
  771. }
  772. static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
  773. struct mtd_oob_region *oobregion)
  774. {
  775. struct nand_chip *chip = mtd_to_nand(mtd);
  776. struct brcmnand_host *host = nand_get_controller_data(chip);
  777. struct brcmnand_cfg *cfg = &host->hwcfg;
  778. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  779. int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
  780. if (section >= sectors * 2)
  781. return -ERANGE;
  782. oobregion->offset = (section / 2) * sas;
  783. if (section & 1) {
  784. oobregion->offset += 9;
  785. oobregion->length = 7;
  786. } else {
  787. oobregion->length = 6;
  788. /* First sector of each page may have BBI */
  789. if (!section) {
  790. /*
  791. * Small-page NAND use byte 6 for BBI while large-page
  792. * NAND use byte 0.
  793. */
  794. if (cfg->page_size > 512)
  795. oobregion->offset++;
  796. oobregion->length--;
  797. }
  798. }
  799. return 0;
  800. }
  801. static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
  802. .ecc = brcmnand_hamming_ooblayout_ecc,
  803. .free = brcmnand_hamming_ooblayout_free,
  804. };
  805. static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
  806. struct mtd_oob_region *oobregion)
  807. {
  808. struct nand_chip *chip = mtd_to_nand(mtd);
  809. struct brcmnand_host *host = nand_get_controller_data(chip);
  810. struct brcmnand_cfg *cfg = &host->hwcfg;
  811. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  812. int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
  813. if (section >= sectors)
  814. return -ERANGE;
  815. oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes;
  816. oobregion->length = chip->ecc.bytes;
  817. return 0;
  818. }
  819. static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
  820. struct mtd_oob_region *oobregion)
  821. {
  822. struct nand_chip *chip = mtd_to_nand(mtd);
  823. struct brcmnand_host *host = nand_get_controller_data(chip);
  824. struct brcmnand_cfg *cfg = &host->hwcfg;
  825. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  826. int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
  827. if (section >= sectors)
  828. return -ERANGE;
  829. if (sas <= chip->ecc.bytes)
  830. return 0;
  831. oobregion->offset = section * sas;
  832. oobregion->length = sas - chip->ecc.bytes;
  833. if (!section) {
  834. oobregion->offset++;
  835. oobregion->length--;
  836. }
  837. return 0;
  838. }
  839. static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
  840. struct mtd_oob_region *oobregion)
  841. {
  842. struct nand_chip *chip = mtd_to_nand(mtd);
  843. struct brcmnand_host *host = nand_get_controller_data(chip);
  844. struct brcmnand_cfg *cfg = &host->hwcfg;
  845. int sas = cfg->spare_area_size << cfg->sector_size_1k;
  846. if (section > 1 || sas - chip->ecc.bytes < 6 ||
  847. (section && sas - chip->ecc.bytes == 6))
  848. return -ERANGE;
  849. if (!section) {
  850. oobregion->offset = 0;
  851. oobregion->length = 5;
  852. } else {
  853. oobregion->offset = 6;
  854. oobregion->length = sas - chip->ecc.bytes - 6;
  855. }
  856. return 0;
  857. }
  858. static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
  859. .ecc = brcmnand_bch_ooblayout_ecc,
  860. .free = brcmnand_bch_ooblayout_free_lp,
  861. };
  862. static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
  863. .ecc = brcmnand_bch_ooblayout_ecc,
  864. .free = brcmnand_bch_ooblayout_free_sp,
  865. };
  866. static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
  867. {
  868. struct brcmnand_cfg *p = &host->hwcfg;
  869. struct mtd_info *mtd = nand_to_mtd(&host->chip);
  870. struct nand_ecc_ctrl *ecc = &host->chip.ecc;
  871. unsigned int ecc_level = p->ecc_level;
  872. int sas = p->spare_area_size << p->sector_size_1k;
  873. int sectors = p->page_size / (512 << p->sector_size_1k);
  874. if (p->sector_size_1k)
  875. ecc_level <<= 1;
  876. if (is_hamming_ecc(host->ctrl, p)) {
  877. ecc->bytes = 3 * sectors;
  878. mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
  879. return 0;
  880. }
  881. /*
  882. * CONTROLLER_VERSION:
  883. * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
  884. * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
  885. * But we will just be conservative.
  886. */
  887. ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
  888. if (p->page_size == 512)
  889. mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
  890. else
  891. mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
  892. if (ecc->bytes >= sas) {
  893. dev_err(&host->pdev->dev,
  894. "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
  895. ecc->bytes, sas);
  896. return -EINVAL;
  897. }
  898. return 0;
  899. }
  900. static void brcmnand_wp(struct mtd_info *mtd, int wp)
  901. {
  902. struct nand_chip *chip = mtd_to_nand(mtd);
  903. struct brcmnand_host *host = nand_get_controller_data(chip);
  904. struct brcmnand_controller *ctrl = host->ctrl;
  905. if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
  906. static int old_wp = -1;
  907. int ret;
  908. if (old_wp != wp) {
  909. dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
  910. old_wp = wp;
  911. }
  912. /*
  913. * make sure ctrl/flash ready before and after
  914. * changing state of #WP pin
  915. */
  916. ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
  917. NAND_STATUS_READY,
  918. NAND_CTRL_RDY |
  919. NAND_STATUS_READY, 0);
  920. if (ret)
  921. return;
  922. brcmnand_set_wp(ctrl, wp);
  923. nand_status_op(chip, NULL);
  924. /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
  925. ret = bcmnand_ctrl_poll_status(ctrl,
  926. NAND_CTRL_RDY |
  927. NAND_STATUS_READY |
  928. NAND_STATUS_WP,
  929. NAND_CTRL_RDY |
  930. NAND_STATUS_READY |
  931. (wp ? 0 : NAND_STATUS_WP), 0);
  932. if (ret)
  933. dev_err_ratelimited(&host->pdev->dev,
  934. "nand #WP expected %s\n",
  935. wp ? "on" : "off");
  936. }
  937. }
  938. /* Helper functions for reading and writing OOB registers */
  939. static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
  940. {
  941. u16 offset0, offset10, reg_offs;
  942. offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
  943. offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
  944. if (offs >= ctrl->max_oob)
  945. return 0x77;
  946. if (offs >= 16 && offset10)
  947. reg_offs = offset10 + ((offs - 0x10) & ~0x03);
  948. else
  949. reg_offs = offset0 + (offs & ~0x03);
  950. return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
  951. }
  952. static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
  953. u32 data)
  954. {
  955. u16 offset0, offset10, reg_offs;
  956. offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
  957. offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
  958. if (offs >= ctrl->max_oob)
  959. return;
  960. if (offs >= 16 && offset10)
  961. reg_offs = offset10 + ((offs - 0x10) & ~0x03);
  962. else
  963. reg_offs = offset0 + (offs & ~0x03);
  964. nand_writereg(ctrl, reg_offs, data);
  965. }
  966. /*
  967. * read_oob_from_regs - read data from OOB registers
  968. * @ctrl: NAND controller
  969. * @i: sub-page sector index
  970. * @oob: buffer to read to
  971. * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
  972. * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
  973. */
  974. static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
  975. int sas, int sector_1k)
  976. {
  977. int tbytes = sas << sector_1k;
  978. int j;
  979. /* Adjust OOB values for 1K sector size */
  980. if (sector_1k && (i & 0x01))
  981. tbytes = max(0, tbytes - (int)ctrl->max_oob);
  982. tbytes = min_t(int, tbytes, ctrl->max_oob);
  983. for (j = 0; j < tbytes; j++)
  984. oob[j] = oob_reg_read(ctrl, j);
  985. return tbytes;
  986. }
  987. /*
  988. * write_oob_to_regs - write data to OOB registers
  989. * @i: sub-page sector index
  990. * @oob: buffer to write from
  991. * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
  992. * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
  993. */
  994. static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
  995. const u8 *oob, int sas, int sector_1k)
  996. {
  997. int tbytes = sas << sector_1k;
  998. int j;
  999. /* Adjust OOB values for 1K sector size */
  1000. if (sector_1k && (i & 0x01))
  1001. tbytes = max(0, tbytes - (int)ctrl->max_oob);
  1002. tbytes = min_t(int, tbytes, ctrl->max_oob);
  1003. for (j = 0; j < tbytes; j += 4)
  1004. oob_reg_write(ctrl, j,
  1005. (oob[j + 0] << 24) |
  1006. (oob[j + 1] << 16) |
  1007. (oob[j + 2] << 8) |
  1008. (oob[j + 3] << 0));
  1009. return tbytes;
  1010. }
  1011. static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
  1012. {
  1013. struct brcmnand_controller *ctrl = data;
  1014. /* Discard all NAND_CTLRDY interrupts during DMA */
  1015. if (ctrl->dma_pending)
  1016. return IRQ_HANDLED;
  1017. complete(&ctrl->done);
  1018. return IRQ_HANDLED;
  1019. }
  1020. /* Handle SoC-specific interrupt hardware */
  1021. static irqreturn_t brcmnand_irq(int irq, void *data)
  1022. {
  1023. struct brcmnand_controller *ctrl = data;
  1024. if (ctrl->soc->ctlrdy_ack(ctrl->soc))
  1025. return brcmnand_ctlrdy_irq(irq, data);
  1026. return IRQ_NONE;
  1027. }
  1028. static irqreturn_t brcmnand_dma_irq(int irq, void *data)
  1029. {
  1030. struct brcmnand_controller *ctrl = data;
  1031. complete(&ctrl->dma_done);
  1032. return IRQ_HANDLED;
  1033. }
  1034. static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
  1035. {
  1036. struct brcmnand_controller *ctrl = host->ctrl;
  1037. int ret;
  1038. dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
  1039. brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
  1040. BUG_ON(ctrl->cmd_pending != 0);
  1041. ctrl->cmd_pending = cmd;
  1042. ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
  1043. WARN_ON(ret);
  1044. mb(); /* flush previous writes */
  1045. brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
  1046. cmd << brcmnand_cmd_shift(ctrl));
  1047. }
  1048. /***********************************************************************
  1049. * NAND MTD API: read/program/erase
  1050. ***********************************************************************/
  1051. static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
  1052. unsigned int ctrl)
  1053. {
  1054. /* intentionally left blank */
  1055. }
  1056. static int brcmnand_waitfunc(struct nand_chip *chip)
  1057. {
  1058. struct brcmnand_host *host = nand_get_controller_data(chip);
  1059. struct brcmnand_controller *ctrl = host->ctrl;
  1060. unsigned long timeo = msecs_to_jiffies(100);
  1061. dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
  1062. if (ctrl->cmd_pending &&
  1063. wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
  1064. u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
  1065. >> brcmnand_cmd_shift(ctrl);
  1066. dev_err_ratelimited(ctrl->dev,
  1067. "timeout waiting for command %#02x\n", cmd);
  1068. dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
  1069. brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
  1070. }
  1071. ctrl->cmd_pending = 0;
  1072. return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
  1073. INTFC_FLASH_STATUS;
  1074. }
  1075. enum {
  1076. LLOP_RE = BIT(16),
  1077. LLOP_WE = BIT(17),
  1078. LLOP_ALE = BIT(18),
  1079. LLOP_CLE = BIT(19),
  1080. LLOP_RETURN_IDLE = BIT(31),
  1081. LLOP_DATA_MASK = GENMASK(15, 0),
  1082. };
  1083. static int brcmnand_low_level_op(struct brcmnand_host *host,
  1084. enum brcmnand_llop_type type, u32 data,
  1085. bool last_op)
  1086. {
  1087. struct nand_chip *chip = &host->chip;
  1088. struct brcmnand_controller *ctrl = host->ctrl;
  1089. u32 tmp;
  1090. tmp = data & LLOP_DATA_MASK;
  1091. switch (type) {
  1092. case LL_OP_CMD:
  1093. tmp |= LLOP_WE | LLOP_CLE;
  1094. break;
  1095. case LL_OP_ADDR:
  1096. /* WE | ALE */
  1097. tmp |= LLOP_WE | LLOP_ALE;
  1098. break;
  1099. case LL_OP_WR:
  1100. /* WE */
  1101. tmp |= LLOP_WE;
  1102. break;
  1103. case LL_OP_RD:
  1104. /* RE */
  1105. tmp |= LLOP_RE;
  1106. break;
  1107. }
  1108. if (last_op)
  1109. /* RETURN_IDLE */
  1110. tmp |= LLOP_RETURN_IDLE;
  1111. dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
  1112. brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
  1113. (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
  1114. brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
  1115. return brcmnand_waitfunc(chip);
  1116. }
  1117. static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
  1118. int column, int page_addr)
  1119. {
  1120. struct mtd_info *mtd = nand_to_mtd(chip);
  1121. struct brcmnand_host *host = nand_get_controller_data(chip);
  1122. struct brcmnand_controller *ctrl = host->ctrl;
  1123. u64 addr = (u64)page_addr << chip->page_shift;
  1124. int native_cmd = 0;
  1125. if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
  1126. command == NAND_CMD_RNDOUT)
  1127. addr = (u64)column;
  1128. /* Avoid propagating a negative, don't-care address */
  1129. else if (page_addr < 0)
  1130. addr = 0;
  1131. dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
  1132. (unsigned long long)addr);
  1133. host->last_cmd = command;
  1134. host->last_byte = 0;
  1135. host->last_addr = addr;
  1136. switch (command) {
  1137. case NAND_CMD_RESET:
  1138. native_cmd = CMD_FLASH_RESET;
  1139. break;
  1140. case NAND_CMD_STATUS:
  1141. native_cmd = CMD_STATUS_READ;
  1142. break;
  1143. case NAND_CMD_READID:
  1144. native_cmd = CMD_DEVICE_ID_READ;
  1145. break;
  1146. case NAND_CMD_READOOB:
  1147. native_cmd = CMD_SPARE_AREA_READ;
  1148. break;
  1149. case NAND_CMD_ERASE1:
  1150. native_cmd = CMD_BLOCK_ERASE;
  1151. brcmnand_wp(mtd, 0);
  1152. break;
  1153. case NAND_CMD_PARAM:
  1154. native_cmd = CMD_PARAMETER_READ;
  1155. break;
  1156. case NAND_CMD_SET_FEATURES:
  1157. case NAND_CMD_GET_FEATURES:
  1158. brcmnand_low_level_op(host, LL_OP_CMD, command, false);
  1159. brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
  1160. break;
  1161. case NAND_CMD_RNDOUT:
  1162. native_cmd = CMD_PARAMETER_CHANGE_COL;
  1163. addr &= ~((u64)(FC_BYTES - 1));
  1164. /*
  1165. * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
  1166. * NB: hwcfg.sector_size_1k may not be initialized yet
  1167. */
  1168. if (brcmnand_get_sector_size_1k(host)) {
  1169. host->hwcfg.sector_size_1k =
  1170. brcmnand_get_sector_size_1k(host);
  1171. brcmnand_set_sector_size_1k(host, 0);
  1172. }
  1173. break;
  1174. }
  1175. if (!native_cmd)
  1176. return;
  1177. brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
  1178. (host->cs << 16) | ((addr >> 32) & 0xffff));
  1179. (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
  1180. brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
  1181. (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
  1182. brcmnand_send_cmd(host, native_cmd);
  1183. brcmnand_waitfunc(chip);
  1184. if (native_cmd == CMD_PARAMETER_READ ||
  1185. native_cmd == CMD_PARAMETER_CHANGE_COL) {
  1186. /* Copy flash cache word-wise */
  1187. u32 *flash_cache = (u32 *)ctrl->flash_cache;
  1188. int i;
  1189. brcmnand_soc_data_bus_prepare(ctrl->soc, true);
  1190. /*
  1191. * Must cache the FLASH_CACHE now, since changes in
  1192. * SECTOR_SIZE_1K may invalidate it
  1193. */
  1194. for (i = 0; i < FC_WORDS; i++)
  1195. /*
  1196. * Flash cache is big endian for parameter pages, at
  1197. * least on STB SoCs
  1198. */
  1199. flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
  1200. brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
  1201. /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
  1202. if (host->hwcfg.sector_size_1k)
  1203. brcmnand_set_sector_size_1k(host,
  1204. host->hwcfg.sector_size_1k);
  1205. }
  1206. /* Re-enable protection is necessary only after erase */
  1207. if (command == NAND_CMD_ERASE1)
  1208. brcmnand_wp(mtd, 1);
  1209. }
  1210. static uint8_t brcmnand_read_byte(struct nand_chip *chip)
  1211. {
  1212. struct brcmnand_host *host = nand_get_controller_data(chip);
  1213. struct brcmnand_controller *ctrl = host->ctrl;
  1214. uint8_t ret = 0;
  1215. int addr, offs;
  1216. switch (host->last_cmd) {
  1217. case NAND_CMD_READID:
  1218. if (host->last_byte < 4)
  1219. ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
  1220. (24 - (host->last_byte << 3));
  1221. else if (host->last_byte < 8)
  1222. ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
  1223. (56 - (host->last_byte << 3));
  1224. break;
  1225. case NAND_CMD_READOOB:
  1226. ret = oob_reg_read(ctrl, host->last_byte);
  1227. break;
  1228. case NAND_CMD_STATUS:
  1229. ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
  1230. INTFC_FLASH_STATUS;
  1231. if (wp_on) /* hide WP status */
  1232. ret |= NAND_STATUS_WP;
  1233. break;
  1234. case NAND_CMD_PARAM:
  1235. case NAND_CMD_RNDOUT:
  1236. addr = host->last_addr + host->last_byte;
  1237. offs = addr & (FC_BYTES - 1);
  1238. /* At FC_BYTES boundary, switch to next column */
  1239. if (host->last_byte > 0 && offs == 0)
  1240. nand_change_read_column_op(chip, addr, NULL, 0, false);
  1241. ret = ctrl->flash_cache[offs];
  1242. break;
  1243. case NAND_CMD_GET_FEATURES:
  1244. if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
  1245. ret = 0;
  1246. } else {
  1247. bool last = host->last_byte ==
  1248. ONFI_SUBFEATURE_PARAM_LEN - 1;
  1249. brcmnand_low_level_op(host, LL_OP_RD, 0, last);
  1250. ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
  1251. }
  1252. }
  1253. dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
  1254. host->last_byte++;
  1255. return ret;
  1256. }
  1257. static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
  1258. {
  1259. int i;
  1260. for (i = 0; i < len; i++, buf++)
  1261. *buf = brcmnand_read_byte(chip);
  1262. }
  1263. static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
  1264. int len)
  1265. {
  1266. int i;
  1267. struct brcmnand_host *host = nand_get_controller_data(chip);
  1268. switch (host->last_cmd) {
  1269. case NAND_CMD_SET_FEATURES:
  1270. for (i = 0; i < len; i++)
  1271. brcmnand_low_level_op(host, LL_OP_WR, buf[i],
  1272. (i + 1) == len);
  1273. break;
  1274. default:
  1275. BUG();
  1276. break;
  1277. }
  1278. }
  1279. /**
  1280. * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
  1281. * following ahead of time:
  1282. * - Is this descriptor the beginning or end of a linked list?
  1283. * - What is the (DMA) address of the next descriptor in the linked list?
  1284. */
  1285. static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
  1286. struct brcm_nand_dma_desc *desc, u64 addr,
  1287. dma_addr_t buf, u32 len, u8 dma_cmd,
  1288. bool begin, bool end,
  1289. dma_addr_t next_desc)
  1290. {
  1291. memset(desc, 0, sizeof(*desc));
  1292. /* Descriptors are written in native byte order (wordwise) */
  1293. desc->next_desc = lower_32_bits(next_desc);
  1294. desc->next_desc_ext = upper_32_bits(next_desc);
  1295. desc->cmd_irq = (dma_cmd << 24) |
  1296. (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
  1297. (!!begin) | ((!!end) << 1); /* head, tail */
  1298. #ifdef CONFIG_CPU_BIG_ENDIAN
  1299. desc->cmd_irq |= 0x01 << 12;
  1300. #endif
  1301. desc->dram_addr = lower_32_bits(buf);
  1302. desc->dram_addr_ext = upper_32_bits(buf);
  1303. desc->tfr_len = len;
  1304. desc->total_len = len;
  1305. desc->flash_addr = lower_32_bits(addr);
  1306. desc->flash_addr_ext = upper_32_bits(addr);
  1307. desc->cs = host->cs;
  1308. desc->status_valid = 0x01;
  1309. return 0;
  1310. }
  1311. /**
  1312. * Kick the FLASH_DMA engine, with a given DMA descriptor
  1313. */
  1314. static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
  1315. {
  1316. struct brcmnand_controller *ctrl = host->ctrl;
  1317. unsigned long timeo = msecs_to_jiffies(100);
  1318. flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
  1319. (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
  1320. flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
  1321. (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
  1322. /* Start FLASH_DMA engine */
  1323. ctrl->dma_pending = true;
  1324. mb(); /* flush previous writes */
  1325. flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
  1326. if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
  1327. dev_err(ctrl->dev,
  1328. "timeout waiting for DMA; status %#x, error status %#x\n",
  1329. flash_dma_readl(ctrl, FLASH_DMA_STATUS),
  1330. flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
  1331. }
  1332. ctrl->dma_pending = false;
  1333. flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
  1334. }
  1335. static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
  1336. u32 len, u8 dma_cmd)
  1337. {
  1338. struct brcmnand_controller *ctrl = host->ctrl;
  1339. dma_addr_t buf_pa;
  1340. int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
  1341. buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
  1342. if (dma_mapping_error(ctrl->dev, buf_pa)) {
  1343. dev_err(ctrl->dev, "unable to map buffer for DMA\n");
  1344. return -ENOMEM;
  1345. }
  1346. brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
  1347. dma_cmd, true, true, 0);
  1348. brcmnand_dma_run(host, ctrl->dma_pa);
  1349. dma_unmap_single(ctrl->dev, buf_pa, len, dir);
  1350. if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
  1351. return -EBADMSG;
  1352. else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
  1353. return -EUCLEAN;
  1354. return 0;
  1355. }
  1356. /*
  1357. * Assumes proper CS is already set
  1358. */
  1359. static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
  1360. u64 addr, unsigned int trans, u32 *buf,
  1361. u8 *oob, u64 *err_addr)
  1362. {
  1363. struct brcmnand_host *host = nand_get_controller_data(chip);
  1364. struct brcmnand_controller *ctrl = host->ctrl;
  1365. int i, j, ret = 0;
  1366. /* Clear error addresses */
  1367. brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
  1368. brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
  1369. brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
  1370. brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
  1371. brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
  1372. (host->cs << 16) | ((addr >> 32) & 0xffff));
  1373. (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
  1374. for (i = 0; i < trans; i++, addr += FC_BYTES) {
  1375. brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
  1376. lower_32_bits(addr));
  1377. (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
  1378. /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
  1379. brcmnand_send_cmd(host, CMD_PAGE_READ);
  1380. brcmnand_waitfunc(chip);
  1381. if (likely(buf)) {
  1382. brcmnand_soc_data_bus_prepare(ctrl->soc, false);
  1383. for (j = 0; j < FC_WORDS; j++, buf++)
  1384. *buf = brcmnand_read_fc(ctrl, j);
  1385. brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
  1386. }
  1387. if (oob)
  1388. oob += read_oob_from_regs(ctrl, i, oob,
  1389. mtd->oobsize / trans,
  1390. host->hwcfg.sector_size_1k);
  1391. if (!ret) {
  1392. *err_addr = brcmnand_read_reg(ctrl,
  1393. BRCMNAND_UNCORR_ADDR) |
  1394. ((u64)(brcmnand_read_reg(ctrl,
  1395. BRCMNAND_UNCORR_EXT_ADDR)
  1396. & 0xffff) << 32);
  1397. if (*err_addr)
  1398. ret = -EBADMSG;
  1399. }
  1400. if (!ret) {
  1401. *err_addr = brcmnand_read_reg(ctrl,
  1402. BRCMNAND_CORR_ADDR) |
  1403. ((u64)(brcmnand_read_reg(ctrl,
  1404. BRCMNAND_CORR_EXT_ADDR)
  1405. & 0xffff) << 32);
  1406. if (*err_addr)
  1407. ret = -EUCLEAN;
  1408. }
  1409. }
  1410. return ret;
  1411. }
  1412. /*
  1413. * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
  1414. * error
  1415. *
  1416. * Because the HW ECC signals an ECC error if an erase paged has even a single
  1417. * bitflip, we must check each ECC error to see if it is actually an erased
  1418. * page with bitflips, not a truly corrupted page.
  1419. *
  1420. * On a real error, return a negative error code (-EBADMSG for ECC error), and
  1421. * buf will contain raw data.
  1422. * Otherwise, buf gets filled with 0xffs and return the maximum number of
  1423. * bitflips-per-ECC-sector to the caller.
  1424. *
  1425. */
  1426. static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
  1427. struct nand_chip *chip, void *buf, u64 addr)
  1428. {
  1429. int i, sas;
  1430. void *oob = chip->oob_poi;
  1431. int bitflips = 0;
  1432. int page = addr >> chip->page_shift;
  1433. int ret;
  1434. if (!buf) {
  1435. buf = chip->data_buf;
  1436. /* Invalidate page cache */
  1437. chip->pagebuf = -1;
  1438. }
  1439. sas = mtd->oobsize / chip->ecc.steps;
  1440. /* read without ecc for verification */
  1441. ret = chip->ecc.read_page_raw(chip, buf, true, page);
  1442. if (ret)
  1443. return ret;
  1444. for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
  1445. ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
  1446. oob, sas, NULL, 0,
  1447. chip->ecc.strength);
  1448. if (ret < 0)
  1449. return ret;
  1450. bitflips = max(bitflips, ret);
  1451. }
  1452. return bitflips;
  1453. }
  1454. static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
  1455. u64 addr, unsigned int trans, u32 *buf, u8 *oob)
  1456. {
  1457. struct brcmnand_host *host = nand_get_controller_data(chip);
  1458. struct brcmnand_controller *ctrl = host->ctrl;
  1459. u64 err_addr = 0;
  1460. int err;
  1461. bool retry = true;
  1462. dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
  1463. try_dmaread:
  1464. brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
  1465. if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
  1466. err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
  1467. CMD_PAGE_READ);
  1468. if (err) {
  1469. if (mtd_is_bitflip_or_eccerr(err))
  1470. err_addr = addr;
  1471. else
  1472. return -EIO;
  1473. }
  1474. } else {
  1475. if (oob)
  1476. memset(oob, 0x99, mtd->oobsize);
  1477. err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
  1478. oob, &err_addr);
  1479. }
  1480. if (mtd_is_eccerr(err)) {
  1481. /*
  1482. * On controller version and 7.0, 7.1 , DMA read after a
  1483. * prior PIO read that reported uncorrectable error,
  1484. * the DMA engine captures this error following DMA read
  1485. * cleared only on subsequent DMA read, so just retry once
  1486. * to clear a possible false error reported for current DMA
  1487. * read
  1488. */
  1489. if ((ctrl->nand_version == 0x0700) ||
  1490. (ctrl->nand_version == 0x0701)) {
  1491. if (retry) {
  1492. retry = false;
  1493. goto try_dmaread;
  1494. }
  1495. }
  1496. /*
  1497. * Controller version 7.2 has hw encoder to detect erased page
  1498. * bitflips, apply sw verification for older controllers only
  1499. */
  1500. if (ctrl->nand_version < 0x0702) {
  1501. err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
  1502. addr);
  1503. /* erased page bitflips corrected */
  1504. if (err >= 0)
  1505. return err;
  1506. }
  1507. dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
  1508. (unsigned long long)err_addr);
  1509. mtd->ecc_stats.failed++;
  1510. /* NAND layer expects zero on ECC errors */
  1511. return 0;
  1512. }
  1513. if (mtd_is_bitflip(err)) {
  1514. unsigned int corrected = brcmnand_count_corrected(ctrl);
  1515. dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
  1516. (unsigned long long)err_addr);
  1517. mtd->ecc_stats.corrected += corrected;
  1518. /* Always exceed the software-imposed threshold */
  1519. return max(mtd->bitflip_threshold, corrected);
  1520. }
  1521. return 0;
  1522. }
  1523. static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
  1524. int oob_required, int page)
  1525. {
  1526. struct mtd_info *mtd = nand_to_mtd(chip);
  1527. struct brcmnand_host *host = nand_get_controller_data(chip);
  1528. u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
  1529. nand_read_page_op(chip, page, 0, NULL, 0);
  1530. return brcmnand_read(mtd, chip, host->last_addr,
  1531. mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
  1532. }
  1533. static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
  1534. int oob_required, int page)
  1535. {
  1536. struct brcmnand_host *host = nand_get_controller_data(chip);
  1537. struct mtd_info *mtd = nand_to_mtd(chip);
  1538. u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
  1539. int ret;
  1540. nand_read_page_op(chip, page, 0, NULL, 0);
  1541. brcmnand_set_ecc_enabled(host, 0);
  1542. ret = brcmnand_read(mtd, chip, host->last_addr,
  1543. mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
  1544. brcmnand_set_ecc_enabled(host, 1);
  1545. return ret;
  1546. }
  1547. static int brcmnand_read_oob(struct nand_chip *chip, int page)
  1548. {
  1549. struct mtd_info *mtd = nand_to_mtd(chip);
  1550. return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
  1551. mtd->writesize >> FC_SHIFT,
  1552. NULL, (u8 *)chip->oob_poi);
  1553. }
  1554. static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
  1555. {
  1556. struct mtd_info *mtd = nand_to_mtd(chip);
  1557. struct brcmnand_host *host = nand_get_controller_data(chip);
  1558. brcmnand_set_ecc_enabled(host, 0);
  1559. brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
  1560. mtd->writesize >> FC_SHIFT,
  1561. NULL, (u8 *)chip->oob_poi);
  1562. brcmnand_set_ecc_enabled(host, 1);
  1563. return 0;
  1564. }
  1565. static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
  1566. u64 addr, const u32 *buf, u8 *oob)
  1567. {
  1568. struct brcmnand_host *host = nand_get_controller_data(chip);
  1569. struct brcmnand_controller *ctrl = host->ctrl;
  1570. unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
  1571. int status, ret = 0;
  1572. dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
  1573. if (unlikely((unsigned long)buf & 0x03)) {
  1574. dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
  1575. buf = (u32 *)((unsigned long)buf & ~0x03);
  1576. }
  1577. brcmnand_wp(mtd, 0);
  1578. for (i = 0; i < ctrl->max_oob; i += 4)
  1579. oob_reg_write(ctrl, i, 0xffffffff);
  1580. if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
  1581. if (brcmnand_dma_trans(host, addr, (u32 *)buf,
  1582. mtd->writesize, CMD_PROGRAM_PAGE))
  1583. ret = -EIO;
  1584. goto out;
  1585. }
  1586. brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
  1587. (host->cs << 16) | ((addr >> 32) & 0xffff));
  1588. (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
  1589. for (i = 0; i < trans; i++, addr += FC_BYTES) {
  1590. /* full address MUST be set before populating FC */
  1591. brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
  1592. lower_32_bits(addr));
  1593. (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
  1594. if (buf) {
  1595. brcmnand_soc_data_bus_prepare(ctrl->soc, false);
  1596. for (j = 0; j < FC_WORDS; j++, buf++)
  1597. brcmnand_write_fc(ctrl, j, *buf);
  1598. brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
  1599. } else if (oob) {
  1600. for (j = 0; j < FC_WORDS; j++)
  1601. brcmnand_write_fc(ctrl, j, 0xffffffff);
  1602. }
  1603. if (oob) {
  1604. oob += write_oob_to_regs(ctrl, i, oob,
  1605. mtd->oobsize / trans,
  1606. host->hwcfg.sector_size_1k);
  1607. }
  1608. /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
  1609. brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
  1610. status = brcmnand_waitfunc(chip);
  1611. if (status & NAND_STATUS_FAIL) {
  1612. dev_info(ctrl->dev, "program failed at %llx\n",
  1613. (unsigned long long)addr);
  1614. ret = -EIO;
  1615. goto out;
  1616. }
  1617. }
  1618. out:
  1619. brcmnand_wp(mtd, 1);
  1620. return ret;
  1621. }
  1622. static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
  1623. int oob_required, int page)
  1624. {
  1625. struct mtd_info *mtd = nand_to_mtd(chip);
  1626. struct brcmnand_host *host = nand_get_controller_data(chip);
  1627. void *oob = oob_required ? chip->oob_poi : NULL;
  1628. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  1629. brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
  1630. return nand_prog_page_end_op(chip);
  1631. }
  1632. static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
  1633. int oob_required, int page)
  1634. {
  1635. struct mtd_info *mtd = nand_to_mtd(chip);
  1636. struct brcmnand_host *host = nand_get_controller_data(chip);
  1637. void *oob = oob_required ? chip->oob_poi : NULL;
  1638. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  1639. brcmnand_set_ecc_enabled(host, 0);
  1640. brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
  1641. brcmnand_set_ecc_enabled(host, 1);
  1642. return nand_prog_page_end_op(chip);
  1643. }
  1644. static int brcmnand_write_oob(struct nand_chip *chip, int page)
  1645. {
  1646. return brcmnand_write(nand_to_mtd(chip), chip,
  1647. (u64)page << chip->page_shift, NULL,
  1648. chip->oob_poi);
  1649. }
  1650. static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
  1651. {
  1652. struct mtd_info *mtd = nand_to_mtd(chip);
  1653. struct brcmnand_host *host = nand_get_controller_data(chip);
  1654. int ret;
  1655. brcmnand_set_ecc_enabled(host, 0);
  1656. ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
  1657. (u8 *)chip->oob_poi);
  1658. brcmnand_set_ecc_enabled(host, 1);
  1659. return ret;
  1660. }
  1661. /***********************************************************************
  1662. * Per-CS setup (1 NAND device)
  1663. ***********************************************************************/
  1664. static int brcmnand_set_cfg(struct brcmnand_host *host,
  1665. struct brcmnand_cfg *cfg)
  1666. {
  1667. struct brcmnand_controller *ctrl = host->ctrl;
  1668. struct nand_chip *chip = &host->chip;
  1669. u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
  1670. u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
  1671. BRCMNAND_CS_CFG_EXT);
  1672. u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
  1673. BRCMNAND_CS_ACC_CONTROL);
  1674. u8 block_size = 0, page_size = 0, device_size = 0;
  1675. u32 tmp;
  1676. if (ctrl->block_sizes) {
  1677. int i, found;
  1678. for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
  1679. if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
  1680. block_size = i;
  1681. found = 1;
  1682. }
  1683. if (!found) {
  1684. dev_warn(ctrl->dev, "invalid block size %u\n",
  1685. cfg->block_size);
  1686. return -EINVAL;
  1687. }
  1688. } else {
  1689. block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
  1690. }
  1691. if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
  1692. cfg->block_size > ctrl->max_block_size)) {
  1693. dev_warn(ctrl->dev, "invalid block size %u\n",
  1694. cfg->block_size);
  1695. block_size = 0;
  1696. }
  1697. if (ctrl->page_sizes) {
  1698. int i, found;
  1699. for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
  1700. if (ctrl->page_sizes[i] == cfg->page_size) {
  1701. page_size = i;
  1702. found = 1;
  1703. }
  1704. if (!found) {
  1705. dev_warn(ctrl->dev, "invalid page size %u\n",
  1706. cfg->page_size);
  1707. return -EINVAL;
  1708. }
  1709. } else {
  1710. page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
  1711. }
  1712. if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
  1713. cfg->page_size > ctrl->max_page_size)) {
  1714. dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
  1715. return -EINVAL;
  1716. }
  1717. if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
  1718. dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
  1719. (unsigned long long)cfg->device_size);
  1720. return -EINVAL;
  1721. }
  1722. device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
  1723. tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
  1724. (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
  1725. (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
  1726. (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
  1727. (device_size << CFG_DEVICE_SIZE_SHIFT);
  1728. if (cfg_offs == cfg_ext_offs) {
  1729. tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
  1730. (block_size << CFG_BLK_SIZE_SHIFT);
  1731. nand_writereg(ctrl, cfg_offs, tmp);
  1732. } else {
  1733. nand_writereg(ctrl, cfg_offs, tmp);
  1734. tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
  1735. (block_size << CFG_EXT_BLK_SIZE_SHIFT);
  1736. nand_writereg(ctrl, cfg_ext_offs, tmp);
  1737. }
  1738. tmp = nand_readreg(ctrl, acc_control_offs);
  1739. tmp &= ~brcmnand_ecc_level_mask(ctrl);
  1740. tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
  1741. tmp &= ~brcmnand_spare_area_mask(ctrl);
  1742. tmp |= cfg->spare_area_size;
  1743. nand_writereg(ctrl, acc_control_offs, tmp);
  1744. brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
  1745. /* threshold = ceil(BCH-level * 0.75) */
  1746. brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
  1747. return 0;
  1748. }
  1749. static void brcmnand_print_cfg(struct brcmnand_host *host,
  1750. char *buf, struct brcmnand_cfg *cfg)
  1751. {
  1752. buf += sprintf(buf,
  1753. "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
  1754. (unsigned long long)cfg->device_size >> 20,
  1755. cfg->block_size >> 10,
  1756. cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
  1757. cfg->page_size >= 1024 ? "KiB" : "B",
  1758. cfg->spare_area_size, cfg->device_width);
  1759. /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
  1760. if (is_hamming_ecc(host->ctrl, cfg))
  1761. sprintf(buf, ", Hamming ECC");
  1762. else if (cfg->sector_size_1k)
  1763. sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
  1764. else
  1765. sprintf(buf, ", BCH-%u", cfg->ecc_level);
  1766. }
  1767. /*
  1768. * Minimum number of bytes to address a page. Calculated as:
  1769. * roundup(log2(size / page-size) / 8)
  1770. *
  1771. * NB: the following does not "round up" for non-power-of-2 'size'; but this is
  1772. * OK because many other things will break if 'size' is irregular...
  1773. */
  1774. static inline int get_blk_adr_bytes(u64 size, u32 writesize)
  1775. {
  1776. return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
  1777. }
  1778. static int brcmnand_setup_dev(struct brcmnand_host *host)
  1779. {
  1780. struct mtd_info *mtd = nand_to_mtd(&host->chip);
  1781. struct nand_chip *chip = &host->chip;
  1782. struct brcmnand_controller *ctrl = host->ctrl;
  1783. struct brcmnand_cfg *cfg = &host->hwcfg;
  1784. char msg[128];
  1785. u32 offs, tmp, oob_sector;
  1786. int ret;
  1787. memset(cfg, 0, sizeof(*cfg));
  1788. ret = of_property_read_u32(nand_get_flash_node(chip),
  1789. "brcm,nand-oob-sector-size",
  1790. &oob_sector);
  1791. if (ret) {
  1792. /* Use detected size */
  1793. cfg->spare_area_size = mtd->oobsize /
  1794. (mtd->writesize >> FC_SHIFT);
  1795. } else {
  1796. cfg->spare_area_size = oob_sector;
  1797. }
  1798. if (cfg->spare_area_size > ctrl->max_oob)
  1799. cfg->spare_area_size = ctrl->max_oob;
  1800. /*
  1801. * Set oobsize to be consistent with controller's spare_area_size, as
  1802. * the rest is inaccessible.
  1803. */
  1804. mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
  1805. cfg->device_size = mtd->size;
  1806. cfg->block_size = mtd->erasesize;
  1807. cfg->page_size = mtd->writesize;
  1808. cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
  1809. cfg->col_adr_bytes = 2;
  1810. cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
  1811. if (chip->ecc.mode != NAND_ECC_HW) {
  1812. dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
  1813. chip->ecc.mode);
  1814. return -EINVAL;
  1815. }
  1816. if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
  1817. if (chip->ecc.strength == 1 && chip->ecc.size == 512)
  1818. /* Default to Hamming for 1-bit ECC, if unspecified */
  1819. chip->ecc.algo = NAND_ECC_HAMMING;
  1820. else
  1821. /* Otherwise, BCH */
  1822. chip->ecc.algo = NAND_ECC_BCH;
  1823. }
  1824. if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
  1825. chip->ecc.size != 512)) {
  1826. dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
  1827. chip->ecc.strength, chip->ecc.size);
  1828. return -EINVAL;
  1829. }
  1830. switch (chip->ecc.size) {
  1831. case 512:
  1832. if (chip->ecc.algo == NAND_ECC_HAMMING)
  1833. cfg->ecc_level = 15;
  1834. else
  1835. cfg->ecc_level = chip->ecc.strength;
  1836. cfg->sector_size_1k = 0;
  1837. break;
  1838. case 1024:
  1839. if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
  1840. dev_err(ctrl->dev, "1KB sectors not supported\n");
  1841. return -EINVAL;
  1842. }
  1843. if (chip->ecc.strength & 0x1) {
  1844. dev_err(ctrl->dev,
  1845. "odd ECC not supported with 1KB sectors\n");
  1846. return -EINVAL;
  1847. }
  1848. cfg->ecc_level = chip->ecc.strength >> 1;
  1849. cfg->sector_size_1k = 1;
  1850. break;
  1851. default:
  1852. dev_err(ctrl->dev, "unsupported ECC size: %d\n",
  1853. chip->ecc.size);
  1854. return -EINVAL;
  1855. }
  1856. cfg->ful_adr_bytes = cfg->blk_adr_bytes;
  1857. if (mtd->writesize > 512)
  1858. cfg->ful_adr_bytes += cfg->col_adr_bytes;
  1859. else
  1860. cfg->ful_adr_bytes += 1;
  1861. ret = brcmnand_set_cfg(host, cfg);
  1862. if (ret)
  1863. return ret;
  1864. brcmnand_set_ecc_enabled(host, 1);
  1865. brcmnand_print_cfg(host, msg, cfg);
  1866. dev_info(ctrl->dev, "detected %s\n", msg);
  1867. /* Configure ACC_CONTROL */
  1868. offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
  1869. tmp = nand_readreg(ctrl, offs);
  1870. tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
  1871. tmp &= ~ACC_CONTROL_RD_ERASED;
  1872. /* We need to turn on Read from erased paged protected by ECC */
  1873. if (ctrl->nand_version >= 0x0702)
  1874. tmp |= ACC_CONTROL_RD_ERASED;
  1875. tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
  1876. if (ctrl->features & BRCMNAND_HAS_PREFETCH)
  1877. tmp &= ~ACC_CONTROL_PREFETCH;
  1878. nand_writereg(ctrl, offs, tmp);
  1879. return 0;
  1880. }
  1881. static int brcmnand_attach_chip(struct nand_chip *chip)
  1882. {
  1883. struct mtd_info *mtd = nand_to_mtd(chip);
  1884. struct brcmnand_host *host = nand_get_controller_data(chip);
  1885. int ret;
  1886. chip->options |= NAND_NO_SUBPAGE_WRITE;
  1887. /*
  1888. * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
  1889. * to/from, and have nand_base pass us a bounce buffer instead, as
  1890. * needed.
  1891. */
  1892. chip->options |= NAND_USE_BOUNCE_BUFFER;
  1893. if (chip->bbt_options & NAND_BBT_USE_FLASH)
  1894. chip->bbt_options |= NAND_BBT_NO_OOB;
  1895. if (brcmnand_setup_dev(host))
  1896. return -ENXIO;
  1897. chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
  1898. /* only use our internal HW threshold */
  1899. mtd->bitflip_threshold = 1;
  1900. ret = brcmstb_choose_ecc_layout(host);
  1901. return ret;
  1902. }
  1903. static const struct nand_controller_ops brcmnand_controller_ops = {
  1904. .attach_chip = brcmnand_attach_chip,
  1905. };
  1906. static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
  1907. {
  1908. struct brcmnand_controller *ctrl = host->ctrl;
  1909. struct platform_device *pdev = host->pdev;
  1910. struct mtd_info *mtd;
  1911. struct nand_chip *chip;
  1912. int ret;
  1913. u16 cfg_offs;
  1914. ret = of_property_read_u32(dn, "reg", &host->cs);
  1915. if (ret) {
  1916. dev_err(&pdev->dev, "can't get chip-select\n");
  1917. return -ENXIO;
  1918. }
  1919. mtd = nand_to_mtd(&host->chip);
  1920. chip = &host->chip;
  1921. nand_set_flash_node(chip, dn);
  1922. nand_set_controller_data(chip, host);
  1923. mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
  1924. host->cs);
  1925. if (!mtd->name)
  1926. return -ENOMEM;
  1927. mtd->owner = THIS_MODULE;
  1928. mtd->dev.parent = &pdev->dev;
  1929. chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
  1930. chip->legacy.cmdfunc = brcmnand_cmdfunc;
  1931. chip->legacy.waitfunc = brcmnand_waitfunc;
  1932. chip->legacy.read_byte = brcmnand_read_byte;
  1933. chip->legacy.read_buf = brcmnand_read_buf;
  1934. chip->legacy.write_buf = brcmnand_write_buf;
  1935. chip->ecc.mode = NAND_ECC_HW;
  1936. chip->ecc.read_page = brcmnand_read_page;
  1937. chip->ecc.write_page = brcmnand_write_page;
  1938. chip->ecc.read_page_raw = brcmnand_read_page_raw;
  1939. chip->ecc.write_page_raw = brcmnand_write_page_raw;
  1940. chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
  1941. chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
  1942. chip->ecc.read_oob = brcmnand_read_oob;
  1943. chip->ecc.write_oob = brcmnand_write_oob;
  1944. chip->controller = &ctrl->controller;
  1945. /*
  1946. * The bootloader might have configured 16bit mode but
  1947. * NAND READID command only works in 8bit mode. We force
  1948. * 8bit mode here to ensure that NAND READID commands works.
  1949. */
  1950. cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
  1951. nand_writereg(ctrl, cfg_offs,
  1952. nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
  1953. ret = nand_scan(chip, 1);
  1954. if (ret)
  1955. return ret;
  1956. ret = mtd_device_register(mtd, NULL, 0);
  1957. if (ret)
  1958. nand_cleanup(chip);
  1959. return ret;
  1960. }
  1961. static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
  1962. int restore)
  1963. {
  1964. struct brcmnand_controller *ctrl = host->ctrl;
  1965. u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
  1966. u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
  1967. BRCMNAND_CS_CFG_EXT);
  1968. u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
  1969. BRCMNAND_CS_ACC_CONTROL);
  1970. u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
  1971. u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
  1972. if (restore) {
  1973. nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
  1974. if (cfg_offs != cfg_ext_offs)
  1975. nand_writereg(ctrl, cfg_ext_offs,
  1976. host->hwcfg.config_ext);
  1977. nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
  1978. nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
  1979. nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
  1980. } else {
  1981. host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
  1982. if (cfg_offs != cfg_ext_offs)
  1983. host->hwcfg.config_ext =
  1984. nand_readreg(ctrl, cfg_ext_offs);
  1985. host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
  1986. host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
  1987. host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
  1988. }
  1989. }
  1990. static int brcmnand_suspend(struct device *dev)
  1991. {
  1992. struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
  1993. struct brcmnand_host *host;
  1994. list_for_each_entry(host, &ctrl->host_list, node)
  1995. brcmnand_save_restore_cs_config(host, 0);
  1996. ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
  1997. ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
  1998. ctrl->corr_stat_threshold =
  1999. brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
  2000. if (has_flash_dma(ctrl))
  2001. ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
  2002. return 0;
  2003. }
  2004. static int brcmnand_resume(struct device *dev)
  2005. {
  2006. struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
  2007. struct brcmnand_host *host;
  2008. if (has_flash_dma(ctrl)) {
  2009. flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
  2010. flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
  2011. }
  2012. brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
  2013. brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
  2014. brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
  2015. ctrl->corr_stat_threshold);
  2016. if (ctrl->soc) {
  2017. /* Clear/re-enable interrupt */
  2018. ctrl->soc->ctlrdy_ack(ctrl->soc);
  2019. ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
  2020. }
  2021. list_for_each_entry(host, &ctrl->host_list, node) {
  2022. struct nand_chip *chip = &host->chip;
  2023. brcmnand_save_restore_cs_config(host, 1);
  2024. /* Reset the chip, required by some chips after power-up */
  2025. nand_reset_op(chip);
  2026. }
  2027. return 0;
  2028. }
  2029. const struct dev_pm_ops brcmnand_pm_ops = {
  2030. .suspend = brcmnand_suspend,
  2031. .resume = brcmnand_resume,
  2032. };
  2033. EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
  2034. static const struct of_device_id brcmnand_of_match[] = {
  2035. { .compatible = "brcm,brcmnand-v4.0" },
  2036. { .compatible = "brcm,brcmnand-v5.0" },
  2037. { .compatible = "brcm,brcmnand-v6.0" },
  2038. { .compatible = "brcm,brcmnand-v6.1" },
  2039. { .compatible = "brcm,brcmnand-v6.2" },
  2040. { .compatible = "brcm,brcmnand-v7.0" },
  2041. { .compatible = "brcm,brcmnand-v7.1" },
  2042. { .compatible = "brcm,brcmnand-v7.2" },
  2043. {},
  2044. };
  2045. MODULE_DEVICE_TABLE(of, brcmnand_of_match);
  2046. /***********************************************************************
  2047. * Platform driver setup (per controller)
  2048. ***********************************************************************/
  2049. int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
  2050. {
  2051. struct device *dev = &pdev->dev;
  2052. struct device_node *dn = dev->of_node, *child;
  2053. struct brcmnand_controller *ctrl;
  2054. struct resource *res;
  2055. int ret;
  2056. /* We only support device-tree instantiation */
  2057. if (!dn)
  2058. return -ENODEV;
  2059. if (!of_match_node(brcmnand_of_match, dn))
  2060. return -ENODEV;
  2061. ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
  2062. if (!ctrl)
  2063. return -ENOMEM;
  2064. dev_set_drvdata(dev, ctrl);
  2065. ctrl->dev = dev;
  2066. init_completion(&ctrl->done);
  2067. init_completion(&ctrl->dma_done);
  2068. nand_controller_init(&ctrl->controller);
  2069. ctrl->controller.ops = &brcmnand_controller_ops;
  2070. INIT_LIST_HEAD(&ctrl->host_list);
  2071. /* NAND register range */
  2072. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2073. ctrl->nand_base = devm_ioremap_resource(dev, res);
  2074. if (IS_ERR(ctrl->nand_base))
  2075. return PTR_ERR(ctrl->nand_base);
  2076. /* Enable clock before using NAND registers */
  2077. ctrl->clk = devm_clk_get(dev, "nand");
  2078. if (!IS_ERR(ctrl->clk)) {
  2079. ret = clk_prepare_enable(ctrl->clk);
  2080. if (ret)
  2081. return ret;
  2082. } else {
  2083. ret = PTR_ERR(ctrl->clk);
  2084. if (ret == -EPROBE_DEFER)
  2085. return ret;
  2086. ctrl->clk = NULL;
  2087. }
  2088. /* Initialize NAND revision */
  2089. ret = brcmnand_revision_init(ctrl);
  2090. if (ret)
  2091. goto err;
  2092. /*
  2093. * Most chips have this cache at a fixed offset within 'nand' block.
  2094. * Some must specify this region separately.
  2095. */
  2096. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
  2097. if (res) {
  2098. ctrl->nand_fc = devm_ioremap_resource(dev, res);
  2099. if (IS_ERR(ctrl->nand_fc)) {
  2100. ret = PTR_ERR(ctrl->nand_fc);
  2101. goto err;
  2102. }
  2103. } else {
  2104. ctrl->nand_fc = ctrl->nand_base +
  2105. ctrl->reg_offsets[BRCMNAND_FC_BASE];
  2106. }
  2107. /* FLASH_DMA */
  2108. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
  2109. if (res) {
  2110. ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
  2111. if (IS_ERR(ctrl->flash_dma_base)) {
  2112. ret = PTR_ERR(ctrl->flash_dma_base);
  2113. goto err;
  2114. }
  2115. flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
  2116. flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
  2117. /* Allocate descriptor(s) */
  2118. ctrl->dma_desc = dmam_alloc_coherent(dev,
  2119. sizeof(*ctrl->dma_desc),
  2120. &ctrl->dma_pa, GFP_KERNEL);
  2121. if (!ctrl->dma_desc) {
  2122. ret = -ENOMEM;
  2123. goto err;
  2124. }
  2125. ctrl->dma_irq = platform_get_irq(pdev, 1);
  2126. if ((int)ctrl->dma_irq < 0) {
  2127. dev_err(dev, "missing FLASH_DMA IRQ\n");
  2128. ret = -ENODEV;
  2129. goto err;
  2130. }
  2131. ret = devm_request_irq(dev, ctrl->dma_irq,
  2132. brcmnand_dma_irq, 0, DRV_NAME,
  2133. ctrl);
  2134. if (ret < 0) {
  2135. dev_err(dev, "can't allocate IRQ %d: error %d\n",
  2136. ctrl->dma_irq, ret);
  2137. goto err;
  2138. }
  2139. dev_info(dev, "enabling FLASH_DMA\n");
  2140. }
  2141. /* Disable automatic device ID config, direct addressing */
  2142. brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
  2143. CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
  2144. /* Disable XOR addressing */
  2145. brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
  2146. if (ctrl->features & BRCMNAND_HAS_WP) {
  2147. /* Permanently disable write protection */
  2148. if (wp_on == 2)
  2149. brcmnand_set_wp(ctrl, false);
  2150. } else {
  2151. wp_on = 0;
  2152. }
  2153. /* IRQ */
  2154. ctrl->irq = platform_get_irq(pdev, 0);
  2155. if ((int)ctrl->irq < 0) {
  2156. dev_err(dev, "no IRQ defined\n");
  2157. ret = -ENODEV;
  2158. goto err;
  2159. }
  2160. /*
  2161. * Some SoCs integrate this controller (e.g., its interrupt bits) in
  2162. * interesting ways
  2163. */
  2164. if (soc) {
  2165. ctrl->soc = soc;
  2166. ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
  2167. DRV_NAME, ctrl);
  2168. /* Enable interrupt */
  2169. ctrl->soc->ctlrdy_ack(ctrl->soc);
  2170. ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
  2171. } else {
  2172. /* Use standard interrupt infrastructure */
  2173. ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
  2174. DRV_NAME, ctrl);
  2175. }
  2176. if (ret < 0) {
  2177. dev_err(dev, "can't allocate IRQ %d: error %d\n",
  2178. ctrl->irq, ret);
  2179. goto err;
  2180. }
  2181. for_each_available_child_of_node(dn, child) {
  2182. if (of_device_is_compatible(child, "brcm,nandcs")) {
  2183. struct brcmnand_host *host;
  2184. host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
  2185. if (!host) {
  2186. of_node_put(child);
  2187. ret = -ENOMEM;
  2188. goto err;
  2189. }
  2190. host->pdev = pdev;
  2191. host->ctrl = ctrl;
  2192. ret = brcmnand_init_cs(host, child);
  2193. if (ret) {
  2194. devm_kfree(dev, host);
  2195. continue; /* Try all chip-selects */
  2196. }
  2197. list_add_tail(&host->node, &ctrl->host_list);
  2198. }
  2199. }
  2200. /* No chip-selects could initialize properly */
  2201. if (list_empty(&ctrl->host_list)) {
  2202. ret = -ENODEV;
  2203. goto err;
  2204. }
  2205. return 0;
  2206. err:
  2207. clk_disable_unprepare(ctrl->clk);
  2208. return ret;
  2209. }
  2210. EXPORT_SYMBOL_GPL(brcmnand_probe);
  2211. int brcmnand_remove(struct platform_device *pdev)
  2212. {
  2213. struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
  2214. struct brcmnand_host *host;
  2215. list_for_each_entry(host, &ctrl->host_list, node)
  2216. nand_release(&host->chip);
  2217. clk_disable_unprepare(ctrl->clk);
  2218. dev_set_drvdata(&pdev->dev, NULL);
  2219. return 0;
  2220. }
  2221. EXPORT_SYMBOL_GPL(brcmnand_remove);
  2222. MODULE_LICENSE("GPL v2");
  2223. MODULE_AUTHOR("Kevin Cernekee");
  2224. MODULE_AUTHOR("Brian Norris");
  2225. MODULE_DESCRIPTION("NAND driver for Broadcom chips");
  2226. MODULE_ALIAS("platform:brcmnand");