mtdpart.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include <linux/of.h>
  33. #include "mtdcore.h"
  34. /* Our partition linked list */
  35. static LIST_HEAD(mtd_partitions);
  36. static DEFINE_MUTEX(mtd_partitions_mutex);
  37. /**
  38. * struct mtd_part - our partition node structure
  39. *
  40. * @mtd: struct holding partition details
  41. * @parent: parent mtd - flash device or another partition
  42. * @offset: partition offset relative to the *flash device*
  43. */
  44. struct mtd_part {
  45. struct mtd_info mtd;
  46. struct mtd_info *parent;
  47. uint64_t offset;
  48. struct list_head list;
  49. };
  50. /*
  51. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  52. * the pointer to that structure.
  53. */
  54. static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  55. {
  56. return container_of(mtd, struct mtd_part, mtd);
  57. }
  58. /*
  59. * MTD methods which simply translate the effective address and pass through
  60. * to the _real_ device.
  61. */
  62. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  63. size_t *retlen, u_char *buf)
  64. {
  65. struct mtd_part *part = mtd_to_part(mtd);
  66. struct mtd_ecc_stats stats;
  67. int res;
  68. stats = part->parent->ecc_stats;
  69. res = part->parent->_read(part->parent, from + part->offset, len,
  70. retlen, buf);
  71. if (unlikely(mtd_is_eccerr(res)))
  72. mtd->ecc_stats.failed +=
  73. part->parent->ecc_stats.failed - stats.failed;
  74. else
  75. mtd->ecc_stats.corrected +=
  76. part->parent->ecc_stats.corrected - stats.corrected;
  77. return res;
  78. }
  79. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  80. size_t *retlen, void **virt, resource_size_t *phys)
  81. {
  82. struct mtd_part *part = mtd_to_part(mtd);
  83. return part->parent->_point(part->parent, from + part->offset, len,
  84. retlen, virt, phys);
  85. }
  86. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  87. {
  88. struct mtd_part *part = mtd_to_part(mtd);
  89. return part->parent->_unpoint(part->parent, from + part->offset, len);
  90. }
  91. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  92. struct mtd_oob_ops *ops)
  93. {
  94. struct mtd_part *part = mtd_to_part(mtd);
  95. struct mtd_ecc_stats stats;
  96. int res;
  97. stats = part->parent->ecc_stats;
  98. res = part->parent->_read_oob(part->parent, from + part->offset, ops);
  99. if (unlikely(mtd_is_eccerr(res)))
  100. mtd->ecc_stats.failed +=
  101. part->parent->ecc_stats.failed - stats.failed;
  102. else
  103. mtd->ecc_stats.corrected +=
  104. part->parent->ecc_stats.corrected - stats.corrected;
  105. return res;
  106. }
  107. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  108. size_t len, size_t *retlen, u_char *buf)
  109. {
  110. struct mtd_part *part = mtd_to_part(mtd);
  111. return part->parent->_read_user_prot_reg(part->parent, from, len,
  112. retlen, buf);
  113. }
  114. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  115. size_t *retlen, struct otp_info *buf)
  116. {
  117. struct mtd_part *part = mtd_to_part(mtd);
  118. return part->parent->_get_user_prot_info(part->parent, len, retlen,
  119. buf);
  120. }
  121. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  122. size_t len, size_t *retlen, u_char *buf)
  123. {
  124. struct mtd_part *part = mtd_to_part(mtd);
  125. return part->parent->_read_fact_prot_reg(part->parent, from, len,
  126. retlen, buf);
  127. }
  128. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  129. size_t *retlen, struct otp_info *buf)
  130. {
  131. struct mtd_part *part = mtd_to_part(mtd);
  132. return part->parent->_get_fact_prot_info(part->parent, len, retlen,
  133. buf);
  134. }
  135. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  136. size_t *retlen, const u_char *buf)
  137. {
  138. struct mtd_part *part = mtd_to_part(mtd);
  139. return part->parent->_write(part->parent, to + part->offset, len,
  140. retlen, buf);
  141. }
  142. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  143. size_t *retlen, const u_char *buf)
  144. {
  145. struct mtd_part *part = mtd_to_part(mtd);
  146. return part->parent->_panic_write(part->parent, to + part->offset, len,
  147. retlen, buf);
  148. }
  149. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  150. struct mtd_oob_ops *ops)
  151. {
  152. struct mtd_part *part = mtd_to_part(mtd);
  153. return part->parent->_write_oob(part->parent, to + part->offset, ops);
  154. }
  155. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  156. size_t len, size_t *retlen, u_char *buf)
  157. {
  158. struct mtd_part *part = mtd_to_part(mtd);
  159. return part->parent->_write_user_prot_reg(part->parent, from, len,
  160. retlen, buf);
  161. }
  162. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  163. size_t len)
  164. {
  165. struct mtd_part *part = mtd_to_part(mtd);
  166. return part->parent->_lock_user_prot_reg(part->parent, from, len);
  167. }
  168. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  169. unsigned long count, loff_t to, size_t *retlen)
  170. {
  171. struct mtd_part *part = mtd_to_part(mtd);
  172. return part->parent->_writev(part->parent, vecs, count,
  173. to + part->offset, retlen);
  174. }
  175. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  176. {
  177. struct mtd_part *part = mtd_to_part(mtd);
  178. int ret;
  179. instr->addr += part->offset;
  180. ret = part->parent->_erase(part->parent, instr);
  181. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  182. instr->fail_addr -= part->offset;
  183. instr->addr -= part->offset;
  184. return ret;
  185. }
  186. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  187. {
  188. struct mtd_part *part = mtd_to_part(mtd);
  189. return part->parent->_lock(part->parent, ofs + part->offset, len);
  190. }
  191. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  192. {
  193. struct mtd_part *part = mtd_to_part(mtd);
  194. return part->parent->_unlock(part->parent, ofs + part->offset, len);
  195. }
  196. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  197. {
  198. struct mtd_part *part = mtd_to_part(mtd);
  199. return part->parent->_is_locked(part->parent, ofs + part->offset, len);
  200. }
  201. static void part_sync(struct mtd_info *mtd)
  202. {
  203. struct mtd_part *part = mtd_to_part(mtd);
  204. part->parent->_sync(part->parent);
  205. }
  206. static int part_suspend(struct mtd_info *mtd)
  207. {
  208. struct mtd_part *part = mtd_to_part(mtd);
  209. return part->parent->_suspend(part->parent);
  210. }
  211. static void part_resume(struct mtd_info *mtd)
  212. {
  213. struct mtd_part *part = mtd_to_part(mtd);
  214. part->parent->_resume(part->parent);
  215. }
  216. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  217. {
  218. struct mtd_part *part = mtd_to_part(mtd);
  219. ofs += part->offset;
  220. return part->parent->_block_isreserved(part->parent, ofs);
  221. }
  222. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  223. {
  224. struct mtd_part *part = mtd_to_part(mtd);
  225. ofs += part->offset;
  226. return part->parent->_block_isbad(part->parent, ofs);
  227. }
  228. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  229. {
  230. struct mtd_part *part = mtd_to_part(mtd);
  231. int res;
  232. ofs += part->offset;
  233. res = part->parent->_block_markbad(part->parent, ofs);
  234. if (!res)
  235. mtd->ecc_stats.badblocks++;
  236. return res;
  237. }
  238. static int part_get_device(struct mtd_info *mtd)
  239. {
  240. struct mtd_part *part = mtd_to_part(mtd);
  241. return part->parent->_get_device(part->parent);
  242. }
  243. static void part_put_device(struct mtd_info *mtd)
  244. {
  245. struct mtd_part *part = mtd_to_part(mtd);
  246. part->parent->_put_device(part->parent);
  247. }
  248. static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
  249. struct mtd_oob_region *oobregion)
  250. {
  251. struct mtd_part *part = mtd_to_part(mtd);
  252. return mtd_ooblayout_ecc(part->parent, section, oobregion);
  253. }
  254. static int part_ooblayout_free(struct mtd_info *mtd, int section,
  255. struct mtd_oob_region *oobregion)
  256. {
  257. struct mtd_part *part = mtd_to_part(mtd);
  258. return mtd_ooblayout_free(part->parent, section, oobregion);
  259. }
  260. static const struct mtd_ooblayout_ops part_ooblayout_ops = {
  261. .ecc = part_ooblayout_ecc,
  262. .free = part_ooblayout_free,
  263. };
  264. static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
  265. {
  266. struct mtd_part *part = mtd_to_part(mtd);
  267. return part->parent->_max_bad_blocks(part->parent,
  268. ofs + part->offset, len);
  269. }
  270. static inline void free_partition(struct mtd_part *p)
  271. {
  272. kfree(p->mtd.name);
  273. kfree(p);
  274. }
  275. static struct mtd_part *allocate_partition(struct mtd_info *parent,
  276. const struct mtd_partition *part, int partno,
  277. uint64_t cur_offset)
  278. {
  279. int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
  280. parent->erasesize;
  281. struct mtd_part *slave;
  282. u32 remainder;
  283. char *name;
  284. u64 tmp;
  285. /* allocate the partition structure */
  286. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  287. name = kstrdup(part->name, GFP_KERNEL);
  288. if (!name || !slave) {
  289. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  290. parent->name);
  291. kfree(name);
  292. kfree(slave);
  293. return ERR_PTR(-ENOMEM);
  294. }
  295. /* set up the MTD object for this partition */
  296. slave->mtd.type = parent->type;
  297. slave->mtd.flags = parent->flags & ~part->mask_flags;
  298. slave->mtd.size = part->size;
  299. slave->mtd.writesize = parent->writesize;
  300. slave->mtd.writebufsize = parent->writebufsize;
  301. slave->mtd.oobsize = parent->oobsize;
  302. slave->mtd.oobavail = parent->oobavail;
  303. slave->mtd.subpage_sft = parent->subpage_sft;
  304. slave->mtd.pairing = parent->pairing;
  305. slave->mtd.name = name;
  306. slave->mtd.owner = parent->owner;
  307. /* NOTE: Historically, we didn't arrange MTDs as a tree out of
  308. * concern for showing the same data in multiple partitions.
  309. * However, it is very useful to have the master node present,
  310. * so the MTD_PARTITIONED_MASTER option allows that. The master
  311. * will have device nodes etc only if this is set, so make the
  312. * parent conditional on that option. Note, this is a way to
  313. * distinguish between the master and the partition in sysfs.
  314. */
  315. slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
  316. &parent->dev :
  317. parent->dev.parent;
  318. slave->mtd.dev.of_node = part->of_node;
  319. if (parent->_read)
  320. slave->mtd._read = part_read;
  321. if (parent->_write)
  322. slave->mtd._write = part_write;
  323. if (parent->_panic_write)
  324. slave->mtd._panic_write = part_panic_write;
  325. if (parent->_point && parent->_unpoint) {
  326. slave->mtd._point = part_point;
  327. slave->mtd._unpoint = part_unpoint;
  328. }
  329. if (parent->_read_oob)
  330. slave->mtd._read_oob = part_read_oob;
  331. if (parent->_write_oob)
  332. slave->mtd._write_oob = part_write_oob;
  333. if (parent->_read_user_prot_reg)
  334. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  335. if (parent->_read_fact_prot_reg)
  336. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  337. if (parent->_write_user_prot_reg)
  338. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  339. if (parent->_lock_user_prot_reg)
  340. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  341. if (parent->_get_user_prot_info)
  342. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  343. if (parent->_get_fact_prot_info)
  344. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  345. if (parent->_sync)
  346. slave->mtd._sync = part_sync;
  347. if (!partno && !parent->dev.class && parent->_suspend &&
  348. parent->_resume) {
  349. slave->mtd._suspend = part_suspend;
  350. slave->mtd._resume = part_resume;
  351. }
  352. if (parent->_writev)
  353. slave->mtd._writev = part_writev;
  354. if (parent->_lock)
  355. slave->mtd._lock = part_lock;
  356. if (parent->_unlock)
  357. slave->mtd._unlock = part_unlock;
  358. if (parent->_is_locked)
  359. slave->mtd._is_locked = part_is_locked;
  360. if (parent->_block_isreserved)
  361. slave->mtd._block_isreserved = part_block_isreserved;
  362. if (parent->_block_isbad)
  363. slave->mtd._block_isbad = part_block_isbad;
  364. if (parent->_block_markbad)
  365. slave->mtd._block_markbad = part_block_markbad;
  366. if (parent->_max_bad_blocks)
  367. slave->mtd._max_bad_blocks = part_max_bad_blocks;
  368. if (parent->_get_device)
  369. slave->mtd._get_device = part_get_device;
  370. if (parent->_put_device)
  371. slave->mtd._put_device = part_put_device;
  372. slave->mtd._erase = part_erase;
  373. slave->parent = parent;
  374. slave->offset = part->offset;
  375. if (slave->offset == MTDPART_OFS_APPEND)
  376. slave->offset = cur_offset;
  377. if (slave->offset == MTDPART_OFS_NXTBLK) {
  378. tmp = cur_offset;
  379. slave->offset = cur_offset;
  380. remainder = do_div(tmp, wr_alignment);
  381. if (remainder) {
  382. slave->offset += wr_alignment - remainder;
  383. printk(KERN_NOTICE "Moving partition %d: "
  384. "0x%012llx -> 0x%012llx\n", partno,
  385. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  386. }
  387. }
  388. if (slave->offset == MTDPART_OFS_RETAIN) {
  389. slave->offset = cur_offset;
  390. if (parent->size - slave->offset >= slave->mtd.size) {
  391. slave->mtd.size = parent->size - slave->offset
  392. - slave->mtd.size;
  393. } else {
  394. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  395. part->name, parent->size - slave->offset,
  396. slave->mtd.size);
  397. /* register to preserve ordering */
  398. goto out_register;
  399. }
  400. }
  401. if (slave->mtd.size == MTDPART_SIZ_FULL)
  402. slave->mtd.size = parent->size - slave->offset;
  403. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  404. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  405. /* let's do some sanity checks */
  406. if (slave->offset >= parent->size) {
  407. /* let's register it anyway to preserve ordering */
  408. slave->offset = 0;
  409. slave->mtd.size = 0;
  410. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  411. part->name);
  412. goto out_register;
  413. }
  414. if (slave->offset + slave->mtd.size > parent->size) {
  415. slave->mtd.size = parent->size - slave->offset;
  416. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  417. part->name, parent->name, (unsigned long long)slave->mtd.size);
  418. }
  419. if (parent->numeraseregions > 1) {
  420. /* Deal with variable erase size stuff */
  421. int i, max = parent->numeraseregions;
  422. u64 end = slave->offset + slave->mtd.size;
  423. struct mtd_erase_region_info *regions = parent->eraseregions;
  424. /* Find the first erase regions which is part of this
  425. * partition. */
  426. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  427. ;
  428. /* The loop searched for the region _behind_ the first one */
  429. if (i > 0)
  430. i--;
  431. /* Pick biggest erasesize */
  432. for (; i < max && regions[i].offset < end; i++) {
  433. if (slave->mtd.erasesize < regions[i].erasesize) {
  434. slave->mtd.erasesize = regions[i].erasesize;
  435. }
  436. }
  437. BUG_ON(slave->mtd.erasesize == 0);
  438. } else {
  439. /* Single erase size */
  440. slave->mtd.erasesize = parent->erasesize;
  441. }
  442. /*
  443. * Slave erasesize might differ from the master one if the master
  444. * exposes several regions with different erasesize. Adjust
  445. * wr_alignment accordingly.
  446. */
  447. if (!(slave->mtd.flags & MTD_NO_ERASE))
  448. wr_alignment = slave->mtd.erasesize;
  449. tmp = slave->offset;
  450. remainder = do_div(tmp, wr_alignment);
  451. if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
  452. /* Doesn't start on a boundary of major erase size */
  453. /* FIXME: Let it be writable if it is on a boundary of
  454. * _minor_ erase size though */
  455. slave->mtd.flags &= ~MTD_WRITEABLE;
  456. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
  457. part->name);
  458. }
  459. tmp = slave->mtd.size;
  460. remainder = do_div(tmp, wr_alignment);
  461. if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
  462. slave->mtd.flags &= ~MTD_WRITEABLE;
  463. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
  464. part->name);
  465. }
  466. mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
  467. slave->mtd.ecc_step_size = parent->ecc_step_size;
  468. slave->mtd.ecc_strength = parent->ecc_strength;
  469. slave->mtd.bitflip_threshold = parent->bitflip_threshold;
  470. if (parent->_block_isbad) {
  471. uint64_t offs = 0;
  472. while (offs < slave->mtd.size) {
  473. if (mtd_block_isreserved(parent, offs + slave->offset))
  474. slave->mtd.ecc_stats.bbtblocks++;
  475. else if (mtd_block_isbad(parent, offs + slave->offset))
  476. slave->mtd.ecc_stats.badblocks++;
  477. offs += slave->mtd.erasesize;
  478. }
  479. }
  480. out_register:
  481. return slave;
  482. }
  483. static ssize_t mtd_partition_offset_show(struct device *dev,
  484. struct device_attribute *attr, char *buf)
  485. {
  486. struct mtd_info *mtd = dev_get_drvdata(dev);
  487. struct mtd_part *part = mtd_to_part(mtd);
  488. return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
  489. }
  490. static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
  491. static const struct attribute *mtd_partition_attrs[] = {
  492. &dev_attr_offset.attr,
  493. NULL
  494. };
  495. static int mtd_add_partition_attrs(struct mtd_part *new)
  496. {
  497. int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
  498. if (ret)
  499. printk(KERN_WARNING
  500. "mtd: failed to create partition attrs, err=%d\n", ret);
  501. return ret;
  502. }
  503. int mtd_add_partition(struct mtd_info *parent, const char *name,
  504. long long offset, long long length)
  505. {
  506. struct mtd_partition part;
  507. struct mtd_part *new;
  508. int ret = 0;
  509. /* the direct offset is expected */
  510. if (offset == MTDPART_OFS_APPEND ||
  511. offset == MTDPART_OFS_NXTBLK)
  512. return -EINVAL;
  513. if (length == MTDPART_SIZ_FULL)
  514. length = parent->size - offset;
  515. if (length <= 0)
  516. return -EINVAL;
  517. memset(&part, 0, sizeof(part));
  518. part.name = name;
  519. part.size = length;
  520. part.offset = offset;
  521. new = allocate_partition(parent, &part, -1, offset);
  522. if (IS_ERR(new))
  523. return PTR_ERR(new);
  524. mutex_lock(&mtd_partitions_mutex);
  525. list_add(&new->list, &mtd_partitions);
  526. mutex_unlock(&mtd_partitions_mutex);
  527. add_mtd_device(&new->mtd);
  528. mtd_add_partition_attrs(new);
  529. return ret;
  530. }
  531. EXPORT_SYMBOL_GPL(mtd_add_partition);
  532. /**
  533. * __mtd_del_partition - delete MTD partition
  534. *
  535. * @priv: internal MTD struct for partition to be deleted
  536. *
  537. * This function must be called with the partitions mutex locked.
  538. */
  539. static int __mtd_del_partition(struct mtd_part *priv)
  540. {
  541. struct mtd_part *child, *next;
  542. int err;
  543. list_for_each_entry_safe(child, next, &mtd_partitions, list) {
  544. if (child->parent == &priv->mtd) {
  545. err = __mtd_del_partition(child);
  546. if (err)
  547. return err;
  548. }
  549. }
  550. sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
  551. err = del_mtd_device(&priv->mtd);
  552. if (err)
  553. return err;
  554. list_del(&priv->list);
  555. free_partition(priv);
  556. return 0;
  557. }
  558. /*
  559. * This function unregisters and destroy all slave MTD objects which are
  560. * attached to the given MTD object.
  561. */
  562. int del_mtd_partitions(struct mtd_info *mtd)
  563. {
  564. struct mtd_part *slave, *next;
  565. int ret, err = 0;
  566. mutex_lock(&mtd_partitions_mutex);
  567. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  568. if (slave->parent == mtd) {
  569. ret = __mtd_del_partition(slave);
  570. if (ret < 0)
  571. err = ret;
  572. }
  573. mutex_unlock(&mtd_partitions_mutex);
  574. return err;
  575. }
  576. int mtd_del_partition(struct mtd_info *mtd, int partno)
  577. {
  578. struct mtd_part *slave, *next;
  579. int ret = -EINVAL;
  580. mutex_lock(&mtd_partitions_mutex);
  581. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  582. if ((slave->parent == mtd) &&
  583. (slave->mtd.index == partno)) {
  584. ret = __mtd_del_partition(slave);
  585. break;
  586. }
  587. mutex_unlock(&mtd_partitions_mutex);
  588. return ret;
  589. }
  590. EXPORT_SYMBOL_GPL(mtd_del_partition);
  591. /*
  592. * This function, given a master MTD object and a partition table, creates
  593. * and registers slave MTD objects which are bound to the master according to
  594. * the partition definitions.
  595. *
  596. * For historical reasons, this function's caller only registers the master
  597. * if the MTD_PARTITIONED_MASTER config option is set.
  598. */
  599. int add_mtd_partitions(struct mtd_info *master,
  600. const struct mtd_partition *parts,
  601. int nbparts)
  602. {
  603. struct mtd_part *slave;
  604. uint64_t cur_offset = 0;
  605. int i;
  606. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  607. for (i = 0; i < nbparts; i++) {
  608. slave = allocate_partition(master, parts + i, i, cur_offset);
  609. if (IS_ERR(slave)) {
  610. del_mtd_partitions(master);
  611. return PTR_ERR(slave);
  612. }
  613. mutex_lock(&mtd_partitions_mutex);
  614. list_add(&slave->list, &mtd_partitions);
  615. mutex_unlock(&mtd_partitions_mutex);
  616. add_mtd_device(&slave->mtd);
  617. mtd_add_partition_attrs(slave);
  618. /* Look for subpartitions */
  619. parse_mtd_partitions(&slave->mtd, parts[i].types, NULL);
  620. cur_offset = slave->offset + slave->mtd.size;
  621. }
  622. return 0;
  623. }
  624. static DEFINE_SPINLOCK(part_parser_lock);
  625. static LIST_HEAD(part_parsers);
  626. static struct mtd_part_parser *mtd_part_parser_get(const char *name)
  627. {
  628. struct mtd_part_parser *p, *ret = NULL;
  629. spin_lock(&part_parser_lock);
  630. list_for_each_entry(p, &part_parsers, list)
  631. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  632. ret = p;
  633. break;
  634. }
  635. spin_unlock(&part_parser_lock);
  636. return ret;
  637. }
  638. static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
  639. {
  640. module_put(p->owner);
  641. }
  642. /*
  643. * Many partition parsers just expected the core to kfree() all their data in
  644. * one chunk. Do that by default.
  645. */
  646. static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
  647. int nr_parts)
  648. {
  649. kfree(pparts);
  650. }
  651. int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
  652. {
  653. p->owner = owner;
  654. if (!p->cleanup)
  655. p->cleanup = &mtd_part_parser_cleanup_default;
  656. spin_lock(&part_parser_lock);
  657. list_add(&p->list, &part_parsers);
  658. spin_unlock(&part_parser_lock);
  659. return 0;
  660. }
  661. EXPORT_SYMBOL_GPL(__register_mtd_parser);
  662. void deregister_mtd_parser(struct mtd_part_parser *p)
  663. {
  664. spin_lock(&part_parser_lock);
  665. list_del(&p->list);
  666. spin_unlock(&part_parser_lock);
  667. }
  668. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  669. /*
  670. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  671. * are changing this array!
  672. */
  673. static const char * const default_mtd_part_types[] = {
  674. "cmdlinepart",
  675. "ofpart",
  676. NULL
  677. };
  678. /* Check DT only when looking for subpartitions. */
  679. static const char * const default_subpartition_types[] = {
  680. "ofpart",
  681. NULL
  682. };
  683. static int mtd_part_do_parse(struct mtd_part_parser *parser,
  684. struct mtd_info *master,
  685. struct mtd_partitions *pparts,
  686. struct mtd_part_parser_data *data)
  687. {
  688. int ret;
  689. ret = (*parser->parse_fn)(master, &pparts->parts, data);
  690. pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
  691. if (ret <= 0)
  692. return ret;
  693. pr_notice("%d %s partitions found on MTD device %s\n", ret,
  694. parser->name, master->name);
  695. pparts->nr_parts = ret;
  696. pparts->parser = parser;
  697. return ret;
  698. }
  699. /**
  700. * mtd_part_get_compatible_parser - find MTD parser by a compatible string
  701. *
  702. * @compat: compatible string describing partitions in a device tree
  703. *
  704. * MTD parsers can specify supported partitions by providing a table of
  705. * compatibility strings. This function finds a parser that advertises support
  706. * for a passed value of "compatible".
  707. */
  708. static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
  709. {
  710. struct mtd_part_parser *p, *ret = NULL;
  711. spin_lock(&part_parser_lock);
  712. list_for_each_entry(p, &part_parsers, list) {
  713. const struct of_device_id *matches;
  714. matches = p->of_match_table;
  715. if (!matches)
  716. continue;
  717. for (; matches->compatible[0]; matches++) {
  718. if (!strcmp(matches->compatible, compat) &&
  719. try_module_get(p->owner)) {
  720. ret = p;
  721. break;
  722. }
  723. }
  724. if (ret)
  725. break;
  726. }
  727. spin_unlock(&part_parser_lock);
  728. return ret;
  729. }
  730. static int mtd_part_of_parse(struct mtd_info *master,
  731. struct mtd_partitions *pparts)
  732. {
  733. struct mtd_part_parser *parser;
  734. struct device_node *np;
  735. struct property *prop;
  736. const char *compat;
  737. const char *fixed = "fixed-partitions";
  738. int ret, err = 0;
  739. np = mtd_get_of_node(master);
  740. if (mtd_is_partition(master))
  741. of_node_get(np);
  742. else
  743. np = of_get_child_by_name(np, "partitions");
  744. of_property_for_each_string(np, "compatible", prop, compat) {
  745. parser = mtd_part_get_compatible_parser(compat);
  746. if (!parser)
  747. continue;
  748. ret = mtd_part_do_parse(parser, master, pparts, NULL);
  749. if (ret > 0) {
  750. of_node_put(np);
  751. return ret;
  752. }
  753. mtd_part_parser_put(parser);
  754. if (ret < 0 && !err)
  755. err = ret;
  756. }
  757. of_node_put(np);
  758. /*
  759. * For backward compatibility we have to try the "fixed-partitions"
  760. * parser. It supports old DT format with partitions specified as a
  761. * direct subnodes of a flash device DT node without any compatibility
  762. * specified we could match.
  763. */
  764. parser = mtd_part_parser_get(fixed);
  765. if (!parser && !request_module("%s", fixed))
  766. parser = mtd_part_parser_get(fixed);
  767. if (parser) {
  768. ret = mtd_part_do_parse(parser, master, pparts, NULL);
  769. if (ret > 0)
  770. return ret;
  771. mtd_part_parser_put(parser);
  772. if (ret < 0 && !err)
  773. err = ret;
  774. }
  775. return err;
  776. }
  777. /**
  778. * parse_mtd_partitions - parse and register MTD partitions
  779. *
  780. * @master: the master partition (describes whole MTD device)
  781. * @types: names of partition parsers to try or %NULL
  782. * @data: MTD partition parser-specific data
  783. *
  784. * This function tries to find & register partitions on MTD device @master. It
  785. * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
  786. * then the default list of parsers is used. The default list contains only the
  787. * "cmdlinepart" and "ofpart" parsers ATM.
  788. * Note: If there are more then one parser in @types, the kernel only takes the
  789. * partitions parsed out by the first parser.
  790. *
  791. * This function may return:
  792. * o a negative error code in case of failure
  793. * o number of found partitions otherwise
  794. */
  795. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  796. struct mtd_part_parser_data *data)
  797. {
  798. struct mtd_partitions pparts = { };
  799. struct mtd_part_parser *parser;
  800. int ret, err = 0;
  801. if (!types)
  802. types = mtd_is_partition(master) ? default_subpartition_types :
  803. default_mtd_part_types;
  804. for ( ; *types; types++) {
  805. /*
  806. * ofpart is a special type that means OF partitioning info
  807. * should be used. It requires a bit different logic so it is
  808. * handled in a separated function.
  809. */
  810. if (!strcmp(*types, "ofpart")) {
  811. ret = mtd_part_of_parse(master, &pparts);
  812. } else {
  813. pr_debug("%s: parsing partitions %s\n", master->name,
  814. *types);
  815. parser = mtd_part_parser_get(*types);
  816. if (!parser && !request_module("%s", *types))
  817. parser = mtd_part_parser_get(*types);
  818. pr_debug("%s: got parser %s\n", master->name,
  819. parser ? parser->name : NULL);
  820. if (!parser)
  821. continue;
  822. ret = mtd_part_do_parse(parser, master, &pparts, data);
  823. if (ret <= 0)
  824. mtd_part_parser_put(parser);
  825. }
  826. /* Found partitions! */
  827. if (ret > 0) {
  828. err = add_mtd_partitions(master, pparts.parts,
  829. pparts.nr_parts);
  830. mtd_part_parser_cleanup(&pparts);
  831. return err ? err : pparts.nr_parts;
  832. }
  833. /*
  834. * Stash the first error we see; only report it if no parser
  835. * succeeds
  836. */
  837. if (ret < 0 && !err)
  838. err = ret;
  839. }
  840. return err;
  841. }
  842. void mtd_part_parser_cleanup(struct mtd_partitions *parts)
  843. {
  844. const struct mtd_part_parser *parser;
  845. if (!parts)
  846. return;
  847. parser = parts->parser;
  848. if (parser) {
  849. if (parser->cleanup)
  850. parser->cleanup(parts->parts, parts->nr_parts);
  851. mtd_part_parser_put(parser);
  852. }
  853. }
  854. int mtd_is_partition(const struct mtd_info *mtd)
  855. {
  856. struct mtd_part *part;
  857. int ispart = 0;
  858. mutex_lock(&mtd_partitions_mutex);
  859. list_for_each_entry(part, &mtd_partitions, list)
  860. if (&part->mtd == mtd) {
  861. ispart = 1;
  862. break;
  863. }
  864. mutex_unlock(&mtd_partitions_mutex);
  865. return ispart;
  866. }
  867. EXPORT_SYMBOL_GPL(mtd_is_partition);
  868. /* Returns the size of the entire flash chip */
  869. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  870. {
  871. if (!mtd_is_partition(mtd))
  872. return mtd->size;
  873. return mtd_get_device_size(mtd_to_part(mtd)->parent);
  874. }
  875. EXPORT_SYMBOL_GPL(mtd_get_device_size);