sunxi-mmc.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507
  1. /*
  2. * Driver for sunxi SD/MMC host controllers
  3. * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
  4. * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
  5. * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
  6. * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
  7. * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
  8. * (C) Copyright 2017 Sootech SA
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/clk/sunxi-ng.h>
  17. #include <linux/delay.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/err.h>
  21. #include <linux/gpio.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/io.h>
  24. #include <linux/kernel.h>
  25. #include <linux/mmc/card.h>
  26. #include <linux/mmc/core.h>
  27. #include <linux/mmc/host.h>
  28. #include <linux/mmc/mmc.h>
  29. #include <linux/mmc/sd.h>
  30. #include <linux/mmc/sdio.h>
  31. #include <linux/mmc/slot-gpio.h>
  32. #include <linux/module.h>
  33. #include <linux/of_address.h>
  34. #include <linux/of_gpio.h>
  35. #include <linux/of_platform.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/pm_runtime.h>
  38. #include <linux/regulator/consumer.h>
  39. #include <linux/reset.h>
  40. #include <linux/scatterlist.h>
  41. #include <linux/slab.h>
  42. #include <linux/spinlock.h>
  43. /* register offset definitions */
  44. #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
  45. #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
  46. #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
  47. #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
  48. #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
  49. #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
  50. #define SDXC_REG_CMDR (0x18) /* SMC Command Register */
  51. #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
  52. #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
  53. #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
  54. #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
  55. #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
  56. #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
  57. #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
  58. #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
  59. #define SDXC_REG_STAS (0x3C) /* SMC Status Register */
  60. #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
  61. #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
  62. #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
  63. #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
  64. #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
  65. #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
  66. #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
  67. #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
  68. #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
  69. #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
  70. #define SDXC_REG_CHDA (0x90)
  71. #define SDXC_REG_CBDA (0x94)
  72. /* New registers introduced in A64 */
  73. #define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */
  74. #define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */
  75. #define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */
  76. #define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */
  77. #define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */
  78. #define mmc_readl(host, reg) \
  79. readl((host)->reg_base + SDXC_##reg)
  80. #define mmc_writel(host, reg, value) \
  81. writel((value), (host)->reg_base + SDXC_##reg)
  82. /* global control register bits */
  83. #define SDXC_SOFT_RESET BIT(0)
  84. #define SDXC_FIFO_RESET BIT(1)
  85. #define SDXC_DMA_RESET BIT(2)
  86. #define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
  87. #define SDXC_DMA_ENABLE_BIT BIT(5)
  88. #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
  89. #define SDXC_POSEDGE_LATCH_DATA BIT(9)
  90. #define SDXC_DDR_MODE BIT(10)
  91. #define SDXC_MEMORY_ACCESS_DONE BIT(29)
  92. #define SDXC_ACCESS_DONE_DIRECT BIT(30)
  93. #define SDXC_ACCESS_BY_AHB BIT(31)
  94. #define SDXC_ACCESS_BY_DMA (0 << 31)
  95. #define SDXC_HARDWARE_RESET \
  96. (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
  97. /* clock control bits */
  98. #define SDXC_MASK_DATA0 BIT(31)
  99. #define SDXC_CARD_CLOCK_ON BIT(16)
  100. #define SDXC_LOW_POWER_ON BIT(17)
  101. /* bus width */
  102. #define SDXC_WIDTH1 0
  103. #define SDXC_WIDTH4 1
  104. #define SDXC_WIDTH8 2
  105. /* smc command bits */
  106. #define SDXC_RESP_EXPIRE BIT(6)
  107. #define SDXC_LONG_RESPONSE BIT(7)
  108. #define SDXC_CHECK_RESPONSE_CRC BIT(8)
  109. #define SDXC_DATA_EXPIRE BIT(9)
  110. #define SDXC_WRITE BIT(10)
  111. #define SDXC_SEQUENCE_MODE BIT(11)
  112. #define SDXC_SEND_AUTO_STOP BIT(12)
  113. #define SDXC_WAIT_PRE_OVER BIT(13)
  114. #define SDXC_STOP_ABORT_CMD BIT(14)
  115. #define SDXC_SEND_INIT_SEQUENCE BIT(15)
  116. #define SDXC_UPCLK_ONLY BIT(21)
  117. #define SDXC_READ_CEATA_DEV BIT(22)
  118. #define SDXC_CCS_EXPIRE BIT(23)
  119. #define SDXC_ENABLE_BIT_BOOT BIT(24)
  120. #define SDXC_ALT_BOOT_OPTIONS BIT(25)
  121. #define SDXC_BOOT_ACK_EXPIRE BIT(26)
  122. #define SDXC_BOOT_ABORT BIT(27)
  123. #define SDXC_VOLTAGE_SWITCH BIT(28)
  124. #define SDXC_USE_HOLD_REGISTER BIT(29)
  125. #define SDXC_START BIT(31)
  126. /* interrupt bits */
  127. #define SDXC_RESP_ERROR BIT(1)
  128. #define SDXC_COMMAND_DONE BIT(2)
  129. #define SDXC_DATA_OVER BIT(3)
  130. #define SDXC_TX_DATA_REQUEST BIT(4)
  131. #define SDXC_RX_DATA_REQUEST BIT(5)
  132. #define SDXC_RESP_CRC_ERROR BIT(6)
  133. #define SDXC_DATA_CRC_ERROR BIT(7)
  134. #define SDXC_RESP_TIMEOUT BIT(8)
  135. #define SDXC_DATA_TIMEOUT BIT(9)
  136. #define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
  137. #define SDXC_FIFO_RUN_ERROR BIT(11)
  138. #define SDXC_HARD_WARE_LOCKED BIT(12)
  139. #define SDXC_START_BIT_ERROR BIT(13)
  140. #define SDXC_AUTO_COMMAND_DONE BIT(14)
  141. #define SDXC_END_BIT_ERROR BIT(15)
  142. #define SDXC_SDIO_INTERRUPT BIT(16)
  143. #define SDXC_CARD_INSERT BIT(30)
  144. #define SDXC_CARD_REMOVE BIT(31)
  145. #define SDXC_INTERRUPT_ERROR_BIT \
  146. (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
  147. SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
  148. SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
  149. #define SDXC_INTERRUPT_DONE_BIT \
  150. (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
  151. SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
  152. /* status */
  153. #define SDXC_RXWL_FLAG BIT(0)
  154. #define SDXC_TXWL_FLAG BIT(1)
  155. #define SDXC_FIFO_EMPTY BIT(2)
  156. #define SDXC_FIFO_FULL BIT(3)
  157. #define SDXC_CARD_PRESENT BIT(8)
  158. #define SDXC_CARD_DATA_BUSY BIT(9)
  159. #define SDXC_DATA_FSM_BUSY BIT(10)
  160. #define SDXC_DMA_REQUEST BIT(31)
  161. #define SDXC_FIFO_SIZE 16
  162. /* Function select */
  163. #define SDXC_CEATA_ON (0xceaa << 16)
  164. #define SDXC_SEND_IRQ_RESPONSE BIT(0)
  165. #define SDXC_SDIO_READ_WAIT BIT(1)
  166. #define SDXC_ABORT_READ_DATA BIT(2)
  167. #define SDXC_SEND_CCSD BIT(8)
  168. #define SDXC_SEND_AUTO_STOPCCSD BIT(9)
  169. #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
  170. /* IDMA controller bus mod bit field */
  171. #define SDXC_IDMAC_SOFT_RESET BIT(0)
  172. #define SDXC_IDMAC_FIX_BURST BIT(1)
  173. #define SDXC_IDMAC_IDMA_ON BIT(7)
  174. #define SDXC_IDMAC_REFETCH_DES BIT(31)
  175. /* IDMA status bit field */
  176. #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
  177. #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
  178. #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
  179. #define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
  180. #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
  181. #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
  182. #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
  183. #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
  184. #define SDXC_IDMAC_IDLE (0 << 13)
  185. #define SDXC_IDMAC_SUSPEND (1 << 13)
  186. #define SDXC_IDMAC_DESC_READ (2 << 13)
  187. #define SDXC_IDMAC_DESC_CHECK (3 << 13)
  188. #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
  189. #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
  190. #define SDXC_IDMAC_READ (6 << 13)
  191. #define SDXC_IDMAC_WRITE (7 << 13)
  192. #define SDXC_IDMAC_DESC_CLOSE (8 << 13)
  193. /*
  194. * If the idma-des-size-bits of property is ie 13, bufsize bits are:
  195. * Bits 0-12: buf1 size
  196. * Bits 13-25: buf2 size
  197. * Bits 26-31: not used
  198. * Since we only ever set buf1 size, we can simply store it directly.
  199. */
  200. #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
  201. #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
  202. #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
  203. #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
  204. #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
  205. #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
  206. #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
  207. #define SDXC_CLK_400K 0
  208. #define SDXC_CLK_25M 1
  209. #define SDXC_CLK_50M 2
  210. #define SDXC_CLK_50M_DDR 3
  211. #define SDXC_CLK_50M_DDR_8BIT 4
  212. #define SDXC_2X_TIMING_MODE BIT(31)
  213. #define SDXC_CAL_START BIT(15)
  214. #define SDXC_CAL_DONE BIT(14)
  215. #define SDXC_CAL_DL_SHIFT 8
  216. #define SDXC_CAL_DL_SW_EN BIT(7)
  217. #define SDXC_CAL_DL_SW_SHIFT 0
  218. #define SDXC_CAL_DL_MASK 0x3f
  219. #define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/
  220. struct sunxi_mmc_clk_delay {
  221. u32 output;
  222. u32 sample;
  223. };
  224. struct sunxi_idma_des {
  225. __le32 config;
  226. __le32 buf_size;
  227. __le32 buf_addr_ptr1;
  228. __le32 buf_addr_ptr2;
  229. };
  230. struct sunxi_mmc_cfg {
  231. u32 idma_des_size_bits;
  232. const struct sunxi_mmc_clk_delay *clk_delays;
  233. /* does the IP block support autocalibration? */
  234. bool can_calibrate;
  235. /* Does DATA0 needs to be masked while the clock is updated */
  236. bool mask_data0;
  237. /*
  238. * hardware only supports new timing mode, either due to lack of
  239. * a mode switch in the clock controller, or the mmc controller
  240. * is permanently configured in the new timing mode, without the
  241. * NTSR mode switch.
  242. */
  243. bool needs_new_timings;
  244. /* clock hardware can switch between old and new timing modes */
  245. bool ccu_has_timings_switch;
  246. };
  247. struct sunxi_mmc_host {
  248. struct device *dev;
  249. struct mmc_host *mmc;
  250. struct reset_control *reset;
  251. const struct sunxi_mmc_cfg *cfg;
  252. /* IO mapping base */
  253. void __iomem *reg_base;
  254. /* clock management */
  255. struct clk *clk_ahb;
  256. struct clk *clk_mmc;
  257. struct clk *clk_sample;
  258. struct clk *clk_output;
  259. /* irq */
  260. spinlock_t lock;
  261. int irq;
  262. u32 int_sum;
  263. u32 sdio_imask;
  264. /* dma */
  265. dma_addr_t sg_dma;
  266. void *sg_cpu;
  267. bool wait_dma;
  268. struct mmc_request *mrq;
  269. struct mmc_request *manual_stop_mrq;
  270. int ferror;
  271. /* vqmmc */
  272. bool vqmmc_enabled;
  273. /* timings */
  274. bool use_new_timings;
  275. };
  276. static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
  277. {
  278. unsigned long expire = jiffies + msecs_to_jiffies(250);
  279. u32 rval;
  280. mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
  281. do {
  282. rval = mmc_readl(host, REG_GCTRL);
  283. } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
  284. if (rval & SDXC_HARDWARE_RESET) {
  285. dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
  286. return -EIO;
  287. }
  288. return 0;
  289. }
  290. static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
  291. {
  292. u32 rval;
  293. if (sunxi_mmc_reset_host(host))
  294. return -EIO;
  295. /*
  296. * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
  297. *
  298. * TODO: sun9i has a larger FIFO and supports higher trigger values
  299. */
  300. mmc_writel(host, REG_FTRGL, 0x20070008);
  301. /* Maximum timeout value */
  302. mmc_writel(host, REG_TMOUT, 0xffffffff);
  303. /* Unmask SDIO interrupt if needed */
  304. mmc_writel(host, REG_IMASK, host->sdio_imask);
  305. /* Clear all pending interrupts */
  306. mmc_writel(host, REG_RINTR, 0xffffffff);
  307. /* Debug register? undocumented */
  308. mmc_writel(host, REG_DBGC, 0xdeb);
  309. /* Enable CEATA support */
  310. mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
  311. /* Set DMA descriptor list base address */
  312. mmc_writel(host, REG_DLBA, host->sg_dma);
  313. rval = mmc_readl(host, REG_GCTRL);
  314. rval |= SDXC_INTERRUPT_ENABLE_BIT;
  315. /* Undocumented, but found in Allwinner code */
  316. rval &= ~SDXC_ACCESS_DONE_DIRECT;
  317. mmc_writel(host, REG_GCTRL, rval);
  318. return 0;
  319. }
  320. static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
  321. struct mmc_data *data)
  322. {
  323. struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
  324. dma_addr_t next_desc = host->sg_dma;
  325. int i, max_len = (1 << host->cfg->idma_des_size_bits);
  326. for (i = 0; i < data->sg_len; i++) {
  327. pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
  328. SDXC_IDMAC_DES0_OWN |
  329. SDXC_IDMAC_DES0_DIC);
  330. if (data->sg[i].length == max_len)
  331. pdes[i].buf_size = 0; /* 0 == max_len */
  332. else
  333. pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
  334. next_desc += sizeof(struct sunxi_idma_des);
  335. pdes[i].buf_addr_ptr1 =
  336. cpu_to_le32(sg_dma_address(&data->sg[i]));
  337. pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
  338. }
  339. pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
  340. pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
  341. SDXC_IDMAC_DES0_ER);
  342. pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
  343. pdes[i - 1].buf_addr_ptr2 = 0;
  344. /*
  345. * Avoid the io-store starting the idmac hitting io-mem before the
  346. * descriptors hit the main-mem.
  347. */
  348. wmb();
  349. }
  350. static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
  351. struct mmc_data *data)
  352. {
  353. u32 i, dma_len;
  354. struct scatterlist *sg;
  355. dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
  356. mmc_get_dma_dir(data));
  357. if (dma_len == 0) {
  358. dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
  359. return -ENOMEM;
  360. }
  361. for_each_sg(data->sg, sg, data->sg_len, i) {
  362. if (sg->offset & 3 || sg->length & 3) {
  363. dev_err(mmc_dev(host->mmc),
  364. "unaligned scatterlist: os %x length %d\n",
  365. sg->offset, sg->length);
  366. return -EINVAL;
  367. }
  368. }
  369. return 0;
  370. }
  371. static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
  372. struct mmc_data *data)
  373. {
  374. u32 rval;
  375. sunxi_mmc_init_idma_des(host, data);
  376. rval = mmc_readl(host, REG_GCTRL);
  377. rval |= SDXC_DMA_ENABLE_BIT;
  378. mmc_writel(host, REG_GCTRL, rval);
  379. rval |= SDXC_DMA_RESET;
  380. mmc_writel(host, REG_GCTRL, rval);
  381. mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
  382. if (!(data->flags & MMC_DATA_WRITE))
  383. mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
  384. mmc_writel(host, REG_DMAC,
  385. SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
  386. }
  387. static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
  388. struct mmc_request *req)
  389. {
  390. u32 arg, cmd_val, ri;
  391. unsigned long expire = jiffies + msecs_to_jiffies(1000);
  392. cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
  393. SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
  394. if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
  395. cmd_val |= SD_IO_RW_DIRECT;
  396. arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
  397. ((req->cmd->arg >> 28) & 0x7);
  398. } else {
  399. cmd_val |= MMC_STOP_TRANSMISSION;
  400. arg = 0;
  401. }
  402. mmc_writel(host, REG_CARG, arg);
  403. mmc_writel(host, REG_CMDR, cmd_val);
  404. do {
  405. ri = mmc_readl(host, REG_RINTR);
  406. } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
  407. time_before(jiffies, expire));
  408. if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
  409. dev_err(mmc_dev(host->mmc), "send stop command failed\n");
  410. if (req->stop)
  411. req->stop->resp[0] = -ETIMEDOUT;
  412. } else {
  413. if (req->stop)
  414. req->stop->resp[0] = mmc_readl(host, REG_RESP0);
  415. }
  416. mmc_writel(host, REG_RINTR, 0xffff);
  417. }
  418. static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
  419. {
  420. struct mmc_command *cmd = host->mrq->cmd;
  421. struct mmc_data *data = host->mrq->data;
  422. /* For some cmds timeout is normal with sd/mmc cards */
  423. if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
  424. SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
  425. cmd->opcode == SD_IO_RW_DIRECT))
  426. return;
  427. dev_dbg(mmc_dev(host->mmc),
  428. "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
  429. host->mmc->index, cmd->opcode,
  430. data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
  431. host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
  432. host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
  433. host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
  434. host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
  435. host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
  436. host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
  437. host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
  438. host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
  439. host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
  440. );
  441. }
  442. /* Called in interrupt context! */
  443. static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
  444. {
  445. struct mmc_request *mrq = host->mrq;
  446. struct mmc_data *data = mrq->data;
  447. u32 rval;
  448. mmc_writel(host, REG_IMASK, host->sdio_imask);
  449. mmc_writel(host, REG_IDIE, 0);
  450. if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
  451. sunxi_mmc_dump_errinfo(host);
  452. mrq->cmd->error = -ETIMEDOUT;
  453. if (data) {
  454. data->error = -ETIMEDOUT;
  455. host->manual_stop_mrq = mrq;
  456. }
  457. if (mrq->stop)
  458. mrq->stop->error = -ETIMEDOUT;
  459. } else {
  460. if (mrq->cmd->flags & MMC_RSP_136) {
  461. mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
  462. mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
  463. mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
  464. mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
  465. } else {
  466. mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
  467. }
  468. if (data)
  469. data->bytes_xfered = data->blocks * data->blksz;
  470. }
  471. if (data) {
  472. mmc_writel(host, REG_IDST, 0x337);
  473. mmc_writel(host, REG_DMAC, 0);
  474. rval = mmc_readl(host, REG_GCTRL);
  475. rval |= SDXC_DMA_RESET;
  476. mmc_writel(host, REG_GCTRL, rval);
  477. rval &= ~SDXC_DMA_ENABLE_BIT;
  478. mmc_writel(host, REG_GCTRL, rval);
  479. rval |= SDXC_FIFO_RESET;
  480. mmc_writel(host, REG_GCTRL, rval);
  481. dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
  482. mmc_get_dma_dir(data));
  483. }
  484. mmc_writel(host, REG_RINTR, 0xffff);
  485. host->mrq = NULL;
  486. host->int_sum = 0;
  487. host->wait_dma = false;
  488. return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
  489. }
  490. static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
  491. {
  492. struct sunxi_mmc_host *host = dev_id;
  493. struct mmc_request *mrq;
  494. u32 msk_int, idma_int;
  495. bool finalize = false;
  496. bool sdio_int = false;
  497. irqreturn_t ret = IRQ_HANDLED;
  498. spin_lock(&host->lock);
  499. idma_int = mmc_readl(host, REG_IDST);
  500. msk_int = mmc_readl(host, REG_MISTA);
  501. dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
  502. host->mrq, msk_int, idma_int);
  503. mrq = host->mrq;
  504. if (mrq) {
  505. if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
  506. host->wait_dma = false;
  507. host->int_sum |= msk_int;
  508. /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
  509. if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
  510. !(host->int_sum & SDXC_COMMAND_DONE))
  511. mmc_writel(host, REG_IMASK,
  512. host->sdio_imask | SDXC_COMMAND_DONE);
  513. /* Don't wait for dma on error */
  514. else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
  515. finalize = true;
  516. else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
  517. !host->wait_dma)
  518. finalize = true;
  519. }
  520. if (msk_int & SDXC_SDIO_INTERRUPT)
  521. sdio_int = true;
  522. mmc_writel(host, REG_RINTR, msk_int);
  523. mmc_writel(host, REG_IDST, idma_int);
  524. if (finalize)
  525. ret = sunxi_mmc_finalize_request(host);
  526. spin_unlock(&host->lock);
  527. if (finalize && ret == IRQ_HANDLED)
  528. mmc_request_done(host->mmc, mrq);
  529. if (sdio_int)
  530. mmc_signal_sdio_irq(host->mmc);
  531. return ret;
  532. }
  533. static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
  534. {
  535. struct sunxi_mmc_host *host = dev_id;
  536. struct mmc_request *mrq;
  537. unsigned long iflags;
  538. spin_lock_irqsave(&host->lock, iflags);
  539. mrq = host->manual_stop_mrq;
  540. spin_unlock_irqrestore(&host->lock, iflags);
  541. if (!mrq) {
  542. dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
  543. return IRQ_HANDLED;
  544. }
  545. dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
  546. /*
  547. * We will never have more than one outstanding request,
  548. * and we do not complete the request until after
  549. * we've cleared host->manual_stop_mrq so we do not need to
  550. * spin lock this function.
  551. * Additionally we have wait states within this function
  552. * so having it in a lock is a very bad idea.
  553. */
  554. sunxi_mmc_send_manual_stop(host, mrq);
  555. spin_lock_irqsave(&host->lock, iflags);
  556. host->manual_stop_mrq = NULL;
  557. spin_unlock_irqrestore(&host->lock, iflags);
  558. mmc_request_done(host->mmc, mrq);
  559. return IRQ_HANDLED;
  560. }
  561. static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
  562. {
  563. unsigned long expire = jiffies + msecs_to_jiffies(750);
  564. u32 rval;
  565. dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
  566. oclk_en ? "en" : "dis");
  567. rval = mmc_readl(host, REG_CLKCR);
  568. rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
  569. if (oclk_en)
  570. rval |= SDXC_CARD_CLOCK_ON;
  571. if (host->cfg->mask_data0)
  572. rval |= SDXC_MASK_DATA0;
  573. mmc_writel(host, REG_CLKCR, rval);
  574. rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
  575. mmc_writel(host, REG_CMDR, rval);
  576. do {
  577. rval = mmc_readl(host, REG_CMDR);
  578. } while (time_before(jiffies, expire) && (rval & SDXC_START));
  579. /* clear irq status bits set by the command */
  580. mmc_writel(host, REG_RINTR,
  581. mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
  582. if (rval & SDXC_START) {
  583. dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
  584. return -EIO;
  585. }
  586. if (host->cfg->mask_data0) {
  587. rval = mmc_readl(host, REG_CLKCR);
  588. mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
  589. }
  590. return 0;
  591. }
  592. static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
  593. {
  594. if (!host->cfg->can_calibrate)
  595. return 0;
  596. /*
  597. * FIXME:
  598. * This is not clear how the calibration is supposed to work
  599. * yet. The best rate have been obtained by simply setting the
  600. * delay to 0, as Allwinner does in its BSP.
  601. *
  602. * The only mode that doesn't have such a delay is HS400, that
  603. * is in itself a TODO.
  604. */
  605. writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
  606. return 0;
  607. }
  608. static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
  609. struct mmc_ios *ios, u32 rate)
  610. {
  611. int index;
  612. /* clk controller delays not used under new timings mode */
  613. if (host->use_new_timings)
  614. return 0;
  615. /* some old controllers don't support delays */
  616. if (!host->cfg->clk_delays)
  617. return 0;
  618. /* determine delays */
  619. if (rate <= 400000) {
  620. index = SDXC_CLK_400K;
  621. } else if (rate <= 25000000) {
  622. index = SDXC_CLK_25M;
  623. } else if (rate <= 52000000) {
  624. if (ios->timing != MMC_TIMING_UHS_DDR50 &&
  625. ios->timing != MMC_TIMING_MMC_DDR52) {
  626. index = SDXC_CLK_50M;
  627. } else if (ios->bus_width == MMC_BUS_WIDTH_8) {
  628. index = SDXC_CLK_50M_DDR_8BIT;
  629. } else {
  630. index = SDXC_CLK_50M_DDR;
  631. }
  632. } else {
  633. dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
  634. return -EINVAL;
  635. }
  636. clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
  637. clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
  638. return 0;
  639. }
  640. static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
  641. struct mmc_ios *ios)
  642. {
  643. struct mmc_host *mmc = host->mmc;
  644. long rate;
  645. u32 rval, clock = ios->clock, div = 1;
  646. int ret;
  647. ret = sunxi_mmc_oclk_onoff(host, 0);
  648. if (ret)
  649. return ret;
  650. /* Our clock is gated now */
  651. mmc->actual_clock = 0;
  652. if (!ios->clock)
  653. return 0;
  654. /*
  655. * Under the old timing mode, 8 bit DDR requires the module
  656. * clock to be double the card clock. Under the new timing
  657. * mode, all DDR modes require a doubled module clock.
  658. *
  659. * We currently only support the standard MMC DDR52 mode.
  660. * This block should be updated once support for other DDR
  661. * modes is added.
  662. */
  663. if (ios->timing == MMC_TIMING_MMC_DDR52 &&
  664. (host->use_new_timings ||
  665. ios->bus_width == MMC_BUS_WIDTH_8)) {
  666. div = 2;
  667. clock <<= 1;
  668. }
  669. if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
  670. ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
  671. if (ret) {
  672. dev_err(mmc_dev(mmc),
  673. "error setting new timing mode\n");
  674. return ret;
  675. }
  676. }
  677. rate = clk_round_rate(host->clk_mmc, clock);
  678. if (rate < 0) {
  679. dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
  680. clock, rate);
  681. return rate;
  682. }
  683. dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
  684. clock, rate);
  685. /* setting clock rate */
  686. ret = clk_set_rate(host->clk_mmc, rate);
  687. if (ret) {
  688. dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
  689. rate, ret);
  690. return ret;
  691. }
  692. /* set internal divider */
  693. rval = mmc_readl(host, REG_CLKCR);
  694. rval &= ~0xff;
  695. rval |= div - 1;
  696. mmc_writel(host, REG_CLKCR, rval);
  697. /* update card clock rate to account for internal divider */
  698. rate /= div;
  699. /*
  700. * Configure the controller to use the new timing mode if needed.
  701. * On controllers that only support the new timing mode, such as
  702. * the eMMC controller on the A64, this register does not exist,
  703. * and any writes to it are ignored.
  704. */
  705. if (host->use_new_timings) {
  706. /* Don't touch the delay bits */
  707. rval = mmc_readl(host, REG_SD_NTSR);
  708. rval |= SDXC_2X_TIMING_MODE;
  709. mmc_writel(host, REG_SD_NTSR, rval);
  710. }
  711. /* sunxi_mmc_clk_set_phase expects the actual card clock rate */
  712. ret = sunxi_mmc_clk_set_phase(host, ios, rate);
  713. if (ret)
  714. return ret;
  715. ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
  716. if (ret)
  717. return ret;
  718. /*
  719. * FIXME:
  720. *
  721. * In HS400 we'll also need to calibrate the data strobe
  722. * signal. This should only happen on the MMC2 controller (at
  723. * least on the A64).
  724. */
  725. ret = sunxi_mmc_oclk_onoff(host, 1);
  726. if (ret)
  727. return ret;
  728. /* And we just enabled our clock back */
  729. mmc->actual_clock = rate;
  730. return 0;
  731. }
  732. static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
  733. unsigned char width)
  734. {
  735. switch (width) {
  736. case MMC_BUS_WIDTH_1:
  737. mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
  738. break;
  739. case MMC_BUS_WIDTH_4:
  740. mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
  741. break;
  742. case MMC_BUS_WIDTH_8:
  743. mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
  744. break;
  745. }
  746. }
  747. static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
  748. {
  749. u32 rval;
  750. /* set ddr mode */
  751. rval = mmc_readl(host, REG_GCTRL);
  752. if (ios->timing == MMC_TIMING_UHS_DDR50 ||
  753. ios->timing == MMC_TIMING_MMC_DDR52)
  754. rval |= SDXC_DDR_MODE;
  755. else
  756. rval &= ~SDXC_DDR_MODE;
  757. mmc_writel(host, REG_GCTRL, rval);
  758. host->ferror = sunxi_mmc_clk_set_rate(host, ios);
  759. /* Android code had a usleep_range(50000, 55000); here */
  760. }
  761. static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
  762. struct mmc_ios *ios)
  763. {
  764. struct mmc_host *mmc = host->mmc;
  765. switch (ios->power_mode) {
  766. case MMC_POWER_UP:
  767. dev_dbg(mmc_dev(mmc), "Powering card up\n");
  768. if (!IS_ERR(mmc->supply.vmmc)) {
  769. host->ferror = mmc_regulator_set_ocr(mmc,
  770. mmc->supply.vmmc,
  771. ios->vdd);
  772. if (host->ferror)
  773. return;
  774. }
  775. if (!IS_ERR(mmc->supply.vqmmc)) {
  776. host->ferror = regulator_enable(mmc->supply.vqmmc);
  777. if (host->ferror) {
  778. dev_err(mmc_dev(mmc),
  779. "failed to enable vqmmc\n");
  780. return;
  781. }
  782. host->vqmmc_enabled = true;
  783. }
  784. break;
  785. case MMC_POWER_OFF:
  786. dev_dbg(mmc_dev(mmc), "Powering card off\n");
  787. if (!IS_ERR(mmc->supply.vmmc))
  788. mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
  789. if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
  790. regulator_disable(mmc->supply.vqmmc);
  791. host->vqmmc_enabled = false;
  792. break;
  793. default:
  794. dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
  795. break;
  796. }
  797. }
  798. static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  799. {
  800. struct sunxi_mmc_host *host = mmc_priv(mmc);
  801. sunxi_mmc_card_power(host, ios);
  802. sunxi_mmc_set_bus_width(host, ios->bus_width);
  803. sunxi_mmc_set_clk(host, ios);
  804. }
  805. static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
  806. {
  807. /* vqmmc regulator is available */
  808. if (!IS_ERR(mmc->supply.vqmmc))
  809. return mmc_regulator_set_vqmmc(mmc, ios);
  810. /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
  811. if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
  812. return 0;
  813. return -EINVAL;
  814. }
  815. static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
  816. {
  817. struct sunxi_mmc_host *host = mmc_priv(mmc);
  818. unsigned long flags;
  819. u32 imask;
  820. if (enable)
  821. pm_runtime_get_noresume(host->dev);
  822. spin_lock_irqsave(&host->lock, flags);
  823. imask = mmc_readl(host, REG_IMASK);
  824. if (enable) {
  825. host->sdio_imask = SDXC_SDIO_INTERRUPT;
  826. imask |= SDXC_SDIO_INTERRUPT;
  827. } else {
  828. host->sdio_imask = 0;
  829. imask &= ~SDXC_SDIO_INTERRUPT;
  830. }
  831. mmc_writel(host, REG_IMASK, imask);
  832. spin_unlock_irqrestore(&host->lock, flags);
  833. if (!enable)
  834. pm_runtime_put_noidle(host->mmc->parent);
  835. }
  836. static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
  837. {
  838. struct sunxi_mmc_host *host = mmc_priv(mmc);
  839. mmc_writel(host, REG_HWRST, 0);
  840. udelay(10);
  841. mmc_writel(host, REG_HWRST, 1);
  842. udelay(300);
  843. }
  844. static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
  845. {
  846. struct sunxi_mmc_host *host = mmc_priv(mmc);
  847. struct mmc_command *cmd = mrq->cmd;
  848. struct mmc_data *data = mrq->data;
  849. unsigned long iflags;
  850. u32 imask = SDXC_INTERRUPT_ERROR_BIT;
  851. u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
  852. bool wait_dma = host->wait_dma;
  853. int ret;
  854. /* Check for set_ios errors (should never happen) */
  855. if (host->ferror) {
  856. mrq->cmd->error = host->ferror;
  857. mmc_request_done(mmc, mrq);
  858. return;
  859. }
  860. if (data) {
  861. ret = sunxi_mmc_map_dma(host, data);
  862. if (ret < 0) {
  863. dev_err(mmc_dev(mmc), "map DMA failed\n");
  864. cmd->error = ret;
  865. data->error = ret;
  866. mmc_request_done(mmc, mrq);
  867. return;
  868. }
  869. }
  870. if (cmd->opcode == MMC_GO_IDLE_STATE) {
  871. cmd_val |= SDXC_SEND_INIT_SEQUENCE;
  872. imask |= SDXC_COMMAND_DONE;
  873. }
  874. if (cmd->flags & MMC_RSP_PRESENT) {
  875. cmd_val |= SDXC_RESP_EXPIRE;
  876. if (cmd->flags & MMC_RSP_136)
  877. cmd_val |= SDXC_LONG_RESPONSE;
  878. if (cmd->flags & MMC_RSP_CRC)
  879. cmd_val |= SDXC_CHECK_RESPONSE_CRC;
  880. if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
  881. cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
  882. if (cmd->data->stop) {
  883. imask |= SDXC_AUTO_COMMAND_DONE;
  884. cmd_val |= SDXC_SEND_AUTO_STOP;
  885. } else {
  886. imask |= SDXC_DATA_OVER;
  887. }
  888. if (cmd->data->flags & MMC_DATA_WRITE)
  889. cmd_val |= SDXC_WRITE;
  890. else
  891. wait_dma = true;
  892. } else {
  893. imask |= SDXC_COMMAND_DONE;
  894. }
  895. } else {
  896. imask |= SDXC_COMMAND_DONE;
  897. }
  898. dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
  899. cmd_val & 0x3f, cmd_val, cmd->arg, imask,
  900. mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
  901. spin_lock_irqsave(&host->lock, iflags);
  902. if (host->mrq || host->manual_stop_mrq) {
  903. spin_unlock_irqrestore(&host->lock, iflags);
  904. if (data)
  905. dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
  906. mmc_get_dma_dir(data));
  907. dev_err(mmc_dev(mmc), "request already pending\n");
  908. mrq->cmd->error = -EBUSY;
  909. mmc_request_done(mmc, mrq);
  910. return;
  911. }
  912. if (data) {
  913. mmc_writel(host, REG_BLKSZ, data->blksz);
  914. mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
  915. sunxi_mmc_start_dma(host, data);
  916. }
  917. host->mrq = mrq;
  918. host->wait_dma = wait_dma;
  919. mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
  920. mmc_writel(host, REG_CARG, cmd->arg);
  921. mmc_writel(host, REG_CMDR, cmd_val);
  922. spin_unlock_irqrestore(&host->lock, iflags);
  923. }
  924. static int sunxi_mmc_card_busy(struct mmc_host *mmc)
  925. {
  926. struct sunxi_mmc_host *host = mmc_priv(mmc);
  927. return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
  928. }
  929. static const struct mmc_host_ops sunxi_mmc_ops = {
  930. .request = sunxi_mmc_request,
  931. .set_ios = sunxi_mmc_set_ios,
  932. .get_ro = mmc_gpio_get_ro,
  933. .get_cd = mmc_gpio_get_cd,
  934. .enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
  935. .start_signal_voltage_switch = sunxi_mmc_volt_switch,
  936. .hw_reset = sunxi_mmc_hw_reset,
  937. .card_busy = sunxi_mmc_card_busy,
  938. };
  939. static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
  940. [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
  941. [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
  942. [SDXC_CLK_50M] = { .output = 90, .sample = 120 },
  943. [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
  944. /* Value from A83T "new timing mode". Works but might not be right. */
  945. [SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 },
  946. };
  947. static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
  948. [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
  949. [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
  950. [SDXC_CLK_50M] = { .output = 150, .sample = 120 },
  951. [SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 },
  952. [SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 },
  953. };
  954. static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
  955. .idma_des_size_bits = 13,
  956. .clk_delays = NULL,
  957. .can_calibrate = false,
  958. };
  959. static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
  960. .idma_des_size_bits = 16,
  961. .clk_delays = NULL,
  962. .can_calibrate = false,
  963. };
  964. static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
  965. .idma_des_size_bits = 16,
  966. .clk_delays = sunxi_mmc_clk_delays,
  967. .can_calibrate = false,
  968. };
  969. static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
  970. .idma_des_size_bits = 16,
  971. .clk_delays = sunxi_mmc_clk_delays,
  972. .can_calibrate = false,
  973. .ccu_has_timings_switch = true,
  974. };
  975. static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
  976. .idma_des_size_bits = 16,
  977. .clk_delays = sun9i_mmc_clk_delays,
  978. .can_calibrate = false,
  979. };
  980. static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
  981. .idma_des_size_bits = 16,
  982. .clk_delays = NULL,
  983. .can_calibrate = true,
  984. .mask_data0 = true,
  985. .needs_new_timings = true,
  986. };
  987. static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
  988. .idma_des_size_bits = 13,
  989. .clk_delays = NULL,
  990. .can_calibrate = true,
  991. .needs_new_timings = true,
  992. };
  993. static const struct of_device_id sunxi_mmc_of_match[] = {
  994. { .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
  995. { .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
  996. { .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
  997. { .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
  998. { .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
  999. { .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
  1000. { .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
  1001. { /* sentinel */ }
  1002. };
  1003. MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
  1004. static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
  1005. {
  1006. int ret;
  1007. if (!IS_ERR(host->reset)) {
  1008. ret = reset_control_reset(host->reset);
  1009. if (ret) {
  1010. dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
  1011. ret);
  1012. return ret;
  1013. }
  1014. }
  1015. ret = clk_prepare_enable(host->clk_ahb);
  1016. if (ret) {
  1017. dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
  1018. goto error_assert_reset;
  1019. }
  1020. ret = clk_prepare_enable(host->clk_mmc);
  1021. if (ret) {
  1022. dev_err(host->dev, "Enable mmc clk err %d\n", ret);
  1023. goto error_disable_clk_ahb;
  1024. }
  1025. ret = clk_prepare_enable(host->clk_output);
  1026. if (ret) {
  1027. dev_err(host->dev, "Enable output clk err %d\n", ret);
  1028. goto error_disable_clk_mmc;
  1029. }
  1030. ret = clk_prepare_enable(host->clk_sample);
  1031. if (ret) {
  1032. dev_err(host->dev, "Enable sample clk err %d\n", ret);
  1033. goto error_disable_clk_output;
  1034. }
  1035. /*
  1036. * Sometimes the controller asserts the irq on boot for some reason,
  1037. * make sure the controller is in a sane state before enabling irqs.
  1038. */
  1039. ret = sunxi_mmc_reset_host(host);
  1040. if (ret)
  1041. goto error_disable_clk_sample;
  1042. return 0;
  1043. error_disable_clk_sample:
  1044. clk_disable_unprepare(host->clk_sample);
  1045. error_disable_clk_output:
  1046. clk_disable_unprepare(host->clk_output);
  1047. error_disable_clk_mmc:
  1048. clk_disable_unprepare(host->clk_mmc);
  1049. error_disable_clk_ahb:
  1050. clk_disable_unprepare(host->clk_ahb);
  1051. error_assert_reset:
  1052. if (!IS_ERR(host->reset))
  1053. reset_control_assert(host->reset);
  1054. return ret;
  1055. }
  1056. static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
  1057. {
  1058. sunxi_mmc_reset_host(host);
  1059. clk_disable_unprepare(host->clk_sample);
  1060. clk_disable_unprepare(host->clk_output);
  1061. clk_disable_unprepare(host->clk_mmc);
  1062. clk_disable_unprepare(host->clk_ahb);
  1063. if (!IS_ERR(host->reset))
  1064. reset_control_assert(host->reset);
  1065. }
  1066. static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
  1067. struct platform_device *pdev)
  1068. {
  1069. int ret;
  1070. host->cfg = of_device_get_match_data(&pdev->dev);
  1071. if (!host->cfg)
  1072. return -EINVAL;
  1073. ret = mmc_regulator_get_supply(host->mmc);
  1074. if (ret)
  1075. return ret;
  1076. host->reg_base = devm_ioremap_resource(&pdev->dev,
  1077. platform_get_resource(pdev, IORESOURCE_MEM, 0));
  1078. if (IS_ERR(host->reg_base))
  1079. return PTR_ERR(host->reg_base);
  1080. host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
  1081. if (IS_ERR(host->clk_ahb)) {
  1082. dev_err(&pdev->dev, "Could not get ahb clock\n");
  1083. return PTR_ERR(host->clk_ahb);
  1084. }
  1085. host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
  1086. if (IS_ERR(host->clk_mmc)) {
  1087. dev_err(&pdev->dev, "Could not get mmc clock\n");
  1088. return PTR_ERR(host->clk_mmc);
  1089. }
  1090. if (host->cfg->clk_delays) {
  1091. host->clk_output = devm_clk_get(&pdev->dev, "output");
  1092. if (IS_ERR(host->clk_output)) {
  1093. dev_err(&pdev->dev, "Could not get output clock\n");
  1094. return PTR_ERR(host->clk_output);
  1095. }
  1096. host->clk_sample = devm_clk_get(&pdev->dev, "sample");
  1097. if (IS_ERR(host->clk_sample)) {
  1098. dev_err(&pdev->dev, "Could not get sample clock\n");
  1099. return PTR_ERR(host->clk_sample);
  1100. }
  1101. }
  1102. host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
  1103. "ahb");
  1104. if (PTR_ERR(host->reset) == -EPROBE_DEFER)
  1105. return PTR_ERR(host->reset);
  1106. ret = sunxi_mmc_enable(host);
  1107. if (ret)
  1108. return ret;
  1109. host->irq = platform_get_irq(pdev, 0);
  1110. if (host->irq <= 0) {
  1111. ret = -EINVAL;
  1112. goto error_disable_mmc;
  1113. }
  1114. return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
  1115. sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
  1116. error_disable_mmc:
  1117. sunxi_mmc_disable(host);
  1118. return ret;
  1119. }
  1120. static int sunxi_mmc_probe(struct platform_device *pdev)
  1121. {
  1122. struct sunxi_mmc_host *host;
  1123. struct mmc_host *mmc;
  1124. int ret;
  1125. mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
  1126. if (!mmc) {
  1127. dev_err(&pdev->dev, "mmc alloc host failed\n");
  1128. return -ENOMEM;
  1129. }
  1130. platform_set_drvdata(pdev, mmc);
  1131. host = mmc_priv(mmc);
  1132. host->dev = &pdev->dev;
  1133. host->mmc = mmc;
  1134. spin_lock_init(&host->lock);
  1135. ret = sunxi_mmc_resource_request(host, pdev);
  1136. if (ret)
  1137. goto error_free_host;
  1138. host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
  1139. &host->sg_dma, GFP_KERNEL);
  1140. if (!host->sg_cpu) {
  1141. dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
  1142. ret = -ENOMEM;
  1143. goto error_free_host;
  1144. }
  1145. if (host->cfg->ccu_has_timings_switch) {
  1146. /*
  1147. * Supports both old and new timing modes.
  1148. * Try setting the clk to new timing mode.
  1149. */
  1150. sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
  1151. /* And check the result */
  1152. ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
  1153. if (ret < 0) {
  1154. /*
  1155. * For whatever reason we were not able to get
  1156. * the current active mode. Default to old mode.
  1157. */
  1158. dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
  1159. host->use_new_timings = false;
  1160. } else {
  1161. host->use_new_timings = !!ret;
  1162. }
  1163. } else if (host->cfg->needs_new_timings) {
  1164. /* Supports new timing mode only */
  1165. host->use_new_timings = true;
  1166. }
  1167. mmc->ops = &sunxi_mmc_ops;
  1168. mmc->max_blk_count = 8192;
  1169. mmc->max_blk_size = 4096;
  1170. mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
  1171. mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
  1172. mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
  1173. /* 400kHz ~ 52MHz */
  1174. mmc->f_min = 400000;
  1175. mmc->f_max = 52000000;
  1176. mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
  1177. MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
  1178. if (host->cfg->clk_delays || host->use_new_timings)
  1179. mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
  1180. ret = mmc_of_parse(mmc);
  1181. if (ret)
  1182. goto error_free_dma;
  1183. ret = sunxi_mmc_init_host(host);
  1184. if (ret)
  1185. goto error_free_dma;
  1186. pm_runtime_set_active(&pdev->dev);
  1187. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  1188. pm_runtime_use_autosuspend(&pdev->dev);
  1189. pm_runtime_enable(&pdev->dev);
  1190. ret = mmc_add_host(mmc);
  1191. if (ret)
  1192. goto error_free_dma;
  1193. dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
  1194. mmc->max_req_size >> 10,
  1195. host->use_new_timings ? ", uses new timings mode" : "");
  1196. return 0;
  1197. error_free_dma:
  1198. dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
  1199. error_free_host:
  1200. mmc_free_host(mmc);
  1201. return ret;
  1202. }
  1203. static int sunxi_mmc_remove(struct platform_device *pdev)
  1204. {
  1205. struct mmc_host *mmc = platform_get_drvdata(pdev);
  1206. struct sunxi_mmc_host *host = mmc_priv(mmc);
  1207. mmc_remove_host(mmc);
  1208. pm_runtime_force_suspend(&pdev->dev);
  1209. disable_irq(host->irq);
  1210. sunxi_mmc_disable(host);
  1211. dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
  1212. mmc_free_host(mmc);
  1213. return 0;
  1214. }
  1215. #ifdef CONFIG_PM
  1216. static int sunxi_mmc_runtime_resume(struct device *dev)
  1217. {
  1218. struct mmc_host *mmc = dev_get_drvdata(dev);
  1219. struct sunxi_mmc_host *host = mmc_priv(mmc);
  1220. int ret;
  1221. ret = sunxi_mmc_enable(host);
  1222. if (ret)
  1223. return ret;
  1224. sunxi_mmc_init_host(host);
  1225. sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
  1226. sunxi_mmc_set_clk(host, &mmc->ios);
  1227. enable_irq(host->irq);
  1228. return 0;
  1229. }
  1230. static int sunxi_mmc_runtime_suspend(struct device *dev)
  1231. {
  1232. struct mmc_host *mmc = dev_get_drvdata(dev);
  1233. struct sunxi_mmc_host *host = mmc_priv(mmc);
  1234. /*
  1235. * When clocks are off, it's possible receiving
  1236. * fake interrupts, which will stall the system.
  1237. * Disabling the irq will prevent this.
  1238. */
  1239. disable_irq(host->irq);
  1240. sunxi_mmc_reset_host(host);
  1241. sunxi_mmc_disable(host);
  1242. return 0;
  1243. }
  1244. #endif
  1245. static const struct dev_pm_ops sunxi_mmc_pm_ops = {
  1246. SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
  1247. sunxi_mmc_runtime_resume,
  1248. NULL)
  1249. };
  1250. static struct platform_driver sunxi_mmc_driver = {
  1251. .driver = {
  1252. .name = "sunxi-mmc",
  1253. .of_match_table = of_match_ptr(sunxi_mmc_of_match),
  1254. .pm = &sunxi_mmc_pm_ops,
  1255. },
  1256. .probe = sunxi_mmc_probe,
  1257. .remove = sunxi_mmc_remove,
  1258. };
  1259. module_platform_driver(sunxi_mmc_driver);
  1260. MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
  1261. MODULE_LICENSE("GPL v2");
  1262. MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
  1263. MODULE_ALIAS("platform:sunxi-mmc");