card_utils.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. /**
  2. * IBM Accelerator Family 'GenWQE'
  3. *
  4. * (C) Copyright IBM Corp. 2013
  5. *
  6. * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
  7. * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
  8. * Author: Michael Jung <mijung@gmx.net>
  9. * Author: Michael Ruettger <michael@ibmra.de>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License (version 2 only)
  13. * as published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. */
  20. /*
  21. * Miscelanous functionality used in the other GenWQE driver parts.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/sched.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/page-flags.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/iommu.h>
  30. #include <linux/pci.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/ctype.h>
  33. #include <linux/module.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/delay.h>
  36. #include <asm/pgtable.h>
  37. #include "genwqe_driver.h"
  38. #include "card_base.h"
  39. #include "card_ddcb.h"
  40. /**
  41. * __genwqe_writeq() - Write 64-bit register
  42. * @cd: genwqe device descriptor
  43. * @byte_offs: byte offset within BAR
  44. * @val: 64-bit value
  45. *
  46. * Return: 0 if success; < 0 if error
  47. */
  48. int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  49. {
  50. struct pci_dev *pci_dev = cd->pci_dev;
  51. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  52. return -EIO;
  53. if (cd->mmio == NULL)
  54. return -EIO;
  55. if (pci_channel_offline(pci_dev))
  56. return -EIO;
  57. __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  58. return 0;
  59. }
  60. /**
  61. * __genwqe_readq() - Read 64-bit register
  62. * @cd: genwqe device descriptor
  63. * @byte_offs: offset within BAR
  64. *
  65. * Return: value from register
  66. */
  67. u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  68. {
  69. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  70. return 0xffffffffffffffffull;
  71. if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  72. (byte_offs == IO_SLC_CFGREG_GFIR))
  73. return 0x000000000000ffffull;
  74. if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  75. (byte_offs == IO_SLC_CFGREG_GFIR))
  76. return 0x00000000ffff0000ull;
  77. if (cd->mmio == NULL)
  78. return 0xffffffffffffffffull;
  79. return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  80. }
  81. /**
  82. * __genwqe_writel() - Write 32-bit register
  83. * @cd: genwqe device descriptor
  84. * @byte_offs: byte offset within BAR
  85. * @val: 32-bit value
  86. *
  87. * Return: 0 if success; < 0 if error
  88. */
  89. int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
  90. {
  91. struct pci_dev *pci_dev = cd->pci_dev;
  92. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  93. return -EIO;
  94. if (cd->mmio == NULL)
  95. return -EIO;
  96. if (pci_channel_offline(pci_dev))
  97. return -EIO;
  98. __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
  99. return 0;
  100. }
  101. /**
  102. * __genwqe_readl() - Read 32-bit register
  103. * @cd: genwqe device descriptor
  104. * @byte_offs: offset within BAR
  105. *
  106. * Return: Value from register
  107. */
  108. u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
  109. {
  110. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  111. return 0xffffffff;
  112. if (cd->mmio == NULL)
  113. return 0xffffffff;
  114. return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
  115. }
  116. /**
  117. * genwqe_read_app_id() - Extract app_id
  118. *
  119. * app_unitcfg need to be filled with valid data first
  120. */
  121. int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
  122. {
  123. int i, j;
  124. u32 app_id = (u32)cd->app_unitcfg;
  125. memset(app_name, 0, len);
  126. for (i = 0, j = 0; j < min(len, 4); j++) {
  127. char ch = (char)((app_id >> (24 - j*8)) & 0xff);
  128. if (ch == ' ')
  129. continue;
  130. app_name[i++] = isprint(ch) ? ch : 'X';
  131. }
  132. return i;
  133. }
  134. /**
  135. * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
  136. *
  137. * Existing kernel functions seem to use a different polynom,
  138. * therefore we could not use them here.
  139. *
  140. * Genwqe's Polynomial = 0x20044009
  141. */
  142. #define CRC32_POLYNOMIAL 0x20044009
  143. static u32 crc32_tab[256]; /* crc32 lookup table */
  144. void genwqe_init_crc32(void)
  145. {
  146. int i, j;
  147. u32 crc;
  148. for (i = 0; i < 256; i++) {
  149. crc = i << 24;
  150. for (j = 0; j < 8; j++) {
  151. if (crc & 0x80000000)
  152. crc = (crc << 1) ^ CRC32_POLYNOMIAL;
  153. else
  154. crc = (crc << 1);
  155. }
  156. crc32_tab[i] = crc;
  157. }
  158. }
  159. /**
  160. * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
  161. * @buff: pointer to data buffer
  162. * @len: length of data for calculation
  163. * @init: initial crc (0xffffffff at start)
  164. *
  165. * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
  166. * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
  167. * result in a crc32 of 0xf33cb7d3.
  168. *
  169. * The existing kernel crc functions did not cover this polynom yet.
  170. *
  171. * Return: crc32 checksum.
  172. */
  173. u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
  174. {
  175. int i;
  176. u32 crc;
  177. crc = init;
  178. while (len--) {
  179. i = ((crc >> 24) ^ *buff++) & 0xFF;
  180. crc = (crc << 8) ^ crc32_tab[i];
  181. }
  182. return crc;
  183. }
  184. void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
  185. dma_addr_t *dma_handle)
  186. {
  187. if (get_order(size) > MAX_ORDER)
  188. return NULL;
  189. return dma_zalloc_coherent(&cd->pci_dev->dev, size, dma_handle,
  190. GFP_KERNEL);
  191. }
  192. void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
  193. void *vaddr, dma_addr_t dma_handle)
  194. {
  195. if (vaddr == NULL)
  196. return;
  197. dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
  198. }
  199. static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
  200. int num_pages)
  201. {
  202. int i;
  203. struct pci_dev *pci_dev = cd->pci_dev;
  204. for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
  205. pci_unmap_page(pci_dev, dma_list[i],
  206. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  207. dma_list[i] = 0x0;
  208. }
  209. }
  210. static int genwqe_map_pages(struct genwqe_dev *cd,
  211. struct page **page_list, int num_pages,
  212. dma_addr_t *dma_list)
  213. {
  214. int i;
  215. struct pci_dev *pci_dev = cd->pci_dev;
  216. /* establish DMA mapping for requested pages */
  217. for (i = 0; i < num_pages; i++) {
  218. dma_addr_t daddr;
  219. dma_list[i] = 0x0;
  220. daddr = pci_map_page(pci_dev, page_list[i],
  221. 0, /* map_offs */
  222. PAGE_SIZE,
  223. PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
  224. if (pci_dma_mapping_error(pci_dev, daddr)) {
  225. dev_err(&pci_dev->dev,
  226. "[%s] err: no dma addr daddr=%016llx!\n",
  227. __func__, (long long)daddr);
  228. goto err;
  229. }
  230. dma_list[i] = daddr;
  231. }
  232. return 0;
  233. err:
  234. genwqe_unmap_pages(cd, dma_list, num_pages);
  235. return -EIO;
  236. }
  237. static int genwqe_sgl_size(int num_pages)
  238. {
  239. int len, num_tlb = num_pages / 7;
  240. len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
  241. return roundup(len, PAGE_SIZE);
  242. }
  243. /**
  244. * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
  245. *
  246. * Allocates memory for sgl and overlapping pages. Pages which might
  247. * overlap other user-space memory blocks are being cached for DMAs,
  248. * such that we do not run into syncronization issues. Data is copied
  249. * from user-space into the cached pages.
  250. */
  251. int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  252. void __user *user_addr, size_t user_size, int write)
  253. {
  254. int ret = -ENOMEM;
  255. struct pci_dev *pci_dev = cd->pci_dev;
  256. sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
  257. sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
  258. sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
  259. sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
  260. dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
  261. __func__, user_addr, user_size, sgl->nr_pages,
  262. sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
  263. sgl->user_addr = user_addr;
  264. sgl->user_size = user_size;
  265. sgl->write = write;
  266. sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
  267. if (get_order(sgl->sgl_size) > MAX_ORDER) {
  268. dev_err(&pci_dev->dev,
  269. "[%s] err: too much memory requested!\n", __func__);
  270. return ret;
  271. }
  272. sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
  273. &sgl->sgl_dma_addr);
  274. if (sgl->sgl == NULL) {
  275. dev_err(&pci_dev->dev,
  276. "[%s] err: no memory available!\n", __func__);
  277. return ret;
  278. }
  279. /* Only use buffering on incomplete pages */
  280. if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
  281. sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  282. &sgl->fpage_dma_addr);
  283. if (sgl->fpage == NULL)
  284. goto err_out;
  285. /* Sync with user memory */
  286. if (copy_from_user(sgl->fpage + sgl->fpage_offs,
  287. user_addr, sgl->fpage_size)) {
  288. ret = -EFAULT;
  289. goto err_out;
  290. }
  291. }
  292. if (sgl->lpage_size != 0) {
  293. sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  294. &sgl->lpage_dma_addr);
  295. if (sgl->lpage == NULL)
  296. goto err_out1;
  297. /* Sync with user memory */
  298. if (copy_from_user(sgl->lpage, user_addr + user_size -
  299. sgl->lpage_size, sgl->lpage_size)) {
  300. ret = -EFAULT;
  301. goto err_out2;
  302. }
  303. }
  304. return 0;
  305. err_out2:
  306. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
  307. sgl->lpage_dma_addr);
  308. sgl->lpage = NULL;
  309. sgl->lpage_dma_addr = 0;
  310. err_out1:
  311. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  312. sgl->fpage_dma_addr);
  313. sgl->fpage = NULL;
  314. sgl->fpage_dma_addr = 0;
  315. err_out:
  316. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  317. sgl->sgl_dma_addr);
  318. sgl->sgl = NULL;
  319. sgl->sgl_dma_addr = 0;
  320. sgl->sgl_size = 0;
  321. return ret;
  322. }
  323. int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  324. dma_addr_t *dma_list)
  325. {
  326. int i = 0, j = 0, p;
  327. unsigned long dma_offs, map_offs;
  328. dma_addr_t prev_daddr = 0;
  329. struct sg_entry *s, *last_s = NULL;
  330. size_t size = sgl->user_size;
  331. dma_offs = 128; /* next block if needed/dma_offset */
  332. map_offs = sgl->fpage_offs; /* offset in first page */
  333. s = &sgl->sgl[0]; /* first set of 8 entries */
  334. p = 0; /* page */
  335. while (p < sgl->nr_pages) {
  336. dma_addr_t daddr;
  337. unsigned int size_to_map;
  338. /* always write the chaining entry, cleanup is done later */
  339. j = 0;
  340. s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
  341. s[j].len = cpu_to_be32(128);
  342. s[j].flags = cpu_to_be32(SG_CHAINED);
  343. j++;
  344. while (j < 8) {
  345. /* DMA mapping for requested page, offs, size */
  346. size_to_map = min(size, PAGE_SIZE - map_offs);
  347. if ((p == 0) && (sgl->fpage != NULL)) {
  348. daddr = sgl->fpage_dma_addr + map_offs;
  349. } else if ((p == sgl->nr_pages - 1) &&
  350. (sgl->lpage != NULL)) {
  351. daddr = sgl->lpage_dma_addr;
  352. } else {
  353. daddr = dma_list[p] + map_offs;
  354. }
  355. size -= size_to_map;
  356. map_offs = 0;
  357. if (prev_daddr == daddr) {
  358. u32 prev_len = be32_to_cpu(last_s->len);
  359. /* pr_info("daddr combining: "
  360. "%016llx/%08x -> %016llx\n",
  361. prev_daddr, prev_len, daddr); */
  362. last_s->len = cpu_to_be32(prev_len +
  363. size_to_map);
  364. p++; /* process next page */
  365. if (p == sgl->nr_pages)
  366. goto fixup; /* nothing to do */
  367. prev_daddr = daddr + size_to_map;
  368. continue;
  369. }
  370. /* start new entry */
  371. s[j].target_addr = cpu_to_be64(daddr);
  372. s[j].len = cpu_to_be32(size_to_map);
  373. s[j].flags = cpu_to_be32(SG_DATA);
  374. prev_daddr = daddr + size_to_map;
  375. last_s = &s[j];
  376. j++;
  377. p++; /* process next page */
  378. if (p == sgl->nr_pages)
  379. goto fixup; /* nothing to do */
  380. }
  381. dma_offs += 128;
  382. s += 8; /* continue 8 elements further */
  383. }
  384. fixup:
  385. if (j == 1) { /* combining happened on last entry! */
  386. s -= 8; /* full shift needed on previous sgl block */
  387. j = 7; /* shift all elements */
  388. }
  389. for (i = 0; i < j; i++) /* move elements 1 up */
  390. s[i] = s[i + 1];
  391. s[i].target_addr = cpu_to_be64(0);
  392. s[i].len = cpu_to_be32(0);
  393. s[i].flags = cpu_to_be32(SG_END_LIST);
  394. return 0;
  395. }
  396. /**
  397. * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
  398. *
  399. * After the DMA transfer has been completed we free the memory for
  400. * the sgl and the cached pages. Data is being transferred from cached
  401. * pages into user-space buffers.
  402. */
  403. int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
  404. {
  405. int rc = 0;
  406. size_t offset;
  407. unsigned long res;
  408. struct pci_dev *pci_dev = cd->pci_dev;
  409. if (sgl->fpage) {
  410. if (sgl->write) {
  411. res = copy_to_user(sgl->user_addr,
  412. sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
  413. if (res) {
  414. dev_err(&pci_dev->dev,
  415. "[%s] err: copying fpage! (res=%lu)\n",
  416. __func__, res);
  417. rc = -EFAULT;
  418. }
  419. }
  420. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  421. sgl->fpage_dma_addr);
  422. sgl->fpage = NULL;
  423. sgl->fpage_dma_addr = 0;
  424. }
  425. if (sgl->lpage) {
  426. if (sgl->write) {
  427. offset = sgl->user_size - sgl->lpage_size;
  428. res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
  429. sgl->lpage_size);
  430. if (res) {
  431. dev_err(&pci_dev->dev,
  432. "[%s] err: copying lpage! (res=%lu)\n",
  433. __func__, res);
  434. rc = -EFAULT;
  435. }
  436. }
  437. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
  438. sgl->lpage_dma_addr);
  439. sgl->lpage = NULL;
  440. sgl->lpage_dma_addr = 0;
  441. }
  442. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  443. sgl->sgl_dma_addr);
  444. sgl->sgl = NULL;
  445. sgl->sgl_dma_addr = 0x0;
  446. sgl->sgl_size = 0;
  447. return rc;
  448. }
  449. /**
  450. * genwqe_free_user_pages() - Give pinned pages back
  451. *
  452. * Documentation of get_user_pages is in mm/gup.c:
  453. *
  454. * If the page is written to, set_page_dirty (or set_page_dirty_lock,
  455. * as appropriate) must be called after the page is finished with, and
  456. * before put_page is called.
  457. */
  458. static int genwqe_free_user_pages(struct page **page_list,
  459. unsigned int nr_pages, int dirty)
  460. {
  461. unsigned int i;
  462. for (i = 0; i < nr_pages; i++) {
  463. if (page_list[i] != NULL) {
  464. if (dirty)
  465. set_page_dirty_lock(page_list[i]);
  466. put_page(page_list[i]);
  467. }
  468. }
  469. return 0;
  470. }
  471. /**
  472. * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
  473. * @cd: pointer to genwqe device
  474. * @m: mapping params
  475. * @uaddr: user virtual address
  476. * @size: size of memory to be mapped
  477. *
  478. * We need to think about how we could speed this up. Of course it is
  479. * not a good idea to do this over and over again, like we are
  480. * currently doing it. Nevertheless, I am curious where on the path
  481. * the performance is spend. Most probably within the memory
  482. * allocation functions, but maybe also in the DMA mapping code.
  483. *
  484. * Restrictions: The maximum size of the possible mapping currently depends
  485. * on the amount of memory we can get using kzalloc() for the
  486. * page_list and pci_alloc_consistent for the sg_list.
  487. * The sg_list is currently itself not scattered, which could
  488. * be fixed with some effort. The page_list must be split into
  489. * PAGE_SIZE chunks too. All that will make the complicated
  490. * code more complicated.
  491. *
  492. * Return: 0 if success
  493. */
  494. int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
  495. unsigned long size)
  496. {
  497. int rc = -EINVAL;
  498. unsigned long data, offs;
  499. struct pci_dev *pci_dev = cd->pci_dev;
  500. if ((uaddr == NULL) || (size == 0)) {
  501. m->size = 0; /* mark unused and not added */
  502. return -EINVAL;
  503. }
  504. m->u_vaddr = uaddr;
  505. m->size = size;
  506. /* determine space needed for page_list. */
  507. data = (unsigned long)uaddr;
  508. offs = offset_in_page(data);
  509. m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
  510. m->page_list = kcalloc(m->nr_pages,
  511. sizeof(struct page *) + sizeof(dma_addr_t),
  512. GFP_KERNEL);
  513. if (!m->page_list) {
  514. dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
  515. m->nr_pages = 0;
  516. m->u_vaddr = NULL;
  517. m->size = 0; /* mark unused and not added */
  518. return -ENOMEM;
  519. }
  520. m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
  521. /* pin user pages in memory */
  522. rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
  523. m->nr_pages,
  524. m->write, /* readable/writable */
  525. m->page_list); /* ptrs to pages */
  526. if (rc < 0)
  527. goto fail_get_user_pages;
  528. /* assumption: get_user_pages can be killed by signals. */
  529. if (rc < m->nr_pages) {
  530. genwqe_free_user_pages(m->page_list, rc, m->write);
  531. rc = -EFAULT;
  532. goto fail_get_user_pages;
  533. }
  534. rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
  535. if (rc != 0)
  536. goto fail_free_user_pages;
  537. return 0;
  538. fail_free_user_pages:
  539. genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
  540. fail_get_user_pages:
  541. kfree(m->page_list);
  542. m->page_list = NULL;
  543. m->dma_list = NULL;
  544. m->nr_pages = 0;
  545. m->u_vaddr = NULL;
  546. m->size = 0; /* mark unused and not added */
  547. return rc;
  548. }
  549. /**
  550. * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
  551. * memory
  552. * @cd: pointer to genwqe device
  553. * @m: mapping params
  554. */
  555. int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
  556. {
  557. struct pci_dev *pci_dev = cd->pci_dev;
  558. if (!dma_mapping_used(m)) {
  559. dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
  560. __func__, m);
  561. return -EINVAL;
  562. }
  563. if (m->dma_list)
  564. genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
  565. if (m->page_list) {
  566. genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
  567. kfree(m->page_list);
  568. m->page_list = NULL;
  569. m->dma_list = NULL;
  570. m->nr_pages = 0;
  571. }
  572. m->u_vaddr = NULL;
  573. m->size = 0; /* mark as unused and not added */
  574. return 0;
  575. }
  576. /**
  577. * genwqe_card_type() - Get chip type SLU Configuration Register
  578. * @cd: pointer to the genwqe device descriptor
  579. * Return: 0: Altera Stratix-IV 230
  580. * 1: Altera Stratix-IV 530
  581. * 2: Altera Stratix-V A4
  582. * 3: Altera Stratix-V A7
  583. */
  584. u8 genwqe_card_type(struct genwqe_dev *cd)
  585. {
  586. u64 card_type = cd->slu_unitcfg;
  587. return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
  588. }
  589. /**
  590. * genwqe_card_reset() - Reset the card
  591. * @cd: pointer to the genwqe device descriptor
  592. */
  593. int genwqe_card_reset(struct genwqe_dev *cd)
  594. {
  595. u64 softrst;
  596. struct pci_dev *pci_dev = cd->pci_dev;
  597. if (!genwqe_is_privileged(cd))
  598. return -ENODEV;
  599. /* new SL */
  600. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
  601. msleep(1000);
  602. __genwqe_readq(cd, IO_HSU_FIR_CLR);
  603. __genwqe_readq(cd, IO_APP_FIR_CLR);
  604. __genwqe_readq(cd, IO_SLU_FIR_CLR);
  605. /*
  606. * Read-modify-write to preserve the stealth bits
  607. *
  608. * For SL >= 039, Stealth WE bit allows removing
  609. * the read-modify-wrote.
  610. * r-m-w may require a mask 0x3C to avoid hitting hard
  611. * reset again for error reset (should be 0, chicken).
  612. */
  613. softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
  614. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
  615. /* give ERRORRESET some time to finish */
  616. msleep(50);
  617. if (genwqe_need_err_masking(cd)) {
  618. dev_info(&pci_dev->dev,
  619. "[%s] masking errors for old bitstreams\n", __func__);
  620. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  621. }
  622. return 0;
  623. }
  624. int genwqe_read_softreset(struct genwqe_dev *cd)
  625. {
  626. u64 bitstream;
  627. if (!genwqe_is_privileged(cd))
  628. return -ENODEV;
  629. bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
  630. cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
  631. return 0;
  632. }
  633. /**
  634. * genwqe_set_interrupt_capability() - Configure MSI capability structure
  635. * @cd: pointer to the device
  636. * Return: 0 if no error
  637. */
  638. int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
  639. {
  640. int rc;
  641. rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
  642. if (rc < 0)
  643. return rc;
  644. return 0;
  645. }
  646. /**
  647. * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
  648. * @cd: pointer to the device
  649. */
  650. void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
  651. {
  652. pci_free_irq_vectors(cd->pci_dev);
  653. }
  654. /**
  655. * set_reg_idx() - Fill array with data. Ignore illegal offsets.
  656. * @cd: card device
  657. * @r: debug register array
  658. * @i: index to desired entry
  659. * @m: maximum possible entries
  660. * @addr: addr which is read
  661. * @index: index in debug array
  662. * @val: read value
  663. */
  664. static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
  665. unsigned int *i, unsigned int m, u32 addr, u32 idx,
  666. u64 val)
  667. {
  668. if (WARN_ON_ONCE(*i >= m))
  669. return -EFAULT;
  670. r[*i].addr = addr;
  671. r[*i].idx = idx;
  672. r[*i].val = val;
  673. ++*i;
  674. return 0;
  675. }
  676. static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
  677. unsigned int *i, unsigned int m, u32 addr, u64 val)
  678. {
  679. return set_reg_idx(cd, r, i, m, addr, 0, val);
  680. }
  681. int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
  682. unsigned int max_regs, int all)
  683. {
  684. unsigned int i, j, idx = 0;
  685. u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
  686. u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
  687. /* Global FIR */
  688. gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
  689. set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
  690. /* UnitCfg for SLU */
  691. sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
  692. set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
  693. /* UnitCfg for APP */
  694. appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
  695. set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
  696. /* Check all chip Units */
  697. for (i = 0; i < GENWQE_MAX_UNITS; i++) {
  698. /* Unit FIR */
  699. ufir_addr = (i << 24) | 0x008;
  700. ufir = __genwqe_readq(cd, ufir_addr);
  701. set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
  702. /* Unit FEC */
  703. ufec_addr = (i << 24) | 0x018;
  704. ufec = __genwqe_readq(cd, ufec_addr);
  705. set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
  706. for (j = 0; j < 64; j++) {
  707. /* wherever there is a primary 1, read the 2ndary */
  708. if (!all && (!(ufir & (1ull << j))))
  709. continue;
  710. sfir_addr = (i << 24) | (0x100 + 8 * j);
  711. sfir = __genwqe_readq(cd, sfir_addr);
  712. set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
  713. sfec_addr = (i << 24) | (0x300 + 8 * j);
  714. sfec = __genwqe_readq(cd, sfec_addr);
  715. set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
  716. }
  717. }
  718. /* fill with invalid data until end */
  719. for (i = idx; i < max_regs; i++) {
  720. regs[i].addr = 0xffffffff;
  721. regs[i].val = 0xffffffffffffffffull;
  722. }
  723. return idx;
  724. }
  725. /**
  726. * genwqe_ffdc_buff_size() - Calculates the number of dump registers
  727. */
  728. int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
  729. {
  730. int entries = 0, ring, traps, traces, trace_entries;
  731. u32 eevptr_addr, l_addr, d_len, d_type;
  732. u64 eevptr, val, addr;
  733. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  734. eevptr = __genwqe_readq(cd, eevptr_addr);
  735. if ((eevptr != 0x0) && (eevptr != -1ull)) {
  736. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  737. while (1) {
  738. val = __genwqe_readq(cd, l_addr);
  739. if ((val == 0x0) || (val == -1ull))
  740. break;
  741. /* 38:24 */
  742. d_len = (val & 0x0000007fff000000ull) >> 24;
  743. /* 39 */
  744. d_type = (val & 0x0000008000000000ull) >> 36;
  745. if (d_type) { /* repeat */
  746. entries += d_len;
  747. } else { /* size in bytes! */
  748. entries += d_len >> 3;
  749. }
  750. l_addr += 8;
  751. }
  752. }
  753. for (ring = 0; ring < 8; ring++) {
  754. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  755. val = __genwqe_readq(cd, addr);
  756. if ((val == 0x0ull) || (val == -1ull))
  757. continue;
  758. traps = (val >> 24) & 0xff;
  759. traces = (val >> 16) & 0xff;
  760. trace_entries = val & 0xffff;
  761. entries += traps + (traces * trace_entries);
  762. }
  763. return entries;
  764. }
  765. /**
  766. * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
  767. */
  768. int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
  769. struct genwqe_reg *regs, unsigned int max_regs)
  770. {
  771. int i, traps, traces, trace, trace_entries, trace_entry, ring;
  772. unsigned int idx = 0;
  773. u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
  774. u64 eevptr, e, val, addr;
  775. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  776. eevptr = __genwqe_readq(cd, eevptr_addr);
  777. if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
  778. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  779. while (1) {
  780. e = __genwqe_readq(cd, l_addr);
  781. if ((e == 0x0) || (e == 0xffffffffffffffffull))
  782. break;
  783. d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
  784. d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
  785. d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
  786. d_addr |= GENWQE_UID_OFFS(uid);
  787. if (d_type) {
  788. for (i = 0; i < (int)d_len; i++) {
  789. val = __genwqe_readq(cd, d_addr);
  790. set_reg_idx(cd, regs, &idx, max_regs,
  791. d_addr, i, val);
  792. }
  793. } else {
  794. d_len >>= 3; /* Size in bytes! */
  795. for (i = 0; i < (int)d_len; i++, d_addr += 8) {
  796. val = __genwqe_readq(cd, d_addr);
  797. set_reg_idx(cd, regs, &idx, max_regs,
  798. d_addr, 0, val);
  799. }
  800. }
  801. l_addr += 8;
  802. }
  803. }
  804. /*
  805. * To save time, there are only 6 traces poplulated on Uid=2,
  806. * Ring=1. each with iters=512.
  807. */
  808. for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
  809. 2...7 are ASI rings */
  810. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  811. val = __genwqe_readq(cd, addr);
  812. if ((val == 0x0ull) || (val == -1ull))
  813. continue;
  814. traps = (val >> 24) & 0xff; /* Number of Traps */
  815. traces = (val >> 16) & 0xff; /* Number of Traces */
  816. trace_entries = val & 0xffff; /* Entries per trace */
  817. /* Note: This is a combined loop that dumps both the traps */
  818. /* (for the trace == 0 case) as well as the traces 1 to */
  819. /* 'traces'. */
  820. for (trace = 0; trace <= traces; trace++) {
  821. u32 diag_sel =
  822. GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
  823. addr = (GENWQE_UID_OFFS(uid) |
  824. IO_EXTENDED_DIAG_SELECTOR);
  825. __genwqe_writeq(cd, addr, diag_sel);
  826. for (trace_entry = 0;
  827. trace_entry < (trace ? trace_entries : traps);
  828. trace_entry++) {
  829. addr = (GENWQE_UID_OFFS(uid) |
  830. IO_EXTENDED_DIAG_READ_MBX);
  831. val = __genwqe_readq(cd, addr);
  832. set_reg_idx(cd, regs, &idx, max_regs, addr,
  833. (diag_sel<<16) | trace_entry, val);
  834. }
  835. }
  836. }
  837. return 0;
  838. }
  839. /**
  840. * genwqe_write_vreg() - Write register in virtual window
  841. *
  842. * Note, these registers are only accessible to the PF through the
  843. * VF-window. It is not intended for the VF to access.
  844. */
  845. int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
  846. {
  847. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  848. __genwqe_writeq(cd, reg, val);
  849. return 0;
  850. }
  851. /**
  852. * genwqe_read_vreg() - Read register in virtual window
  853. *
  854. * Note, these registers are only accessible to the PF through the
  855. * VF-window. It is not intended for the VF to access.
  856. */
  857. u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
  858. {
  859. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  860. return __genwqe_readq(cd, reg);
  861. }
  862. /**
  863. * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
  864. *
  865. * Note: From a design perspective it turned out to be a bad idea to
  866. * use codes here to specifiy the frequency/speed values. An old
  867. * driver cannot understand new codes and is therefore always a
  868. * problem. Better is to measure out the value or put the
  869. * speed/frequency directly into a register which is always a valid
  870. * value for old as well as for new software.
  871. *
  872. * Return: Card clock in MHz
  873. */
  874. int genwqe_base_clock_frequency(struct genwqe_dev *cd)
  875. {
  876. u16 speed; /* MHz MHz MHz MHz */
  877. static const int speed_grade[] = { 250, 200, 166, 175 };
  878. speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
  879. if (speed >= ARRAY_SIZE(speed_grade))
  880. return 0; /* illegal value */
  881. return speed_grade[speed];
  882. }
  883. /**
  884. * genwqe_stop_traps() - Stop traps
  885. *
  886. * Before reading out the analysis data, we need to stop the traps.
  887. */
  888. void genwqe_stop_traps(struct genwqe_dev *cd)
  889. {
  890. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
  891. }
  892. /**
  893. * genwqe_start_traps() - Start traps
  894. *
  895. * After having read the data, we can/must enable the traps again.
  896. */
  897. void genwqe_start_traps(struct genwqe_dev *cd)
  898. {
  899. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
  900. if (genwqe_need_err_masking(cd))
  901. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  902. }