rmi_f12.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /*
  2. * Copyright (c) 2012-2016 Synaptics Incorporated
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. */
  8. #include <linux/input.h>
  9. #include <linux/input/mt.h>
  10. #include <linux/rmi.h>
  11. #include "rmi_driver.h"
  12. #include "rmi_2d_sensor.h"
  13. enum rmi_f12_object_type {
  14. RMI_F12_OBJECT_NONE = 0x00,
  15. RMI_F12_OBJECT_FINGER = 0x01,
  16. RMI_F12_OBJECT_STYLUS = 0x02,
  17. RMI_F12_OBJECT_PALM = 0x03,
  18. RMI_F12_OBJECT_UNCLASSIFIED = 0x04,
  19. RMI_F12_OBJECT_GLOVED_FINGER = 0x06,
  20. RMI_F12_OBJECT_NARROW_OBJECT = 0x07,
  21. RMI_F12_OBJECT_HAND_EDGE = 0x08,
  22. RMI_F12_OBJECT_COVER = 0x0A,
  23. RMI_F12_OBJECT_STYLUS_2 = 0x0B,
  24. RMI_F12_OBJECT_ERASER = 0x0C,
  25. RMI_F12_OBJECT_SMALL_OBJECT = 0x0D,
  26. };
  27. #define F12_DATA1_BYTES_PER_OBJ 8
  28. struct f12_data {
  29. struct rmi_2d_sensor sensor;
  30. struct rmi_2d_sensor_platform_data sensor_pdata;
  31. bool has_dribble;
  32. u16 data_addr;
  33. struct rmi_register_descriptor query_reg_desc;
  34. struct rmi_register_descriptor control_reg_desc;
  35. struct rmi_register_descriptor data_reg_desc;
  36. /* F12 Data1 describes sensed objects */
  37. const struct rmi_register_desc_item *data1;
  38. u16 data1_offset;
  39. /* F12 Data5 describes finger ACM */
  40. const struct rmi_register_desc_item *data5;
  41. u16 data5_offset;
  42. /* F12 Data5 describes Pen */
  43. const struct rmi_register_desc_item *data6;
  44. u16 data6_offset;
  45. /* F12 Data9 reports relative data */
  46. const struct rmi_register_desc_item *data9;
  47. u16 data9_offset;
  48. const struct rmi_register_desc_item *data15;
  49. u16 data15_offset;
  50. };
  51. static int rmi_f12_read_sensor_tuning(struct f12_data *f12)
  52. {
  53. const struct rmi_register_desc_item *item;
  54. struct rmi_2d_sensor *sensor = &f12->sensor;
  55. struct rmi_function *fn = sensor->fn;
  56. struct rmi_device *rmi_dev = fn->rmi_dev;
  57. int ret;
  58. int offset;
  59. u8 buf[15];
  60. int pitch_x = 0;
  61. int pitch_y = 0;
  62. int rx_receivers = 0;
  63. int tx_receivers = 0;
  64. int sensor_flags = 0;
  65. item = rmi_get_register_desc_item(&f12->control_reg_desc, 8);
  66. if (!item) {
  67. dev_err(&fn->dev,
  68. "F12 does not have the sensor tuning control register\n");
  69. return -ENODEV;
  70. }
  71. offset = rmi_register_desc_calc_reg_offset(&f12->control_reg_desc, 8);
  72. if (item->reg_size > sizeof(buf)) {
  73. dev_err(&fn->dev,
  74. "F12 control8 should be no bigger than %zd bytes, not: %ld\n",
  75. sizeof(buf), item->reg_size);
  76. return -ENODEV;
  77. }
  78. ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr + offset, buf,
  79. item->reg_size);
  80. if (ret)
  81. return ret;
  82. offset = 0;
  83. if (rmi_register_desc_has_subpacket(item, 0)) {
  84. sensor->max_x = (buf[offset + 1] << 8) | buf[offset];
  85. sensor->max_y = (buf[offset + 3] << 8) | buf[offset + 2];
  86. offset += 4;
  87. }
  88. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: max_x: %d max_y: %d\n", __func__,
  89. sensor->max_x, sensor->max_y);
  90. if (rmi_register_desc_has_subpacket(item, 1)) {
  91. pitch_x = (buf[offset + 1] << 8) | buf[offset];
  92. pitch_y = (buf[offset + 3] << 8) | buf[offset + 2];
  93. offset += 4;
  94. }
  95. if (rmi_register_desc_has_subpacket(item, 2)) {
  96. /* Units 1/128 sensor pitch */
  97. rmi_dbg(RMI_DEBUG_FN, &fn->dev,
  98. "%s: Inactive Border xlo:%d xhi:%d ylo:%d yhi:%d\n",
  99. __func__,
  100. buf[offset], buf[offset + 1],
  101. buf[offset + 2], buf[offset + 3]);
  102. offset += 4;
  103. }
  104. if (rmi_register_desc_has_subpacket(item, 3)) {
  105. rx_receivers = buf[offset];
  106. tx_receivers = buf[offset + 1];
  107. offset += 2;
  108. }
  109. if (rmi_register_desc_has_subpacket(item, 4)) {
  110. sensor_flags = buf[offset];
  111. offset += 1;
  112. }
  113. sensor->x_mm = (pitch_x * rx_receivers) >> 12;
  114. sensor->y_mm = (pitch_y * tx_receivers) >> 12;
  115. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: x_mm: %d y_mm: %d\n", __func__,
  116. sensor->x_mm, sensor->y_mm);
  117. return 0;
  118. }
  119. static void rmi_f12_process_objects(struct f12_data *f12, u8 *data1, int size)
  120. {
  121. int i;
  122. struct rmi_2d_sensor *sensor = &f12->sensor;
  123. int objects = f12->data1->num_subpackets;
  124. if ((f12->data1->num_subpackets * F12_DATA1_BYTES_PER_OBJ) > size)
  125. objects = size / F12_DATA1_BYTES_PER_OBJ;
  126. for (i = 0; i < objects; i++) {
  127. struct rmi_2d_sensor_abs_object *obj = &sensor->objs[i];
  128. obj->type = RMI_2D_OBJECT_NONE;
  129. obj->mt_tool = MT_TOOL_FINGER;
  130. switch (data1[0]) {
  131. case RMI_F12_OBJECT_FINGER:
  132. obj->type = RMI_2D_OBJECT_FINGER;
  133. break;
  134. case RMI_F12_OBJECT_STYLUS:
  135. obj->type = RMI_2D_OBJECT_STYLUS;
  136. obj->mt_tool = MT_TOOL_PEN;
  137. break;
  138. case RMI_F12_OBJECT_PALM:
  139. obj->type = RMI_2D_OBJECT_PALM;
  140. obj->mt_tool = MT_TOOL_PALM;
  141. break;
  142. case RMI_F12_OBJECT_UNCLASSIFIED:
  143. obj->type = RMI_2D_OBJECT_UNCLASSIFIED;
  144. break;
  145. }
  146. obj->x = (data1[2] << 8) | data1[1];
  147. obj->y = (data1[4] << 8) | data1[3];
  148. obj->z = data1[5];
  149. obj->wx = data1[6];
  150. obj->wy = data1[7];
  151. rmi_2d_sensor_abs_process(sensor, obj, i);
  152. data1 += F12_DATA1_BYTES_PER_OBJ;
  153. }
  154. if (sensor->kernel_tracking)
  155. input_mt_assign_slots(sensor->input,
  156. sensor->tracking_slots,
  157. sensor->tracking_pos,
  158. sensor->nbr_fingers,
  159. sensor->dmax);
  160. for (i = 0; i < objects; i++)
  161. rmi_2d_sensor_abs_report(sensor, &sensor->objs[i], i);
  162. }
  163. static irqreturn_t rmi_f12_attention(int irq, void *ctx)
  164. {
  165. int retval;
  166. struct rmi_function *fn = ctx;
  167. struct rmi_device *rmi_dev = fn->rmi_dev;
  168. struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
  169. struct f12_data *f12 = dev_get_drvdata(&fn->dev);
  170. struct rmi_2d_sensor *sensor = &f12->sensor;
  171. int valid_bytes = sensor->pkt_size;
  172. if (drvdata->attn_data.data) {
  173. if (sensor->attn_size > drvdata->attn_data.size)
  174. valid_bytes = drvdata->attn_data.size;
  175. else
  176. valid_bytes = sensor->attn_size;
  177. memcpy(sensor->data_pkt, drvdata->attn_data.data,
  178. valid_bytes);
  179. drvdata->attn_data.data += sensor->attn_size;
  180. drvdata->attn_data.size -= sensor->attn_size;
  181. } else {
  182. retval = rmi_read_block(rmi_dev, f12->data_addr,
  183. sensor->data_pkt, sensor->pkt_size);
  184. if (retval < 0) {
  185. dev_err(&fn->dev, "Failed to read object data. Code: %d.\n",
  186. retval);
  187. return IRQ_RETVAL(retval);
  188. }
  189. }
  190. if (f12->data1)
  191. rmi_f12_process_objects(f12,
  192. &sensor->data_pkt[f12->data1_offset], valid_bytes);
  193. input_mt_sync_frame(sensor->input);
  194. return IRQ_HANDLED;
  195. }
  196. static int rmi_f12_write_control_regs(struct rmi_function *fn)
  197. {
  198. int ret;
  199. const struct rmi_register_desc_item *item;
  200. struct rmi_device *rmi_dev = fn->rmi_dev;
  201. struct f12_data *f12 = dev_get_drvdata(&fn->dev);
  202. int control_size;
  203. char buf[3];
  204. u16 control_offset = 0;
  205. u8 subpacket_offset = 0;
  206. if (f12->has_dribble
  207. && (f12->sensor.dribble != RMI_REG_STATE_DEFAULT)) {
  208. item = rmi_get_register_desc_item(&f12->control_reg_desc, 20);
  209. if (item) {
  210. control_offset = rmi_register_desc_calc_reg_offset(
  211. &f12->control_reg_desc, 20);
  212. /*
  213. * The byte containing the EnableDribble bit will be
  214. * in either byte 0 or byte 2 of control 20. Depending
  215. * on the existence of subpacket 0. If control 20 is
  216. * larger then 3 bytes, just read the first 3.
  217. */
  218. control_size = min(item->reg_size, 3UL);
  219. ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr
  220. + control_offset, buf, control_size);
  221. if (ret)
  222. return ret;
  223. if (rmi_register_desc_has_subpacket(item, 0))
  224. subpacket_offset += 1;
  225. switch (f12->sensor.dribble) {
  226. case RMI_REG_STATE_OFF:
  227. buf[subpacket_offset] &= ~BIT(2);
  228. break;
  229. case RMI_REG_STATE_ON:
  230. buf[subpacket_offset] |= BIT(2);
  231. break;
  232. case RMI_REG_STATE_DEFAULT:
  233. default:
  234. break;
  235. }
  236. ret = rmi_write_block(rmi_dev,
  237. fn->fd.control_base_addr + control_offset,
  238. buf, control_size);
  239. if (ret)
  240. return ret;
  241. }
  242. }
  243. return 0;
  244. }
  245. static int rmi_f12_config(struct rmi_function *fn)
  246. {
  247. struct rmi_driver *drv = fn->rmi_dev->driver;
  248. int ret;
  249. drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
  250. ret = rmi_f12_write_control_regs(fn);
  251. if (ret)
  252. dev_warn(&fn->dev,
  253. "Failed to write F12 control registers: %d\n", ret);
  254. return 0;
  255. }
  256. static int rmi_f12_probe(struct rmi_function *fn)
  257. {
  258. struct f12_data *f12;
  259. int ret;
  260. struct rmi_device *rmi_dev = fn->rmi_dev;
  261. char buf;
  262. u16 query_addr = fn->fd.query_base_addr;
  263. const struct rmi_register_desc_item *item;
  264. struct rmi_2d_sensor *sensor;
  265. struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
  266. struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
  267. u16 data_offset = 0;
  268. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s\n", __func__);
  269. ret = rmi_read(fn->rmi_dev, query_addr, &buf);
  270. if (ret < 0) {
  271. dev_err(&fn->dev, "Failed to read general info register: %d\n",
  272. ret);
  273. return -ENODEV;
  274. }
  275. ++query_addr;
  276. if (!(buf & BIT(0))) {
  277. dev_err(&fn->dev,
  278. "Behavior of F12 without register descriptors is undefined.\n");
  279. return -ENODEV;
  280. }
  281. f12 = devm_kzalloc(&fn->dev, sizeof(struct f12_data), GFP_KERNEL);
  282. if (!f12)
  283. return -ENOMEM;
  284. f12->has_dribble = !!(buf & BIT(3));
  285. if (fn->dev.of_node) {
  286. ret = rmi_2d_sensor_of_probe(&fn->dev, &f12->sensor_pdata);
  287. if (ret)
  288. return ret;
  289. } else {
  290. f12->sensor_pdata = pdata->sensor_pdata;
  291. }
  292. ret = rmi_read_register_desc(rmi_dev, query_addr,
  293. &f12->query_reg_desc);
  294. if (ret) {
  295. dev_err(&fn->dev,
  296. "Failed to read the Query Register Descriptor: %d\n",
  297. ret);
  298. return ret;
  299. }
  300. query_addr += 3;
  301. ret = rmi_read_register_desc(rmi_dev, query_addr,
  302. &f12->control_reg_desc);
  303. if (ret) {
  304. dev_err(&fn->dev,
  305. "Failed to read the Control Register Descriptor: %d\n",
  306. ret);
  307. return ret;
  308. }
  309. query_addr += 3;
  310. ret = rmi_read_register_desc(rmi_dev, query_addr,
  311. &f12->data_reg_desc);
  312. if (ret) {
  313. dev_err(&fn->dev,
  314. "Failed to read the Data Register Descriptor: %d\n",
  315. ret);
  316. return ret;
  317. }
  318. query_addr += 3;
  319. sensor = &f12->sensor;
  320. sensor->fn = fn;
  321. f12->data_addr = fn->fd.data_base_addr;
  322. sensor->pkt_size = rmi_register_desc_calc_size(&f12->data_reg_desc);
  323. sensor->axis_align =
  324. f12->sensor_pdata.axis_align;
  325. sensor->x_mm = f12->sensor_pdata.x_mm;
  326. sensor->y_mm = f12->sensor_pdata.y_mm;
  327. sensor->dribble = f12->sensor_pdata.dribble;
  328. if (sensor->sensor_type == rmi_sensor_default)
  329. sensor->sensor_type =
  330. f12->sensor_pdata.sensor_type;
  331. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: data packet size: %d\n", __func__,
  332. sensor->pkt_size);
  333. sensor->data_pkt = devm_kzalloc(&fn->dev, sensor->pkt_size, GFP_KERNEL);
  334. if (!sensor->data_pkt)
  335. return -ENOMEM;
  336. dev_set_drvdata(&fn->dev, f12);
  337. ret = rmi_f12_read_sensor_tuning(f12);
  338. if (ret)
  339. return ret;
  340. /*
  341. * Figure out what data is contained in the data registers. HID devices
  342. * may have registers defined, but their data is not reported in the
  343. * HID attention report. Registers which are not reported in the HID
  344. * attention report check to see if the device is receiving data from
  345. * HID attention reports.
  346. */
  347. item = rmi_get_register_desc_item(&f12->data_reg_desc, 0);
  348. if (item && !drvdata->attn_data.data)
  349. data_offset += item->reg_size;
  350. item = rmi_get_register_desc_item(&f12->data_reg_desc, 1);
  351. if (item) {
  352. f12->data1 = item;
  353. f12->data1_offset = data_offset;
  354. data_offset += item->reg_size;
  355. sensor->nbr_fingers = item->num_subpackets;
  356. sensor->report_abs = 1;
  357. sensor->attn_size += item->reg_size;
  358. }
  359. item = rmi_get_register_desc_item(&f12->data_reg_desc, 2);
  360. if (item && !drvdata->attn_data.data)
  361. data_offset += item->reg_size;
  362. item = rmi_get_register_desc_item(&f12->data_reg_desc, 3);
  363. if (item && !drvdata->attn_data.data)
  364. data_offset += item->reg_size;
  365. item = rmi_get_register_desc_item(&f12->data_reg_desc, 4);
  366. if (item && !drvdata->attn_data.data)
  367. data_offset += item->reg_size;
  368. item = rmi_get_register_desc_item(&f12->data_reg_desc, 5);
  369. if (item) {
  370. f12->data5 = item;
  371. f12->data5_offset = data_offset;
  372. data_offset += item->reg_size;
  373. sensor->attn_size += item->reg_size;
  374. }
  375. item = rmi_get_register_desc_item(&f12->data_reg_desc, 6);
  376. if (item && !drvdata->attn_data.data) {
  377. f12->data6 = item;
  378. f12->data6_offset = data_offset;
  379. data_offset += item->reg_size;
  380. }
  381. item = rmi_get_register_desc_item(&f12->data_reg_desc, 7);
  382. if (item && !drvdata->attn_data.data)
  383. data_offset += item->reg_size;
  384. item = rmi_get_register_desc_item(&f12->data_reg_desc, 8);
  385. if (item && !drvdata->attn_data.data)
  386. data_offset += item->reg_size;
  387. item = rmi_get_register_desc_item(&f12->data_reg_desc, 9);
  388. if (item && !drvdata->attn_data.data) {
  389. f12->data9 = item;
  390. f12->data9_offset = data_offset;
  391. data_offset += item->reg_size;
  392. if (!sensor->report_abs)
  393. sensor->report_rel = 1;
  394. }
  395. item = rmi_get_register_desc_item(&f12->data_reg_desc, 10);
  396. if (item && !drvdata->attn_data.data)
  397. data_offset += item->reg_size;
  398. item = rmi_get_register_desc_item(&f12->data_reg_desc, 11);
  399. if (item && !drvdata->attn_data.data)
  400. data_offset += item->reg_size;
  401. item = rmi_get_register_desc_item(&f12->data_reg_desc, 12);
  402. if (item && !drvdata->attn_data.data)
  403. data_offset += item->reg_size;
  404. item = rmi_get_register_desc_item(&f12->data_reg_desc, 13);
  405. if (item && !drvdata->attn_data.data)
  406. data_offset += item->reg_size;
  407. item = rmi_get_register_desc_item(&f12->data_reg_desc, 14);
  408. if (item && !drvdata->attn_data.data)
  409. data_offset += item->reg_size;
  410. item = rmi_get_register_desc_item(&f12->data_reg_desc, 15);
  411. if (item && !drvdata->attn_data.data) {
  412. f12->data15 = item;
  413. f12->data15_offset = data_offset;
  414. data_offset += item->reg_size;
  415. }
  416. /* allocate the in-kernel tracking buffers */
  417. sensor->tracking_pos = devm_kcalloc(&fn->dev,
  418. sensor->nbr_fingers, sizeof(struct input_mt_pos),
  419. GFP_KERNEL);
  420. sensor->tracking_slots = devm_kcalloc(&fn->dev,
  421. sensor->nbr_fingers, sizeof(int), GFP_KERNEL);
  422. sensor->objs = devm_kcalloc(&fn->dev,
  423. sensor->nbr_fingers,
  424. sizeof(struct rmi_2d_sensor_abs_object),
  425. GFP_KERNEL);
  426. if (!sensor->tracking_pos || !sensor->tracking_slots || !sensor->objs)
  427. return -ENOMEM;
  428. ret = rmi_2d_sensor_configure_input(fn, sensor);
  429. if (ret)
  430. return ret;
  431. return 0;
  432. }
  433. struct rmi_function_handler rmi_f12_handler = {
  434. .driver = {
  435. .name = "rmi4_f12",
  436. },
  437. .func = 0x12,
  438. .probe = rmi_f12_probe,
  439. .config = rmi_f12_config,
  440. .attention = rmi_f12_attention,
  441. };