odp.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248
  1. /*
  2. * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <rdma/ib_umem.h>
  33. #include <rdma/ib_umem_odp.h>
  34. #include <linux/kernel.h>
  35. #include "mlx5_ib.h"
  36. #include "cmd.h"
  37. #define MAX_PREFETCH_LEN (4*1024*1024U)
  38. /* Timeout in ms to wait for an active mmu notifier to complete when handling
  39. * a pagefault. */
  40. #define MMU_NOTIFIER_TIMEOUT 1000
  41. #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
  42. #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
  43. #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
  44. #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
  45. #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
  46. #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
  47. static u64 mlx5_imr_ksm_entries;
  48. static int check_parent(struct ib_umem_odp *odp,
  49. struct mlx5_ib_mr *parent)
  50. {
  51. struct mlx5_ib_mr *mr = odp->private;
  52. return mr && mr->parent == parent && !odp->dying;
  53. }
  54. struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
  55. {
  56. if (WARN_ON(!mr || !mr->umem || !mr->umem->is_odp))
  57. return NULL;
  58. return to_ib_umem_odp(mr->umem)->per_mm;
  59. }
  60. static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
  61. {
  62. struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
  63. struct ib_ucontext_per_mm *per_mm = odp->per_mm;
  64. struct rb_node *rb;
  65. down_read(&per_mm->umem_rwsem);
  66. while (1) {
  67. rb = rb_next(&odp->interval_tree.rb);
  68. if (!rb)
  69. goto not_found;
  70. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  71. if (check_parent(odp, parent))
  72. goto end;
  73. }
  74. not_found:
  75. odp = NULL;
  76. end:
  77. up_read(&per_mm->umem_rwsem);
  78. return odp;
  79. }
  80. static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
  81. struct mlx5_ib_mr *parent)
  82. {
  83. struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
  84. struct ib_umem_odp *odp;
  85. struct rb_node *rb;
  86. down_read(&per_mm->umem_rwsem);
  87. odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
  88. if (!odp)
  89. goto end;
  90. while (1) {
  91. if (check_parent(odp, parent))
  92. goto end;
  93. rb = rb_next(&odp->interval_tree.rb);
  94. if (!rb)
  95. goto not_found;
  96. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  97. if (ib_umem_start(&odp->umem) > start + length)
  98. goto not_found;
  99. }
  100. not_found:
  101. odp = NULL;
  102. end:
  103. up_read(&per_mm->umem_rwsem);
  104. return odp;
  105. }
  106. void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
  107. size_t nentries, struct mlx5_ib_mr *mr, int flags)
  108. {
  109. struct ib_pd *pd = mr->ibmr.pd;
  110. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  111. struct ib_umem_odp *odp;
  112. unsigned long va;
  113. int i;
  114. if (flags & MLX5_IB_UPD_XLT_ZAP) {
  115. for (i = 0; i < nentries; i++, pklm++) {
  116. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  117. pklm->key = cpu_to_be32(dev->null_mkey);
  118. pklm->va = 0;
  119. }
  120. return;
  121. }
  122. odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
  123. nentries * MLX5_IMR_MTT_SIZE, mr);
  124. for (i = 0; i < nentries; i++, pklm++) {
  125. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  126. va = (offset + i) * MLX5_IMR_MTT_SIZE;
  127. if (odp && odp->umem.address == va) {
  128. struct mlx5_ib_mr *mtt = odp->private;
  129. pklm->key = cpu_to_be32(mtt->ibmr.lkey);
  130. odp = odp_next(odp);
  131. } else {
  132. pklm->key = cpu_to_be32(dev->null_mkey);
  133. }
  134. mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
  135. i, va, be32_to_cpu(pklm->key));
  136. }
  137. }
  138. static void mr_leaf_free_action(struct work_struct *work)
  139. {
  140. struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
  141. int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT;
  142. struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
  143. mr->parent = NULL;
  144. synchronize_srcu(&mr->dev->mr_srcu);
  145. ib_umem_release(&odp->umem);
  146. if (imr->live)
  147. mlx5_ib_update_xlt(imr, idx, 1, 0,
  148. MLX5_IB_UPD_XLT_INDIRECT |
  149. MLX5_IB_UPD_XLT_ATOMIC);
  150. mlx5_mr_cache_free(mr->dev, mr);
  151. if (atomic_dec_and_test(&imr->num_leaf_free))
  152. wake_up(&imr->q_leaf_free);
  153. }
  154. void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
  155. unsigned long end)
  156. {
  157. struct mlx5_ib_mr *mr;
  158. const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
  159. sizeof(struct mlx5_mtt)) - 1;
  160. u64 idx = 0, blk_start_idx = 0;
  161. struct ib_umem *umem;
  162. int in_block = 0;
  163. u64 addr;
  164. if (!umem_odp) {
  165. pr_err("invalidation called on NULL umem or non-ODP umem\n");
  166. return;
  167. }
  168. umem = &umem_odp->umem;
  169. mr = umem_odp->private;
  170. if (!mr || !mr->ibmr.pd)
  171. return;
  172. start = max_t(u64, ib_umem_start(umem), start);
  173. end = min_t(u64, ib_umem_end(umem), end);
  174. /*
  175. * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
  176. * while we are doing the invalidation, no page fault will attempt to
  177. * overwrite the same MTTs. Concurent invalidations might race us,
  178. * but they will write 0s as well, so no difference in the end result.
  179. */
  180. for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
  181. idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
  182. /*
  183. * Strive to write the MTTs in chunks, but avoid overwriting
  184. * non-existing MTTs. The huristic here can be improved to
  185. * estimate the cost of another UMR vs. the cost of bigger
  186. * UMR.
  187. */
  188. if (umem_odp->dma_list[idx] &
  189. (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
  190. if (!in_block) {
  191. blk_start_idx = idx;
  192. in_block = 1;
  193. }
  194. } else {
  195. u64 umr_offset = idx & umr_block_mask;
  196. if (in_block && umr_offset == 0) {
  197. mlx5_ib_update_xlt(mr, blk_start_idx,
  198. idx - blk_start_idx, 0,
  199. MLX5_IB_UPD_XLT_ZAP |
  200. MLX5_IB_UPD_XLT_ATOMIC);
  201. in_block = 0;
  202. }
  203. }
  204. }
  205. if (in_block)
  206. mlx5_ib_update_xlt(mr, blk_start_idx,
  207. idx - blk_start_idx + 1, 0,
  208. MLX5_IB_UPD_XLT_ZAP |
  209. MLX5_IB_UPD_XLT_ATOMIC);
  210. /*
  211. * We are now sure that the device will not access the
  212. * memory. We can safely unmap it, and mark it as dirty if
  213. * needed.
  214. */
  215. ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
  216. if (unlikely(!umem->npages && mr->parent &&
  217. !umem_odp->dying)) {
  218. WRITE_ONCE(umem_odp->dying, 1);
  219. atomic_inc(&mr->parent->num_leaf_free);
  220. schedule_work(&umem_odp->work);
  221. }
  222. }
  223. void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
  224. {
  225. struct ib_odp_caps *caps = &dev->odp_caps;
  226. memset(caps, 0, sizeof(*caps));
  227. if (!MLX5_CAP_GEN(dev->mdev, pg))
  228. return;
  229. caps->general_caps = IB_ODP_SUPPORT;
  230. if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  231. dev->odp_max_size = U64_MAX;
  232. else
  233. dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
  234. if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
  235. caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
  236. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
  237. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
  238. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
  239. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
  240. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
  241. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
  242. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
  243. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
  244. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
  245. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
  246. if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
  247. MLX5_CAP_GEN(dev->mdev, null_mkey) &&
  248. MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  249. caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
  250. return;
  251. }
  252. static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
  253. struct mlx5_pagefault *pfault,
  254. int error)
  255. {
  256. int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
  257. pfault->wqe.wq_num : pfault->token;
  258. int ret = mlx5_core_page_fault_resume(dev->mdev,
  259. pfault->token,
  260. wq_num,
  261. pfault->type,
  262. error);
  263. if (ret)
  264. mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
  265. wq_num);
  266. }
  267. static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
  268. struct ib_umem *umem,
  269. bool ksm, int access_flags)
  270. {
  271. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  272. struct mlx5_ib_mr *mr;
  273. int err;
  274. mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
  275. MLX5_IMR_MTT_CACHE_ENTRY);
  276. if (IS_ERR(mr))
  277. return mr;
  278. mr->ibmr.pd = pd;
  279. mr->dev = dev;
  280. mr->access_flags = access_flags;
  281. mr->mmkey.iova = 0;
  282. mr->umem = umem;
  283. if (ksm) {
  284. err = mlx5_ib_update_xlt(mr, 0,
  285. mlx5_imr_ksm_entries,
  286. MLX5_KSM_PAGE_SHIFT,
  287. MLX5_IB_UPD_XLT_INDIRECT |
  288. MLX5_IB_UPD_XLT_ZAP |
  289. MLX5_IB_UPD_XLT_ENABLE);
  290. } else {
  291. err = mlx5_ib_update_xlt(mr, 0,
  292. MLX5_IMR_MTT_ENTRIES,
  293. PAGE_SHIFT,
  294. MLX5_IB_UPD_XLT_ZAP |
  295. MLX5_IB_UPD_XLT_ENABLE |
  296. MLX5_IB_UPD_XLT_ATOMIC);
  297. }
  298. if (err)
  299. goto fail;
  300. mr->ibmr.lkey = mr->mmkey.key;
  301. mr->ibmr.rkey = mr->mmkey.key;
  302. mr->live = 1;
  303. mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
  304. mr->mmkey.key, dev->mdev, mr);
  305. return mr;
  306. fail:
  307. mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
  308. mlx5_mr_cache_free(dev, mr);
  309. return ERR_PTR(err);
  310. }
  311. static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
  312. u64 io_virt, size_t bcnt)
  313. {
  314. struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
  315. struct ib_umem_odp *odp, *result = NULL;
  316. struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
  317. u64 addr = io_virt & MLX5_IMR_MTT_MASK;
  318. int nentries = 0, start_idx = 0, ret;
  319. struct mlx5_ib_mr *mtt;
  320. mutex_lock(&odp_mr->umem_mutex);
  321. odp = odp_lookup(addr, 1, mr);
  322. mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
  323. io_virt, bcnt, addr, odp);
  324. next_mr:
  325. if (likely(odp)) {
  326. if (nentries)
  327. nentries++;
  328. } else {
  329. odp = ib_alloc_odp_umem(odp_mr->per_mm, addr,
  330. MLX5_IMR_MTT_SIZE);
  331. if (IS_ERR(odp)) {
  332. mutex_unlock(&odp_mr->umem_mutex);
  333. return ERR_CAST(odp);
  334. }
  335. mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
  336. mr->access_flags);
  337. if (IS_ERR(mtt)) {
  338. mutex_unlock(&odp_mr->umem_mutex);
  339. ib_umem_release(&odp->umem);
  340. return ERR_CAST(mtt);
  341. }
  342. odp->private = mtt;
  343. mtt->umem = &odp->umem;
  344. mtt->mmkey.iova = addr;
  345. mtt->parent = mr;
  346. INIT_WORK(&odp->work, mr_leaf_free_action);
  347. if (!nentries)
  348. start_idx = addr >> MLX5_IMR_MTT_SHIFT;
  349. nentries++;
  350. }
  351. /* Return first odp if region not covered by single one */
  352. if (likely(!result))
  353. result = odp;
  354. addr += MLX5_IMR_MTT_SIZE;
  355. if (unlikely(addr < io_virt + bcnt)) {
  356. odp = odp_next(odp);
  357. if (odp && odp->umem.address != addr)
  358. odp = NULL;
  359. goto next_mr;
  360. }
  361. if (unlikely(nentries)) {
  362. ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
  363. MLX5_IB_UPD_XLT_INDIRECT |
  364. MLX5_IB_UPD_XLT_ATOMIC);
  365. if (ret) {
  366. mlx5_ib_err(dev, "Failed to update PAS\n");
  367. result = ERR_PTR(ret);
  368. }
  369. }
  370. mutex_unlock(&odp_mr->umem_mutex);
  371. return result;
  372. }
  373. struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
  374. int access_flags)
  375. {
  376. struct ib_ucontext *ctx = pd->ibpd.uobject->context;
  377. struct mlx5_ib_mr *imr;
  378. struct ib_umem *umem;
  379. umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
  380. if (IS_ERR(umem))
  381. return ERR_CAST(umem);
  382. imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
  383. if (IS_ERR(imr)) {
  384. ib_umem_release(umem);
  385. return ERR_CAST(imr);
  386. }
  387. imr->umem = umem;
  388. init_waitqueue_head(&imr->q_leaf_free);
  389. atomic_set(&imr->num_leaf_free, 0);
  390. return imr;
  391. }
  392. static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
  393. void *cookie)
  394. {
  395. struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
  396. struct ib_umem *umem = &umem_odp->umem;
  397. if (mr->parent != imr)
  398. return 0;
  399. ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
  400. ib_umem_end(umem));
  401. if (umem_odp->dying)
  402. return 0;
  403. WRITE_ONCE(umem_odp->dying, 1);
  404. atomic_inc(&imr->num_leaf_free);
  405. schedule_work(&umem_odp->work);
  406. return 0;
  407. }
  408. void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
  409. {
  410. struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
  411. down_read(&per_mm->umem_rwsem);
  412. rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
  413. mr_leaf_free, true, imr);
  414. up_read(&per_mm->umem_rwsem);
  415. wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
  416. }
  417. static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
  418. u64 io_virt, size_t bcnt, u32 *bytes_mapped)
  419. {
  420. int npages = 0, current_seq, page_shift, ret, np;
  421. bool implicit = false;
  422. struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
  423. u64 access_mask = ODP_READ_ALLOWED_BIT;
  424. u64 start_idx, page_mask;
  425. struct ib_umem_odp *odp;
  426. size_t size;
  427. if (!odp_mr->page_list) {
  428. odp = implicit_mr_get_data(mr, io_virt, bcnt);
  429. if (IS_ERR(odp))
  430. return PTR_ERR(odp);
  431. mr = odp->private;
  432. implicit = true;
  433. } else {
  434. odp = odp_mr;
  435. }
  436. next_mr:
  437. size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt);
  438. page_shift = mr->umem->page_shift;
  439. page_mask = ~(BIT(page_shift) - 1);
  440. start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
  441. if (mr->umem->writable)
  442. access_mask |= ODP_WRITE_ALLOWED_BIT;
  443. current_seq = READ_ONCE(odp->notifiers_seq);
  444. /*
  445. * Ensure the sequence number is valid for some time before we call
  446. * gup.
  447. */
  448. smp_rmb();
  449. ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
  450. access_mask, current_seq);
  451. if (ret < 0)
  452. goto out;
  453. np = ret;
  454. mutex_lock(&odp->umem_mutex);
  455. if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
  456. current_seq)) {
  457. /*
  458. * No need to check whether the MTTs really belong to
  459. * this MR, since ib_umem_odp_map_dma_pages already
  460. * checks this.
  461. */
  462. ret = mlx5_ib_update_xlt(mr, start_idx, np,
  463. page_shift, MLX5_IB_UPD_XLT_ATOMIC);
  464. } else {
  465. ret = -EAGAIN;
  466. }
  467. mutex_unlock(&odp->umem_mutex);
  468. if (ret < 0) {
  469. if (ret != -EAGAIN)
  470. mlx5_ib_err(dev, "Failed to update mkey page tables\n");
  471. goto out;
  472. }
  473. if (bytes_mapped) {
  474. u32 new_mappings = (np << page_shift) -
  475. (io_virt - round_down(io_virt, 1 << page_shift));
  476. *bytes_mapped += min_t(u32, new_mappings, size);
  477. }
  478. npages += np << (page_shift - PAGE_SHIFT);
  479. bcnt -= size;
  480. if (unlikely(bcnt)) {
  481. struct ib_umem_odp *next;
  482. io_virt += size;
  483. next = odp_next(odp);
  484. if (unlikely(!next || next->umem.address != io_virt)) {
  485. mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
  486. io_virt, next);
  487. return -EAGAIN;
  488. }
  489. odp = next;
  490. mr = odp->private;
  491. goto next_mr;
  492. }
  493. return npages;
  494. out:
  495. if (ret == -EAGAIN) {
  496. if (implicit || !odp->dying) {
  497. unsigned long timeout =
  498. msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
  499. if (!wait_for_completion_timeout(
  500. &odp->notifier_completion,
  501. timeout)) {
  502. mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
  503. current_seq, odp->notifiers_seq);
  504. }
  505. } else {
  506. /* The MR is being killed, kill the QP as well. */
  507. ret = -EFAULT;
  508. }
  509. }
  510. return ret;
  511. }
  512. struct pf_frame {
  513. struct pf_frame *next;
  514. u32 key;
  515. u64 io_virt;
  516. size_t bcnt;
  517. int depth;
  518. };
  519. /*
  520. * Handle a single data segment in a page-fault WQE or RDMA region.
  521. *
  522. * Returns number of OS pages retrieved on success. The caller may continue to
  523. * the next data segment.
  524. * Can return the following error codes:
  525. * -EAGAIN to designate a temporary error. The caller will abort handling the
  526. * page fault and resolve it.
  527. * -EFAULT when there's an error mapping the requested pages. The caller will
  528. * abort the page fault handling.
  529. */
  530. static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
  531. u32 key, u64 io_virt, size_t bcnt,
  532. u32 *bytes_committed,
  533. u32 *bytes_mapped)
  534. {
  535. int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
  536. struct pf_frame *head = NULL, *frame;
  537. struct mlx5_core_mkey *mmkey;
  538. struct mlx5_ib_mw *mw;
  539. struct mlx5_ib_mr *mr;
  540. struct mlx5_klm *pklm;
  541. u32 *out = NULL;
  542. size_t offset;
  543. srcu_key = srcu_read_lock(&dev->mr_srcu);
  544. io_virt += *bytes_committed;
  545. bcnt -= *bytes_committed;
  546. next_mr:
  547. mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
  548. if (!mmkey || mmkey->key != key) {
  549. mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
  550. ret = -EFAULT;
  551. goto srcu_unlock;
  552. }
  553. switch (mmkey->type) {
  554. case MLX5_MKEY_MR:
  555. mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
  556. if (!mr->live || !mr->ibmr.pd) {
  557. mlx5_ib_dbg(dev, "got dead MR\n");
  558. ret = -EFAULT;
  559. goto srcu_unlock;
  560. }
  561. if (!mr->umem->is_odp) {
  562. mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
  563. key);
  564. if (bytes_mapped)
  565. *bytes_mapped += bcnt;
  566. ret = 0;
  567. goto srcu_unlock;
  568. }
  569. ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
  570. if (ret < 0)
  571. goto srcu_unlock;
  572. npages += ret;
  573. ret = 0;
  574. break;
  575. case MLX5_MKEY_MW:
  576. mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
  577. if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
  578. mlx5_ib_dbg(dev, "indirection level exceeded\n");
  579. ret = -EFAULT;
  580. goto srcu_unlock;
  581. }
  582. outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
  583. sizeof(*pklm) * (mw->ndescs - 2);
  584. if (outlen > cur_outlen) {
  585. kfree(out);
  586. out = kzalloc(outlen, GFP_KERNEL);
  587. if (!out) {
  588. ret = -ENOMEM;
  589. goto srcu_unlock;
  590. }
  591. cur_outlen = outlen;
  592. }
  593. pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
  594. bsf0_klm0_pas_mtt0_1);
  595. ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
  596. if (ret)
  597. goto srcu_unlock;
  598. offset = io_virt - MLX5_GET64(query_mkey_out, out,
  599. memory_key_mkey_entry.start_addr);
  600. for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
  601. if (offset >= be32_to_cpu(pklm->bcount)) {
  602. offset -= be32_to_cpu(pklm->bcount);
  603. continue;
  604. }
  605. frame = kzalloc(sizeof(*frame), GFP_KERNEL);
  606. if (!frame) {
  607. ret = -ENOMEM;
  608. goto srcu_unlock;
  609. }
  610. frame->key = be32_to_cpu(pklm->key);
  611. frame->io_virt = be64_to_cpu(pklm->va) + offset;
  612. frame->bcnt = min_t(size_t, bcnt,
  613. be32_to_cpu(pklm->bcount) - offset);
  614. frame->depth = depth + 1;
  615. frame->next = head;
  616. head = frame;
  617. bcnt -= frame->bcnt;
  618. offset = 0;
  619. }
  620. break;
  621. default:
  622. mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
  623. ret = -EFAULT;
  624. goto srcu_unlock;
  625. }
  626. if (head) {
  627. frame = head;
  628. head = frame->next;
  629. key = frame->key;
  630. io_virt = frame->io_virt;
  631. bcnt = frame->bcnt;
  632. depth = frame->depth;
  633. kfree(frame);
  634. goto next_mr;
  635. }
  636. srcu_unlock:
  637. while (head) {
  638. frame = head;
  639. head = frame->next;
  640. kfree(frame);
  641. }
  642. kfree(out);
  643. srcu_read_unlock(&dev->mr_srcu, srcu_key);
  644. *bytes_committed = 0;
  645. return ret ? ret : npages;
  646. }
  647. /**
  648. * Parse a series of data segments for page fault handling.
  649. *
  650. * @qp the QP on which the fault occurred.
  651. * @pfault contains page fault information.
  652. * @wqe points at the first data segment in the WQE.
  653. * @wqe_end points after the end of the WQE.
  654. * @bytes_mapped receives the number of bytes that the function was able to
  655. * map. This allows the caller to decide intelligently whether
  656. * enough memory was mapped to resolve the page fault
  657. * successfully (e.g. enough for the next MTU, or the entire
  658. * WQE).
  659. * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
  660. * the committed bytes).
  661. *
  662. * Returns the number of pages loaded if positive, zero for an empty WQE, or a
  663. * negative error code.
  664. */
  665. static int pagefault_data_segments(struct mlx5_ib_dev *dev,
  666. struct mlx5_pagefault *pfault,
  667. struct mlx5_ib_qp *qp, void *wqe,
  668. void *wqe_end, u32 *bytes_mapped,
  669. u32 *total_wqe_bytes, int receive_queue)
  670. {
  671. int ret = 0, npages = 0;
  672. u64 io_virt;
  673. u32 key;
  674. u32 byte_count;
  675. size_t bcnt;
  676. int inline_segment;
  677. /* Skip SRQ next-WQE segment. */
  678. if (receive_queue && qp->ibqp.srq)
  679. wqe += sizeof(struct mlx5_wqe_srq_next_seg);
  680. if (bytes_mapped)
  681. *bytes_mapped = 0;
  682. if (total_wqe_bytes)
  683. *total_wqe_bytes = 0;
  684. while (wqe < wqe_end) {
  685. struct mlx5_wqe_data_seg *dseg = wqe;
  686. io_virt = be64_to_cpu(dseg->addr);
  687. key = be32_to_cpu(dseg->lkey);
  688. byte_count = be32_to_cpu(dseg->byte_count);
  689. inline_segment = !!(byte_count & MLX5_INLINE_SEG);
  690. bcnt = byte_count & ~MLX5_INLINE_SEG;
  691. if (inline_segment) {
  692. bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
  693. wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
  694. 16);
  695. } else {
  696. wqe += sizeof(*dseg);
  697. }
  698. /* receive WQE end of sg list. */
  699. if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
  700. io_virt == 0)
  701. break;
  702. if (!inline_segment && total_wqe_bytes) {
  703. *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
  704. pfault->bytes_committed);
  705. }
  706. /* A zero length data segment designates a length of 2GB. */
  707. if (bcnt == 0)
  708. bcnt = 1U << 31;
  709. if (inline_segment || bcnt <= pfault->bytes_committed) {
  710. pfault->bytes_committed -=
  711. min_t(size_t, bcnt,
  712. pfault->bytes_committed);
  713. continue;
  714. }
  715. ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
  716. &pfault->bytes_committed,
  717. bytes_mapped);
  718. if (ret < 0)
  719. break;
  720. npages += ret;
  721. }
  722. return ret < 0 ? ret : npages;
  723. }
  724. static const u32 mlx5_ib_odp_opcode_cap[] = {
  725. [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
  726. [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
  727. [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
  728. [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
  729. [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
  730. [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
  731. [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
  732. [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
  733. };
  734. /*
  735. * Parse initiator WQE. Advances the wqe pointer to point at the
  736. * scatter-gather list, and set wqe_end to the end of the WQE.
  737. */
  738. static int mlx5_ib_mr_initiator_pfault_handler(
  739. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  740. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  741. {
  742. struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
  743. u16 wqe_index = pfault->wqe.wqe_index;
  744. u32 transport_caps;
  745. struct mlx5_base_av *av;
  746. unsigned ds, opcode;
  747. #if defined(DEBUG)
  748. u32 ctrl_wqe_index, ctrl_qpn;
  749. #endif
  750. u32 qpn = qp->trans_qp.base.mqp.qpn;
  751. ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
  752. if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
  753. mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
  754. ds, wqe_length);
  755. return -EFAULT;
  756. }
  757. if (ds == 0) {
  758. mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
  759. wqe_index, qpn);
  760. return -EFAULT;
  761. }
  762. #if defined(DEBUG)
  763. ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
  764. MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
  765. MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
  766. if (wqe_index != ctrl_wqe_index) {
  767. mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
  768. wqe_index, qpn,
  769. ctrl_wqe_index);
  770. return -EFAULT;
  771. }
  772. ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
  773. MLX5_WQE_CTRL_QPN_SHIFT;
  774. if (qpn != ctrl_qpn) {
  775. mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
  776. wqe_index, qpn,
  777. ctrl_qpn);
  778. return -EFAULT;
  779. }
  780. #endif /* DEBUG */
  781. *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
  782. *wqe += sizeof(*ctrl);
  783. opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
  784. MLX5_WQE_CTRL_OPCODE_MASK;
  785. switch (qp->ibqp.qp_type) {
  786. case IB_QPT_RC:
  787. transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
  788. break;
  789. case IB_QPT_UD:
  790. transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
  791. break;
  792. default:
  793. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
  794. qp->ibqp.qp_type);
  795. return -EFAULT;
  796. }
  797. if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
  798. !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
  799. mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
  800. opcode);
  801. return -EFAULT;
  802. }
  803. if (qp->ibqp.qp_type != IB_QPT_RC) {
  804. av = *wqe;
  805. if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
  806. *wqe += sizeof(struct mlx5_av);
  807. else
  808. *wqe += sizeof(struct mlx5_base_av);
  809. }
  810. switch (opcode) {
  811. case MLX5_OPCODE_RDMA_WRITE:
  812. case MLX5_OPCODE_RDMA_WRITE_IMM:
  813. case MLX5_OPCODE_RDMA_READ:
  814. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  815. break;
  816. case MLX5_OPCODE_ATOMIC_CS:
  817. case MLX5_OPCODE_ATOMIC_FA:
  818. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  819. *wqe += sizeof(struct mlx5_wqe_atomic_seg);
  820. break;
  821. }
  822. return 0;
  823. }
  824. /*
  825. * Parse responder WQE. Advances the wqe pointer to point at the
  826. * scatter-gather list, and set wqe_end to the end of the WQE.
  827. */
  828. static int mlx5_ib_mr_responder_pfault_handler(
  829. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  830. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  831. {
  832. struct mlx5_ib_wq *wq = &qp->rq;
  833. int wqe_size = 1 << wq->wqe_shift;
  834. if (qp->ibqp.srq) {
  835. mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
  836. return -EFAULT;
  837. }
  838. if (qp->wq_sig) {
  839. mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
  840. return -EFAULT;
  841. }
  842. if (wqe_size > wqe_length) {
  843. mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
  844. return -EFAULT;
  845. }
  846. switch (qp->ibqp.qp_type) {
  847. case IB_QPT_RC:
  848. if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
  849. IB_ODP_SUPPORT_RECV))
  850. goto invalid_transport_or_opcode;
  851. break;
  852. default:
  853. invalid_transport_or_opcode:
  854. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
  855. qp->ibqp.qp_type);
  856. return -EFAULT;
  857. }
  858. *wqe_end = *wqe + wqe_size;
  859. return 0;
  860. }
  861. static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
  862. u32 wq_num)
  863. {
  864. struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
  865. if (!mqp) {
  866. mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
  867. return NULL;
  868. }
  869. return to_mibqp(mqp);
  870. }
  871. static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
  872. struct mlx5_pagefault *pfault)
  873. {
  874. int ret;
  875. void *wqe, *wqe_end;
  876. u32 bytes_mapped, total_wqe_bytes;
  877. char *buffer = NULL;
  878. int resume_with_error = 1;
  879. u16 wqe_index = pfault->wqe.wqe_index;
  880. int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
  881. struct mlx5_ib_qp *qp;
  882. buffer = (char *)__get_free_page(GFP_KERNEL);
  883. if (!buffer) {
  884. mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
  885. goto resolve_page_fault;
  886. }
  887. qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
  888. if (!qp)
  889. goto resolve_page_fault;
  890. ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
  891. PAGE_SIZE, &qp->trans_qp.base);
  892. if (ret < 0) {
  893. mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
  894. ret, wqe_index, pfault->token);
  895. goto resolve_page_fault;
  896. }
  897. wqe = buffer;
  898. if (requestor)
  899. ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
  900. &wqe_end, ret);
  901. else
  902. ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
  903. &wqe_end, ret);
  904. if (ret < 0)
  905. goto resolve_page_fault;
  906. if (wqe >= wqe_end) {
  907. mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
  908. goto resolve_page_fault;
  909. }
  910. ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
  911. &bytes_mapped, &total_wqe_bytes,
  912. !requestor);
  913. if (ret == -EAGAIN) {
  914. resume_with_error = 0;
  915. goto resolve_page_fault;
  916. } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
  917. goto resolve_page_fault;
  918. }
  919. resume_with_error = 0;
  920. resolve_page_fault:
  921. mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
  922. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
  923. pfault->wqe.wq_num, resume_with_error,
  924. pfault->type);
  925. free_page((unsigned long)buffer);
  926. }
  927. static int pages_in_range(u64 address, u32 length)
  928. {
  929. return (ALIGN(address + length, PAGE_SIZE) -
  930. (address & PAGE_MASK)) >> PAGE_SHIFT;
  931. }
  932. static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
  933. struct mlx5_pagefault *pfault)
  934. {
  935. u64 address;
  936. u32 length;
  937. u32 prefetch_len = pfault->bytes_committed;
  938. int prefetch_activated = 0;
  939. u32 rkey = pfault->rdma.r_key;
  940. int ret;
  941. /* The RDMA responder handler handles the page fault in two parts.
  942. * First it brings the necessary pages for the current packet
  943. * (and uses the pfault context), and then (after resuming the QP)
  944. * prefetches more pages. The second operation cannot use the pfault
  945. * context and therefore uses the dummy_pfault context allocated on
  946. * the stack */
  947. pfault->rdma.rdma_va += pfault->bytes_committed;
  948. pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
  949. pfault->rdma.rdma_op_len);
  950. pfault->bytes_committed = 0;
  951. address = pfault->rdma.rdma_va;
  952. length = pfault->rdma.rdma_op_len;
  953. /* For some operations, the hardware cannot tell the exact message
  954. * length, and in those cases it reports zero. Use prefetch
  955. * logic. */
  956. if (length == 0) {
  957. prefetch_activated = 1;
  958. length = pfault->rdma.packet_size;
  959. prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
  960. }
  961. ret = pagefault_single_data_segment(dev, rkey, address, length,
  962. &pfault->bytes_committed, NULL);
  963. if (ret == -EAGAIN) {
  964. /* We're racing with an invalidation, don't prefetch */
  965. prefetch_activated = 0;
  966. } else if (ret < 0 || pages_in_range(address, length) > ret) {
  967. mlx5_ib_page_fault_resume(dev, pfault, 1);
  968. if (ret != -ENOENT)
  969. mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
  970. ret, pfault->token, pfault->type);
  971. return;
  972. }
  973. mlx5_ib_page_fault_resume(dev, pfault, 0);
  974. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
  975. pfault->token, pfault->type,
  976. prefetch_activated);
  977. /* At this point, there might be a new pagefault already arriving in
  978. * the eq, switch to the dummy pagefault for the rest of the
  979. * processing. We're still OK with the objects being alive as the
  980. * work-queue is being fenced. */
  981. if (prefetch_activated) {
  982. u32 bytes_committed = 0;
  983. ret = pagefault_single_data_segment(dev, rkey, address,
  984. prefetch_len,
  985. &bytes_committed, NULL);
  986. if (ret < 0 && ret != -EAGAIN) {
  987. mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
  988. ret, pfault->token, address, prefetch_len);
  989. }
  990. }
  991. }
  992. void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
  993. struct mlx5_pagefault *pfault)
  994. {
  995. struct mlx5_ib_dev *dev = context;
  996. u8 event_subtype = pfault->event_subtype;
  997. switch (event_subtype) {
  998. case MLX5_PFAULT_SUBTYPE_WQE:
  999. mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
  1000. break;
  1001. case MLX5_PFAULT_SUBTYPE_RDMA:
  1002. mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
  1003. break;
  1004. default:
  1005. mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
  1006. event_subtype);
  1007. mlx5_ib_page_fault_resume(dev, pfault, 1);
  1008. }
  1009. }
  1010. void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
  1011. {
  1012. if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
  1013. return;
  1014. switch (ent->order - 2) {
  1015. case MLX5_IMR_MTT_CACHE_ENTRY:
  1016. ent->page = PAGE_SHIFT;
  1017. ent->xlt = MLX5_IMR_MTT_ENTRIES *
  1018. sizeof(struct mlx5_mtt) /
  1019. MLX5_IB_UMR_OCTOWORD;
  1020. ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
  1021. ent->limit = 0;
  1022. break;
  1023. case MLX5_IMR_KSM_CACHE_ENTRY:
  1024. ent->page = MLX5_KSM_PAGE_SHIFT;
  1025. ent->xlt = mlx5_imr_ksm_entries *
  1026. sizeof(struct mlx5_klm) /
  1027. MLX5_IB_UMR_OCTOWORD;
  1028. ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
  1029. ent->limit = 0;
  1030. break;
  1031. }
  1032. }
  1033. int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
  1034. {
  1035. int ret;
  1036. if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
  1037. ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
  1038. if (ret) {
  1039. mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
  1040. return ret;
  1041. }
  1042. }
  1043. return 0;
  1044. }
  1045. int mlx5_ib_odp_init(void)
  1046. {
  1047. mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
  1048. MLX5_IMR_MTT_BITS);
  1049. return 0;
  1050. }