sdma.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409
  1. /*
  2. * Copyright(c) 2015 - 2018 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. #include <linux/spinlock.h>
  48. #include <linux/seqlock.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/moduleparam.h>
  51. #include <linux/bitops.h>
  52. #include <linux/timer.h>
  53. #include <linux/vmalloc.h>
  54. #include <linux/highmem.h>
  55. #include "hfi.h"
  56. #include "common.h"
  57. #include "qp.h"
  58. #include "sdma.h"
  59. #include "iowait.h"
  60. #include "trace.h"
  61. /* must be a power of 2 >= 64 <= 32768 */
  62. #define SDMA_DESCQ_CNT 2048
  63. #define SDMA_DESC_INTR 64
  64. #define INVALID_TAIL 0xffff
  65. static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  66. module_param(sdma_descq_cnt, uint, S_IRUGO);
  67. MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  68. static uint sdma_idle_cnt = 250;
  69. module_param(sdma_idle_cnt, uint, S_IRUGO);
  70. MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  71. uint mod_num_sdma;
  72. module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  73. MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  74. static uint sdma_desct_intr = SDMA_DESC_INTR;
  75. module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  76. MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  77. #define SDMA_WAIT_BATCH_SIZE 20
  78. /* max wait time for a SDMA engine to indicate it has halted */
  79. #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  80. /* all SDMA engine errors that cause a halt */
  81. #define SD(name) SEND_DMA_##name
  82. #define ALL_SDMA_ENG_HALT_ERRS \
  83. (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  84. | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  85. | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  86. | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  87. | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  88. | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  89. | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
  90. | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
  91. | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
  92. | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
  93. | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
  94. | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
  95. | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
  96. | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
  97. | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
  98. | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
  99. | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
  100. | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
  101. /* sdma_sendctrl operations */
  102. #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
  103. #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
  104. #define SDMA_SENDCTRL_OP_HALT BIT(2)
  105. #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
  106. /* handle long defines */
  107. #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
  108. SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
  109. #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
  110. SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
  111. static const char * const sdma_state_names[] = {
  112. [sdma_state_s00_hw_down] = "s00_HwDown",
  113. [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
  114. [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
  115. [sdma_state_s20_idle] = "s20_Idle",
  116. [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
  117. [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
  118. [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
  119. [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
  120. [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
  121. [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
  122. [sdma_state_s99_running] = "s99_Running",
  123. };
  124. #ifdef CONFIG_SDMA_VERBOSITY
  125. static const char * const sdma_event_names[] = {
  126. [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
  127. [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
  128. [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
  129. [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
  130. [sdma_event_e30_go_running] = "e30_GoRunning",
  131. [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
  132. [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
  133. [sdma_event_e60_hw_halted] = "e60_HwHalted",
  134. [sdma_event_e70_go_idle] = "e70_GoIdle",
  135. [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
  136. [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
  137. [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
  138. [sdma_event_e85_link_down] = "e85_LinkDown",
  139. [sdma_event_e90_sw_halted] = "e90_SwHalted",
  140. };
  141. #endif
  142. static const struct sdma_set_state_action sdma_action_table[] = {
  143. [sdma_state_s00_hw_down] = {
  144. .go_s99_running_tofalse = 1,
  145. .op_enable = 0,
  146. .op_intenable = 0,
  147. .op_halt = 0,
  148. .op_cleanup = 0,
  149. },
  150. [sdma_state_s10_hw_start_up_halt_wait] = {
  151. .op_enable = 0,
  152. .op_intenable = 0,
  153. .op_halt = 1,
  154. .op_cleanup = 0,
  155. },
  156. [sdma_state_s15_hw_start_up_clean_wait] = {
  157. .op_enable = 0,
  158. .op_intenable = 1,
  159. .op_halt = 0,
  160. .op_cleanup = 1,
  161. },
  162. [sdma_state_s20_idle] = {
  163. .op_enable = 0,
  164. .op_intenable = 1,
  165. .op_halt = 0,
  166. .op_cleanup = 0,
  167. },
  168. [sdma_state_s30_sw_clean_up_wait] = {
  169. .op_enable = 0,
  170. .op_intenable = 0,
  171. .op_halt = 0,
  172. .op_cleanup = 0,
  173. },
  174. [sdma_state_s40_hw_clean_up_wait] = {
  175. .op_enable = 0,
  176. .op_intenable = 0,
  177. .op_halt = 0,
  178. .op_cleanup = 1,
  179. },
  180. [sdma_state_s50_hw_halt_wait] = {
  181. .op_enable = 0,
  182. .op_intenable = 0,
  183. .op_halt = 0,
  184. .op_cleanup = 0,
  185. },
  186. [sdma_state_s60_idle_halt_wait] = {
  187. .go_s99_running_tofalse = 1,
  188. .op_enable = 0,
  189. .op_intenable = 0,
  190. .op_halt = 1,
  191. .op_cleanup = 0,
  192. },
  193. [sdma_state_s80_hw_freeze] = {
  194. .op_enable = 0,
  195. .op_intenable = 0,
  196. .op_halt = 0,
  197. .op_cleanup = 0,
  198. },
  199. [sdma_state_s82_freeze_sw_clean] = {
  200. .op_enable = 0,
  201. .op_intenable = 0,
  202. .op_halt = 0,
  203. .op_cleanup = 0,
  204. },
  205. [sdma_state_s99_running] = {
  206. .op_enable = 1,
  207. .op_intenable = 1,
  208. .op_halt = 0,
  209. .op_cleanup = 0,
  210. .go_s99_running_totrue = 1,
  211. },
  212. };
  213. #define SDMA_TAIL_UPDATE_THRESH 0x1F
  214. /* declare all statics here rather than keep sorting */
  215. static void sdma_complete(struct kref *);
  216. static void sdma_finalput(struct sdma_state *);
  217. static void sdma_get(struct sdma_state *);
  218. static void sdma_hw_clean_up_task(unsigned long);
  219. static void sdma_put(struct sdma_state *);
  220. static void sdma_set_state(struct sdma_engine *, enum sdma_states);
  221. static void sdma_start_hw_clean_up(struct sdma_engine *);
  222. static void sdma_sw_clean_up_task(unsigned long);
  223. static void sdma_sendctrl(struct sdma_engine *, unsigned);
  224. static void init_sdma_regs(struct sdma_engine *, u32, uint);
  225. static void sdma_process_event(
  226. struct sdma_engine *sde,
  227. enum sdma_events event);
  228. static void __sdma_process_event(
  229. struct sdma_engine *sde,
  230. enum sdma_events event);
  231. static void dump_sdma_state(struct sdma_engine *sde);
  232. static void sdma_make_progress(struct sdma_engine *sde, u64 status);
  233. static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
  234. static void sdma_flush_descq(struct sdma_engine *sde);
  235. /**
  236. * sdma_state_name() - return state string from enum
  237. * @state: state
  238. */
  239. static const char *sdma_state_name(enum sdma_states state)
  240. {
  241. return sdma_state_names[state];
  242. }
  243. static void sdma_get(struct sdma_state *ss)
  244. {
  245. kref_get(&ss->kref);
  246. }
  247. static void sdma_complete(struct kref *kref)
  248. {
  249. struct sdma_state *ss =
  250. container_of(kref, struct sdma_state, kref);
  251. complete(&ss->comp);
  252. }
  253. static void sdma_put(struct sdma_state *ss)
  254. {
  255. kref_put(&ss->kref, sdma_complete);
  256. }
  257. static void sdma_finalput(struct sdma_state *ss)
  258. {
  259. sdma_put(ss);
  260. wait_for_completion(&ss->comp);
  261. }
  262. static inline void write_sde_csr(
  263. struct sdma_engine *sde,
  264. u32 offset0,
  265. u64 value)
  266. {
  267. write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
  268. }
  269. static inline u64 read_sde_csr(
  270. struct sdma_engine *sde,
  271. u32 offset0)
  272. {
  273. return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
  274. }
  275. /*
  276. * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
  277. * sdma engine 'sde' to drop to 0.
  278. */
  279. static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
  280. int pause)
  281. {
  282. u64 off = 8 * sde->this_idx;
  283. struct hfi1_devdata *dd = sde->dd;
  284. int lcnt = 0;
  285. u64 reg_prev;
  286. u64 reg = 0;
  287. while (1) {
  288. reg_prev = reg;
  289. reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
  290. reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
  291. reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
  292. if (reg == 0)
  293. break;
  294. /* counter is reest if accupancy count changes */
  295. if (reg != reg_prev)
  296. lcnt = 0;
  297. if (lcnt++ > 500) {
  298. /* timed out - bounce the link */
  299. dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
  300. __func__, sde->this_idx, (u32)reg);
  301. queue_work(dd->pport->link_wq,
  302. &dd->pport->link_bounce_work);
  303. break;
  304. }
  305. udelay(1);
  306. }
  307. }
  308. /*
  309. * sdma_wait() - wait for packet egress to complete for all SDMA engines,
  310. * and pause for credit return.
  311. */
  312. void sdma_wait(struct hfi1_devdata *dd)
  313. {
  314. int i;
  315. for (i = 0; i < dd->num_sdma; i++) {
  316. struct sdma_engine *sde = &dd->per_sdma[i];
  317. sdma_wait_for_packet_egress(sde, 0);
  318. }
  319. }
  320. static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
  321. {
  322. u64 reg;
  323. if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
  324. return;
  325. reg = cnt;
  326. reg &= SD(DESC_CNT_CNT_MASK);
  327. reg <<= SD(DESC_CNT_CNT_SHIFT);
  328. write_sde_csr(sde, SD(DESC_CNT), reg);
  329. }
  330. static inline void complete_tx(struct sdma_engine *sde,
  331. struct sdma_txreq *tx,
  332. int res)
  333. {
  334. /* protect against complete modifying */
  335. struct iowait *wait = tx->wait;
  336. callback_t complete = tx->complete;
  337. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  338. trace_hfi1_sdma_out_sn(sde, tx->sn);
  339. if (WARN_ON_ONCE(sde->head_sn != tx->sn))
  340. dd_dev_err(sde->dd, "expected %llu got %llu\n",
  341. sde->head_sn, tx->sn);
  342. sde->head_sn++;
  343. #endif
  344. __sdma_txclean(sde->dd, tx);
  345. if (complete)
  346. (*complete)(tx, res);
  347. if (iowait_sdma_dec(wait))
  348. iowait_drain_wakeup(wait);
  349. }
  350. /*
  351. * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
  352. *
  353. * Depending on timing there can be txreqs in two places:
  354. * - in the descq ring
  355. * - in the flush list
  356. *
  357. * To avoid ordering issues the descq ring needs to be flushed
  358. * first followed by the flush list.
  359. *
  360. * This routine is called from two places
  361. * - From a work queue item
  362. * - Directly from the state machine just before setting the
  363. * state to running
  364. *
  365. * Must be called with head_lock held
  366. *
  367. */
  368. static void sdma_flush(struct sdma_engine *sde)
  369. {
  370. struct sdma_txreq *txp, *txp_next;
  371. LIST_HEAD(flushlist);
  372. unsigned long flags;
  373. /* flush from head to tail */
  374. sdma_flush_descq(sde);
  375. spin_lock_irqsave(&sde->flushlist_lock, flags);
  376. /* copy flush list */
  377. list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
  378. list_del_init(&txp->list);
  379. list_add_tail(&txp->list, &flushlist);
  380. }
  381. spin_unlock_irqrestore(&sde->flushlist_lock, flags);
  382. /* flush from flush list */
  383. list_for_each_entry_safe(txp, txp_next, &flushlist, list)
  384. complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
  385. }
  386. /*
  387. * Fields a work request for flushing the descq ring
  388. * and the flush list
  389. *
  390. * If the engine has been brought to running during
  391. * the scheduling delay, the flush is ignored, assuming
  392. * that the process of bringing the engine to running
  393. * would have done this flush prior to going to running.
  394. *
  395. */
  396. static void sdma_field_flush(struct work_struct *work)
  397. {
  398. unsigned long flags;
  399. struct sdma_engine *sde =
  400. container_of(work, struct sdma_engine, flush_worker);
  401. write_seqlock_irqsave(&sde->head_lock, flags);
  402. if (!__sdma_running(sde))
  403. sdma_flush(sde);
  404. write_sequnlock_irqrestore(&sde->head_lock, flags);
  405. }
  406. static void sdma_err_halt_wait(struct work_struct *work)
  407. {
  408. struct sdma_engine *sde = container_of(work, struct sdma_engine,
  409. err_halt_worker);
  410. u64 statuscsr;
  411. unsigned long timeout;
  412. timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
  413. while (1) {
  414. statuscsr = read_sde_csr(sde, SD(STATUS));
  415. statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
  416. if (statuscsr)
  417. break;
  418. if (time_after(jiffies, timeout)) {
  419. dd_dev_err(sde->dd,
  420. "SDMA engine %d - timeout waiting for engine to halt\n",
  421. sde->this_idx);
  422. /*
  423. * Continue anyway. This could happen if there was
  424. * an uncorrectable error in the wrong spot.
  425. */
  426. break;
  427. }
  428. usleep_range(80, 120);
  429. }
  430. sdma_process_event(sde, sdma_event_e15_hw_halt_done);
  431. }
  432. static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
  433. {
  434. if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
  435. unsigned index;
  436. struct hfi1_devdata *dd = sde->dd;
  437. for (index = 0; index < dd->num_sdma; index++) {
  438. struct sdma_engine *curr_sdma = &dd->per_sdma[index];
  439. if (curr_sdma != sde)
  440. curr_sdma->progress_check_head =
  441. curr_sdma->descq_head;
  442. }
  443. dd_dev_err(sde->dd,
  444. "SDMA engine %d - check scheduled\n",
  445. sde->this_idx);
  446. mod_timer(&sde->err_progress_check_timer, jiffies + 10);
  447. }
  448. }
  449. static void sdma_err_progress_check(struct timer_list *t)
  450. {
  451. unsigned index;
  452. struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
  453. dd_dev_err(sde->dd, "SDE progress check event\n");
  454. for (index = 0; index < sde->dd->num_sdma; index++) {
  455. struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
  456. unsigned long flags;
  457. /* check progress on each engine except the current one */
  458. if (curr_sde == sde)
  459. continue;
  460. /*
  461. * We must lock interrupts when acquiring sde->lock,
  462. * to avoid a deadlock if interrupt triggers and spins on
  463. * the same lock on same CPU
  464. */
  465. spin_lock_irqsave(&curr_sde->tail_lock, flags);
  466. write_seqlock(&curr_sde->head_lock);
  467. /* skip non-running queues */
  468. if (curr_sde->state.current_state != sdma_state_s99_running) {
  469. write_sequnlock(&curr_sde->head_lock);
  470. spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
  471. continue;
  472. }
  473. if ((curr_sde->descq_head != curr_sde->descq_tail) &&
  474. (curr_sde->descq_head ==
  475. curr_sde->progress_check_head))
  476. __sdma_process_event(curr_sde,
  477. sdma_event_e90_sw_halted);
  478. write_sequnlock(&curr_sde->head_lock);
  479. spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
  480. }
  481. schedule_work(&sde->err_halt_worker);
  482. }
  483. static void sdma_hw_clean_up_task(unsigned long opaque)
  484. {
  485. struct sdma_engine *sde = (struct sdma_engine *)opaque;
  486. u64 statuscsr;
  487. while (1) {
  488. #ifdef CONFIG_SDMA_VERBOSITY
  489. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  490. sde->this_idx, slashstrip(__FILE__), __LINE__,
  491. __func__);
  492. #endif
  493. statuscsr = read_sde_csr(sde, SD(STATUS));
  494. statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
  495. if (statuscsr)
  496. break;
  497. udelay(10);
  498. }
  499. sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
  500. }
  501. static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
  502. {
  503. return sde->tx_ring[sde->tx_head & sde->sdma_mask];
  504. }
  505. /*
  506. * flush ring for recovery
  507. */
  508. static void sdma_flush_descq(struct sdma_engine *sde)
  509. {
  510. u16 head, tail;
  511. int progress = 0;
  512. struct sdma_txreq *txp = get_txhead(sde);
  513. /* The reason for some of the complexity of this code is that
  514. * not all descriptors have corresponding txps. So, we have to
  515. * be able to skip over descs until we wander into the range of
  516. * the next txp on the list.
  517. */
  518. head = sde->descq_head & sde->sdma_mask;
  519. tail = sde->descq_tail & sde->sdma_mask;
  520. while (head != tail) {
  521. /* advance head, wrap if needed */
  522. head = ++sde->descq_head & sde->sdma_mask;
  523. /* if now past this txp's descs, do the callback */
  524. if (txp && txp->next_descq_idx == head) {
  525. /* remove from list */
  526. sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
  527. complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
  528. trace_hfi1_sdma_progress(sde, head, tail, txp);
  529. txp = get_txhead(sde);
  530. }
  531. progress++;
  532. }
  533. if (progress)
  534. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  535. }
  536. static void sdma_sw_clean_up_task(unsigned long opaque)
  537. {
  538. struct sdma_engine *sde = (struct sdma_engine *)opaque;
  539. unsigned long flags;
  540. spin_lock_irqsave(&sde->tail_lock, flags);
  541. write_seqlock(&sde->head_lock);
  542. /*
  543. * At this point, the following should always be true:
  544. * - We are halted, so no more descriptors are getting retired.
  545. * - We are not running, so no one is submitting new work.
  546. * - Only we can send the e40_sw_cleaned, so we can't start
  547. * running again until we say so. So, the active list and
  548. * descq are ours to play with.
  549. */
  550. /*
  551. * In the error clean up sequence, software clean must be called
  552. * before the hardware clean so we can use the hardware head in
  553. * the progress routine. A hardware clean or SPC unfreeze will
  554. * reset the hardware head.
  555. *
  556. * Process all retired requests. The progress routine will use the
  557. * latest physical hardware head - we are not running so speed does
  558. * not matter.
  559. */
  560. sdma_make_progress(sde, 0);
  561. sdma_flush(sde);
  562. /*
  563. * Reset our notion of head and tail.
  564. * Note that the HW registers have been reset via an earlier
  565. * clean up.
  566. */
  567. sde->descq_tail = 0;
  568. sde->descq_head = 0;
  569. sde->desc_avail = sdma_descq_freecnt(sde);
  570. *sde->head_dma = 0;
  571. __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
  572. write_sequnlock(&sde->head_lock);
  573. spin_unlock_irqrestore(&sde->tail_lock, flags);
  574. }
  575. static void sdma_sw_tear_down(struct sdma_engine *sde)
  576. {
  577. struct sdma_state *ss = &sde->state;
  578. /* Releasing this reference means the state machine has stopped. */
  579. sdma_put(ss);
  580. /* stop waiting for all unfreeze events to complete */
  581. atomic_set(&sde->dd->sdma_unfreeze_count, -1);
  582. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  583. }
  584. static void sdma_start_hw_clean_up(struct sdma_engine *sde)
  585. {
  586. tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
  587. }
  588. static void sdma_set_state(struct sdma_engine *sde,
  589. enum sdma_states next_state)
  590. {
  591. struct sdma_state *ss = &sde->state;
  592. const struct sdma_set_state_action *action = sdma_action_table;
  593. unsigned op = 0;
  594. trace_hfi1_sdma_state(
  595. sde,
  596. sdma_state_names[ss->current_state],
  597. sdma_state_names[next_state]);
  598. /* debugging bookkeeping */
  599. ss->previous_state = ss->current_state;
  600. ss->previous_op = ss->current_op;
  601. ss->current_state = next_state;
  602. if (ss->previous_state != sdma_state_s99_running &&
  603. next_state == sdma_state_s99_running)
  604. sdma_flush(sde);
  605. if (action[next_state].op_enable)
  606. op |= SDMA_SENDCTRL_OP_ENABLE;
  607. if (action[next_state].op_intenable)
  608. op |= SDMA_SENDCTRL_OP_INTENABLE;
  609. if (action[next_state].op_halt)
  610. op |= SDMA_SENDCTRL_OP_HALT;
  611. if (action[next_state].op_cleanup)
  612. op |= SDMA_SENDCTRL_OP_CLEANUP;
  613. if (action[next_state].go_s99_running_tofalse)
  614. ss->go_s99_running = 0;
  615. if (action[next_state].go_s99_running_totrue)
  616. ss->go_s99_running = 1;
  617. ss->current_op = op;
  618. sdma_sendctrl(sde, ss->current_op);
  619. }
  620. /**
  621. * sdma_get_descq_cnt() - called when device probed
  622. *
  623. * Return a validated descq count.
  624. *
  625. * This is currently only used in the verbs initialization to build the tx
  626. * list.
  627. *
  628. * This will probably be deleted in favor of a more scalable approach to
  629. * alloc tx's.
  630. *
  631. */
  632. u16 sdma_get_descq_cnt(void)
  633. {
  634. u16 count = sdma_descq_cnt;
  635. if (!count)
  636. return SDMA_DESCQ_CNT;
  637. /* count must be a power of 2 greater than 64 and less than
  638. * 32768. Otherwise return default.
  639. */
  640. if (!is_power_of_2(count))
  641. return SDMA_DESCQ_CNT;
  642. if (count < 64 || count > 32768)
  643. return SDMA_DESCQ_CNT;
  644. return count;
  645. }
  646. /**
  647. * sdma_engine_get_vl() - return vl for a given sdma engine
  648. * @sde: sdma engine
  649. *
  650. * This function returns the vl mapped to a given engine, or an error if
  651. * the mapping can't be found. The mapping fields are protected by RCU.
  652. */
  653. int sdma_engine_get_vl(struct sdma_engine *sde)
  654. {
  655. struct hfi1_devdata *dd = sde->dd;
  656. struct sdma_vl_map *m;
  657. u8 vl;
  658. if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
  659. return -EINVAL;
  660. rcu_read_lock();
  661. m = rcu_dereference(dd->sdma_map);
  662. if (unlikely(!m)) {
  663. rcu_read_unlock();
  664. return -EINVAL;
  665. }
  666. vl = m->engine_to_vl[sde->this_idx];
  667. rcu_read_unlock();
  668. return vl;
  669. }
  670. /**
  671. * sdma_select_engine_vl() - select sdma engine
  672. * @dd: devdata
  673. * @selector: a spreading factor
  674. * @vl: this vl
  675. *
  676. *
  677. * This function returns an engine based on the selector and a vl. The
  678. * mapping fields are protected by RCU.
  679. */
  680. struct sdma_engine *sdma_select_engine_vl(
  681. struct hfi1_devdata *dd,
  682. u32 selector,
  683. u8 vl)
  684. {
  685. struct sdma_vl_map *m;
  686. struct sdma_map_elem *e;
  687. struct sdma_engine *rval;
  688. /* NOTE This should only happen if SC->VL changed after the initial
  689. * checks on the QP/AH
  690. * Default will return engine 0 below
  691. */
  692. if (vl >= num_vls) {
  693. rval = NULL;
  694. goto done;
  695. }
  696. rcu_read_lock();
  697. m = rcu_dereference(dd->sdma_map);
  698. if (unlikely(!m)) {
  699. rcu_read_unlock();
  700. return &dd->per_sdma[0];
  701. }
  702. e = m->map[vl & m->mask];
  703. rval = e->sde[selector & e->mask];
  704. rcu_read_unlock();
  705. done:
  706. rval = !rval ? &dd->per_sdma[0] : rval;
  707. trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
  708. return rval;
  709. }
  710. /**
  711. * sdma_select_engine_sc() - select sdma engine
  712. * @dd: devdata
  713. * @selector: a spreading factor
  714. * @sc5: the 5 bit sc
  715. *
  716. *
  717. * This function returns an engine based on the selector and an sc.
  718. */
  719. struct sdma_engine *sdma_select_engine_sc(
  720. struct hfi1_devdata *dd,
  721. u32 selector,
  722. u8 sc5)
  723. {
  724. u8 vl = sc_to_vlt(dd, sc5);
  725. return sdma_select_engine_vl(dd, selector, vl);
  726. }
  727. struct sdma_rht_map_elem {
  728. u32 mask;
  729. u8 ctr;
  730. struct sdma_engine *sde[0];
  731. };
  732. struct sdma_rht_node {
  733. unsigned long cpu_id;
  734. struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
  735. struct rhash_head node;
  736. };
  737. #define NR_CPUS_HINT 192
  738. static const struct rhashtable_params sdma_rht_params = {
  739. .nelem_hint = NR_CPUS_HINT,
  740. .head_offset = offsetof(struct sdma_rht_node, node),
  741. .key_offset = offsetof(struct sdma_rht_node, cpu_id),
  742. .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
  743. .max_size = NR_CPUS,
  744. .min_size = 8,
  745. .automatic_shrinking = true,
  746. };
  747. /*
  748. * sdma_select_user_engine() - select sdma engine based on user setup
  749. * @dd: devdata
  750. * @selector: a spreading factor
  751. * @vl: this vl
  752. *
  753. * This function returns an sdma engine for a user sdma request.
  754. * User defined sdma engine affinity setting is honored when applicable,
  755. * otherwise system default sdma engine mapping is used. To ensure correct
  756. * ordering, the mapping from <selector, vl> to sde must remain unchanged.
  757. */
  758. struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
  759. u32 selector, u8 vl)
  760. {
  761. struct sdma_rht_node *rht_node;
  762. struct sdma_engine *sde = NULL;
  763. const struct cpumask *current_mask = &current->cpus_allowed;
  764. unsigned long cpu_id;
  765. /*
  766. * To ensure that always the same sdma engine(s) will be
  767. * selected make sure the process is pinned to this CPU only.
  768. */
  769. if (cpumask_weight(current_mask) != 1)
  770. goto out;
  771. cpu_id = smp_processor_id();
  772. rcu_read_lock();
  773. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
  774. sdma_rht_params);
  775. if (rht_node && rht_node->map[vl]) {
  776. struct sdma_rht_map_elem *map = rht_node->map[vl];
  777. sde = map->sde[selector & map->mask];
  778. }
  779. rcu_read_unlock();
  780. if (sde)
  781. return sde;
  782. out:
  783. return sdma_select_engine_vl(dd, selector, vl);
  784. }
  785. static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
  786. {
  787. int i;
  788. for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
  789. map->sde[map->ctr + i] = map->sde[i];
  790. }
  791. static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
  792. struct sdma_engine *sde)
  793. {
  794. unsigned int i, pow;
  795. /* only need to check the first ctr entries for a match */
  796. for (i = 0; i < map->ctr; i++) {
  797. if (map->sde[i] == sde) {
  798. memmove(&map->sde[i], &map->sde[i + 1],
  799. (map->ctr - i - 1) * sizeof(map->sde[0]));
  800. map->ctr--;
  801. pow = roundup_pow_of_two(map->ctr ? : 1);
  802. map->mask = pow - 1;
  803. sdma_populate_sde_map(map);
  804. break;
  805. }
  806. }
  807. }
  808. /*
  809. * Prevents concurrent reads and writes of the sdma engine cpu_mask
  810. */
  811. static DEFINE_MUTEX(process_to_sde_mutex);
  812. ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
  813. size_t count)
  814. {
  815. struct hfi1_devdata *dd = sde->dd;
  816. cpumask_var_t mask, new_mask;
  817. unsigned long cpu;
  818. int ret, vl, sz;
  819. struct sdma_rht_node *rht_node;
  820. vl = sdma_engine_get_vl(sde);
  821. if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
  822. return -EINVAL;
  823. ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
  824. if (!ret)
  825. return -ENOMEM;
  826. ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
  827. if (!ret) {
  828. free_cpumask_var(mask);
  829. return -ENOMEM;
  830. }
  831. ret = cpulist_parse(buf, mask);
  832. if (ret)
  833. goto out_free;
  834. if (!cpumask_subset(mask, cpu_online_mask)) {
  835. dd_dev_warn(sde->dd, "Invalid CPU mask\n");
  836. ret = -EINVAL;
  837. goto out_free;
  838. }
  839. sz = sizeof(struct sdma_rht_map_elem) +
  840. (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
  841. mutex_lock(&process_to_sde_mutex);
  842. for_each_cpu(cpu, mask) {
  843. /* Check if we have this already mapped */
  844. if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
  845. cpumask_set_cpu(cpu, new_mask);
  846. continue;
  847. }
  848. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
  849. sdma_rht_params);
  850. if (!rht_node) {
  851. rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
  852. if (!rht_node) {
  853. ret = -ENOMEM;
  854. goto out;
  855. }
  856. rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
  857. if (!rht_node->map[vl]) {
  858. kfree(rht_node);
  859. ret = -ENOMEM;
  860. goto out;
  861. }
  862. rht_node->cpu_id = cpu;
  863. rht_node->map[vl]->mask = 0;
  864. rht_node->map[vl]->ctr = 1;
  865. rht_node->map[vl]->sde[0] = sde;
  866. ret = rhashtable_insert_fast(dd->sdma_rht,
  867. &rht_node->node,
  868. sdma_rht_params);
  869. if (ret) {
  870. kfree(rht_node->map[vl]);
  871. kfree(rht_node);
  872. dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
  873. cpu);
  874. goto out;
  875. }
  876. } else {
  877. int ctr, pow;
  878. /* Add new user mappings */
  879. if (!rht_node->map[vl])
  880. rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
  881. if (!rht_node->map[vl]) {
  882. ret = -ENOMEM;
  883. goto out;
  884. }
  885. rht_node->map[vl]->ctr++;
  886. ctr = rht_node->map[vl]->ctr;
  887. rht_node->map[vl]->sde[ctr - 1] = sde;
  888. pow = roundup_pow_of_two(ctr);
  889. rht_node->map[vl]->mask = pow - 1;
  890. /* Populate the sde map table */
  891. sdma_populate_sde_map(rht_node->map[vl]);
  892. }
  893. cpumask_set_cpu(cpu, new_mask);
  894. }
  895. /* Clean up old mappings */
  896. for_each_cpu(cpu, cpu_online_mask) {
  897. struct sdma_rht_node *rht_node;
  898. /* Don't cleanup sdes that are set in the new mask */
  899. if (cpumask_test_cpu(cpu, mask))
  900. continue;
  901. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
  902. sdma_rht_params);
  903. if (rht_node) {
  904. bool empty = true;
  905. int i;
  906. /* Remove mappings for old sde */
  907. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  908. if (rht_node->map[i])
  909. sdma_cleanup_sde_map(rht_node->map[i],
  910. sde);
  911. /* Free empty hash table entries */
  912. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
  913. if (!rht_node->map[i])
  914. continue;
  915. if (rht_node->map[i]->ctr) {
  916. empty = false;
  917. break;
  918. }
  919. }
  920. if (empty) {
  921. ret = rhashtable_remove_fast(dd->sdma_rht,
  922. &rht_node->node,
  923. sdma_rht_params);
  924. WARN_ON(ret);
  925. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  926. kfree(rht_node->map[i]);
  927. kfree(rht_node);
  928. }
  929. }
  930. }
  931. cpumask_copy(&sde->cpu_mask, new_mask);
  932. out:
  933. mutex_unlock(&process_to_sde_mutex);
  934. out_free:
  935. free_cpumask_var(mask);
  936. free_cpumask_var(new_mask);
  937. return ret ? : strnlen(buf, PAGE_SIZE);
  938. }
  939. ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
  940. {
  941. mutex_lock(&process_to_sde_mutex);
  942. if (cpumask_empty(&sde->cpu_mask))
  943. snprintf(buf, PAGE_SIZE, "%s\n", "empty");
  944. else
  945. cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
  946. mutex_unlock(&process_to_sde_mutex);
  947. return strnlen(buf, PAGE_SIZE);
  948. }
  949. static void sdma_rht_free(void *ptr, void *arg)
  950. {
  951. struct sdma_rht_node *rht_node = ptr;
  952. int i;
  953. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  954. kfree(rht_node->map[i]);
  955. kfree(rht_node);
  956. }
  957. /**
  958. * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
  959. * @s: seq file
  960. * @dd: hfi1_devdata
  961. * @cpuid: cpu id
  962. *
  963. * This routine dumps the process to sde mappings per cpu
  964. */
  965. void sdma_seqfile_dump_cpu_list(struct seq_file *s,
  966. struct hfi1_devdata *dd,
  967. unsigned long cpuid)
  968. {
  969. struct sdma_rht_node *rht_node;
  970. int i, j;
  971. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
  972. sdma_rht_params);
  973. if (!rht_node)
  974. return;
  975. seq_printf(s, "cpu%3lu: ", cpuid);
  976. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
  977. if (!rht_node->map[i] || !rht_node->map[i]->ctr)
  978. continue;
  979. seq_printf(s, " vl%d: [", i);
  980. for (j = 0; j < rht_node->map[i]->ctr; j++) {
  981. if (!rht_node->map[i]->sde[j])
  982. continue;
  983. if (j > 0)
  984. seq_puts(s, ",");
  985. seq_printf(s, " sdma%2d",
  986. rht_node->map[i]->sde[j]->this_idx);
  987. }
  988. seq_puts(s, " ]");
  989. }
  990. seq_puts(s, "\n");
  991. }
  992. /*
  993. * Free the indicated map struct
  994. */
  995. static void sdma_map_free(struct sdma_vl_map *m)
  996. {
  997. int i;
  998. for (i = 0; m && i < m->actual_vls; i++)
  999. kfree(m->map[i]);
  1000. kfree(m);
  1001. }
  1002. /*
  1003. * Handle RCU callback
  1004. */
  1005. static void sdma_map_rcu_callback(struct rcu_head *list)
  1006. {
  1007. struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
  1008. sdma_map_free(m);
  1009. }
  1010. /**
  1011. * sdma_map_init - called when # vls change
  1012. * @dd: hfi1_devdata
  1013. * @port: port number
  1014. * @num_vls: number of vls
  1015. * @vl_engines: per vl engine mapping (optional)
  1016. *
  1017. * This routine changes the mapping based on the number of vls.
  1018. *
  1019. * vl_engines is used to specify a non-uniform vl/engine loading. NULL
  1020. * implies auto computing the loading and giving each VLs a uniform
  1021. * distribution of engines per VL.
  1022. *
  1023. * The auto algorithm computes the sde_per_vl and the number of extra
  1024. * engines. Any extra engines are added from the last VL on down.
  1025. *
  1026. * rcu locking is used here to control access to the mapping fields.
  1027. *
  1028. * If either the num_vls or num_sdma are non-power of 2, the array sizes
  1029. * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
  1030. * up to the next highest power of 2 and the first entry is reused
  1031. * in a round robin fashion.
  1032. *
  1033. * If an error occurs the map change is not done and the mapping is
  1034. * not changed.
  1035. *
  1036. */
  1037. int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
  1038. {
  1039. int i, j;
  1040. int extra, sde_per_vl;
  1041. int engine = 0;
  1042. u8 lvl_engines[OPA_MAX_VLS];
  1043. struct sdma_vl_map *oldmap, *newmap;
  1044. if (!(dd->flags & HFI1_HAS_SEND_DMA))
  1045. return 0;
  1046. if (!vl_engines) {
  1047. /* truncate divide */
  1048. sde_per_vl = dd->num_sdma / num_vls;
  1049. /* extras */
  1050. extra = dd->num_sdma % num_vls;
  1051. vl_engines = lvl_engines;
  1052. /* add extras from last vl down */
  1053. for (i = num_vls - 1; i >= 0; i--, extra--)
  1054. vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
  1055. }
  1056. /* build new map */
  1057. newmap = kzalloc(
  1058. sizeof(struct sdma_vl_map) +
  1059. roundup_pow_of_two(num_vls) *
  1060. sizeof(struct sdma_map_elem *),
  1061. GFP_KERNEL);
  1062. if (!newmap)
  1063. goto bail;
  1064. newmap->actual_vls = num_vls;
  1065. newmap->vls = roundup_pow_of_two(num_vls);
  1066. newmap->mask = (1 << ilog2(newmap->vls)) - 1;
  1067. /* initialize back-map */
  1068. for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
  1069. newmap->engine_to_vl[i] = -1;
  1070. for (i = 0; i < newmap->vls; i++) {
  1071. /* save for wrap around */
  1072. int first_engine = engine;
  1073. if (i < newmap->actual_vls) {
  1074. int sz = roundup_pow_of_two(vl_engines[i]);
  1075. /* only allocate once */
  1076. newmap->map[i] = kzalloc(
  1077. sizeof(struct sdma_map_elem) +
  1078. sz * sizeof(struct sdma_engine *),
  1079. GFP_KERNEL);
  1080. if (!newmap->map[i])
  1081. goto bail;
  1082. newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
  1083. /* assign engines */
  1084. for (j = 0; j < sz; j++) {
  1085. newmap->map[i]->sde[j] =
  1086. &dd->per_sdma[engine];
  1087. if (++engine >= first_engine + vl_engines[i])
  1088. /* wrap back to first engine */
  1089. engine = first_engine;
  1090. }
  1091. /* assign back-map */
  1092. for (j = 0; j < vl_engines[i]; j++)
  1093. newmap->engine_to_vl[first_engine + j] = i;
  1094. } else {
  1095. /* just re-use entry without allocating */
  1096. newmap->map[i] = newmap->map[i % num_vls];
  1097. }
  1098. engine = first_engine + vl_engines[i];
  1099. }
  1100. /* newmap in hand, save old map */
  1101. spin_lock_irq(&dd->sde_map_lock);
  1102. oldmap = rcu_dereference_protected(dd->sdma_map,
  1103. lockdep_is_held(&dd->sde_map_lock));
  1104. /* publish newmap */
  1105. rcu_assign_pointer(dd->sdma_map, newmap);
  1106. spin_unlock_irq(&dd->sde_map_lock);
  1107. /* success, free any old map after grace period */
  1108. if (oldmap)
  1109. call_rcu(&oldmap->list, sdma_map_rcu_callback);
  1110. return 0;
  1111. bail:
  1112. /* free any partial allocation */
  1113. sdma_map_free(newmap);
  1114. return -ENOMEM;
  1115. }
  1116. /**
  1117. * sdma_clean() Clean up allocated memory
  1118. * @dd: struct hfi1_devdata
  1119. * @num_engines: num sdma engines
  1120. *
  1121. * This routine can be called regardless of the success of
  1122. * sdma_init()
  1123. */
  1124. void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
  1125. {
  1126. size_t i;
  1127. struct sdma_engine *sde;
  1128. if (dd->sdma_pad_dma) {
  1129. dma_free_coherent(&dd->pcidev->dev, 4,
  1130. (void *)dd->sdma_pad_dma,
  1131. dd->sdma_pad_phys);
  1132. dd->sdma_pad_dma = NULL;
  1133. dd->sdma_pad_phys = 0;
  1134. }
  1135. if (dd->sdma_heads_dma) {
  1136. dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
  1137. (void *)dd->sdma_heads_dma,
  1138. dd->sdma_heads_phys);
  1139. dd->sdma_heads_dma = NULL;
  1140. dd->sdma_heads_phys = 0;
  1141. }
  1142. for (i = 0; dd->per_sdma && i < num_engines; ++i) {
  1143. sde = &dd->per_sdma[i];
  1144. sde->head_dma = NULL;
  1145. sde->head_phys = 0;
  1146. if (sde->descq) {
  1147. dma_free_coherent(
  1148. &dd->pcidev->dev,
  1149. sde->descq_cnt * sizeof(u64[2]),
  1150. sde->descq,
  1151. sde->descq_phys
  1152. );
  1153. sde->descq = NULL;
  1154. sde->descq_phys = 0;
  1155. }
  1156. kvfree(sde->tx_ring);
  1157. sde->tx_ring = NULL;
  1158. }
  1159. spin_lock_irq(&dd->sde_map_lock);
  1160. sdma_map_free(rcu_access_pointer(dd->sdma_map));
  1161. RCU_INIT_POINTER(dd->sdma_map, NULL);
  1162. spin_unlock_irq(&dd->sde_map_lock);
  1163. synchronize_rcu();
  1164. kfree(dd->per_sdma);
  1165. dd->per_sdma = NULL;
  1166. if (dd->sdma_rht) {
  1167. rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
  1168. kfree(dd->sdma_rht);
  1169. dd->sdma_rht = NULL;
  1170. }
  1171. }
  1172. /**
  1173. * sdma_init() - called when device probed
  1174. * @dd: hfi1_devdata
  1175. * @port: port number (currently only zero)
  1176. *
  1177. * Initializes each sde and its csrs.
  1178. * Interrupts are not required to be enabled.
  1179. *
  1180. * Returns:
  1181. * 0 - success, -errno on failure
  1182. */
  1183. int sdma_init(struct hfi1_devdata *dd, u8 port)
  1184. {
  1185. unsigned this_idx;
  1186. struct sdma_engine *sde;
  1187. struct rhashtable *tmp_sdma_rht;
  1188. u16 descq_cnt;
  1189. void *curr_head;
  1190. struct hfi1_pportdata *ppd = dd->pport + port;
  1191. u32 per_sdma_credits;
  1192. uint idle_cnt = sdma_idle_cnt;
  1193. size_t num_engines = chip_sdma_engines(dd);
  1194. int ret = -ENOMEM;
  1195. if (!HFI1_CAP_IS_KSET(SDMA)) {
  1196. HFI1_CAP_CLEAR(SDMA_AHG);
  1197. return 0;
  1198. }
  1199. if (mod_num_sdma &&
  1200. /* can't exceed chip support */
  1201. mod_num_sdma <= chip_sdma_engines(dd) &&
  1202. /* count must be >= vls */
  1203. mod_num_sdma >= num_vls)
  1204. num_engines = mod_num_sdma;
  1205. dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
  1206. dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
  1207. dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
  1208. chip_sdma_mem_size(dd));
  1209. per_sdma_credits =
  1210. chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
  1211. /* set up freeze waitqueue */
  1212. init_waitqueue_head(&dd->sdma_unfreeze_wq);
  1213. atomic_set(&dd->sdma_unfreeze_count, 0);
  1214. descq_cnt = sdma_get_descq_cnt();
  1215. dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
  1216. num_engines, descq_cnt);
  1217. /* alloc memory for array of send engines */
  1218. dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
  1219. GFP_KERNEL, dd->node);
  1220. if (!dd->per_sdma)
  1221. return ret;
  1222. idle_cnt = ns_to_cclock(dd, idle_cnt);
  1223. if (idle_cnt)
  1224. dd->default_desc1 =
  1225. SDMA_DESC1_HEAD_TO_HOST_FLAG;
  1226. else
  1227. dd->default_desc1 =
  1228. SDMA_DESC1_INT_REQ_FLAG;
  1229. if (!sdma_desct_intr)
  1230. sdma_desct_intr = SDMA_DESC_INTR;
  1231. /* Allocate memory for SendDMA descriptor FIFOs */
  1232. for (this_idx = 0; this_idx < num_engines; ++this_idx) {
  1233. sde = &dd->per_sdma[this_idx];
  1234. sde->dd = dd;
  1235. sde->ppd = ppd;
  1236. sde->this_idx = this_idx;
  1237. sde->descq_cnt = descq_cnt;
  1238. sde->desc_avail = sdma_descq_freecnt(sde);
  1239. sde->sdma_shift = ilog2(descq_cnt);
  1240. sde->sdma_mask = (1 << sde->sdma_shift) - 1;
  1241. /* Create a mask specifically for each interrupt source */
  1242. sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
  1243. this_idx);
  1244. sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
  1245. this_idx);
  1246. sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
  1247. this_idx);
  1248. /* Create a combined mask to cover all 3 interrupt sources */
  1249. sde->imask = sde->int_mask | sde->progress_mask |
  1250. sde->idle_mask;
  1251. spin_lock_init(&sde->tail_lock);
  1252. seqlock_init(&sde->head_lock);
  1253. spin_lock_init(&sde->senddmactrl_lock);
  1254. spin_lock_init(&sde->flushlist_lock);
  1255. /* insure there is always a zero bit */
  1256. sde->ahg_bits = 0xfffffffe00000000ULL;
  1257. sdma_set_state(sde, sdma_state_s00_hw_down);
  1258. /* set up reference counting */
  1259. kref_init(&sde->state.kref);
  1260. init_completion(&sde->state.comp);
  1261. INIT_LIST_HEAD(&sde->flushlist);
  1262. INIT_LIST_HEAD(&sde->dmawait);
  1263. sde->tail_csr =
  1264. get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
  1265. tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
  1266. (unsigned long)sde);
  1267. tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
  1268. (unsigned long)sde);
  1269. INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
  1270. INIT_WORK(&sde->flush_worker, sdma_field_flush);
  1271. sde->progress_check_head = 0;
  1272. timer_setup(&sde->err_progress_check_timer,
  1273. sdma_err_progress_check, 0);
  1274. sde->descq = dma_zalloc_coherent(
  1275. &dd->pcidev->dev,
  1276. descq_cnt * sizeof(u64[2]),
  1277. &sde->descq_phys,
  1278. GFP_KERNEL
  1279. );
  1280. if (!sde->descq)
  1281. goto bail;
  1282. sde->tx_ring =
  1283. kvzalloc_node(array_size(descq_cnt,
  1284. sizeof(struct sdma_txreq *)),
  1285. GFP_KERNEL, dd->node);
  1286. if (!sde->tx_ring)
  1287. goto bail;
  1288. }
  1289. dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
  1290. /* Allocate memory for DMA of head registers to memory */
  1291. dd->sdma_heads_dma = dma_zalloc_coherent(
  1292. &dd->pcidev->dev,
  1293. dd->sdma_heads_size,
  1294. &dd->sdma_heads_phys,
  1295. GFP_KERNEL
  1296. );
  1297. if (!dd->sdma_heads_dma) {
  1298. dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
  1299. goto bail;
  1300. }
  1301. /* Allocate memory for pad */
  1302. dd->sdma_pad_dma = dma_zalloc_coherent(
  1303. &dd->pcidev->dev,
  1304. sizeof(u32),
  1305. &dd->sdma_pad_phys,
  1306. GFP_KERNEL
  1307. );
  1308. if (!dd->sdma_pad_dma) {
  1309. dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
  1310. goto bail;
  1311. }
  1312. /* assign each engine to different cacheline and init registers */
  1313. curr_head = (void *)dd->sdma_heads_dma;
  1314. for (this_idx = 0; this_idx < num_engines; ++this_idx) {
  1315. unsigned long phys_offset;
  1316. sde = &dd->per_sdma[this_idx];
  1317. sde->head_dma = curr_head;
  1318. curr_head += L1_CACHE_BYTES;
  1319. phys_offset = (unsigned long)sde->head_dma -
  1320. (unsigned long)dd->sdma_heads_dma;
  1321. sde->head_phys = dd->sdma_heads_phys + phys_offset;
  1322. init_sdma_regs(sde, per_sdma_credits, idle_cnt);
  1323. }
  1324. dd->flags |= HFI1_HAS_SEND_DMA;
  1325. dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
  1326. dd->num_sdma = num_engines;
  1327. ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
  1328. if (ret < 0)
  1329. goto bail;
  1330. tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
  1331. if (!tmp_sdma_rht) {
  1332. ret = -ENOMEM;
  1333. goto bail;
  1334. }
  1335. ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
  1336. if (ret < 0)
  1337. goto bail;
  1338. dd->sdma_rht = tmp_sdma_rht;
  1339. dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
  1340. return 0;
  1341. bail:
  1342. sdma_clean(dd, num_engines);
  1343. return ret;
  1344. }
  1345. /**
  1346. * sdma_all_running() - called when the link goes up
  1347. * @dd: hfi1_devdata
  1348. *
  1349. * This routine moves all engines to the running state.
  1350. */
  1351. void sdma_all_running(struct hfi1_devdata *dd)
  1352. {
  1353. struct sdma_engine *sde;
  1354. unsigned int i;
  1355. /* move all engines to running */
  1356. for (i = 0; i < dd->num_sdma; ++i) {
  1357. sde = &dd->per_sdma[i];
  1358. sdma_process_event(sde, sdma_event_e30_go_running);
  1359. }
  1360. }
  1361. /**
  1362. * sdma_all_idle() - called when the link goes down
  1363. * @dd: hfi1_devdata
  1364. *
  1365. * This routine moves all engines to the idle state.
  1366. */
  1367. void sdma_all_idle(struct hfi1_devdata *dd)
  1368. {
  1369. struct sdma_engine *sde;
  1370. unsigned int i;
  1371. /* idle all engines */
  1372. for (i = 0; i < dd->num_sdma; ++i) {
  1373. sde = &dd->per_sdma[i];
  1374. sdma_process_event(sde, sdma_event_e70_go_idle);
  1375. }
  1376. }
  1377. /**
  1378. * sdma_start() - called to kick off state processing for all engines
  1379. * @dd: hfi1_devdata
  1380. *
  1381. * This routine is for kicking off the state processing for all required
  1382. * sdma engines. Interrupts need to be working at this point.
  1383. *
  1384. */
  1385. void sdma_start(struct hfi1_devdata *dd)
  1386. {
  1387. unsigned i;
  1388. struct sdma_engine *sde;
  1389. /* kick off the engines state processing */
  1390. for (i = 0; i < dd->num_sdma; ++i) {
  1391. sde = &dd->per_sdma[i];
  1392. sdma_process_event(sde, sdma_event_e10_go_hw_start);
  1393. }
  1394. }
  1395. /**
  1396. * sdma_exit() - used when module is removed
  1397. * @dd: hfi1_devdata
  1398. */
  1399. void sdma_exit(struct hfi1_devdata *dd)
  1400. {
  1401. unsigned this_idx;
  1402. struct sdma_engine *sde;
  1403. for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
  1404. ++this_idx) {
  1405. sde = &dd->per_sdma[this_idx];
  1406. if (!list_empty(&sde->dmawait))
  1407. dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
  1408. sde->this_idx);
  1409. sdma_process_event(sde, sdma_event_e00_go_hw_down);
  1410. del_timer_sync(&sde->err_progress_check_timer);
  1411. /*
  1412. * This waits for the state machine to exit so it is not
  1413. * necessary to kill the sdma_sw_clean_up_task to make sure
  1414. * it is not running.
  1415. */
  1416. sdma_finalput(&sde->state);
  1417. }
  1418. }
  1419. /*
  1420. * unmap the indicated descriptor
  1421. */
  1422. static inline void sdma_unmap_desc(
  1423. struct hfi1_devdata *dd,
  1424. struct sdma_desc *descp)
  1425. {
  1426. switch (sdma_mapping_type(descp)) {
  1427. case SDMA_MAP_SINGLE:
  1428. dma_unmap_single(
  1429. &dd->pcidev->dev,
  1430. sdma_mapping_addr(descp),
  1431. sdma_mapping_len(descp),
  1432. DMA_TO_DEVICE);
  1433. break;
  1434. case SDMA_MAP_PAGE:
  1435. dma_unmap_page(
  1436. &dd->pcidev->dev,
  1437. sdma_mapping_addr(descp),
  1438. sdma_mapping_len(descp),
  1439. DMA_TO_DEVICE);
  1440. break;
  1441. }
  1442. }
  1443. /*
  1444. * return the mode as indicated by the first
  1445. * descriptor in the tx.
  1446. */
  1447. static inline u8 ahg_mode(struct sdma_txreq *tx)
  1448. {
  1449. return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
  1450. >> SDMA_DESC1_HEADER_MODE_SHIFT;
  1451. }
  1452. /**
  1453. * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
  1454. * @dd: hfi1_devdata for unmapping
  1455. * @tx: tx request to clean
  1456. *
  1457. * This is used in the progress routine to clean the tx or
  1458. * by the ULP to toss an in-process tx build.
  1459. *
  1460. * The code can be called multiple times without issue.
  1461. *
  1462. */
  1463. void __sdma_txclean(
  1464. struct hfi1_devdata *dd,
  1465. struct sdma_txreq *tx)
  1466. {
  1467. u16 i;
  1468. if (tx->num_desc) {
  1469. u8 skip = 0, mode = ahg_mode(tx);
  1470. /* unmap first */
  1471. sdma_unmap_desc(dd, &tx->descp[0]);
  1472. /* determine number of AHG descriptors to skip */
  1473. if (mode > SDMA_AHG_APPLY_UPDATE1)
  1474. skip = mode >> 1;
  1475. for (i = 1 + skip; i < tx->num_desc; i++)
  1476. sdma_unmap_desc(dd, &tx->descp[i]);
  1477. tx->num_desc = 0;
  1478. }
  1479. kfree(tx->coalesce_buf);
  1480. tx->coalesce_buf = NULL;
  1481. /* kmalloc'ed descp */
  1482. if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
  1483. tx->desc_limit = ARRAY_SIZE(tx->descs);
  1484. kfree(tx->descp);
  1485. }
  1486. }
  1487. static inline u16 sdma_gethead(struct sdma_engine *sde)
  1488. {
  1489. struct hfi1_devdata *dd = sde->dd;
  1490. int use_dmahead;
  1491. u16 hwhead;
  1492. #ifdef CONFIG_SDMA_VERBOSITY
  1493. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1494. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1495. #endif
  1496. retry:
  1497. use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
  1498. (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
  1499. hwhead = use_dmahead ?
  1500. (u16)le64_to_cpu(*sde->head_dma) :
  1501. (u16)read_sde_csr(sde, SD(HEAD));
  1502. if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
  1503. u16 cnt;
  1504. u16 swtail;
  1505. u16 swhead;
  1506. int sane;
  1507. swhead = sde->descq_head & sde->sdma_mask;
  1508. /* this code is really bad for cache line trading */
  1509. swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1510. cnt = sde->descq_cnt;
  1511. if (swhead < swtail)
  1512. /* not wrapped */
  1513. sane = (hwhead >= swhead) & (hwhead <= swtail);
  1514. else if (swhead > swtail)
  1515. /* wrapped around */
  1516. sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
  1517. (hwhead <= swtail);
  1518. else
  1519. /* empty */
  1520. sane = (hwhead == swhead);
  1521. if (unlikely(!sane)) {
  1522. dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
  1523. sde->this_idx,
  1524. use_dmahead ? "dma" : "kreg",
  1525. hwhead, swhead, swtail, cnt);
  1526. if (use_dmahead) {
  1527. /* try one more time, using csr */
  1528. use_dmahead = 0;
  1529. goto retry;
  1530. }
  1531. /* proceed as if no progress */
  1532. hwhead = swhead;
  1533. }
  1534. }
  1535. return hwhead;
  1536. }
  1537. /*
  1538. * This is called when there are send DMA descriptors that might be
  1539. * available.
  1540. *
  1541. * This is called with head_lock held.
  1542. */
  1543. static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
  1544. {
  1545. struct iowait *wait, *nw;
  1546. struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
  1547. uint i, n = 0, seq, max_idx = 0;
  1548. struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
  1549. u8 max_starved_cnt = 0;
  1550. #ifdef CONFIG_SDMA_VERBOSITY
  1551. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
  1552. slashstrip(__FILE__), __LINE__, __func__);
  1553. dd_dev_err(sde->dd, "avail: %u\n", avail);
  1554. #endif
  1555. do {
  1556. seq = read_seqbegin(&dev->iowait_lock);
  1557. if (!list_empty(&sde->dmawait)) {
  1558. /* at least one item */
  1559. write_seqlock(&dev->iowait_lock);
  1560. /* Harvest waiters wanting DMA descriptors */
  1561. list_for_each_entry_safe(
  1562. wait,
  1563. nw,
  1564. &sde->dmawait,
  1565. list) {
  1566. u32 num_desc;
  1567. if (!wait->wakeup)
  1568. continue;
  1569. if (n == ARRAY_SIZE(waits))
  1570. break;
  1571. num_desc = iowait_get_all_desc(wait);
  1572. if (num_desc > avail)
  1573. break;
  1574. avail -= num_desc;
  1575. /* Find the most starved wait memeber */
  1576. iowait_starve_find_max(wait, &max_starved_cnt,
  1577. n, &max_idx);
  1578. list_del_init(&wait->list);
  1579. waits[n++] = wait;
  1580. }
  1581. write_sequnlock(&dev->iowait_lock);
  1582. break;
  1583. }
  1584. } while (read_seqretry(&dev->iowait_lock, seq));
  1585. /* Schedule the most starved one first */
  1586. if (n)
  1587. waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
  1588. for (i = 0; i < n; i++)
  1589. if (i != max_idx)
  1590. waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
  1591. }
  1592. /* head_lock must be held */
  1593. static void sdma_make_progress(struct sdma_engine *sde, u64 status)
  1594. {
  1595. struct sdma_txreq *txp = NULL;
  1596. int progress = 0;
  1597. u16 hwhead, swhead;
  1598. int idle_check_done = 0;
  1599. hwhead = sdma_gethead(sde);
  1600. /* The reason for some of the complexity of this code is that
  1601. * not all descriptors have corresponding txps. So, we have to
  1602. * be able to skip over descs until we wander into the range of
  1603. * the next txp on the list.
  1604. */
  1605. retry:
  1606. txp = get_txhead(sde);
  1607. swhead = sde->descq_head & sde->sdma_mask;
  1608. trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
  1609. while (swhead != hwhead) {
  1610. /* advance head, wrap if needed */
  1611. swhead = ++sde->descq_head & sde->sdma_mask;
  1612. /* if now past this txp's descs, do the callback */
  1613. if (txp && txp->next_descq_idx == swhead) {
  1614. /* remove from list */
  1615. sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
  1616. complete_tx(sde, txp, SDMA_TXREQ_S_OK);
  1617. /* see if there is another txp */
  1618. txp = get_txhead(sde);
  1619. }
  1620. trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
  1621. progress++;
  1622. }
  1623. /*
  1624. * The SDMA idle interrupt is not guaranteed to be ordered with respect
  1625. * to updates to the the dma_head location in host memory. The head
  1626. * value read might not be fully up to date. If there are pending
  1627. * descriptors and the SDMA idle interrupt fired then read from the
  1628. * CSR SDMA head instead to get the latest value from the hardware.
  1629. * The hardware SDMA head should be read at most once in this invocation
  1630. * of sdma_make_progress(..) which is ensured by idle_check_done flag
  1631. */
  1632. if ((status & sde->idle_mask) && !idle_check_done) {
  1633. u16 swtail;
  1634. swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1635. if (swtail != hwhead) {
  1636. hwhead = (u16)read_sde_csr(sde, SD(HEAD));
  1637. idle_check_done = 1;
  1638. goto retry;
  1639. }
  1640. }
  1641. sde->last_status = status;
  1642. if (progress)
  1643. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  1644. }
  1645. /*
  1646. * sdma_engine_interrupt() - interrupt handler for engine
  1647. * @sde: sdma engine
  1648. * @status: sdma interrupt reason
  1649. *
  1650. * Status is a mask of the 3 possible interrupts for this engine. It will
  1651. * contain bits _only_ for this SDMA engine. It will contain at least one
  1652. * bit, it may contain more.
  1653. */
  1654. void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
  1655. {
  1656. trace_hfi1_sdma_engine_interrupt(sde, status);
  1657. write_seqlock(&sde->head_lock);
  1658. sdma_set_desc_cnt(sde, sdma_desct_intr);
  1659. if (status & sde->idle_mask)
  1660. sde->idle_int_cnt++;
  1661. else if (status & sde->progress_mask)
  1662. sde->progress_int_cnt++;
  1663. else if (status & sde->int_mask)
  1664. sde->sdma_int_cnt++;
  1665. sdma_make_progress(sde, status);
  1666. write_sequnlock(&sde->head_lock);
  1667. }
  1668. /**
  1669. * sdma_engine_error() - error handler for engine
  1670. * @sde: sdma engine
  1671. * @status: sdma interrupt reason
  1672. */
  1673. void sdma_engine_error(struct sdma_engine *sde, u64 status)
  1674. {
  1675. unsigned long flags;
  1676. #ifdef CONFIG_SDMA_VERBOSITY
  1677. dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
  1678. sde->this_idx,
  1679. (unsigned long long)status,
  1680. sdma_state_names[sde->state.current_state]);
  1681. #endif
  1682. spin_lock_irqsave(&sde->tail_lock, flags);
  1683. write_seqlock(&sde->head_lock);
  1684. if (status & ALL_SDMA_ENG_HALT_ERRS)
  1685. __sdma_process_event(sde, sdma_event_e60_hw_halted);
  1686. if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
  1687. dd_dev_err(sde->dd,
  1688. "SDMA (%u) engine error: 0x%llx state %s\n",
  1689. sde->this_idx,
  1690. (unsigned long long)status,
  1691. sdma_state_names[sde->state.current_state]);
  1692. dump_sdma_state(sde);
  1693. }
  1694. write_sequnlock(&sde->head_lock);
  1695. spin_unlock_irqrestore(&sde->tail_lock, flags);
  1696. }
  1697. static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
  1698. {
  1699. u64 set_senddmactrl = 0;
  1700. u64 clr_senddmactrl = 0;
  1701. unsigned long flags;
  1702. #ifdef CONFIG_SDMA_VERBOSITY
  1703. dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
  1704. sde->this_idx,
  1705. (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
  1706. (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
  1707. (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
  1708. (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
  1709. #endif
  1710. if (op & SDMA_SENDCTRL_OP_ENABLE)
  1711. set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
  1712. else
  1713. clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
  1714. if (op & SDMA_SENDCTRL_OP_INTENABLE)
  1715. set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
  1716. else
  1717. clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
  1718. if (op & SDMA_SENDCTRL_OP_HALT)
  1719. set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
  1720. else
  1721. clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
  1722. spin_lock_irqsave(&sde->senddmactrl_lock, flags);
  1723. sde->p_senddmactrl |= set_senddmactrl;
  1724. sde->p_senddmactrl &= ~clr_senddmactrl;
  1725. if (op & SDMA_SENDCTRL_OP_CLEANUP)
  1726. write_sde_csr(sde, SD(CTRL),
  1727. sde->p_senddmactrl |
  1728. SD(CTRL_SDMA_CLEANUP_SMASK));
  1729. else
  1730. write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
  1731. spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
  1732. #ifdef CONFIG_SDMA_VERBOSITY
  1733. sdma_dumpstate(sde);
  1734. #endif
  1735. }
  1736. static void sdma_setlengen(struct sdma_engine *sde)
  1737. {
  1738. #ifdef CONFIG_SDMA_VERBOSITY
  1739. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1740. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1741. #endif
  1742. /*
  1743. * Set SendDmaLenGen and clear-then-set the MSB of the generation
  1744. * count to enable generation checking and load the internal
  1745. * generation counter.
  1746. */
  1747. write_sde_csr(sde, SD(LEN_GEN),
  1748. (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
  1749. write_sde_csr(sde, SD(LEN_GEN),
  1750. ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
  1751. (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
  1752. }
  1753. static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
  1754. {
  1755. /* Commit writes to memory and advance the tail on the chip */
  1756. smp_wmb(); /* see get_txhead() */
  1757. writeq(tail, sde->tail_csr);
  1758. }
  1759. /*
  1760. * This is called when changing to state s10_hw_start_up_halt_wait as
  1761. * a result of send buffer errors or send DMA descriptor errors.
  1762. */
  1763. static void sdma_hw_start_up(struct sdma_engine *sde)
  1764. {
  1765. u64 reg;
  1766. #ifdef CONFIG_SDMA_VERBOSITY
  1767. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1768. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1769. #endif
  1770. sdma_setlengen(sde);
  1771. sdma_update_tail(sde, 0); /* Set SendDmaTail */
  1772. *sde->head_dma = 0;
  1773. reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
  1774. SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
  1775. write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
  1776. }
  1777. /*
  1778. * set_sdma_integrity
  1779. *
  1780. * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
  1781. */
  1782. static void set_sdma_integrity(struct sdma_engine *sde)
  1783. {
  1784. struct hfi1_devdata *dd = sde->dd;
  1785. write_sde_csr(sde, SD(CHECK_ENABLE),
  1786. hfi1_pkt_base_sdma_integrity(dd));
  1787. }
  1788. static void init_sdma_regs(
  1789. struct sdma_engine *sde,
  1790. u32 credits,
  1791. uint idle_cnt)
  1792. {
  1793. u8 opval, opmask;
  1794. #ifdef CONFIG_SDMA_VERBOSITY
  1795. struct hfi1_devdata *dd = sde->dd;
  1796. dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1797. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1798. #endif
  1799. write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
  1800. sdma_setlengen(sde);
  1801. sdma_update_tail(sde, 0); /* Set SendDmaTail */
  1802. write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
  1803. write_sde_csr(sde, SD(DESC_CNT), 0);
  1804. write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
  1805. write_sde_csr(sde, SD(MEMORY),
  1806. ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
  1807. ((u64)(credits * sde->this_idx) <<
  1808. SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
  1809. write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
  1810. set_sdma_integrity(sde);
  1811. opmask = OPCODE_CHECK_MASK_DISABLED;
  1812. opval = OPCODE_CHECK_VAL_DISABLED;
  1813. write_sde_csr(sde, SD(CHECK_OPCODE),
  1814. (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
  1815. (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
  1816. }
  1817. #ifdef CONFIG_SDMA_VERBOSITY
  1818. #define sdma_dumpstate_helper0(reg) do { \
  1819. csr = read_csr(sde->dd, reg); \
  1820. dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
  1821. } while (0)
  1822. #define sdma_dumpstate_helper(reg) do { \
  1823. csr = read_sde_csr(sde, reg); \
  1824. dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
  1825. #reg, sde->this_idx, csr); \
  1826. } while (0)
  1827. #define sdma_dumpstate_helper2(reg) do { \
  1828. csr = read_csr(sde->dd, reg + (8 * i)); \
  1829. dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
  1830. #reg, i, csr); \
  1831. } while (0)
  1832. void sdma_dumpstate(struct sdma_engine *sde)
  1833. {
  1834. u64 csr;
  1835. unsigned i;
  1836. sdma_dumpstate_helper(SD(CTRL));
  1837. sdma_dumpstate_helper(SD(STATUS));
  1838. sdma_dumpstate_helper0(SD(ERR_STATUS));
  1839. sdma_dumpstate_helper0(SD(ERR_MASK));
  1840. sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
  1841. sdma_dumpstate_helper(SD(ENG_ERR_MASK));
  1842. for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
  1843. sdma_dumpstate_helper2(CCE_INT_STATUS);
  1844. sdma_dumpstate_helper2(CCE_INT_MASK);
  1845. sdma_dumpstate_helper2(CCE_INT_BLOCKED);
  1846. }
  1847. sdma_dumpstate_helper(SD(TAIL));
  1848. sdma_dumpstate_helper(SD(HEAD));
  1849. sdma_dumpstate_helper(SD(PRIORITY_THLD));
  1850. sdma_dumpstate_helper(SD(IDLE_CNT));
  1851. sdma_dumpstate_helper(SD(RELOAD_CNT));
  1852. sdma_dumpstate_helper(SD(DESC_CNT));
  1853. sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
  1854. sdma_dumpstate_helper(SD(MEMORY));
  1855. sdma_dumpstate_helper0(SD(ENGINES));
  1856. sdma_dumpstate_helper0(SD(MEM_SIZE));
  1857. /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
  1858. sdma_dumpstate_helper(SD(BASE_ADDR));
  1859. sdma_dumpstate_helper(SD(LEN_GEN));
  1860. sdma_dumpstate_helper(SD(HEAD_ADDR));
  1861. sdma_dumpstate_helper(SD(CHECK_ENABLE));
  1862. sdma_dumpstate_helper(SD(CHECK_VL));
  1863. sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
  1864. sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
  1865. sdma_dumpstate_helper(SD(CHECK_SLID));
  1866. sdma_dumpstate_helper(SD(CHECK_OPCODE));
  1867. }
  1868. #endif
  1869. static void dump_sdma_state(struct sdma_engine *sde)
  1870. {
  1871. struct hw_sdma_desc *descqp;
  1872. u64 desc[2];
  1873. u64 addr;
  1874. u8 gen;
  1875. u16 len;
  1876. u16 head, tail, cnt;
  1877. head = sde->descq_head & sde->sdma_mask;
  1878. tail = sde->descq_tail & sde->sdma_mask;
  1879. cnt = sdma_descq_freecnt(sde);
  1880. dd_dev_err(sde->dd,
  1881. "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
  1882. sde->this_idx, head, tail, cnt,
  1883. !list_empty(&sde->flushlist));
  1884. /* print info for each entry in the descriptor queue */
  1885. while (head != tail) {
  1886. char flags[6] = { 'x', 'x', 'x', 'x', 0 };
  1887. descqp = &sde->descq[head];
  1888. desc[0] = le64_to_cpu(descqp->qw[0]);
  1889. desc[1] = le64_to_cpu(descqp->qw[1]);
  1890. flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
  1891. flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
  1892. 'H' : '-';
  1893. flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
  1894. flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
  1895. addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
  1896. & SDMA_DESC0_PHY_ADDR_MASK;
  1897. gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
  1898. & SDMA_DESC1_GENERATION_MASK;
  1899. len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
  1900. & SDMA_DESC0_BYTE_COUNT_MASK;
  1901. dd_dev_err(sde->dd,
  1902. "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
  1903. head, flags, addr, gen, len);
  1904. dd_dev_err(sde->dd,
  1905. "\tdesc0:0x%016llx desc1 0x%016llx\n",
  1906. desc[0], desc[1]);
  1907. if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
  1908. dd_dev_err(sde->dd,
  1909. "\taidx: %u amode: %u alen: %u\n",
  1910. (u8)((desc[1] &
  1911. SDMA_DESC1_HEADER_INDEX_SMASK) >>
  1912. SDMA_DESC1_HEADER_INDEX_SHIFT),
  1913. (u8)((desc[1] &
  1914. SDMA_DESC1_HEADER_MODE_SMASK) >>
  1915. SDMA_DESC1_HEADER_MODE_SHIFT),
  1916. (u8)((desc[1] &
  1917. SDMA_DESC1_HEADER_DWS_SMASK) >>
  1918. SDMA_DESC1_HEADER_DWS_SHIFT));
  1919. head++;
  1920. head &= sde->sdma_mask;
  1921. }
  1922. }
  1923. #define SDE_FMT \
  1924. "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
  1925. /**
  1926. * sdma_seqfile_dump_sde() - debugfs dump of sde
  1927. * @s: seq file
  1928. * @sde: send dma engine to dump
  1929. *
  1930. * This routine dumps the sde to the indicated seq file.
  1931. */
  1932. void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
  1933. {
  1934. u16 head, tail;
  1935. struct hw_sdma_desc *descqp;
  1936. u64 desc[2];
  1937. u64 addr;
  1938. u8 gen;
  1939. u16 len;
  1940. head = sde->descq_head & sde->sdma_mask;
  1941. tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1942. seq_printf(s, SDE_FMT, sde->this_idx,
  1943. sde->cpu,
  1944. sdma_state_name(sde->state.current_state),
  1945. (unsigned long long)read_sde_csr(sde, SD(CTRL)),
  1946. (unsigned long long)read_sde_csr(sde, SD(STATUS)),
  1947. (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
  1948. (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
  1949. (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
  1950. (unsigned long long)le64_to_cpu(*sde->head_dma),
  1951. (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
  1952. (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
  1953. (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
  1954. (unsigned long long)sde->last_status,
  1955. (unsigned long long)sde->ahg_bits,
  1956. sde->tx_tail,
  1957. sde->tx_head,
  1958. sde->descq_tail,
  1959. sde->descq_head,
  1960. !list_empty(&sde->flushlist),
  1961. sde->descq_full_count,
  1962. (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
  1963. /* print info for each entry in the descriptor queue */
  1964. while (head != tail) {
  1965. char flags[6] = { 'x', 'x', 'x', 'x', 0 };
  1966. descqp = &sde->descq[head];
  1967. desc[0] = le64_to_cpu(descqp->qw[0]);
  1968. desc[1] = le64_to_cpu(descqp->qw[1]);
  1969. flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
  1970. flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
  1971. 'H' : '-';
  1972. flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
  1973. flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
  1974. addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
  1975. & SDMA_DESC0_PHY_ADDR_MASK;
  1976. gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
  1977. & SDMA_DESC1_GENERATION_MASK;
  1978. len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
  1979. & SDMA_DESC0_BYTE_COUNT_MASK;
  1980. seq_printf(s,
  1981. "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
  1982. head, flags, addr, gen, len);
  1983. if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
  1984. seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
  1985. (u8)((desc[1] &
  1986. SDMA_DESC1_HEADER_INDEX_SMASK) >>
  1987. SDMA_DESC1_HEADER_INDEX_SHIFT),
  1988. (u8)((desc[1] &
  1989. SDMA_DESC1_HEADER_MODE_SMASK) >>
  1990. SDMA_DESC1_HEADER_MODE_SHIFT));
  1991. head = (head + 1) & sde->sdma_mask;
  1992. }
  1993. }
  1994. /*
  1995. * add the generation number into
  1996. * the qw1 and return
  1997. */
  1998. static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
  1999. {
  2000. u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
  2001. qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
  2002. qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
  2003. << SDMA_DESC1_GENERATION_SHIFT;
  2004. return qw1;
  2005. }
  2006. /*
  2007. * This routine submits the indicated tx
  2008. *
  2009. * Space has already been guaranteed and
  2010. * tail side of ring is locked.
  2011. *
  2012. * The hardware tail update is done
  2013. * in the caller and that is facilitated
  2014. * by returning the new tail.
  2015. *
  2016. * There is special case logic for ahg
  2017. * to not add the generation number for
  2018. * up to 2 descriptors that follow the
  2019. * first descriptor.
  2020. *
  2021. */
  2022. static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
  2023. {
  2024. int i;
  2025. u16 tail;
  2026. struct sdma_desc *descp = tx->descp;
  2027. u8 skip = 0, mode = ahg_mode(tx);
  2028. tail = sde->descq_tail & sde->sdma_mask;
  2029. sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
  2030. sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
  2031. trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
  2032. tail, &sde->descq[tail]);
  2033. tail = ++sde->descq_tail & sde->sdma_mask;
  2034. descp++;
  2035. if (mode > SDMA_AHG_APPLY_UPDATE1)
  2036. skip = mode >> 1;
  2037. for (i = 1; i < tx->num_desc; i++, descp++) {
  2038. u64 qw1;
  2039. sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
  2040. if (skip) {
  2041. /* edits don't have generation */
  2042. qw1 = descp->qw[1];
  2043. skip--;
  2044. } else {
  2045. /* replace generation with real one for non-edits */
  2046. qw1 = add_gen(sde, descp->qw[1]);
  2047. }
  2048. sde->descq[tail].qw[1] = cpu_to_le64(qw1);
  2049. trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
  2050. tail, &sde->descq[tail]);
  2051. tail = ++sde->descq_tail & sde->sdma_mask;
  2052. }
  2053. tx->next_descq_idx = tail;
  2054. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2055. tx->sn = sde->tail_sn++;
  2056. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2057. WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
  2058. #endif
  2059. sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
  2060. sde->desc_avail -= tx->num_desc;
  2061. return tail;
  2062. }
  2063. /*
  2064. * Check for progress
  2065. */
  2066. static int sdma_check_progress(
  2067. struct sdma_engine *sde,
  2068. struct iowait_work *wait,
  2069. struct sdma_txreq *tx,
  2070. bool pkts_sent)
  2071. {
  2072. int ret;
  2073. sde->desc_avail = sdma_descq_freecnt(sde);
  2074. if (tx->num_desc <= sde->desc_avail)
  2075. return -EAGAIN;
  2076. /* pulse the head_lock */
  2077. if (wait && iowait_ioww_to_iow(wait)->sleep) {
  2078. unsigned seq;
  2079. seq = raw_seqcount_begin(
  2080. (const seqcount_t *)&sde->head_lock.seqcount);
  2081. ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
  2082. if (ret == -EAGAIN)
  2083. sde->desc_avail = sdma_descq_freecnt(sde);
  2084. } else {
  2085. ret = -EBUSY;
  2086. }
  2087. return ret;
  2088. }
  2089. /**
  2090. * sdma_send_txreq() - submit a tx req to ring
  2091. * @sde: sdma engine to use
  2092. * @wait: SE wait structure to use when full (may be NULL)
  2093. * @tx: sdma_txreq to submit
  2094. * @pkts_sent: has any packet been sent yet?
  2095. *
  2096. * The call submits the tx into the ring. If a iowait structure is non-NULL
  2097. * the packet will be queued to the list in wait.
  2098. *
  2099. * Return:
  2100. * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
  2101. * ring (wait == NULL)
  2102. * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
  2103. */
  2104. int sdma_send_txreq(struct sdma_engine *sde,
  2105. struct iowait_work *wait,
  2106. struct sdma_txreq *tx,
  2107. bool pkts_sent)
  2108. {
  2109. int ret = 0;
  2110. u16 tail;
  2111. unsigned long flags;
  2112. /* user should have supplied entire packet */
  2113. if (unlikely(tx->tlen))
  2114. return -EINVAL;
  2115. tx->wait = iowait_ioww_to_iow(wait);
  2116. spin_lock_irqsave(&sde->tail_lock, flags);
  2117. retry:
  2118. if (unlikely(!__sdma_running(sde)))
  2119. goto unlock_noconn;
  2120. if (unlikely(tx->num_desc > sde->desc_avail))
  2121. goto nodesc;
  2122. tail = submit_tx(sde, tx);
  2123. if (wait)
  2124. iowait_sdma_inc(iowait_ioww_to_iow(wait));
  2125. sdma_update_tail(sde, tail);
  2126. unlock:
  2127. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2128. return ret;
  2129. unlock_noconn:
  2130. if (wait)
  2131. iowait_sdma_inc(iowait_ioww_to_iow(wait));
  2132. tx->next_descq_idx = 0;
  2133. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2134. tx->sn = sde->tail_sn++;
  2135. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2136. #endif
  2137. spin_lock(&sde->flushlist_lock);
  2138. list_add_tail(&tx->list, &sde->flushlist);
  2139. spin_unlock(&sde->flushlist_lock);
  2140. iowait_inc_wait_count(wait, tx->num_desc);
  2141. schedule_work(&sde->flush_worker);
  2142. ret = -ECOMM;
  2143. goto unlock;
  2144. nodesc:
  2145. ret = sdma_check_progress(sde, wait, tx, pkts_sent);
  2146. if (ret == -EAGAIN) {
  2147. ret = 0;
  2148. goto retry;
  2149. }
  2150. sde->descq_full_count++;
  2151. goto unlock;
  2152. }
  2153. /**
  2154. * sdma_send_txlist() - submit a list of tx req to ring
  2155. * @sde: sdma engine to use
  2156. * @wait: SE wait structure to use when full (may be NULL)
  2157. * @tx_list: list of sdma_txreqs to submit
  2158. * @count: pointer to a u16 which, after return will contain the total number of
  2159. * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
  2160. * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
  2161. * which are added to SDMA engine flush list if the SDMA engine state is
  2162. * not running.
  2163. *
  2164. * The call submits the list into the ring.
  2165. *
  2166. * If the iowait structure is non-NULL and not equal to the iowait list
  2167. * the unprocessed part of the list will be appended to the list in wait.
  2168. *
  2169. * In all cases, the tx_list will be updated so the head of the tx_list is
  2170. * the list of descriptors that have yet to be transmitted.
  2171. *
  2172. * The intent of this call is to provide a more efficient
  2173. * way of submitting multiple packets to SDMA while holding the tail
  2174. * side locking.
  2175. *
  2176. * Return:
  2177. * 0 - Success,
  2178. * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
  2179. * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
  2180. */
  2181. int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
  2182. struct list_head *tx_list, u16 *count_out)
  2183. {
  2184. struct sdma_txreq *tx, *tx_next;
  2185. int ret = 0;
  2186. unsigned long flags;
  2187. u16 tail = INVALID_TAIL;
  2188. u32 submit_count = 0, flush_count = 0, total_count;
  2189. spin_lock_irqsave(&sde->tail_lock, flags);
  2190. retry:
  2191. list_for_each_entry_safe(tx, tx_next, tx_list, list) {
  2192. tx->wait = iowait_ioww_to_iow(wait);
  2193. if (unlikely(!__sdma_running(sde)))
  2194. goto unlock_noconn;
  2195. if (unlikely(tx->num_desc > sde->desc_avail))
  2196. goto nodesc;
  2197. if (unlikely(tx->tlen)) {
  2198. ret = -EINVAL;
  2199. goto update_tail;
  2200. }
  2201. list_del_init(&tx->list);
  2202. tail = submit_tx(sde, tx);
  2203. submit_count++;
  2204. if (tail != INVALID_TAIL &&
  2205. (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
  2206. sdma_update_tail(sde, tail);
  2207. tail = INVALID_TAIL;
  2208. }
  2209. }
  2210. update_tail:
  2211. total_count = submit_count + flush_count;
  2212. if (wait) {
  2213. iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
  2214. iowait_starve_clear(submit_count > 0,
  2215. iowait_ioww_to_iow(wait));
  2216. }
  2217. if (tail != INVALID_TAIL)
  2218. sdma_update_tail(sde, tail);
  2219. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2220. *count_out = total_count;
  2221. return ret;
  2222. unlock_noconn:
  2223. spin_lock(&sde->flushlist_lock);
  2224. list_for_each_entry_safe(tx, tx_next, tx_list, list) {
  2225. tx->wait = iowait_ioww_to_iow(wait);
  2226. list_del_init(&tx->list);
  2227. tx->next_descq_idx = 0;
  2228. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2229. tx->sn = sde->tail_sn++;
  2230. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2231. #endif
  2232. list_add_tail(&tx->list, &sde->flushlist);
  2233. flush_count++;
  2234. iowait_inc_wait_count(wait, tx->num_desc);
  2235. }
  2236. spin_unlock(&sde->flushlist_lock);
  2237. schedule_work(&sde->flush_worker);
  2238. ret = -ECOMM;
  2239. goto update_tail;
  2240. nodesc:
  2241. ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
  2242. if (ret == -EAGAIN) {
  2243. ret = 0;
  2244. goto retry;
  2245. }
  2246. sde->descq_full_count++;
  2247. goto update_tail;
  2248. }
  2249. static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
  2250. {
  2251. unsigned long flags;
  2252. spin_lock_irqsave(&sde->tail_lock, flags);
  2253. write_seqlock(&sde->head_lock);
  2254. __sdma_process_event(sde, event);
  2255. if (sde->state.current_state == sdma_state_s99_running)
  2256. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  2257. write_sequnlock(&sde->head_lock);
  2258. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2259. }
  2260. static void __sdma_process_event(struct sdma_engine *sde,
  2261. enum sdma_events event)
  2262. {
  2263. struct sdma_state *ss = &sde->state;
  2264. int need_progress = 0;
  2265. /* CONFIG SDMA temporary */
  2266. #ifdef CONFIG_SDMA_VERBOSITY
  2267. dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
  2268. sdma_state_names[ss->current_state],
  2269. sdma_event_names[event]);
  2270. #endif
  2271. switch (ss->current_state) {
  2272. case sdma_state_s00_hw_down:
  2273. switch (event) {
  2274. case sdma_event_e00_go_hw_down:
  2275. break;
  2276. case sdma_event_e30_go_running:
  2277. /*
  2278. * If down, but running requested (usually result
  2279. * of link up, then we need to start up.
  2280. * This can happen when hw down is requested while
  2281. * bringing the link up with traffic active on
  2282. * 7220, e.g.
  2283. */
  2284. ss->go_s99_running = 1;
  2285. /* fall through -- and start dma engine */
  2286. case sdma_event_e10_go_hw_start:
  2287. /* This reference means the state machine is started */
  2288. sdma_get(&sde->state);
  2289. sdma_set_state(sde,
  2290. sdma_state_s10_hw_start_up_halt_wait);
  2291. break;
  2292. case sdma_event_e15_hw_halt_done:
  2293. break;
  2294. case sdma_event_e25_hw_clean_up_done:
  2295. break;
  2296. case sdma_event_e40_sw_cleaned:
  2297. sdma_sw_tear_down(sde);
  2298. break;
  2299. case sdma_event_e50_hw_cleaned:
  2300. break;
  2301. case sdma_event_e60_hw_halted:
  2302. break;
  2303. case sdma_event_e70_go_idle:
  2304. break;
  2305. case sdma_event_e80_hw_freeze:
  2306. break;
  2307. case sdma_event_e81_hw_frozen:
  2308. break;
  2309. case sdma_event_e82_hw_unfreeze:
  2310. break;
  2311. case sdma_event_e85_link_down:
  2312. break;
  2313. case sdma_event_e90_sw_halted:
  2314. break;
  2315. }
  2316. break;
  2317. case sdma_state_s10_hw_start_up_halt_wait:
  2318. switch (event) {
  2319. case sdma_event_e00_go_hw_down:
  2320. sdma_set_state(sde, sdma_state_s00_hw_down);
  2321. sdma_sw_tear_down(sde);
  2322. break;
  2323. case sdma_event_e10_go_hw_start:
  2324. break;
  2325. case sdma_event_e15_hw_halt_done:
  2326. sdma_set_state(sde,
  2327. sdma_state_s15_hw_start_up_clean_wait);
  2328. sdma_start_hw_clean_up(sde);
  2329. break;
  2330. case sdma_event_e25_hw_clean_up_done:
  2331. break;
  2332. case sdma_event_e30_go_running:
  2333. ss->go_s99_running = 1;
  2334. break;
  2335. case sdma_event_e40_sw_cleaned:
  2336. break;
  2337. case sdma_event_e50_hw_cleaned:
  2338. break;
  2339. case sdma_event_e60_hw_halted:
  2340. schedule_work(&sde->err_halt_worker);
  2341. break;
  2342. case sdma_event_e70_go_idle:
  2343. ss->go_s99_running = 0;
  2344. break;
  2345. case sdma_event_e80_hw_freeze:
  2346. break;
  2347. case sdma_event_e81_hw_frozen:
  2348. break;
  2349. case sdma_event_e82_hw_unfreeze:
  2350. break;
  2351. case sdma_event_e85_link_down:
  2352. break;
  2353. case sdma_event_e90_sw_halted:
  2354. break;
  2355. }
  2356. break;
  2357. case sdma_state_s15_hw_start_up_clean_wait:
  2358. switch (event) {
  2359. case sdma_event_e00_go_hw_down:
  2360. sdma_set_state(sde, sdma_state_s00_hw_down);
  2361. sdma_sw_tear_down(sde);
  2362. break;
  2363. case sdma_event_e10_go_hw_start:
  2364. break;
  2365. case sdma_event_e15_hw_halt_done:
  2366. break;
  2367. case sdma_event_e25_hw_clean_up_done:
  2368. sdma_hw_start_up(sde);
  2369. sdma_set_state(sde, ss->go_s99_running ?
  2370. sdma_state_s99_running :
  2371. sdma_state_s20_idle);
  2372. break;
  2373. case sdma_event_e30_go_running:
  2374. ss->go_s99_running = 1;
  2375. break;
  2376. case sdma_event_e40_sw_cleaned:
  2377. break;
  2378. case sdma_event_e50_hw_cleaned:
  2379. break;
  2380. case sdma_event_e60_hw_halted:
  2381. break;
  2382. case sdma_event_e70_go_idle:
  2383. ss->go_s99_running = 0;
  2384. break;
  2385. case sdma_event_e80_hw_freeze:
  2386. break;
  2387. case sdma_event_e81_hw_frozen:
  2388. break;
  2389. case sdma_event_e82_hw_unfreeze:
  2390. break;
  2391. case sdma_event_e85_link_down:
  2392. break;
  2393. case sdma_event_e90_sw_halted:
  2394. break;
  2395. }
  2396. break;
  2397. case sdma_state_s20_idle:
  2398. switch (event) {
  2399. case sdma_event_e00_go_hw_down:
  2400. sdma_set_state(sde, sdma_state_s00_hw_down);
  2401. sdma_sw_tear_down(sde);
  2402. break;
  2403. case sdma_event_e10_go_hw_start:
  2404. break;
  2405. case sdma_event_e15_hw_halt_done:
  2406. break;
  2407. case sdma_event_e25_hw_clean_up_done:
  2408. break;
  2409. case sdma_event_e30_go_running:
  2410. sdma_set_state(sde, sdma_state_s99_running);
  2411. ss->go_s99_running = 1;
  2412. break;
  2413. case sdma_event_e40_sw_cleaned:
  2414. break;
  2415. case sdma_event_e50_hw_cleaned:
  2416. break;
  2417. case sdma_event_e60_hw_halted:
  2418. sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
  2419. schedule_work(&sde->err_halt_worker);
  2420. break;
  2421. case sdma_event_e70_go_idle:
  2422. break;
  2423. case sdma_event_e85_link_down:
  2424. /* fall through */
  2425. case sdma_event_e80_hw_freeze:
  2426. sdma_set_state(sde, sdma_state_s80_hw_freeze);
  2427. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2428. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2429. break;
  2430. case sdma_event_e81_hw_frozen:
  2431. break;
  2432. case sdma_event_e82_hw_unfreeze:
  2433. break;
  2434. case sdma_event_e90_sw_halted:
  2435. break;
  2436. }
  2437. break;
  2438. case sdma_state_s30_sw_clean_up_wait:
  2439. switch (event) {
  2440. case sdma_event_e00_go_hw_down:
  2441. sdma_set_state(sde, sdma_state_s00_hw_down);
  2442. break;
  2443. case sdma_event_e10_go_hw_start:
  2444. break;
  2445. case sdma_event_e15_hw_halt_done:
  2446. break;
  2447. case sdma_event_e25_hw_clean_up_done:
  2448. break;
  2449. case sdma_event_e30_go_running:
  2450. ss->go_s99_running = 1;
  2451. break;
  2452. case sdma_event_e40_sw_cleaned:
  2453. sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
  2454. sdma_start_hw_clean_up(sde);
  2455. break;
  2456. case sdma_event_e50_hw_cleaned:
  2457. break;
  2458. case sdma_event_e60_hw_halted:
  2459. break;
  2460. case sdma_event_e70_go_idle:
  2461. ss->go_s99_running = 0;
  2462. break;
  2463. case sdma_event_e80_hw_freeze:
  2464. break;
  2465. case sdma_event_e81_hw_frozen:
  2466. break;
  2467. case sdma_event_e82_hw_unfreeze:
  2468. break;
  2469. case sdma_event_e85_link_down:
  2470. ss->go_s99_running = 0;
  2471. break;
  2472. case sdma_event_e90_sw_halted:
  2473. break;
  2474. }
  2475. break;
  2476. case sdma_state_s40_hw_clean_up_wait:
  2477. switch (event) {
  2478. case sdma_event_e00_go_hw_down:
  2479. sdma_set_state(sde, sdma_state_s00_hw_down);
  2480. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2481. break;
  2482. case sdma_event_e10_go_hw_start:
  2483. break;
  2484. case sdma_event_e15_hw_halt_done:
  2485. break;
  2486. case sdma_event_e25_hw_clean_up_done:
  2487. sdma_hw_start_up(sde);
  2488. sdma_set_state(sde, ss->go_s99_running ?
  2489. sdma_state_s99_running :
  2490. sdma_state_s20_idle);
  2491. break;
  2492. case sdma_event_e30_go_running:
  2493. ss->go_s99_running = 1;
  2494. break;
  2495. case sdma_event_e40_sw_cleaned:
  2496. break;
  2497. case sdma_event_e50_hw_cleaned:
  2498. break;
  2499. case sdma_event_e60_hw_halted:
  2500. break;
  2501. case sdma_event_e70_go_idle:
  2502. ss->go_s99_running = 0;
  2503. break;
  2504. case sdma_event_e80_hw_freeze:
  2505. break;
  2506. case sdma_event_e81_hw_frozen:
  2507. break;
  2508. case sdma_event_e82_hw_unfreeze:
  2509. break;
  2510. case sdma_event_e85_link_down:
  2511. ss->go_s99_running = 0;
  2512. break;
  2513. case sdma_event_e90_sw_halted:
  2514. break;
  2515. }
  2516. break;
  2517. case sdma_state_s50_hw_halt_wait:
  2518. switch (event) {
  2519. case sdma_event_e00_go_hw_down:
  2520. sdma_set_state(sde, sdma_state_s00_hw_down);
  2521. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2522. break;
  2523. case sdma_event_e10_go_hw_start:
  2524. break;
  2525. case sdma_event_e15_hw_halt_done:
  2526. sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
  2527. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2528. break;
  2529. case sdma_event_e25_hw_clean_up_done:
  2530. break;
  2531. case sdma_event_e30_go_running:
  2532. ss->go_s99_running = 1;
  2533. break;
  2534. case sdma_event_e40_sw_cleaned:
  2535. break;
  2536. case sdma_event_e50_hw_cleaned:
  2537. break;
  2538. case sdma_event_e60_hw_halted:
  2539. schedule_work(&sde->err_halt_worker);
  2540. break;
  2541. case sdma_event_e70_go_idle:
  2542. ss->go_s99_running = 0;
  2543. break;
  2544. case sdma_event_e80_hw_freeze:
  2545. break;
  2546. case sdma_event_e81_hw_frozen:
  2547. break;
  2548. case sdma_event_e82_hw_unfreeze:
  2549. break;
  2550. case sdma_event_e85_link_down:
  2551. ss->go_s99_running = 0;
  2552. break;
  2553. case sdma_event_e90_sw_halted:
  2554. break;
  2555. }
  2556. break;
  2557. case sdma_state_s60_idle_halt_wait:
  2558. switch (event) {
  2559. case sdma_event_e00_go_hw_down:
  2560. sdma_set_state(sde, sdma_state_s00_hw_down);
  2561. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2562. break;
  2563. case sdma_event_e10_go_hw_start:
  2564. break;
  2565. case sdma_event_e15_hw_halt_done:
  2566. sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
  2567. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2568. break;
  2569. case sdma_event_e25_hw_clean_up_done:
  2570. break;
  2571. case sdma_event_e30_go_running:
  2572. ss->go_s99_running = 1;
  2573. break;
  2574. case sdma_event_e40_sw_cleaned:
  2575. break;
  2576. case sdma_event_e50_hw_cleaned:
  2577. break;
  2578. case sdma_event_e60_hw_halted:
  2579. schedule_work(&sde->err_halt_worker);
  2580. break;
  2581. case sdma_event_e70_go_idle:
  2582. ss->go_s99_running = 0;
  2583. break;
  2584. case sdma_event_e80_hw_freeze:
  2585. break;
  2586. case sdma_event_e81_hw_frozen:
  2587. break;
  2588. case sdma_event_e82_hw_unfreeze:
  2589. break;
  2590. case sdma_event_e85_link_down:
  2591. break;
  2592. case sdma_event_e90_sw_halted:
  2593. break;
  2594. }
  2595. break;
  2596. case sdma_state_s80_hw_freeze:
  2597. switch (event) {
  2598. case sdma_event_e00_go_hw_down:
  2599. sdma_set_state(sde, sdma_state_s00_hw_down);
  2600. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2601. break;
  2602. case sdma_event_e10_go_hw_start:
  2603. break;
  2604. case sdma_event_e15_hw_halt_done:
  2605. break;
  2606. case sdma_event_e25_hw_clean_up_done:
  2607. break;
  2608. case sdma_event_e30_go_running:
  2609. ss->go_s99_running = 1;
  2610. break;
  2611. case sdma_event_e40_sw_cleaned:
  2612. break;
  2613. case sdma_event_e50_hw_cleaned:
  2614. break;
  2615. case sdma_event_e60_hw_halted:
  2616. break;
  2617. case sdma_event_e70_go_idle:
  2618. ss->go_s99_running = 0;
  2619. break;
  2620. case sdma_event_e80_hw_freeze:
  2621. break;
  2622. case sdma_event_e81_hw_frozen:
  2623. sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
  2624. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2625. break;
  2626. case sdma_event_e82_hw_unfreeze:
  2627. break;
  2628. case sdma_event_e85_link_down:
  2629. break;
  2630. case sdma_event_e90_sw_halted:
  2631. break;
  2632. }
  2633. break;
  2634. case sdma_state_s82_freeze_sw_clean:
  2635. switch (event) {
  2636. case sdma_event_e00_go_hw_down:
  2637. sdma_set_state(sde, sdma_state_s00_hw_down);
  2638. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2639. break;
  2640. case sdma_event_e10_go_hw_start:
  2641. break;
  2642. case sdma_event_e15_hw_halt_done:
  2643. break;
  2644. case sdma_event_e25_hw_clean_up_done:
  2645. break;
  2646. case sdma_event_e30_go_running:
  2647. ss->go_s99_running = 1;
  2648. break;
  2649. case sdma_event_e40_sw_cleaned:
  2650. /* notify caller this engine is done cleaning */
  2651. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2652. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2653. break;
  2654. case sdma_event_e50_hw_cleaned:
  2655. break;
  2656. case sdma_event_e60_hw_halted:
  2657. break;
  2658. case sdma_event_e70_go_idle:
  2659. ss->go_s99_running = 0;
  2660. break;
  2661. case sdma_event_e80_hw_freeze:
  2662. break;
  2663. case sdma_event_e81_hw_frozen:
  2664. break;
  2665. case sdma_event_e82_hw_unfreeze:
  2666. sdma_hw_start_up(sde);
  2667. sdma_set_state(sde, ss->go_s99_running ?
  2668. sdma_state_s99_running :
  2669. sdma_state_s20_idle);
  2670. break;
  2671. case sdma_event_e85_link_down:
  2672. break;
  2673. case sdma_event_e90_sw_halted:
  2674. break;
  2675. }
  2676. break;
  2677. case sdma_state_s99_running:
  2678. switch (event) {
  2679. case sdma_event_e00_go_hw_down:
  2680. sdma_set_state(sde, sdma_state_s00_hw_down);
  2681. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2682. break;
  2683. case sdma_event_e10_go_hw_start:
  2684. break;
  2685. case sdma_event_e15_hw_halt_done:
  2686. break;
  2687. case sdma_event_e25_hw_clean_up_done:
  2688. break;
  2689. case sdma_event_e30_go_running:
  2690. break;
  2691. case sdma_event_e40_sw_cleaned:
  2692. break;
  2693. case sdma_event_e50_hw_cleaned:
  2694. break;
  2695. case sdma_event_e60_hw_halted:
  2696. need_progress = 1;
  2697. sdma_err_progress_check_schedule(sde);
  2698. /* fall through */
  2699. case sdma_event_e90_sw_halted:
  2700. /*
  2701. * SW initiated halt does not perform engines
  2702. * progress check
  2703. */
  2704. sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
  2705. schedule_work(&sde->err_halt_worker);
  2706. break;
  2707. case sdma_event_e70_go_idle:
  2708. sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
  2709. break;
  2710. case sdma_event_e85_link_down:
  2711. ss->go_s99_running = 0;
  2712. /* fall through */
  2713. case sdma_event_e80_hw_freeze:
  2714. sdma_set_state(sde, sdma_state_s80_hw_freeze);
  2715. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2716. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2717. break;
  2718. case sdma_event_e81_hw_frozen:
  2719. break;
  2720. case sdma_event_e82_hw_unfreeze:
  2721. break;
  2722. }
  2723. break;
  2724. }
  2725. ss->last_event = event;
  2726. if (need_progress)
  2727. sdma_make_progress(sde, 0);
  2728. }
  2729. /*
  2730. * _extend_sdma_tx_descs() - helper to extend txreq
  2731. *
  2732. * This is called once the initial nominal allocation
  2733. * of descriptors in the sdma_txreq is exhausted.
  2734. *
  2735. * The code will bump the allocation up to the max
  2736. * of MAX_DESC (64) descriptors. There doesn't seem
  2737. * much point in an interim step. The last descriptor
  2738. * is reserved for coalesce buffer in order to support
  2739. * cases where input packet has >MAX_DESC iovecs.
  2740. *
  2741. */
  2742. static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
  2743. {
  2744. int i;
  2745. /* Handle last descriptor */
  2746. if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
  2747. /* if tlen is 0, it is for padding, release last descriptor */
  2748. if (!tx->tlen) {
  2749. tx->desc_limit = MAX_DESC;
  2750. } else if (!tx->coalesce_buf) {
  2751. /* allocate coalesce buffer with space for padding */
  2752. tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
  2753. GFP_ATOMIC);
  2754. if (!tx->coalesce_buf)
  2755. goto enomem;
  2756. tx->coalesce_idx = 0;
  2757. }
  2758. return 0;
  2759. }
  2760. if (unlikely(tx->num_desc == MAX_DESC))
  2761. goto enomem;
  2762. tx->descp = kmalloc_array(
  2763. MAX_DESC,
  2764. sizeof(struct sdma_desc),
  2765. GFP_ATOMIC);
  2766. if (!tx->descp)
  2767. goto enomem;
  2768. /* reserve last descriptor for coalescing */
  2769. tx->desc_limit = MAX_DESC - 1;
  2770. /* copy ones already built */
  2771. for (i = 0; i < tx->num_desc; i++)
  2772. tx->descp[i] = tx->descs[i];
  2773. return 0;
  2774. enomem:
  2775. __sdma_txclean(dd, tx);
  2776. return -ENOMEM;
  2777. }
  2778. /*
  2779. * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
  2780. *
  2781. * This is called once the initial nominal allocation of descriptors
  2782. * in the sdma_txreq is exhausted.
  2783. *
  2784. * This function calls _extend_sdma_tx_descs to extend or allocate
  2785. * coalesce buffer. If there is a allocated coalesce buffer, it will
  2786. * copy the input packet data into the coalesce buffer. It also adds
  2787. * coalesce buffer descriptor once when whole packet is received.
  2788. *
  2789. * Return:
  2790. * <0 - error
  2791. * 0 - coalescing, don't populate descriptor
  2792. * 1 - continue with populating descriptor
  2793. */
  2794. int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
  2795. int type, void *kvaddr, struct page *page,
  2796. unsigned long offset, u16 len)
  2797. {
  2798. int pad_len, rval;
  2799. dma_addr_t addr;
  2800. rval = _extend_sdma_tx_descs(dd, tx);
  2801. if (rval) {
  2802. __sdma_txclean(dd, tx);
  2803. return rval;
  2804. }
  2805. /* If coalesce buffer is allocated, copy data into it */
  2806. if (tx->coalesce_buf) {
  2807. if (type == SDMA_MAP_NONE) {
  2808. __sdma_txclean(dd, tx);
  2809. return -EINVAL;
  2810. }
  2811. if (type == SDMA_MAP_PAGE) {
  2812. kvaddr = kmap(page);
  2813. kvaddr += offset;
  2814. } else if (WARN_ON(!kvaddr)) {
  2815. __sdma_txclean(dd, tx);
  2816. return -EINVAL;
  2817. }
  2818. memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
  2819. tx->coalesce_idx += len;
  2820. if (type == SDMA_MAP_PAGE)
  2821. kunmap(page);
  2822. /* If there is more data, return */
  2823. if (tx->tlen - tx->coalesce_idx)
  2824. return 0;
  2825. /* Whole packet is received; add any padding */
  2826. pad_len = tx->packet_len & (sizeof(u32) - 1);
  2827. if (pad_len) {
  2828. pad_len = sizeof(u32) - pad_len;
  2829. memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
  2830. /* padding is taken care of for coalescing case */
  2831. tx->packet_len += pad_len;
  2832. tx->tlen += pad_len;
  2833. }
  2834. /* dma map the coalesce buffer */
  2835. addr = dma_map_single(&dd->pcidev->dev,
  2836. tx->coalesce_buf,
  2837. tx->tlen,
  2838. DMA_TO_DEVICE);
  2839. if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
  2840. __sdma_txclean(dd, tx);
  2841. return -ENOSPC;
  2842. }
  2843. /* Add descriptor for coalesce buffer */
  2844. tx->desc_limit = MAX_DESC;
  2845. return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
  2846. addr, tx->tlen);
  2847. }
  2848. return 1;
  2849. }
  2850. /* Update sdes when the lmc changes */
  2851. void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
  2852. {
  2853. struct sdma_engine *sde;
  2854. int i;
  2855. u64 sreg;
  2856. sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
  2857. SD(CHECK_SLID_MASK_SHIFT)) |
  2858. (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
  2859. SD(CHECK_SLID_VALUE_SHIFT));
  2860. for (i = 0; i < dd->num_sdma; i++) {
  2861. hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
  2862. i, (u32)sreg);
  2863. sde = &dd->per_sdma[i];
  2864. write_sde_csr(sde, SD(CHECK_SLID), sreg);
  2865. }
  2866. }
  2867. /* tx not dword sized - pad */
  2868. int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
  2869. {
  2870. int rval = 0;
  2871. tx->num_desc++;
  2872. if ((unlikely(tx->num_desc == tx->desc_limit))) {
  2873. rval = _extend_sdma_tx_descs(dd, tx);
  2874. if (rval) {
  2875. __sdma_txclean(dd, tx);
  2876. return rval;
  2877. }
  2878. }
  2879. /* finish the one just added */
  2880. make_tx_sdma_desc(
  2881. tx,
  2882. SDMA_MAP_NONE,
  2883. dd->sdma_pad_phys,
  2884. sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
  2885. _sdma_close_tx(dd, tx);
  2886. return rval;
  2887. }
  2888. /*
  2889. * Add ahg to the sdma_txreq
  2890. *
  2891. * The logic will consume up to 3
  2892. * descriptors at the beginning of
  2893. * sdma_txreq.
  2894. */
  2895. void _sdma_txreq_ahgadd(
  2896. struct sdma_txreq *tx,
  2897. u8 num_ahg,
  2898. u8 ahg_entry,
  2899. u32 *ahg,
  2900. u8 ahg_hlen)
  2901. {
  2902. u32 i, shift = 0, desc = 0;
  2903. u8 mode;
  2904. WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
  2905. /* compute mode */
  2906. if (num_ahg == 1)
  2907. mode = SDMA_AHG_APPLY_UPDATE1;
  2908. else if (num_ahg <= 5)
  2909. mode = SDMA_AHG_APPLY_UPDATE2;
  2910. else
  2911. mode = SDMA_AHG_APPLY_UPDATE3;
  2912. tx->num_desc++;
  2913. /* initialize to consumed descriptors to zero */
  2914. switch (mode) {
  2915. case SDMA_AHG_APPLY_UPDATE3:
  2916. tx->num_desc++;
  2917. tx->descs[2].qw[0] = 0;
  2918. tx->descs[2].qw[1] = 0;
  2919. /* FALLTHROUGH */
  2920. case SDMA_AHG_APPLY_UPDATE2:
  2921. tx->num_desc++;
  2922. tx->descs[1].qw[0] = 0;
  2923. tx->descs[1].qw[1] = 0;
  2924. break;
  2925. }
  2926. ahg_hlen >>= 2;
  2927. tx->descs[0].qw[1] |=
  2928. (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
  2929. << SDMA_DESC1_HEADER_INDEX_SHIFT) |
  2930. (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
  2931. << SDMA_DESC1_HEADER_DWS_SHIFT) |
  2932. (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
  2933. << SDMA_DESC1_HEADER_MODE_SHIFT) |
  2934. (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
  2935. << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
  2936. for (i = 0; i < (num_ahg - 1); i++) {
  2937. if (!shift && !(i & 2))
  2938. desc++;
  2939. tx->descs[desc].qw[!!(i & 2)] |=
  2940. (((u64)ahg[i + 1])
  2941. << shift);
  2942. shift = (shift + 32) & 63;
  2943. }
  2944. }
  2945. /**
  2946. * sdma_ahg_alloc - allocate an AHG entry
  2947. * @sde: engine to allocate from
  2948. *
  2949. * Return:
  2950. * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
  2951. * -ENOSPC if an entry is not available
  2952. */
  2953. int sdma_ahg_alloc(struct sdma_engine *sde)
  2954. {
  2955. int nr;
  2956. int oldbit;
  2957. if (!sde) {
  2958. trace_hfi1_ahg_allocate(sde, -EINVAL);
  2959. return -EINVAL;
  2960. }
  2961. while (1) {
  2962. nr = ffz(READ_ONCE(sde->ahg_bits));
  2963. if (nr > 31) {
  2964. trace_hfi1_ahg_allocate(sde, -ENOSPC);
  2965. return -ENOSPC;
  2966. }
  2967. oldbit = test_and_set_bit(nr, &sde->ahg_bits);
  2968. if (!oldbit)
  2969. break;
  2970. cpu_relax();
  2971. }
  2972. trace_hfi1_ahg_allocate(sde, nr);
  2973. return nr;
  2974. }
  2975. /**
  2976. * sdma_ahg_free - free an AHG entry
  2977. * @sde: engine to return AHG entry
  2978. * @ahg_index: index to free
  2979. *
  2980. * This routine frees the indicate AHG entry.
  2981. */
  2982. void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
  2983. {
  2984. if (!sde)
  2985. return;
  2986. trace_hfi1_ahg_deallocate(sde, ahg_index);
  2987. if (ahg_index < 0 || ahg_index > 31)
  2988. return;
  2989. clear_bit(ahg_index, &sde->ahg_bits);
  2990. }
  2991. /*
  2992. * SPC freeze handling for SDMA engines. Called when the driver knows
  2993. * the SPC is going into a freeze but before the freeze is fully
  2994. * settled. Generally an error interrupt.
  2995. *
  2996. * This event will pull the engine out of running so no more entries can be
  2997. * added to the engine's queue.
  2998. */
  2999. void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
  3000. {
  3001. int i;
  3002. enum sdma_events event = link_down ? sdma_event_e85_link_down :
  3003. sdma_event_e80_hw_freeze;
  3004. /* set up the wait but do not wait here */
  3005. atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
  3006. /* tell all engines to stop running and wait */
  3007. for (i = 0; i < dd->num_sdma; i++)
  3008. sdma_process_event(&dd->per_sdma[i], event);
  3009. /* sdma_freeze() will wait for all engines to have stopped */
  3010. }
  3011. /*
  3012. * SPC freeze handling for SDMA engines. Called when the driver knows
  3013. * the SPC is fully frozen.
  3014. */
  3015. void sdma_freeze(struct hfi1_devdata *dd)
  3016. {
  3017. int i;
  3018. int ret;
  3019. /*
  3020. * Make sure all engines have moved out of the running state before
  3021. * continuing.
  3022. */
  3023. ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
  3024. atomic_read(&dd->sdma_unfreeze_count) <=
  3025. 0);
  3026. /* interrupted or count is negative, then unloading - just exit */
  3027. if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
  3028. return;
  3029. /* set up the count for the next wait */
  3030. atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
  3031. /* tell all engines that the SPC is frozen, they can start cleaning */
  3032. for (i = 0; i < dd->num_sdma; i++)
  3033. sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
  3034. /*
  3035. * Wait for everyone to finish software clean before exiting. The
  3036. * software clean will read engine CSRs, so must be completed before
  3037. * the next step, which will clear the engine CSRs.
  3038. */
  3039. (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
  3040. atomic_read(&dd->sdma_unfreeze_count) <= 0);
  3041. /* no need to check results - done no matter what */
  3042. }
  3043. /*
  3044. * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
  3045. *
  3046. * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
  3047. * that is left is a software clean. We could do it after the SPC is fully
  3048. * frozen, but then we'd have to add another state to wait for the unfreeze.
  3049. * Instead, just defer the software clean until the unfreeze step.
  3050. */
  3051. void sdma_unfreeze(struct hfi1_devdata *dd)
  3052. {
  3053. int i;
  3054. /* tell all engines start freeze clean up */
  3055. for (i = 0; i < dd->num_sdma; i++)
  3056. sdma_process_event(&dd->per_sdma[i],
  3057. sdma_event_e82_hw_unfreeze);
  3058. }
  3059. /**
  3060. * _sdma_engine_progress_schedule() - schedule progress on engine
  3061. * @sde: sdma_engine to schedule progress
  3062. *
  3063. */
  3064. void _sdma_engine_progress_schedule(
  3065. struct sdma_engine *sde)
  3066. {
  3067. trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
  3068. /* assume we have selected a good cpu */
  3069. write_csr(sde->dd,
  3070. CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
  3071. sde->progress_mask);
  3072. }