vc4_dsi.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744
  1. /*
  2. * Copyright (C) 2016 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /**
  17. * DOC: VC4 DSI0/DSI1 module
  18. *
  19. * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
  20. * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  21. * controller.
  22. *
  23. * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  24. * while the compute module brings both DSI0 and DSI1 out.
  25. *
  26. * This driver has been tested for DSI1 video-mode display only
  27. * currently, with most of the information necessary for DSI0
  28. * hopefully present.
  29. */
  30. #include <drm/drm_atomic_helper.h>
  31. #include <drm/drm_crtc_helper.h>
  32. #include <drm/drm_edid.h>
  33. #include <drm/drm_mipi_dsi.h>
  34. #include <drm/drm_of.h>
  35. #include <drm/drm_panel.h>
  36. #include <linux/clk.h>
  37. #include <linux/clk-provider.h>
  38. #include <linux/completion.h>
  39. #include <linux/component.h>
  40. #include <linux/dmaengine.h>
  41. #include <linux/i2c.h>
  42. #include <linux/of_address.h>
  43. #include <linux/of_platform.h>
  44. #include <linux/pm_runtime.h>
  45. #include "vc4_drv.h"
  46. #include "vc4_regs.h"
  47. #define DSI_CMD_FIFO_DEPTH 16
  48. #define DSI_PIX_FIFO_DEPTH 256
  49. #define DSI_PIX_FIFO_WIDTH 4
  50. #define DSI0_CTRL 0x00
  51. /* Command packet control. */
  52. #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
  53. #define DSI1_TXPKT1C 0x04
  54. # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
  55. # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
  56. # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
  57. # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
  58. # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
  59. # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
  60. /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  61. # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
  62. /* Primary display where cmdfifo provides part of the payload and
  63. * pixelvalve the rest.
  64. */
  65. # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
  66. /* Secondary display where cmdfifo provides part of the payload and
  67. * pixfifo the rest.
  68. */
  69. # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
  70. # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
  71. # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
  72. # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
  73. # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
  74. /* Command only. Uses TXPKT1H and DISPLAY_NO */
  75. # define DSI_TXPKT1C_CMD_CTRL_TX 0
  76. /* Command with BTA for either ack or read data. */
  77. # define DSI_TXPKT1C_CMD_CTRL_RX 1
  78. /* Trigger according to TRIG_CMD */
  79. # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
  80. /* BTA alone for getting error status after a command, or a TE trigger
  81. * without a previous command.
  82. */
  83. # define DSI_TXPKT1C_CMD_CTRL_BTA 3
  84. # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
  85. # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
  86. # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
  87. # define DSI_TXPKT1C_CMD_EN BIT(0)
  88. /* Command packet header. */
  89. #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
  90. #define DSI1_TXPKT1H 0x08
  91. # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
  92. # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
  93. # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  94. # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
  95. # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
  96. # define DSI_TXPKT1H_BC_DT_SHIFT 0
  97. #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
  98. #define DSI1_RXPKT1H 0x14
  99. # define DSI_RXPKT1H_CRC_ERR BIT(31)
  100. # define DSI_RXPKT1H_DET_ERR BIT(30)
  101. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  102. # define DSI_RXPKT1H_COR_ERR BIT(28)
  103. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  104. # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
  105. /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
  106. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  107. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  108. /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
  109. # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
  110. # define DSI_RXPKT1H_SHORT_1_SHIFT 16
  111. # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
  112. # define DSI_RXPKT1H_SHORT_0_SHIFT 8
  113. # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
  114. # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
  115. #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
  116. #define DSI1_RXPKT2H 0x18
  117. # define DSI_RXPKT1H_DET_ERR BIT(30)
  118. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  119. # define DSI_RXPKT1H_COR_ERR BIT(28)
  120. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  121. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  122. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  123. # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
  124. # define DSI_RXPKT1H_DT_SHIFT 0
  125. #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
  126. #define DSI1_TXPKT_CMD_FIFO 0x1c
  127. #define DSI0_DISP0_CTRL 0x18
  128. # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
  129. # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
  130. # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
  131. # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
  132. # define DSI_DISP0_LP_STOP_DISABLE 0
  133. # define DSI_DISP0_LP_STOP_PERLINE 1
  134. # define DSI_DISP0_LP_STOP_PERFRAME 2
  135. /* Transmit RGB pixels and null packets only during HACTIVE, instead
  136. * of going to LP-STOP.
  137. */
  138. # define DSI_DISP_HACTIVE_NULL BIT(10)
  139. /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
  140. # define DSI_DISP_VBLP_CTRL BIT(9)
  141. /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
  142. # define DSI_DISP_HFP_CTRL BIT(8)
  143. /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
  144. # define DSI_DISP_HBP_CTRL BIT(7)
  145. # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
  146. # define DSI_DISP0_CHANNEL_SHIFT 5
  147. /* Enables end events for HSYNC/VSYNC, not just start events. */
  148. # define DSI_DISP0_ST_END BIT(4)
  149. # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
  150. # define DSI_DISP0_PFORMAT_SHIFT 2
  151. # define DSI_PFORMAT_RGB565 0
  152. # define DSI_PFORMAT_RGB666_PACKED 1
  153. # define DSI_PFORMAT_RGB666 2
  154. # define DSI_PFORMAT_RGB888 3
  155. /* Default is VIDEO mode. */
  156. # define DSI_DISP0_COMMAND_MODE BIT(1)
  157. # define DSI_DISP0_ENABLE BIT(0)
  158. #define DSI0_DISP1_CTRL 0x1c
  159. #define DSI1_DISP1_CTRL 0x2c
  160. /* Format of the data written to TXPKT_PIX_FIFO. */
  161. # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
  162. # define DSI_DISP1_PFORMAT_SHIFT 1
  163. # define DSI_DISP1_PFORMAT_16BIT 0
  164. # define DSI_DISP1_PFORMAT_24BIT 1
  165. # define DSI_DISP1_PFORMAT_32BIT_LE 2
  166. # define DSI_DISP1_PFORMAT_32BIT_BE 3
  167. /* DISP1 is always command mode. */
  168. # define DSI_DISP1_ENABLE BIT(0)
  169. #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
  170. #define DSI0_INT_STAT 0x24
  171. #define DSI0_INT_EN 0x28
  172. # define DSI1_INT_PHY_D3_ULPS BIT(30)
  173. # define DSI1_INT_PHY_D3_STOP BIT(29)
  174. # define DSI1_INT_PHY_D2_ULPS BIT(28)
  175. # define DSI1_INT_PHY_D2_STOP BIT(27)
  176. # define DSI1_INT_PHY_D1_ULPS BIT(26)
  177. # define DSI1_INT_PHY_D1_STOP BIT(25)
  178. # define DSI1_INT_PHY_D0_ULPS BIT(24)
  179. # define DSI1_INT_PHY_D0_STOP BIT(23)
  180. # define DSI1_INT_FIFO_ERR BIT(22)
  181. # define DSI1_INT_PHY_DIR_RTF BIT(21)
  182. # define DSI1_INT_PHY_RXLPDT BIT(20)
  183. # define DSI1_INT_PHY_RXTRIG BIT(19)
  184. # define DSI1_INT_PHY_D0_LPDT BIT(18)
  185. # define DSI1_INT_PHY_DIR_FTR BIT(17)
  186. /* Signaled when the clock lane enters the given state. */
  187. # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
  188. # define DSI1_INT_PHY_CLOCK_HS BIT(15)
  189. # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
  190. /* Signaled on timeouts */
  191. # define DSI1_INT_PR_TO BIT(13)
  192. # define DSI1_INT_TA_TO BIT(12)
  193. # define DSI1_INT_LPRX_TO BIT(11)
  194. # define DSI1_INT_HSTX_TO BIT(10)
  195. /* Contention on a line when trying to drive the line low */
  196. # define DSI1_INT_ERR_CONT_LP1 BIT(9)
  197. # define DSI1_INT_ERR_CONT_LP0 BIT(8)
  198. /* Control error: incorrect line state sequence on data lane 0. */
  199. # define DSI1_INT_ERR_CONTROL BIT(7)
  200. /* LPDT synchronization error (bits received not a multiple of 8. */
  201. # define DSI1_INT_ERR_SYNC_ESC BIT(6)
  202. /* Signaled after receiving an error packet from the display in
  203. * response to a read.
  204. */
  205. # define DSI1_INT_RXPKT2 BIT(5)
  206. /* Signaled after receiving a packet. The header and optional short
  207. * response will be in RXPKT1H, and a long response will be in the
  208. * RXPKT_FIFO.
  209. */
  210. # define DSI1_INT_RXPKT1 BIT(4)
  211. # define DSI1_INT_TXPKT2_DONE BIT(3)
  212. # define DSI1_INT_TXPKT2_END BIT(2)
  213. /* Signaled after all repeats of TXPKT1 are transferred. */
  214. # define DSI1_INT_TXPKT1_DONE BIT(1)
  215. /* Signaled after each TXPKT1 repeat is scheduled. */
  216. # define DSI1_INT_TXPKT1_END BIT(0)
  217. #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
  218. DSI1_INT_ERR_CONTROL | \
  219. DSI1_INT_ERR_CONT_LP0 | \
  220. DSI1_INT_ERR_CONT_LP1 | \
  221. DSI1_INT_HSTX_TO | \
  222. DSI1_INT_LPRX_TO | \
  223. DSI1_INT_TA_TO | \
  224. DSI1_INT_PR_TO)
  225. #define DSI0_STAT 0x2c
  226. #define DSI0_HSTX_TO_CNT 0x30
  227. #define DSI0_LPRX_TO_CNT 0x34
  228. #define DSI0_TA_TO_CNT 0x38
  229. #define DSI0_PR_TO_CNT 0x3c
  230. #define DSI0_PHYC 0x40
  231. # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
  232. # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
  233. # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
  234. # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
  235. # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
  236. # define DSI1_PHYC_CLANE_ULPS BIT(17)
  237. # define DSI1_PHYC_CLANE_ENABLE BIT(16)
  238. # define DSI_PHYC_DLANE3_ULPS BIT(13)
  239. # define DSI_PHYC_DLANE3_ENABLE BIT(12)
  240. # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
  241. # define DSI0_PHYC_CLANE_ULPS BIT(9)
  242. # define DSI_PHYC_DLANE2_ULPS BIT(9)
  243. # define DSI0_PHYC_CLANE_ENABLE BIT(8)
  244. # define DSI_PHYC_DLANE2_ENABLE BIT(8)
  245. # define DSI_PHYC_DLANE1_ULPS BIT(5)
  246. # define DSI_PHYC_DLANE1_ENABLE BIT(4)
  247. # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
  248. # define DSI_PHYC_DLANE0_ULPS BIT(1)
  249. # define DSI_PHYC_DLANE0_ENABLE BIT(0)
  250. #define DSI0_HS_CLT0 0x44
  251. #define DSI0_HS_CLT1 0x48
  252. #define DSI0_HS_CLT2 0x4c
  253. #define DSI0_HS_DLT3 0x50
  254. #define DSI0_HS_DLT4 0x54
  255. #define DSI0_HS_DLT5 0x58
  256. #define DSI0_HS_DLT6 0x5c
  257. #define DSI0_HS_DLT7 0x60
  258. #define DSI0_PHY_AFEC0 0x64
  259. # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
  260. # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
  261. # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
  262. # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
  263. # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
  264. # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
  265. # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
  266. # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
  267. # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
  268. # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
  269. # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
  270. # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
  271. # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
  272. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
  273. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
  274. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
  275. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
  276. # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
  277. # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
  278. # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
  279. # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
  280. # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
  281. # define DSI1_PHY_AFEC0_RESET BIT(13)
  282. # define DSI1_PHY_AFEC0_PD BIT(12)
  283. # define DSI0_PHY_AFEC0_RESET BIT(11)
  284. # define DSI1_PHY_AFEC0_PD_BG BIT(11)
  285. # define DSI0_PHY_AFEC0_PD BIT(10)
  286. # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
  287. # define DSI0_PHY_AFEC0_PD_BG BIT(9)
  288. # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
  289. # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
  290. # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
  291. # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
  292. # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
  293. # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
  294. # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
  295. #define DSI0_PHY_AFEC1 0x68
  296. # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
  297. # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
  298. # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
  299. # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
  300. # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
  301. # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
  302. #define DSI0_TST_SEL 0x6c
  303. #define DSI0_TST_MON 0x70
  304. #define DSI0_ID 0x74
  305. # define DSI_ID_VALUE 0x00647369
  306. #define DSI1_CTRL 0x00
  307. # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
  308. # define DSI_CTRL_HS_CLKC_SHIFT 14
  309. # define DSI_CTRL_HS_CLKC_BYTE 0
  310. # define DSI_CTRL_HS_CLKC_DDR2 1
  311. # define DSI_CTRL_HS_CLKC_DDR 2
  312. # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
  313. # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
  314. # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
  315. # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
  316. # define DSI_CTRL_CAL_BYTE BIT(9)
  317. # define DSI_CTRL_INV_BYTE BIT(8)
  318. # define DSI_CTRL_CLR_LDF BIT(7)
  319. # define DSI0_CTRL_CLR_PBCF BIT(6)
  320. # define DSI1_CTRL_CLR_RXF BIT(6)
  321. # define DSI0_CTRL_CLR_CPBCF BIT(5)
  322. # define DSI1_CTRL_CLR_PDF BIT(5)
  323. # define DSI0_CTRL_CLR_PDF BIT(4)
  324. # define DSI1_CTRL_CLR_CDF BIT(4)
  325. # define DSI0_CTRL_CLR_CDF BIT(3)
  326. # define DSI0_CTRL_CTRL2 BIT(2)
  327. # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
  328. # define DSI0_CTRL_CTRL1 BIT(1)
  329. # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
  330. # define DSI0_CTRL_CTRL0 BIT(0)
  331. # define DSI1_CTRL_EN BIT(0)
  332. # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  333. DSI0_CTRL_CLR_PBCF | \
  334. DSI0_CTRL_CLR_CPBCF | \
  335. DSI0_CTRL_CLR_PDF | \
  336. DSI0_CTRL_CLR_CDF)
  337. # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  338. DSI1_CTRL_CLR_RXF | \
  339. DSI1_CTRL_CLR_PDF | \
  340. DSI1_CTRL_CLR_CDF)
  341. #define DSI1_TXPKT2C 0x0c
  342. #define DSI1_TXPKT2H 0x10
  343. #define DSI1_TXPKT_PIX_FIFO 0x20
  344. #define DSI1_RXPKT_FIFO 0x24
  345. #define DSI1_DISP0_CTRL 0x28
  346. #define DSI1_INT_STAT 0x30
  347. #define DSI1_INT_EN 0x34
  348. /* State reporting bits. These mostly behave like INT_STAT, where
  349. * writing a 1 clears the bit.
  350. */
  351. #define DSI1_STAT 0x38
  352. # define DSI1_STAT_PHY_D3_ULPS BIT(31)
  353. # define DSI1_STAT_PHY_D3_STOP BIT(30)
  354. # define DSI1_STAT_PHY_D2_ULPS BIT(29)
  355. # define DSI1_STAT_PHY_D2_STOP BIT(28)
  356. # define DSI1_STAT_PHY_D1_ULPS BIT(27)
  357. # define DSI1_STAT_PHY_D1_STOP BIT(26)
  358. # define DSI1_STAT_PHY_D0_ULPS BIT(25)
  359. # define DSI1_STAT_PHY_D0_STOP BIT(24)
  360. # define DSI1_STAT_FIFO_ERR BIT(23)
  361. # define DSI1_STAT_PHY_RXLPDT BIT(22)
  362. # define DSI1_STAT_PHY_RXTRIG BIT(21)
  363. # define DSI1_STAT_PHY_D0_LPDT BIT(20)
  364. /* Set when in forward direction */
  365. # define DSI1_STAT_PHY_DIR BIT(19)
  366. # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
  367. # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
  368. # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
  369. # define DSI1_STAT_PR_TO BIT(15)
  370. # define DSI1_STAT_TA_TO BIT(14)
  371. # define DSI1_STAT_LPRX_TO BIT(13)
  372. # define DSI1_STAT_HSTX_TO BIT(12)
  373. # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
  374. # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
  375. # define DSI1_STAT_ERR_CONTROL BIT(9)
  376. # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
  377. # define DSI1_STAT_RXPKT2 BIT(7)
  378. # define DSI1_STAT_RXPKT1 BIT(6)
  379. # define DSI1_STAT_TXPKT2_BUSY BIT(5)
  380. # define DSI1_STAT_TXPKT2_DONE BIT(4)
  381. # define DSI1_STAT_TXPKT2_END BIT(3)
  382. # define DSI1_STAT_TXPKT1_BUSY BIT(2)
  383. # define DSI1_STAT_TXPKT1_DONE BIT(1)
  384. # define DSI1_STAT_TXPKT1_END BIT(0)
  385. #define DSI1_HSTX_TO_CNT 0x3c
  386. #define DSI1_LPRX_TO_CNT 0x40
  387. #define DSI1_TA_TO_CNT 0x44
  388. #define DSI1_PR_TO_CNT 0x48
  389. #define DSI1_PHYC 0x4c
  390. #define DSI1_HS_CLT0 0x50
  391. # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
  392. # define DSI_HS_CLT0_CZERO_SHIFT 18
  393. # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
  394. # define DSI_HS_CLT0_CPRE_SHIFT 9
  395. # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
  396. # define DSI_HS_CLT0_CPREP_SHIFT 0
  397. #define DSI1_HS_CLT1 0x54
  398. # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
  399. # define DSI_HS_CLT1_CTRAIL_SHIFT 9
  400. # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
  401. # define DSI_HS_CLT1_CPOST_SHIFT 0
  402. #define DSI1_HS_CLT2 0x58
  403. # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
  404. # define DSI_HS_CLT2_WUP_SHIFT 0
  405. #define DSI1_HS_DLT3 0x5c
  406. # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
  407. # define DSI_HS_DLT3_EXIT_SHIFT 18
  408. # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
  409. # define DSI_HS_DLT3_ZERO_SHIFT 9
  410. # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
  411. # define DSI_HS_DLT3_PRE_SHIFT 0
  412. #define DSI1_HS_DLT4 0x60
  413. # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
  414. # define DSI_HS_DLT4_ANLAT_SHIFT 18
  415. # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
  416. # define DSI_HS_DLT4_TRAIL_SHIFT 9
  417. # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
  418. # define DSI_HS_DLT4_LPX_SHIFT 0
  419. #define DSI1_HS_DLT5 0x64
  420. # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
  421. # define DSI_HS_DLT5_INIT_SHIFT 0
  422. #define DSI1_HS_DLT6 0x68
  423. # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
  424. # define DSI_HS_DLT6_TA_GET_SHIFT 24
  425. # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
  426. # define DSI_HS_DLT6_TA_SURE_SHIFT 16
  427. # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
  428. # define DSI_HS_DLT6_TA_GO_SHIFT 8
  429. # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
  430. # define DSI_HS_DLT6_LP_LPX_SHIFT 0
  431. #define DSI1_HS_DLT7 0x6c
  432. # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
  433. # define DSI_HS_DLT7_LP_WUP_SHIFT 0
  434. #define DSI1_PHY_AFEC0 0x70
  435. #define DSI1_PHY_AFEC1 0x74
  436. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
  437. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
  438. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
  439. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
  440. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
  441. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
  442. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
  443. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
  444. # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
  445. # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
  446. #define DSI1_TST_SEL 0x78
  447. #define DSI1_TST_MON 0x7c
  448. #define DSI1_PHY_TST1 0x80
  449. #define DSI1_PHY_TST2 0x84
  450. #define DSI1_PHY_FIFO_STAT 0x88
  451. /* Actually, all registers in the range that aren't otherwise claimed
  452. * will return the ID.
  453. */
  454. #define DSI1_ID 0x8c
  455. /* General DSI hardware state. */
  456. struct vc4_dsi {
  457. struct platform_device *pdev;
  458. struct mipi_dsi_host dsi_host;
  459. struct drm_encoder *encoder;
  460. struct drm_bridge *bridge;
  461. void __iomem *regs;
  462. struct dma_chan *reg_dma_chan;
  463. dma_addr_t reg_dma_paddr;
  464. u32 *reg_dma_mem;
  465. dma_addr_t reg_paddr;
  466. /* Whether we're on bcm2835's DSI0 or DSI1. */
  467. int port;
  468. /* DSI channel for the panel we're connected to. */
  469. u32 channel;
  470. u32 lanes;
  471. u32 format;
  472. u32 divider;
  473. u32 mode_flags;
  474. /* Input clock from CPRMAN to the digital PHY, for the DSI
  475. * escape clock.
  476. */
  477. struct clk *escape_clock;
  478. /* Input clock to the analog PHY, used to generate the DSI bit
  479. * clock.
  480. */
  481. struct clk *pll_phy_clock;
  482. /* HS Clocks generated within the DSI analog PHY. */
  483. struct clk_fixed_factor phy_clocks[3];
  484. struct clk_hw_onecell_data *clk_onecell;
  485. /* Pixel clock output to the pixelvalve, generated from the HS
  486. * clock.
  487. */
  488. struct clk *pixel_clock;
  489. struct completion xfer_completion;
  490. int xfer_result;
  491. };
  492. #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
  493. static inline void
  494. dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
  495. {
  496. struct dma_chan *chan = dsi->reg_dma_chan;
  497. struct dma_async_tx_descriptor *tx;
  498. dma_cookie_t cookie;
  499. int ret;
  500. /* DSI0 should be able to write normally. */
  501. if (!chan) {
  502. writel(val, dsi->regs + offset);
  503. return;
  504. }
  505. *dsi->reg_dma_mem = val;
  506. tx = chan->device->device_prep_dma_memcpy(chan,
  507. dsi->reg_paddr + offset,
  508. dsi->reg_dma_paddr,
  509. 4, 0);
  510. if (!tx) {
  511. DRM_ERROR("Failed to set up DMA register write\n");
  512. return;
  513. }
  514. cookie = tx->tx_submit(tx);
  515. ret = dma_submit_error(cookie);
  516. if (ret) {
  517. DRM_ERROR("Failed to submit DMA: %d\n", ret);
  518. return;
  519. }
  520. ret = dma_sync_wait(chan, cookie);
  521. if (ret)
  522. DRM_ERROR("Failed to wait for DMA: %d\n", ret);
  523. }
  524. #define DSI_READ(offset) readl(dsi->regs + (offset))
  525. #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
  526. #define DSI_PORT_READ(offset) \
  527. DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
  528. #define DSI_PORT_WRITE(offset, val) \
  529. DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
  530. #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
  531. /* VC4 DSI encoder KMS struct */
  532. struct vc4_dsi_encoder {
  533. struct vc4_encoder base;
  534. struct vc4_dsi *dsi;
  535. };
  536. static inline struct vc4_dsi_encoder *
  537. to_vc4_dsi_encoder(struct drm_encoder *encoder)
  538. {
  539. return container_of(encoder, struct vc4_dsi_encoder, base.base);
  540. }
  541. #define DSI_REG(reg) { reg, #reg }
  542. static const struct {
  543. u32 reg;
  544. const char *name;
  545. } dsi0_regs[] = {
  546. DSI_REG(DSI0_CTRL),
  547. DSI_REG(DSI0_STAT),
  548. DSI_REG(DSI0_HSTX_TO_CNT),
  549. DSI_REG(DSI0_LPRX_TO_CNT),
  550. DSI_REG(DSI0_TA_TO_CNT),
  551. DSI_REG(DSI0_PR_TO_CNT),
  552. DSI_REG(DSI0_DISP0_CTRL),
  553. DSI_REG(DSI0_DISP1_CTRL),
  554. DSI_REG(DSI0_INT_STAT),
  555. DSI_REG(DSI0_INT_EN),
  556. DSI_REG(DSI0_PHYC),
  557. DSI_REG(DSI0_HS_CLT0),
  558. DSI_REG(DSI0_HS_CLT1),
  559. DSI_REG(DSI0_HS_CLT2),
  560. DSI_REG(DSI0_HS_DLT3),
  561. DSI_REG(DSI0_HS_DLT4),
  562. DSI_REG(DSI0_HS_DLT5),
  563. DSI_REG(DSI0_HS_DLT6),
  564. DSI_REG(DSI0_HS_DLT7),
  565. DSI_REG(DSI0_PHY_AFEC0),
  566. DSI_REG(DSI0_PHY_AFEC1),
  567. DSI_REG(DSI0_ID),
  568. };
  569. static const struct {
  570. u32 reg;
  571. const char *name;
  572. } dsi1_regs[] = {
  573. DSI_REG(DSI1_CTRL),
  574. DSI_REG(DSI1_STAT),
  575. DSI_REG(DSI1_HSTX_TO_CNT),
  576. DSI_REG(DSI1_LPRX_TO_CNT),
  577. DSI_REG(DSI1_TA_TO_CNT),
  578. DSI_REG(DSI1_PR_TO_CNT),
  579. DSI_REG(DSI1_DISP0_CTRL),
  580. DSI_REG(DSI1_DISP1_CTRL),
  581. DSI_REG(DSI1_INT_STAT),
  582. DSI_REG(DSI1_INT_EN),
  583. DSI_REG(DSI1_PHYC),
  584. DSI_REG(DSI1_HS_CLT0),
  585. DSI_REG(DSI1_HS_CLT1),
  586. DSI_REG(DSI1_HS_CLT2),
  587. DSI_REG(DSI1_HS_DLT3),
  588. DSI_REG(DSI1_HS_DLT4),
  589. DSI_REG(DSI1_HS_DLT5),
  590. DSI_REG(DSI1_HS_DLT6),
  591. DSI_REG(DSI1_HS_DLT7),
  592. DSI_REG(DSI1_PHY_AFEC0),
  593. DSI_REG(DSI1_PHY_AFEC1),
  594. DSI_REG(DSI1_ID),
  595. };
  596. static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
  597. {
  598. int i;
  599. if (dsi->port == 0) {
  600. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  601. DRM_INFO("0x%04x (%s): 0x%08x\n",
  602. dsi0_regs[i].reg, dsi0_regs[i].name,
  603. DSI_READ(dsi0_regs[i].reg));
  604. }
  605. } else {
  606. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  607. DRM_INFO("0x%04x (%s): 0x%08x\n",
  608. dsi1_regs[i].reg, dsi1_regs[i].name,
  609. DSI_READ(dsi1_regs[i].reg));
  610. }
  611. }
  612. }
  613. #ifdef CONFIG_DEBUG_FS
  614. int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
  615. {
  616. struct drm_info_node *node = (struct drm_info_node *)m->private;
  617. struct drm_device *drm = node->minor->dev;
  618. struct vc4_dev *vc4 = to_vc4_dev(drm);
  619. int dsi_index = (uintptr_t)node->info_ent->data;
  620. struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
  621. int i;
  622. if (!dsi)
  623. return 0;
  624. if (dsi->port == 0) {
  625. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  626. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  627. dsi0_regs[i].reg, dsi0_regs[i].name,
  628. DSI_READ(dsi0_regs[i].reg));
  629. }
  630. } else {
  631. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  632. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  633. dsi1_regs[i].reg, dsi1_regs[i].name,
  634. DSI_READ(dsi1_regs[i].reg));
  635. }
  636. }
  637. return 0;
  638. }
  639. #endif
  640. static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
  641. {
  642. drm_encoder_cleanup(encoder);
  643. }
  644. static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
  645. .destroy = vc4_dsi_encoder_destroy,
  646. };
  647. static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
  648. {
  649. u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
  650. if (latch)
  651. afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  652. else
  653. afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  654. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  655. }
  656. /* Enters or exits Ultra Low Power State. */
  657. static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
  658. {
  659. bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
  660. u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
  661. DSI_PHYC_DLANE0_ULPS |
  662. (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
  663. (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
  664. (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
  665. u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
  666. DSI1_STAT_PHY_D0_ULPS |
  667. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
  668. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
  669. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
  670. u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
  671. DSI1_STAT_PHY_D0_STOP |
  672. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
  673. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
  674. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
  675. int ret;
  676. bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
  677. DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
  678. if (ulps == ulps_currently_enabled)
  679. return;
  680. DSI_PORT_WRITE(STAT, stat_ulps);
  681. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
  682. ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
  683. if (ret) {
  684. dev_warn(&dsi->pdev->dev,
  685. "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
  686. DSI_PORT_READ(STAT));
  687. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  688. vc4_dsi_latch_ulps(dsi, false);
  689. return;
  690. }
  691. /* The DSI module can't be disabled while the module is
  692. * generating ULPS state. So, to be able to disable the
  693. * module, we have the AFE latch the ULPS state and continue
  694. * on to having the module enter STOP.
  695. */
  696. vc4_dsi_latch_ulps(dsi, ulps);
  697. DSI_PORT_WRITE(STAT, stat_stop);
  698. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  699. ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
  700. if (ret) {
  701. dev_warn(&dsi->pdev->dev,
  702. "Timeout waiting for DSI STOP entry: STAT 0x%08x",
  703. DSI_PORT_READ(STAT));
  704. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  705. return;
  706. }
  707. }
  708. static u32
  709. dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
  710. {
  711. /* The HS timings have to be rounded up to a multiple of 8
  712. * because we're using the byte clock.
  713. */
  714. return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
  715. }
  716. /* ESC always runs at 100Mhz. */
  717. #define ESC_TIME_NS 10
  718. static u32
  719. dsi_esc_timing(u32 ns)
  720. {
  721. return DIV_ROUND_UP(ns, ESC_TIME_NS);
  722. }
  723. static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
  724. {
  725. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  726. struct vc4_dsi *dsi = vc4_encoder->dsi;
  727. struct device *dev = &dsi->pdev->dev;
  728. drm_bridge_disable(dsi->bridge);
  729. vc4_dsi_ulps(dsi, true);
  730. drm_bridge_post_disable(dsi->bridge);
  731. clk_disable_unprepare(dsi->pll_phy_clock);
  732. clk_disable_unprepare(dsi->escape_clock);
  733. clk_disable_unprepare(dsi->pixel_clock);
  734. pm_runtime_put(dev);
  735. }
  736. /* Extends the mode's blank intervals to handle BCM2835's integer-only
  737. * DSI PLL divider.
  738. *
  739. * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
  740. * driver since most peripherals are hanging off of the PLLD_PER
  741. * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
  742. * the pixel clock), only has an integer divider off of DSI.
  743. *
  744. * To get our panel mode to refresh at the expected 60Hz, we need to
  745. * extend the horizontal blank time. This means we drive a
  746. * higher-than-expected clock rate to the panel, but that's what the
  747. * firmware does too.
  748. */
  749. static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
  750. const struct drm_display_mode *mode,
  751. struct drm_display_mode *adjusted_mode)
  752. {
  753. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  754. struct vc4_dsi *dsi = vc4_encoder->dsi;
  755. struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
  756. unsigned long parent_rate = clk_get_rate(phy_parent);
  757. unsigned long pixel_clock_hz = mode->clock * 1000;
  758. unsigned long pll_clock = pixel_clock_hz * dsi->divider;
  759. int divider;
  760. /* Find what divider gets us a faster clock than the requested
  761. * pixel clock.
  762. */
  763. for (divider = 1; divider < 8; divider++) {
  764. if (parent_rate / divider < pll_clock) {
  765. divider--;
  766. break;
  767. }
  768. }
  769. /* Now that we've picked a PLL divider, calculate back to its
  770. * pixel clock.
  771. */
  772. pll_clock = parent_rate / divider;
  773. pixel_clock_hz = pll_clock / dsi->divider;
  774. adjusted_mode->clock = pixel_clock_hz / 1000;
  775. /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
  776. adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
  777. mode->clock;
  778. adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
  779. adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
  780. return true;
  781. }
  782. static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
  783. {
  784. struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
  785. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  786. struct vc4_dsi *dsi = vc4_encoder->dsi;
  787. struct device *dev = &dsi->pdev->dev;
  788. bool debug_dump_regs = false;
  789. unsigned long hs_clock;
  790. u32 ui_ns;
  791. /* Minimum LP state duration in escape clock cycles. */
  792. u32 lpx = dsi_esc_timing(60);
  793. unsigned long pixel_clock_hz = mode->clock * 1000;
  794. unsigned long dsip_clock;
  795. unsigned long phy_clock;
  796. int ret;
  797. ret = pm_runtime_get_sync(dev);
  798. if (ret) {
  799. DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
  800. return;
  801. }
  802. if (debug_dump_regs) {
  803. DRM_INFO("DSI regs before:\n");
  804. vc4_dsi_dump_regs(dsi);
  805. }
  806. /* Round up the clk_set_rate() request slightly, since
  807. * PLLD_DSI1 is an integer divider and its rate selection will
  808. * never round up.
  809. */
  810. phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
  811. ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
  812. if (ret) {
  813. dev_err(&dsi->pdev->dev,
  814. "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
  815. }
  816. /* Reset the DSI and all its fifos. */
  817. DSI_PORT_WRITE(CTRL,
  818. DSI_CTRL_SOFT_RESET_CFG |
  819. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  820. DSI_PORT_WRITE(CTRL,
  821. DSI_CTRL_HSDT_EOT_DISABLE |
  822. DSI_CTRL_RX_LPDT_EOT_DISABLE);
  823. /* Clear all stat bits so we see what has happened during enable. */
  824. DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
  825. /* Set AFE CTR00/CTR1 to release powerdown of analog. */
  826. if (dsi->port == 0) {
  827. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  828. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
  829. if (dsi->lanes < 2)
  830. afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
  831. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
  832. afec0 |= DSI0_PHY_AFEC0_RESET;
  833. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  834. DSI_PORT_WRITE(PHY_AFEC1,
  835. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
  836. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
  837. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
  838. } else {
  839. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  840. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
  841. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
  842. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
  843. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
  844. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
  845. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
  846. if (dsi->lanes < 4)
  847. afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
  848. if (dsi->lanes < 3)
  849. afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
  850. if (dsi->lanes < 2)
  851. afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
  852. afec0 |= DSI1_PHY_AFEC0_RESET;
  853. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  854. DSI_PORT_WRITE(PHY_AFEC1, 0);
  855. /* AFEC reset hold time */
  856. mdelay(1);
  857. }
  858. ret = clk_prepare_enable(dsi->escape_clock);
  859. if (ret) {
  860. DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
  861. return;
  862. }
  863. ret = clk_prepare_enable(dsi->pll_phy_clock);
  864. if (ret) {
  865. DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
  866. return;
  867. }
  868. hs_clock = clk_get_rate(dsi->pll_phy_clock);
  869. /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
  870. * not the pixel clock rate. DSIxP take from the APHY's byte,
  871. * DDR2, or DDR4 clock (we use byte) and feed into the PV at
  872. * that rate. Separately, a value derived from PIX_CLK_DIV
  873. * and HS_CLKC is fed into the PV to divide down to the actual
  874. * pixel clock for pushing pixels into DSI.
  875. */
  876. dsip_clock = phy_clock / 8;
  877. ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
  878. if (ret) {
  879. dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
  880. dsip_clock, ret);
  881. }
  882. ret = clk_prepare_enable(dsi->pixel_clock);
  883. if (ret) {
  884. DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
  885. return;
  886. }
  887. /* How many ns one DSI unit interval is. Note that the clock
  888. * is DDR, so there's an extra divide by 2.
  889. */
  890. ui_ns = DIV_ROUND_UP(500000000, hs_clock);
  891. DSI_PORT_WRITE(HS_CLT0,
  892. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
  893. DSI_HS_CLT0_CZERO) |
  894. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
  895. DSI_HS_CLT0_CPRE) |
  896. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
  897. DSI_HS_CLT0_CPREP));
  898. DSI_PORT_WRITE(HS_CLT1,
  899. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
  900. DSI_HS_CLT1_CTRAIL) |
  901. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
  902. DSI_HS_CLT1_CPOST));
  903. DSI_PORT_WRITE(HS_CLT2,
  904. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
  905. DSI_HS_CLT2_WUP));
  906. DSI_PORT_WRITE(HS_DLT3,
  907. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
  908. DSI_HS_DLT3_EXIT) |
  909. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
  910. DSI_HS_DLT3_ZERO) |
  911. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
  912. DSI_HS_DLT3_PRE));
  913. DSI_PORT_WRITE(HS_DLT4,
  914. VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
  915. DSI_HS_DLT4_LPX) |
  916. VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
  917. dsi_hs_timing(ui_ns, 60, 4)),
  918. DSI_HS_DLT4_TRAIL) |
  919. VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
  920. /* T_INIT is how long STOP is driven after power-up to
  921. * indicate to the slave (also coming out of power-up) that
  922. * master init is complete, and should be greater than the
  923. * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
  924. * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
  925. * T_INIT,SLAVE, while allowing protocols on top of it to give
  926. * greater minimums. The vc4 firmware uses an extremely
  927. * conservative 5ms, and we maintain that here.
  928. */
  929. DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
  930. 5 * 1000 * 1000, 0),
  931. DSI_HS_DLT5_INIT));
  932. DSI_PORT_WRITE(HS_DLT6,
  933. VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
  934. VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
  935. VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
  936. VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
  937. DSI_PORT_WRITE(HS_DLT7,
  938. VC4_SET_FIELD(dsi_esc_timing(1000000),
  939. DSI_HS_DLT7_LP_WUP));
  940. DSI_PORT_WRITE(PHYC,
  941. DSI_PHYC_DLANE0_ENABLE |
  942. (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
  943. (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
  944. (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
  945. DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
  946. ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
  947. 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
  948. (dsi->port == 0 ?
  949. VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
  950. VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
  951. DSI_PORT_WRITE(CTRL,
  952. DSI_PORT_READ(CTRL) |
  953. DSI_CTRL_CAL_BYTE);
  954. /* HS timeout in HS clock cycles: disabled. */
  955. DSI_PORT_WRITE(HSTX_TO_CNT, 0);
  956. /* LP receive timeout in HS clocks. */
  957. DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
  958. /* Bus turnaround timeout */
  959. DSI_PORT_WRITE(TA_TO_CNT, 100000);
  960. /* Display reset sequence timeout */
  961. DSI_PORT_WRITE(PR_TO_CNT, 100000);
  962. /* Set up DISP1 for transferring long command payloads through
  963. * the pixfifo.
  964. */
  965. DSI_PORT_WRITE(DISP1_CTRL,
  966. VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
  967. DSI_DISP1_PFORMAT) |
  968. DSI_DISP1_ENABLE);
  969. /* Ungate the block. */
  970. if (dsi->port == 0)
  971. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
  972. else
  973. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
  974. /* Bring AFE out of reset. */
  975. if (dsi->port == 0) {
  976. } else {
  977. DSI_PORT_WRITE(PHY_AFEC0,
  978. DSI_PORT_READ(PHY_AFEC0) &
  979. ~DSI1_PHY_AFEC0_RESET);
  980. }
  981. vc4_dsi_ulps(dsi, false);
  982. drm_bridge_pre_enable(dsi->bridge);
  983. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
  984. DSI_PORT_WRITE(DISP0_CTRL,
  985. VC4_SET_FIELD(dsi->divider,
  986. DSI_DISP0_PIX_CLK_DIV) |
  987. VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
  988. VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
  989. DSI_DISP0_LP_STOP_CTRL) |
  990. DSI_DISP0_ST_END |
  991. DSI_DISP0_ENABLE);
  992. } else {
  993. DSI_PORT_WRITE(DISP0_CTRL,
  994. DSI_DISP0_COMMAND_MODE |
  995. DSI_DISP0_ENABLE);
  996. }
  997. drm_bridge_enable(dsi->bridge);
  998. if (debug_dump_regs) {
  999. DRM_INFO("DSI regs after:\n");
  1000. vc4_dsi_dump_regs(dsi);
  1001. }
  1002. }
  1003. static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
  1004. const struct mipi_dsi_msg *msg)
  1005. {
  1006. struct vc4_dsi *dsi = host_to_dsi(host);
  1007. struct mipi_dsi_packet packet;
  1008. u32 pkth = 0, pktc = 0;
  1009. int i, ret;
  1010. bool is_long = mipi_dsi_packet_format_is_long(msg->type);
  1011. u32 cmd_fifo_len = 0, pix_fifo_len = 0;
  1012. mipi_dsi_create_packet(&packet, msg);
  1013. pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
  1014. pkth |= VC4_SET_FIELD(packet.header[1] |
  1015. (packet.header[2] << 8),
  1016. DSI_TXPKT1H_BC_PARAM);
  1017. if (is_long) {
  1018. /* Divide data across the various FIFOs we have available.
  1019. * The command FIFO takes byte-oriented data, but is of
  1020. * limited size. The pixel FIFO (never actually used for
  1021. * pixel data in reality) is word oriented, and substantially
  1022. * larger. So, we use the pixel FIFO for most of the data,
  1023. * sending the residual bytes in the command FIFO at the start.
  1024. *
  1025. * With this arrangement, the command FIFO will never get full.
  1026. */
  1027. if (packet.payload_length <= 16) {
  1028. cmd_fifo_len = packet.payload_length;
  1029. pix_fifo_len = 0;
  1030. } else {
  1031. cmd_fifo_len = (packet.payload_length %
  1032. DSI_PIX_FIFO_WIDTH);
  1033. pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
  1034. DSI_PIX_FIFO_WIDTH);
  1035. }
  1036. WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
  1037. pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
  1038. }
  1039. if (msg->rx_len) {
  1040. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
  1041. DSI_TXPKT1C_CMD_CTRL);
  1042. } else {
  1043. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
  1044. DSI_TXPKT1C_CMD_CTRL);
  1045. }
  1046. for (i = 0; i < cmd_fifo_len; i++)
  1047. DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
  1048. for (i = 0; i < pix_fifo_len; i++) {
  1049. const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
  1050. DSI_PORT_WRITE(TXPKT_PIX_FIFO,
  1051. pix[0] |
  1052. pix[1] << 8 |
  1053. pix[2] << 16 |
  1054. pix[3] << 24);
  1055. }
  1056. if (msg->flags & MIPI_DSI_MSG_USE_LPM)
  1057. pktc |= DSI_TXPKT1C_CMD_MODE_LP;
  1058. if (is_long)
  1059. pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
  1060. /* Send one copy of the packet. Larger repeats are used for pixel
  1061. * data in command mode.
  1062. */
  1063. pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
  1064. pktc |= DSI_TXPKT1C_CMD_EN;
  1065. if (pix_fifo_len) {
  1066. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
  1067. DSI_TXPKT1C_DISPLAY_NO);
  1068. } else {
  1069. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
  1070. DSI_TXPKT1C_DISPLAY_NO);
  1071. }
  1072. /* Enable the appropriate interrupt for the transfer completion. */
  1073. dsi->xfer_result = 0;
  1074. reinit_completion(&dsi->xfer_completion);
  1075. DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
  1076. if (msg->rx_len) {
  1077. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1078. DSI1_INT_PHY_DIR_RTF));
  1079. } else {
  1080. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1081. DSI1_INT_TXPKT1_DONE));
  1082. }
  1083. /* Send the packet. */
  1084. DSI_PORT_WRITE(TXPKT1H, pkth);
  1085. DSI_PORT_WRITE(TXPKT1C, pktc);
  1086. if (!wait_for_completion_timeout(&dsi->xfer_completion,
  1087. msecs_to_jiffies(1000))) {
  1088. dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
  1089. dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
  1090. DSI_PORT_READ(INT_STAT));
  1091. ret = -ETIMEDOUT;
  1092. } else {
  1093. ret = dsi->xfer_result;
  1094. }
  1095. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1096. if (ret)
  1097. goto reset_fifo_and_return;
  1098. if (ret == 0 && msg->rx_len) {
  1099. u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
  1100. u8 *msg_rx = msg->rx_buf;
  1101. if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
  1102. u32 rxlen = VC4_GET_FIELD(rxpkt1h,
  1103. DSI_RXPKT1H_BC_PARAM);
  1104. if (rxlen != msg->rx_len) {
  1105. DRM_ERROR("DSI returned %db, expecting %db\n",
  1106. rxlen, (int)msg->rx_len);
  1107. ret = -ENXIO;
  1108. goto reset_fifo_and_return;
  1109. }
  1110. for (i = 0; i < msg->rx_len; i++)
  1111. msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
  1112. } else {
  1113. /* FINISHME: Handle AWER */
  1114. msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
  1115. DSI_RXPKT1H_SHORT_0);
  1116. if (msg->rx_len > 1) {
  1117. msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
  1118. DSI_RXPKT1H_SHORT_1);
  1119. }
  1120. }
  1121. }
  1122. return ret;
  1123. reset_fifo_and_return:
  1124. DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
  1125. DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
  1126. udelay(1);
  1127. DSI_PORT_WRITE(CTRL,
  1128. DSI_PORT_READ(CTRL) |
  1129. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  1130. DSI_PORT_WRITE(TXPKT1C, 0);
  1131. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1132. return ret;
  1133. }
  1134. static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
  1135. struct mipi_dsi_device *device)
  1136. {
  1137. struct vc4_dsi *dsi = host_to_dsi(host);
  1138. dsi->lanes = device->lanes;
  1139. dsi->channel = device->channel;
  1140. dsi->mode_flags = device->mode_flags;
  1141. switch (device->format) {
  1142. case MIPI_DSI_FMT_RGB888:
  1143. dsi->format = DSI_PFORMAT_RGB888;
  1144. dsi->divider = 24 / dsi->lanes;
  1145. break;
  1146. case MIPI_DSI_FMT_RGB666:
  1147. dsi->format = DSI_PFORMAT_RGB666;
  1148. dsi->divider = 24 / dsi->lanes;
  1149. break;
  1150. case MIPI_DSI_FMT_RGB666_PACKED:
  1151. dsi->format = DSI_PFORMAT_RGB666_PACKED;
  1152. dsi->divider = 18 / dsi->lanes;
  1153. break;
  1154. case MIPI_DSI_FMT_RGB565:
  1155. dsi->format = DSI_PFORMAT_RGB565;
  1156. dsi->divider = 16 / dsi->lanes;
  1157. break;
  1158. default:
  1159. dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
  1160. dsi->format);
  1161. return 0;
  1162. }
  1163. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
  1164. dev_err(&dsi->pdev->dev,
  1165. "Only VIDEO mode panels supported currently.\n");
  1166. return 0;
  1167. }
  1168. return 0;
  1169. }
  1170. static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
  1171. struct mipi_dsi_device *device)
  1172. {
  1173. return 0;
  1174. }
  1175. static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
  1176. .attach = vc4_dsi_host_attach,
  1177. .detach = vc4_dsi_host_detach,
  1178. .transfer = vc4_dsi_host_transfer,
  1179. };
  1180. static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
  1181. .disable = vc4_dsi_encoder_disable,
  1182. .enable = vc4_dsi_encoder_enable,
  1183. .mode_fixup = vc4_dsi_encoder_mode_fixup,
  1184. };
  1185. static const struct of_device_id vc4_dsi_dt_match[] = {
  1186. { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
  1187. {}
  1188. };
  1189. static void dsi_handle_error(struct vc4_dsi *dsi,
  1190. irqreturn_t *ret, u32 stat, u32 bit,
  1191. const char *type)
  1192. {
  1193. if (!(stat & bit))
  1194. return;
  1195. DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
  1196. *ret = IRQ_HANDLED;
  1197. }
  1198. /*
  1199. * Initial handler for port 1 where we need the reg_dma workaround.
  1200. * The register DMA writes sleep, so we can't do it in the top half.
  1201. * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
  1202. * parent interrupt contrller until our interrupt thread is done.
  1203. */
  1204. static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
  1205. {
  1206. struct vc4_dsi *dsi = data;
  1207. u32 stat = DSI_PORT_READ(INT_STAT);
  1208. if (!stat)
  1209. return IRQ_NONE;
  1210. return IRQ_WAKE_THREAD;
  1211. }
  1212. /*
  1213. * Normal IRQ handler for port 0, or the threaded IRQ handler for port
  1214. * 1 where we need the reg_dma workaround.
  1215. */
  1216. static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
  1217. {
  1218. struct vc4_dsi *dsi = data;
  1219. u32 stat = DSI_PORT_READ(INT_STAT);
  1220. irqreturn_t ret = IRQ_NONE;
  1221. DSI_PORT_WRITE(INT_STAT, stat);
  1222. dsi_handle_error(dsi, &ret, stat,
  1223. DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
  1224. dsi_handle_error(dsi, &ret, stat,
  1225. DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
  1226. dsi_handle_error(dsi, &ret, stat,
  1227. DSI1_INT_ERR_CONT_LP0, "LP0 contention");
  1228. dsi_handle_error(dsi, &ret, stat,
  1229. DSI1_INT_ERR_CONT_LP1, "LP1 contention");
  1230. dsi_handle_error(dsi, &ret, stat,
  1231. DSI1_INT_HSTX_TO, "HSTX timeout");
  1232. dsi_handle_error(dsi, &ret, stat,
  1233. DSI1_INT_LPRX_TO, "LPRX timeout");
  1234. dsi_handle_error(dsi, &ret, stat,
  1235. DSI1_INT_TA_TO, "turnaround timeout");
  1236. dsi_handle_error(dsi, &ret, stat,
  1237. DSI1_INT_PR_TO, "peripheral reset timeout");
  1238. if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
  1239. complete(&dsi->xfer_completion);
  1240. ret = IRQ_HANDLED;
  1241. } else if (stat & DSI1_INT_HSTX_TO) {
  1242. complete(&dsi->xfer_completion);
  1243. dsi->xfer_result = -ETIMEDOUT;
  1244. ret = IRQ_HANDLED;
  1245. }
  1246. return ret;
  1247. }
  1248. /**
  1249. * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
  1250. * PHY that are consumed by CPRMAN (clk-bcm2835.c).
  1251. * @dsi: DSI encoder
  1252. */
  1253. static int
  1254. vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
  1255. {
  1256. struct device *dev = &dsi->pdev->dev;
  1257. const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
  1258. static const struct {
  1259. const char *dsi0_name, *dsi1_name;
  1260. int div;
  1261. } phy_clocks[] = {
  1262. { "dsi0_byte", "dsi1_byte", 8 },
  1263. { "dsi0_ddr2", "dsi1_ddr2", 4 },
  1264. { "dsi0_ddr", "dsi1_ddr", 2 },
  1265. };
  1266. int i;
  1267. dsi->clk_onecell = devm_kzalloc(dev,
  1268. sizeof(*dsi->clk_onecell) +
  1269. ARRAY_SIZE(phy_clocks) *
  1270. sizeof(struct clk_hw *),
  1271. GFP_KERNEL);
  1272. if (!dsi->clk_onecell)
  1273. return -ENOMEM;
  1274. dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
  1275. for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
  1276. struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
  1277. struct clk_init_data init;
  1278. int ret;
  1279. /* We just use core fixed factor clock ops for the PHY
  1280. * clocks. The clocks are actually gated by the
  1281. * PHY_AFEC0_DDRCLK_EN bits, which we should be
  1282. * setting if we use the DDR/DDR2 clocks. However,
  1283. * vc4_dsi_encoder_enable() is setting up both AFEC0,
  1284. * setting both our parent DSI PLL's rate and this
  1285. * clock's rate, so it knows if DDR/DDR2 are going to
  1286. * be used and could enable the gates itself.
  1287. */
  1288. fix->mult = 1;
  1289. fix->div = phy_clocks[i].div;
  1290. fix->hw.init = &init;
  1291. memset(&init, 0, sizeof(init));
  1292. init.parent_names = &parent_name;
  1293. init.num_parents = 1;
  1294. if (dsi->port == 1)
  1295. init.name = phy_clocks[i].dsi1_name;
  1296. else
  1297. init.name = phy_clocks[i].dsi0_name;
  1298. init.ops = &clk_fixed_factor_ops;
  1299. ret = devm_clk_hw_register(dev, &fix->hw);
  1300. if (ret)
  1301. return ret;
  1302. dsi->clk_onecell->hws[i] = &fix->hw;
  1303. }
  1304. return of_clk_add_hw_provider(dev->of_node,
  1305. of_clk_hw_onecell_get,
  1306. dsi->clk_onecell);
  1307. }
  1308. static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
  1309. {
  1310. struct platform_device *pdev = to_platform_device(dev);
  1311. struct drm_device *drm = dev_get_drvdata(master);
  1312. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1313. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1314. struct vc4_dsi_encoder *vc4_dsi_encoder;
  1315. struct drm_panel *panel;
  1316. const struct of_device_id *match;
  1317. dma_cap_mask_t dma_mask;
  1318. int ret;
  1319. match = of_match_device(vc4_dsi_dt_match, dev);
  1320. if (!match)
  1321. return -ENODEV;
  1322. dsi->port = (uintptr_t)match->data;
  1323. vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
  1324. GFP_KERNEL);
  1325. if (!vc4_dsi_encoder)
  1326. return -ENOMEM;
  1327. vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
  1328. vc4_dsi_encoder->dsi = dsi;
  1329. dsi->encoder = &vc4_dsi_encoder->base.base;
  1330. dsi->regs = vc4_ioremap_regs(pdev, 0);
  1331. if (IS_ERR(dsi->regs))
  1332. return PTR_ERR(dsi->regs);
  1333. if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
  1334. dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
  1335. DSI_PORT_READ(ID), DSI_ID_VALUE);
  1336. return -ENODEV;
  1337. }
  1338. /* DSI1 has a broken AXI slave that doesn't respond to writes
  1339. * from the ARM. It does handle writes from the DMA engine,
  1340. * so set up a channel for talking to it.
  1341. */
  1342. if (dsi->port == 1) {
  1343. dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
  1344. &dsi->reg_dma_paddr,
  1345. GFP_KERNEL);
  1346. if (!dsi->reg_dma_mem) {
  1347. DRM_ERROR("Failed to get DMA memory\n");
  1348. return -ENOMEM;
  1349. }
  1350. dma_cap_zero(dma_mask);
  1351. dma_cap_set(DMA_MEMCPY, dma_mask);
  1352. dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
  1353. if (IS_ERR(dsi->reg_dma_chan)) {
  1354. ret = PTR_ERR(dsi->reg_dma_chan);
  1355. if (ret != -EPROBE_DEFER)
  1356. DRM_ERROR("Failed to get DMA channel: %d\n",
  1357. ret);
  1358. return ret;
  1359. }
  1360. /* Get the physical address of the device's registers. The
  1361. * struct resource for the regs gives us the bus address
  1362. * instead.
  1363. */
  1364. dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
  1365. 0, NULL, NULL));
  1366. }
  1367. init_completion(&dsi->xfer_completion);
  1368. /* At startup enable error-reporting interrupts and nothing else. */
  1369. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1370. /* Clear any existing interrupt state. */
  1371. DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
  1372. if (dsi->reg_dma_mem)
  1373. ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
  1374. vc4_dsi_irq_defer_to_thread_handler,
  1375. vc4_dsi_irq_handler,
  1376. IRQF_ONESHOT,
  1377. "vc4 dsi", dsi);
  1378. else
  1379. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  1380. vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
  1381. if (ret) {
  1382. if (ret != -EPROBE_DEFER)
  1383. dev_err(dev, "Failed to get interrupt: %d\n", ret);
  1384. return ret;
  1385. }
  1386. dsi->escape_clock = devm_clk_get(dev, "escape");
  1387. if (IS_ERR(dsi->escape_clock)) {
  1388. ret = PTR_ERR(dsi->escape_clock);
  1389. if (ret != -EPROBE_DEFER)
  1390. dev_err(dev, "Failed to get escape clock: %d\n", ret);
  1391. return ret;
  1392. }
  1393. dsi->pll_phy_clock = devm_clk_get(dev, "phy");
  1394. if (IS_ERR(dsi->pll_phy_clock)) {
  1395. ret = PTR_ERR(dsi->pll_phy_clock);
  1396. if (ret != -EPROBE_DEFER)
  1397. dev_err(dev, "Failed to get phy clock: %d\n", ret);
  1398. return ret;
  1399. }
  1400. dsi->pixel_clock = devm_clk_get(dev, "pixel");
  1401. if (IS_ERR(dsi->pixel_clock)) {
  1402. ret = PTR_ERR(dsi->pixel_clock);
  1403. if (ret != -EPROBE_DEFER)
  1404. dev_err(dev, "Failed to get pixel clock: %d\n", ret);
  1405. return ret;
  1406. }
  1407. ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
  1408. &panel, &dsi->bridge);
  1409. if (ret) {
  1410. /* If the bridge or panel pointed by dev->of_node is not
  1411. * enabled, just return 0 here so that we don't prevent the DRM
  1412. * dev from being registered. Of course that means the DSI
  1413. * encoder won't be exposed, but that's not a problem since
  1414. * nothing is connected to it.
  1415. */
  1416. if (ret == -ENODEV)
  1417. return 0;
  1418. return ret;
  1419. }
  1420. if (panel) {
  1421. dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
  1422. DRM_MODE_CONNECTOR_DSI);
  1423. if (IS_ERR(dsi->bridge))
  1424. return PTR_ERR(dsi->bridge);
  1425. }
  1426. /* The esc clock rate is supposed to always be 100Mhz. */
  1427. ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
  1428. if (ret) {
  1429. dev_err(dev, "Failed to set esc clock: %d\n", ret);
  1430. return ret;
  1431. }
  1432. ret = vc4_dsi_init_phy_clocks(dsi);
  1433. if (ret)
  1434. return ret;
  1435. if (dsi->port == 1)
  1436. vc4->dsi1 = dsi;
  1437. drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
  1438. DRM_MODE_ENCODER_DSI, NULL);
  1439. drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
  1440. ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
  1441. if (ret) {
  1442. dev_err(dev, "bridge attach failed: %d\n", ret);
  1443. return ret;
  1444. }
  1445. /* Disable the atomic helper calls into the bridge. We
  1446. * manually call the bridge pre_enable / enable / etc. calls
  1447. * from our driver, since we need to sequence them within the
  1448. * encoder's enable/disable paths.
  1449. */
  1450. dsi->encoder->bridge = NULL;
  1451. pm_runtime_enable(dev);
  1452. return 0;
  1453. }
  1454. static void vc4_dsi_unbind(struct device *dev, struct device *master,
  1455. void *data)
  1456. {
  1457. struct drm_device *drm = dev_get_drvdata(master);
  1458. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1459. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1460. if (dsi->bridge)
  1461. pm_runtime_disable(dev);
  1462. vc4_dsi_encoder_destroy(dsi->encoder);
  1463. if (dsi->port == 1)
  1464. vc4->dsi1 = NULL;
  1465. }
  1466. static const struct component_ops vc4_dsi_ops = {
  1467. .bind = vc4_dsi_bind,
  1468. .unbind = vc4_dsi_unbind,
  1469. };
  1470. static int vc4_dsi_dev_probe(struct platform_device *pdev)
  1471. {
  1472. struct device *dev = &pdev->dev;
  1473. struct vc4_dsi *dsi;
  1474. int ret;
  1475. dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
  1476. if (!dsi)
  1477. return -ENOMEM;
  1478. dev_set_drvdata(dev, dsi);
  1479. dsi->pdev = pdev;
  1480. /* Note, the initialization sequence for DSI and panels is
  1481. * tricky. The component bind above won't get past its
  1482. * -EPROBE_DEFER until the panel/bridge probes. The
  1483. * panel/bridge will return -EPROBE_DEFER until it has a
  1484. * mipi_dsi_host to register its device to. So, we register
  1485. * the host during pdev probe time, so vc4 as a whole can then
  1486. * -EPROBE_DEFER its component bind process until the panel
  1487. * successfully attaches.
  1488. */
  1489. dsi->dsi_host.ops = &vc4_dsi_host_ops;
  1490. dsi->dsi_host.dev = dev;
  1491. mipi_dsi_host_register(&dsi->dsi_host);
  1492. ret = component_add(&pdev->dev, &vc4_dsi_ops);
  1493. if (ret) {
  1494. mipi_dsi_host_unregister(&dsi->dsi_host);
  1495. return ret;
  1496. }
  1497. return 0;
  1498. }
  1499. static int vc4_dsi_dev_remove(struct platform_device *pdev)
  1500. {
  1501. struct device *dev = &pdev->dev;
  1502. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1503. component_del(&pdev->dev, &vc4_dsi_ops);
  1504. mipi_dsi_host_unregister(&dsi->dsi_host);
  1505. return 0;
  1506. }
  1507. struct platform_driver vc4_dsi_driver = {
  1508. .probe = vc4_dsi_dev_probe,
  1509. .remove = vc4_dsi_dev_remove,
  1510. .driver = {
  1511. .name = "vc4_dsi",
  1512. .of_match_table = vc4_dsi_dt_match,
  1513. },
  1514. };