vc4_crtc.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * encoder's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, the CRTC is also
  18. * responsible for writing the display list for the HVS channel that
  19. * the CRTC will use.
  20. *
  21. * The 2835 has 3 different pixel valves. pv0 in the audio power
  22. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  23. * image domain can feed either HDMI or the SDTV controller. The
  24. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  25. * SDTV, etc.) according to which output type is chosen in the mux.
  26. *
  27. * For power management, the pixel valve's registers are all clocked
  28. * by the AXI clock, while the timings and FIFOs make use of the
  29. * output-specific clock. Since the encoders also directly consume
  30. * the CPRMAN clocks, and know what timings they need, they are the
  31. * ones that set the clock.
  32. */
  33. #include <drm/drm_atomic.h>
  34. #include <drm/drm_atomic_helper.h>
  35. #include <drm/drm_crtc_helper.h>
  36. #include <drm/drm_atomic_uapi.h>
  37. #include <linux/clk.h>
  38. #include <drm/drm_fb_cma_helper.h>
  39. #include <linux/component.h>
  40. #include <linux/of_device.h>
  41. #include "vc4_drv.h"
  42. #include "vc4_regs.h"
  43. struct vc4_crtc_state {
  44. struct drm_crtc_state base;
  45. /* Dlist area for this CRTC configuration. */
  46. struct drm_mm_node mm;
  47. bool feed_txp;
  48. bool txp_armed;
  49. };
  50. static inline struct vc4_crtc_state *
  51. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  52. {
  53. return (struct vc4_crtc_state *)crtc_state;
  54. }
  55. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  56. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  57. #define CRTC_REG(reg) { reg, #reg }
  58. static const struct {
  59. u32 reg;
  60. const char *name;
  61. } crtc_regs[] = {
  62. CRTC_REG(PV_CONTROL),
  63. CRTC_REG(PV_V_CONTROL),
  64. CRTC_REG(PV_VSYNCD_EVEN),
  65. CRTC_REG(PV_HORZA),
  66. CRTC_REG(PV_HORZB),
  67. CRTC_REG(PV_VERTA),
  68. CRTC_REG(PV_VERTB),
  69. CRTC_REG(PV_VERTA_EVEN),
  70. CRTC_REG(PV_VERTB_EVEN),
  71. CRTC_REG(PV_INTEN),
  72. CRTC_REG(PV_INTSTAT),
  73. CRTC_REG(PV_STAT),
  74. CRTC_REG(PV_HACT_ACT),
  75. };
  76. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  77. {
  78. int i;
  79. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  80. DRM_INFO("0x%04x (%s): 0x%08x\n",
  81. crtc_regs[i].reg, crtc_regs[i].name,
  82. CRTC_READ(crtc_regs[i].reg));
  83. }
  84. }
  85. #ifdef CONFIG_DEBUG_FS
  86. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  87. {
  88. struct drm_info_node *node = (struct drm_info_node *)m->private;
  89. struct drm_device *dev = node->minor->dev;
  90. int crtc_index = (uintptr_t)node->info_ent->data;
  91. struct drm_crtc *crtc;
  92. struct vc4_crtc *vc4_crtc;
  93. int i;
  94. i = 0;
  95. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  96. if (i == crtc_index)
  97. break;
  98. i++;
  99. }
  100. if (!crtc)
  101. return 0;
  102. vc4_crtc = to_vc4_crtc(crtc);
  103. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  104. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  105. crtc_regs[i].name, crtc_regs[i].reg,
  106. CRTC_READ(crtc_regs[i].reg));
  107. }
  108. return 0;
  109. }
  110. #endif
  111. bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  112. bool in_vblank_irq, int *vpos, int *hpos,
  113. ktime_t *stime, ktime_t *etime,
  114. const struct drm_display_mode *mode)
  115. {
  116. struct vc4_dev *vc4 = to_vc4_dev(dev);
  117. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  118. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  119. u32 val;
  120. int fifo_lines;
  121. int vblank_lines;
  122. bool ret = false;
  123. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  124. /* Get optional system timestamp before query. */
  125. if (stime)
  126. *stime = ktime_get();
  127. /*
  128. * Read vertical scanline which is currently composed for our
  129. * pixelvalve by the HVS, and also the scaler status.
  130. */
  131. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  132. /* Get optional system timestamp after query. */
  133. if (etime)
  134. *etime = ktime_get();
  135. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  136. /* Vertical position of hvs composed scanline. */
  137. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  138. *hpos = 0;
  139. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  140. *vpos /= 2;
  141. /* Use hpos to correct for field offset in interlaced mode. */
  142. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  143. *hpos += mode->crtc_htotal / 2;
  144. }
  145. /* This is the offset we need for translating hvs -> pv scanout pos. */
  146. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  147. if (fifo_lines > 0)
  148. ret = true;
  149. /* HVS more than fifo_lines into frame for compositing? */
  150. if (*vpos > fifo_lines) {
  151. /*
  152. * We are in active scanout and can get some meaningful results
  153. * from HVS. The actual PV scanout can not trail behind more
  154. * than fifo_lines as that is the fifo's capacity. Assume that
  155. * in active scanout the HVS and PV work in lockstep wrt. HVS
  156. * refilling the fifo and PV consuming from the fifo, ie.
  157. * whenever the PV consumes and frees up a scanline in the
  158. * fifo, the HVS will immediately refill it, therefore
  159. * incrementing vpos. Therefore we choose HVS read position -
  160. * fifo size in scanlines as a estimate of the real scanout
  161. * position of the PV.
  162. */
  163. *vpos -= fifo_lines + 1;
  164. return ret;
  165. }
  166. /*
  167. * Less: This happens when we are in vblank and the HVS, after getting
  168. * the VSTART restart signal from the PV, just started refilling its
  169. * fifo with new lines from the top-most lines of the new framebuffers.
  170. * The PV does not scan out in vblank, so does not remove lines from
  171. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  172. * We can't get meaningful readings wrt. scanline position of the PV
  173. * and need to make things up in a approximative but consistent way.
  174. */
  175. vblank_lines = mode->vtotal - mode->vdisplay;
  176. if (in_vblank_irq) {
  177. /*
  178. * Assume the irq handler got called close to first
  179. * line of vblank, so PV has about a full vblank
  180. * scanlines to go, and as a base timestamp use the
  181. * one taken at entry into vblank irq handler, so it
  182. * is not affected by random delays due to lock
  183. * contention on event_lock or vblank_time lock in
  184. * the core.
  185. */
  186. *vpos = -vblank_lines;
  187. if (stime)
  188. *stime = vc4_crtc->t_vblank;
  189. if (etime)
  190. *etime = vc4_crtc->t_vblank;
  191. /*
  192. * If the HVS fifo is not yet full then we know for certain
  193. * we are at the very beginning of vblank, as the hvs just
  194. * started refilling, and the stime and etime timestamps
  195. * truly correspond to start of vblank.
  196. *
  197. * Unfortunately there's no way to report this to upper levels
  198. * and make it more useful.
  199. */
  200. } else {
  201. /*
  202. * No clue where we are inside vblank. Return a vpos of zero,
  203. * which will cause calling code to just return the etime
  204. * timestamp uncorrected. At least this is no worse than the
  205. * standard fallback.
  206. */
  207. *vpos = 0;
  208. }
  209. return ret;
  210. }
  211. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  212. {
  213. drm_crtc_cleanup(crtc);
  214. }
  215. static void
  216. vc4_crtc_lut_load(struct drm_crtc *crtc)
  217. {
  218. struct drm_device *dev = crtc->dev;
  219. struct vc4_dev *vc4 = to_vc4_dev(dev);
  220. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  221. u32 i;
  222. /* The LUT memory is laid out with each HVS channel in order,
  223. * each of which takes 256 writes for R, 256 for G, then 256
  224. * for B.
  225. */
  226. HVS_WRITE(SCALER_GAMADDR,
  227. SCALER_GAMADDR_AUTOINC |
  228. (vc4_crtc->channel * 3 * crtc->gamma_size));
  229. for (i = 0; i < crtc->gamma_size; i++)
  230. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  231. for (i = 0; i < crtc->gamma_size; i++)
  232. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  233. for (i = 0; i < crtc->gamma_size; i++)
  234. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  235. }
  236. static void
  237. vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
  238. {
  239. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  240. struct drm_color_lut *lut = crtc->state->gamma_lut->data;
  241. u32 length = drm_color_lut_size(crtc->state->gamma_lut);
  242. u32 i;
  243. for (i = 0; i < length; i++) {
  244. vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
  245. vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
  246. vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
  247. }
  248. vc4_crtc_lut_load(crtc);
  249. }
  250. static u32 vc4_get_fifo_full_level(u32 format)
  251. {
  252. static const u32 fifo_len_bytes = 64;
  253. static const u32 hvs_latency_pix = 6;
  254. switch (format) {
  255. case PV_CONTROL_FORMAT_DSIV_16:
  256. case PV_CONTROL_FORMAT_DSIC_16:
  257. return fifo_len_bytes - 2 * hvs_latency_pix;
  258. case PV_CONTROL_FORMAT_DSIV_18:
  259. return fifo_len_bytes - 14;
  260. case PV_CONTROL_FORMAT_24:
  261. case PV_CONTROL_FORMAT_DSIV_24:
  262. default:
  263. return fifo_len_bytes - 3 * hvs_latency_pix;
  264. }
  265. }
  266. /*
  267. * Returns the encoder attached to the CRTC.
  268. *
  269. * VC4 can only scan out to one encoder at a time, while the DRM core
  270. * allows drivers to push pixels to more than one encoder from the
  271. * same CRTC.
  272. */
  273. static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
  274. {
  275. struct drm_connector *connector;
  276. struct drm_connector_list_iter conn_iter;
  277. drm_connector_list_iter_begin(crtc->dev, &conn_iter);
  278. drm_for_each_connector_iter(connector, &conn_iter) {
  279. if (connector->state->crtc == crtc) {
  280. drm_connector_list_iter_end(&conn_iter);
  281. return connector->encoder;
  282. }
  283. }
  284. drm_connector_list_iter_end(&conn_iter);
  285. return NULL;
  286. }
  287. static void vc4_crtc_config_pv(struct drm_crtc *crtc)
  288. {
  289. struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
  290. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  291. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  292. struct drm_crtc_state *state = crtc->state;
  293. struct drm_display_mode *mode = &state->adjusted_mode;
  294. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  295. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  296. bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
  297. vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
  298. u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
  299. /* Reset the PV fifo. */
  300. CRTC_WRITE(PV_CONTROL, 0);
  301. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  302. CRTC_WRITE(PV_CONTROL, 0);
  303. CRTC_WRITE(PV_HORZA,
  304. VC4_SET_FIELD((mode->htotal -
  305. mode->hsync_end) * pixel_rep,
  306. PV_HORZA_HBP) |
  307. VC4_SET_FIELD((mode->hsync_end -
  308. mode->hsync_start) * pixel_rep,
  309. PV_HORZA_HSYNC));
  310. CRTC_WRITE(PV_HORZB,
  311. VC4_SET_FIELD((mode->hsync_start -
  312. mode->hdisplay) * pixel_rep,
  313. PV_HORZB_HFP) |
  314. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  315. CRTC_WRITE(PV_VERTA,
  316. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  317. PV_VERTA_VBP) |
  318. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  319. PV_VERTA_VSYNC));
  320. CRTC_WRITE(PV_VERTB,
  321. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  322. PV_VERTB_VFP) |
  323. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  324. if (interlace) {
  325. CRTC_WRITE(PV_VERTA_EVEN,
  326. VC4_SET_FIELD(mode->crtc_vtotal -
  327. mode->crtc_vsync_end - 1,
  328. PV_VERTA_VBP) |
  329. VC4_SET_FIELD(mode->crtc_vsync_end -
  330. mode->crtc_vsync_start,
  331. PV_VERTA_VSYNC));
  332. CRTC_WRITE(PV_VERTB_EVEN,
  333. VC4_SET_FIELD(mode->crtc_vsync_start -
  334. mode->crtc_vdisplay,
  335. PV_VERTB_VFP) |
  336. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  337. /* We set up first field even mode for HDMI. VEC's
  338. * NTSC mode would want first field odd instead, once
  339. * we support it (to do so, set ODD_FIRST and put the
  340. * delay in VSYNCD_EVEN instead).
  341. */
  342. CRTC_WRITE(PV_V_CONTROL,
  343. PV_VCONTROL_CONTINUOUS |
  344. (is_dsi ? PV_VCONTROL_DSI : 0) |
  345. PV_VCONTROL_INTERLACE |
  346. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  347. PV_VCONTROL_ODD_DELAY));
  348. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  349. } else {
  350. CRTC_WRITE(PV_V_CONTROL,
  351. PV_VCONTROL_CONTINUOUS |
  352. (is_dsi ? PV_VCONTROL_DSI : 0));
  353. }
  354. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  355. CRTC_WRITE(PV_CONTROL,
  356. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  357. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  358. PV_CONTROL_FIFO_LEVEL) |
  359. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  360. PV_CONTROL_CLR_AT_START |
  361. PV_CONTROL_TRIGGER_UNDERFLOW |
  362. PV_CONTROL_WAIT_HSTART |
  363. VC4_SET_FIELD(vc4_encoder->clock_select,
  364. PV_CONTROL_CLK_SELECT) |
  365. PV_CONTROL_FIFO_CLR |
  366. PV_CONTROL_EN);
  367. }
  368. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  369. {
  370. struct drm_device *dev = crtc->dev;
  371. struct vc4_dev *vc4 = to_vc4_dev(dev);
  372. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  373. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  374. struct drm_display_mode *mode = &crtc->state->adjusted_mode;
  375. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  376. bool debug_dump_regs = false;
  377. if (debug_dump_regs) {
  378. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  379. vc4_crtc_dump_regs(vc4_crtc);
  380. }
  381. if (vc4_crtc->channel == 2) {
  382. u32 dispctrl;
  383. u32 dsp3_mux;
  384. /*
  385. * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
  386. * FIFO X'.
  387. * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
  388. *
  389. * DSP3 is connected to FIFO2 unless the transposer is
  390. * enabled. In this case, FIFO 2 is directly accessed by the
  391. * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
  392. * route.
  393. */
  394. if (vc4_state->feed_txp)
  395. dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
  396. else
  397. dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
  398. dispctrl = HVS_READ(SCALER_DISPCTRL) &
  399. ~SCALER_DISPCTRL_DSP3_MUX_MASK;
  400. HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
  401. }
  402. if (!vc4_state->feed_txp)
  403. vc4_crtc_config_pv(crtc);
  404. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  405. SCALER_DISPBKGND_AUTOHS |
  406. SCALER_DISPBKGND_GAMMA |
  407. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  408. /* Reload the LUT, since the SRAMs would have been disabled if
  409. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  410. */
  411. vc4_crtc_lut_load(crtc);
  412. if (debug_dump_regs) {
  413. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  414. vc4_crtc_dump_regs(vc4_crtc);
  415. }
  416. }
  417. static void require_hvs_enabled(struct drm_device *dev)
  418. {
  419. struct vc4_dev *vc4 = to_vc4_dev(dev);
  420. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  421. SCALER_DISPCTRL_ENABLE);
  422. }
  423. static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
  424. struct drm_crtc_state *old_state)
  425. {
  426. struct drm_device *dev = crtc->dev;
  427. struct vc4_dev *vc4 = to_vc4_dev(dev);
  428. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  429. u32 chan = vc4_crtc->channel;
  430. int ret;
  431. require_hvs_enabled(dev);
  432. /* Disable vblank irq handling before crtc is disabled. */
  433. drm_crtc_vblank_off(crtc);
  434. CRTC_WRITE(PV_V_CONTROL,
  435. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  436. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  437. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  438. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  439. SCALER_DISPCTRLX_ENABLE) {
  440. HVS_WRITE(SCALER_DISPCTRLX(chan),
  441. SCALER_DISPCTRLX_RESET);
  442. /* While the docs say that reset is self-clearing, it
  443. * seems it doesn't actually.
  444. */
  445. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  446. }
  447. /* Once we leave, the scaler should be disabled and its fifo empty. */
  448. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  449. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  450. SCALER_DISPSTATX_MODE) !=
  451. SCALER_DISPSTATX_MODE_DISABLED);
  452. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  453. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  454. SCALER_DISPSTATX_EMPTY);
  455. /*
  456. * Make sure we issue a vblank event after disabling the CRTC if
  457. * someone was waiting it.
  458. */
  459. if (crtc->state->event) {
  460. unsigned long flags;
  461. spin_lock_irqsave(&dev->event_lock, flags);
  462. drm_crtc_send_vblank_event(crtc, crtc->state->event);
  463. crtc->state->event = NULL;
  464. spin_unlock_irqrestore(&dev->event_lock, flags);
  465. }
  466. }
  467. void vc4_crtc_txp_armed(struct drm_crtc_state *state)
  468. {
  469. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  470. vc4_state->txp_armed = true;
  471. }
  472. static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
  473. {
  474. struct drm_device *dev = crtc->dev;
  475. struct vc4_dev *vc4 = to_vc4_dev(dev);
  476. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  477. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  478. if (crtc->state->event) {
  479. unsigned long flags;
  480. crtc->state->event->pipe = drm_crtc_index(crtc);
  481. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  482. spin_lock_irqsave(&dev->event_lock, flags);
  483. if (!vc4_state->feed_txp || vc4_state->txp_armed) {
  484. vc4_crtc->event = crtc->state->event;
  485. crtc->state->event = NULL;
  486. }
  487. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  488. vc4_state->mm.start);
  489. spin_unlock_irqrestore(&dev->event_lock, flags);
  490. } else {
  491. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  492. vc4_state->mm.start);
  493. }
  494. }
  495. static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
  496. struct drm_crtc_state *old_state)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. struct vc4_dev *vc4 = to_vc4_dev(dev);
  500. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  501. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  502. struct drm_display_mode *mode = &crtc->state->adjusted_mode;
  503. require_hvs_enabled(dev);
  504. /* Enable vblank irq handling before crtc is started otherwise
  505. * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
  506. */
  507. drm_crtc_vblank_on(crtc);
  508. vc4_crtc_update_dlist(crtc);
  509. /* Turn on the scaler, which will wait for vstart to start
  510. * compositing.
  511. * When feeding the transposer, we should operate in oneshot
  512. * mode.
  513. */
  514. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  515. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  516. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  517. SCALER_DISPCTRLX_ENABLE |
  518. (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
  519. /* When feeding the transposer block the pixelvalve is unneeded and
  520. * should not be enabled.
  521. */
  522. if (!vc4_state->feed_txp)
  523. CRTC_WRITE(PV_V_CONTROL,
  524. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  525. }
  526. static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
  527. const struct drm_display_mode *mode)
  528. {
  529. /* Do not allow doublescan modes from user space */
  530. if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  531. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  532. crtc->base.id);
  533. return MODE_NO_DBLESCAN;
  534. }
  535. return MODE_OK;
  536. }
  537. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  538. struct drm_crtc_state *state)
  539. {
  540. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  541. struct drm_device *dev = crtc->dev;
  542. struct vc4_dev *vc4 = to_vc4_dev(dev);
  543. struct drm_plane *plane;
  544. unsigned long flags;
  545. const struct drm_plane_state *plane_state;
  546. struct drm_connector *conn;
  547. struct drm_connector_state *conn_state;
  548. u32 dlist_count = 0;
  549. int ret, i;
  550. /* The pixelvalve can only feed one encoder (and encoders are
  551. * 1:1 with connectors.)
  552. */
  553. if (hweight32(state->connector_mask) > 1)
  554. return -EINVAL;
  555. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  556. dlist_count += vc4_plane_dlist_size(plane_state);
  557. dlist_count++; /* Account for SCALER_CTL0_END. */
  558. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  559. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  560. dlist_count);
  561. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  562. if (ret)
  563. return ret;
  564. for_each_new_connector_in_state(state->state, conn, conn_state, i) {
  565. if (conn_state->crtc != crtc)
  566. continue;
  567. /* The writeback connector is implemented using the transposer
  568. * block which is directly taking its data from the HVS FIFO.
  569. */
  570. if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
  571. state->no_vblank = true;
  572. vc4_state->feed_txp = true;
  573. } else {
  574. state->no_vblank = false;
  575. vc4_state->feed_txp = false;
  576. }
  577. break;
  578. }
  579. return 0;
  580. }
  581. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  582. struct drm_crtc_state *old_state)
  583. {
  584. struct drm_device *dev = crtc->dev;
  585. struct vc4_dev *vc4 = to_vc4_dev(dev);
  586. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  587. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  588. struct drm_plane *plane;
  589. struct vc4_plane_state *vc4_plane_state;
  590. bool debug_dump_regs = false;
  591. bool enable_bg_fill = false;
  592. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  593. u32 __iomem *dlist_next = dlist_start;
  594. if (debug_dump_regs) {
  595. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  596. vc4_hvs_dump_state(dev);
  597. }
  598. /* Copy all the active planes' dlist contents to the hardware dlist. */
  599. drm_atomic_crtc_for_each_plane(plane, crtc) {
  600. /* Is this the first active plane? */
  601. if (dlist_next == dlist_start) {
  602. /* We need to enable background fill when a plane
  603. * could be alpha blending from the background, i.e.
  604. * where no other plane is underneath. It suffices to
  605. * consider the first active plane here since we set
  606. * needs_bg_fill such that either the first plane
  607. * already needs it or all planes on top blend from
  608. * the first or a lower plane.
  609. */
  610. vc4_plane_state = to_vc4_plane_state(plane->state);
  611. enable_bg_fill = vc4_plane_state->needs_bg_fill;
  612. }
  613. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  614. }
  615. writel(SCALER_CTL0_END, dlist_next);
  616. dlist_next++;
  617. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  618. if (enable_bg_fill)
  619. /* This sets a black background color fill, as is the case
  620. * with other DRM drivers.
  621. */
  622. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  623. HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
  624. SCALER_DISPBKGND_FILL);
  625. /* Only update DISPLIST if the CRTC was already running and is not
  626. * being disabled.
  627. * vc4_crtc_enable() takes care of updating the dlist just after
  628. * re-enabling VBLANK interrupts and before enabling the engine.
  629. * If the CRTC is being disabled, there's no point in updating this
  630. * information.
  631. */
  632. if (crtc->state->active && old_state->active)
  633. vc4_crtc_update_dlist(crtc);
  634. if (crtc->state->color_mgmt_changed) {
  635. u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
  636. if (crtc->state->gamma_lut) {
  637. vc4_crtc_update_gamma_lut(crtc);
  638. dispbkgndx |= SCALER_DISPBKGND_GAMMA;
  639. } else {
  640. /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
  641. * in hardware, which is the same as a linear lut that
  642. * DRM expects us to use in absence of a user lut.
  643. */
  644. dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
  645. }
  646. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
  647. }
  648. if (debug_dump_regs) {
  649. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  650. vc4_hvs_dump_state(dev);
  651. }
  652. }
  653. static int vc4_enable_vblank(struct drm_crtc *crtc)
  654. {
  655. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  656. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  657. return 0;
  658. }
  659. static void vc4_disable_vblank(struct drm_crtc *crtc)
  660. {
  661. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  662. CRTC_WRITE(PV_INTEN, 0);
  663. }
  664. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  665. {
  666. struct drm_crtc *crtc = &vc4_crtc->base;
  667. struct drm_device *dev = crtc->dev;
  668. struct vc4_dev *vc4 = to_vc4_dev(dev);
  669. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  670. u32 chan = vc4_crtc->channel;
  671. unsigned long flags;
  672. spin_lock_irqsave(&dev->event_lock, flags);
  673. if (vc4_crtc->event &&
  674. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
  675. vc4_state->feed_txp)) {
  676. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  677. vc4_crtc->event = NULL;
  678. drm_crtc_vblank_put(crtc);
  679. }
  680. spin_unlock_irqrestore(&dev->event_lock, flags);
  681. }
  682. void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
  683. {
  684. crtc->t_vblank = ktime_get();
  685. drm_crtc_handle_vblank(&crtc->base);
  686. vc4_crtc_handle_page_flip(crtc);
  687. }
  688. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  689. {
  690. struct vc4_crtc *vc4_crtc = data;
  691. u32 stat = CRTC_READ(PV_INTSTAT);
  692. irqreturn_t ret = IRQ_NONE;
  693. if (stat & PV_INT_VFP_START) {
  694. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  695. vc4_crtc_handle_vblank(vc4_crtc);
  696. ret = IRQ_HANDLED;
  697. }
  698. return ret;
  699. }
  700. struct vc4_async_flip_state {
  701. struct drm_crtc *crtc;
  702. struct drm_framebuffer *fb;
  703. struct drm_framebuffer *old_fb;
  704. struct drm_pending_vblank_event *event;
  705. struct vc4_seqno_cb cb;
  706. };
  707. /* Called when the V3D execution for the BO being flipped to is done, so that
  708. * we can actually update the plane's address to point to it.
  709. */
  710. static void
  711. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  712. {
  713. struct vc4_async_flip_state *flip_state =
  714. container_of(cb, struct vc4_async_flip_state, cb);
  715. struct drm_crtc *crtc = flip_state->crtc;
  716. struct drm_device *dev = crtc->dev;
  717. struct vc4_dev *vc4 = to_vc4_dev(dev);
  718. struct drm_plane *plane = crtc->primary;
  719. vc4_plane_async_set_fb(plane, flip_state->fb);
  720. if (flip_state->event) {
  721. unsigned long flags;
  722. spin_lock_irqsave(&dev->event_lock, flags);
  723. drm_crtc_send_vblank_event(crtc, flip_state->event);
  724. spin_unlock_irqrestore(&dev->event_lock, flags);
  725. }
  726. drm_crtc_vblank_put(crtc);
  727. drm_framebuffer_put(flip_state->fb);
  728. /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
  729. * when the planes are updated through the async update path.
  730. * FIXME: we should move to generic async-page-flip when it's
  731. * available, so that we can get rid of this hand-made cleanup_fb()
  732. * logic.
  733. */
  734. if (flip_state->old_fb) {
  735. struct drm_gem_cma_object *cma_bo;
  736. struct vc4_bo *bo;
  737. cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
  738. bo = to_vc4_bo(&cma_bo->base);
  739. vc4_bo_dec_usecnt(bo);
  740. drm_framebuffer_put(flip_state->old_fb);
  741. }
  742. kfree(flip_state);
  743. up(&vc4->async_modeset);
  744. }
  745. /* Implements async (non-vblank-synced) page flips.
  746. *
  747. * The page flip ioctl needs to return immediately, so we grab the
  748. * modeset semaphore on the pipe, and queue the address update for
  749. * when V3D is done with the BO being flipped to.
  750. */
  751. static int vc4_async_page_flip(struct drm_crtc *crtc,
  752. struct drm_framebuffer *fb,
  753. struct drm_pending_vblank_event *event,
  754. uint32_t flags)
  755. {
  756. struct drm_device *dev = crtc->dev;
  757. struct vc4_dev *vc4 = to_vc4_dev(dev);
  758. struct drm_plane *plane = crtc->primary;
  759. int ret = 0;
  760. struct vc4_async_flip_state *flip_state;
  761. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  762. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  763. /* Increment the BO usecnt here, so that we never end up with an
  764. * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
  765. * plane is later updated through the non-async path.
  766. * FIXME: we should move to generic async-page-flip when it's
  767. * available, so that we can get rid of this hand-made prepare_fb()
  768. * logic.
  769. */
  770. ret = vc4_bo_inc_usecnt(bo);
  771. if (ret)
  772. return ret;
  773. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  774. if (!flip_state) {
  775. vc4_bo_dec_usecnt(bo);
  776. return -ENOMEM;
  777. }
  778. drm_framebuffer_get(fb);
  779. flip_state->fb = fb;
  780. flip_state->crtc = crtc;
  781. flip_state->event = event;
  782. /* Make sure all other async modesetes have landed. */
  783. ret = down_interruptible(&vc4->async_modeset);
  784. if (ret) {
  785. drm_framebuffer_put(fb);
  786. vc4_bo_dec_usecnt(bo);
  787. kfree(flip_state);
  788. return ret;
  789. }
  790. /* Save the current FB before it's replaced by the new one in
  791. * drm_atomic_set_fb_for_plane(). We'll need the old FB in
  792. * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
  793. * it consistent.
  794. * FIXME: we should move to generic async-page-flip when it's
  795. * available, so that we can get rid of this hand-made cleanup_fb()
  796. * logic.
  797. */
  798. flip_state->old_fb = plane->state->fb;
  799. if (flip_state->old_fb)
  800. drm_framebuffer_get(flip_state->old_fb);
  801. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  802. /* Immediately update the plane's legacy fb pointer, so that later
  803. * modeset prep sees the state that will be present when the semaphore
  804. * is released.
  805. */
  806. drm_atomic_set_fb_for_plane(plane->state, fb);
  807. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  808. vc4_async_page_flip_complete);
  809. /* Driver takes ownership of state on successful async commit. */
  810. return 0;
  811. }
  812. static int vc4_page_flip(struct drm_crtc *crtc,
  813. struct drm_framebuffer *fb,
  814. struct drm_pending_vblank_event *event,
  815. uint32_t flags,
  816. struct drm_modeset_acquire_ctx *ctx)
  817. {
  818. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  819. return vc4_async_page_flip(crtc, fb, event, flags);
  820. else
  821. return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
  822. }
  823. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  824. {
  825. struct vc4_crtc_state *vc4_state, *old_vc4_state;
  826. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  827. if (!vc4_state)
  828. return NULL;
  829. old_vc4_state = to_vc4_crtc_state(crtc->state);
  830. vc4_state->feed_txp = old_vc4_state->feed_txp;
  831. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  832. return &vc4_state->base;
  833. }
  834. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  835. struct drm_crtc_state *state)
  836. {
  837. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  838. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  839. if (vc4_state->mm.allocated) {
  840. unsigned long flags;
  841. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  842. drm_mm_remove_node(&vc4_state->mm);
  843. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  844. }
  845. drm_atomic_helper_crtc_destroy_state(crtc, state);
  846. }
  847. static void
  848. vc4_crtc_reset(struct drm_crtc *crtc)
  849. {
  850. if (crtc->state)
  851. __drm_atomic_helper_crtc_destroy_state(crtc->state);
  852. crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
  853. if (crtc->state)
  854. crtc->state->crtc = crtc;
  855. }
  856. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  857. .set_config = drm_atomic_helper_set_config,
  858. .destroy = vc4_crtc_destroy,
  859. .page_flip = vc4_page_flip,
  860. .set_property = NULL,
  861. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  862. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  863. .reset = vc4_crtc_reset,
  864. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  865. .atomic_destroy_state = vc4_crtc_destroy_state,
  866. .gamma_set = drm_atomic_helper_legacy_gamma_set,
  867. .enable_vblank = vc4_enable_vblank,
  868. .disable_vblank = vc4_disable_vblank,
  869. };
  870. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  871. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  872. .mode_valid = vc4_crtc_mode_valid,
  873. .atomic_check = vc4_crtc_atomic_check,
  874. .atomic_flush = vc4_crtc_atomic_flush,
  875. .atomic_enable = vc4_crtc_atomic_enable,
  876. .atomic_disable = vc4_crtc_atomic_disable,
  877. };
  878. static const struct vc4_crtc_data pv0_data = {
  879. .hvs_channel = 0,
  880. .encoder_types = {
  881. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
  882. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
  883. },
  884. };
  885. static const struct vc4_crtc_data pv1_data = {
  886. .hvs_channel = 2,
  887. .encoder_types = {
  888. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
  889. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
  890. },
  891. };
  892. static const struct vc4_crtc_data pv2_data = {
  893. .hvs_channel = 1,
  894. .encoder_types = {
  895. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
  896. [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
  897. },
  898. };
  899. static const struct of_device_id vc4_crtc_dt_match[] = {
  900. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  901. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  902. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  903. {}
  904. };
  905. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  906. struct drm_crtc *crtc)
  907. {
  908. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  909. const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
  910. const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
  911. struct drm_encoder *encoder;
  912. drm_for_each_encoder(encoder, drm) {
  913. struct vc4_encoder *vc4_encoder;
  914. int i;
  915. /* HVS FIFO2 can feed the TXP IP. */
  916. if (crtc_data->hvs_channel == 2 &&
  917. encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
  918. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  919. continue;
  920. }
  921. vc4_encoder = to_vc4_encoder(encoder);
  922. for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
  923. if (vc4_encoder->type == encoder_types[i]) {
  924. vc4_encoder->clock_select = i;
  925. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  926. break;
  927. }
  928. }
  929. }
  930. }
  931. static void
  932. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  933. {
  934. struct drm_device *drm = vc4_crtc->base.dev;
  935. struct vc4_dev *vc4 = to_vc4_dev(drm);
  936. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  937. /* Top/base are supposed to be 4-pixel aligned, but the
  938. * Raspberry Pi firmware fills the low bits (which are
  939. * presumably ignored).
  940. */
  941. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  942. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  943. vc4_crtc->cob_size = top - base + 4;
  944. }
  945. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  946. {
  947. struct platform_device *pdev = to_platform_device(dev);
  948. struct drm_device *drm = dev_get_drvdata(master);
  949. struct vc4_crtc *vc4_crtc;
  950. struct drm_crtc *crtc;
  951. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  952. const struct of_device_id *match;
  953. int ret, i;
  954. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  955. if (!vc4_crtc)
  956. return -ENOMEM;
  957. crtc = &vc4_crtc->base;
  958. match = of_match_device(vc4_crtc_dt_match, dev);
  959. if (!match)
  960. return -ENODEV;
  961. vc4_crtc->data = match->data;
  962. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  963. if (IS_ERR(vc4_crtc->regs))
  964. return PTR_ERR(vc4_crtc->regs);
  965. /* For now, we create just the primary and the legacy cursor
  966. * planes. We should be able to stack more planes on easily,
  967. * but to do that we would need to compute the bandwidth
  968. * requirement of the plane configuration, and reject ones
  969. * that will take too much.
  970. */
  971. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  972. if (IS_ERR(primary_plane)) {
  973. dev_err(dev, "failed to construct primary plane\n");
  974. ret = PTR_ERR(primary_plane);
  975. goto err;
  976. }
  977. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  978. &vc4_crtc_funcs, NULL);
  979. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  980. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  981. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  982. drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
  983. /* We support CTM, but only for one CRTC at a time. It's therefore
  984. * implemented as private driver state in vc4_kms, not here.
  985. */
  986. drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
  987. /* Set up some arbitrary number of planes. We're not limited
  988. * by a set number of physical registers, just the space in
  989. * the HVS (16k) and how small an plane can be (28 bytes).
  990. * However, each plane we set up takes up some memory, and
  991. * increases the cost of looping over planes, which atomic
  992. * modesetting does quite a bit. As a result, we pick a
  993. * modest number of planes to expose, that should hopefully
  994. * still cover any sane usecase.
  995. */
  996. for (i = 0; i < 8; i++) {
  997. struct drm_plane *plane =
  998. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  999. if (IS_ERR(plane))
  1000. continue;
  1001. plane->possible_crtcs = drm_crtc_mask(crtc);
  1002. }
  1003. /* Set up the legacy cursor after overlay initialization,
  1004. * since we overlay planes on the CRTC in the order they were
  1005. * initialized.
  1006. */
  1007. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  1008. if (!IS_ERR(cursor_plane)) {
  1009. cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
  1010. crtc->cursor = cursor_plane;
  1011. }
  1012. vc4_crtc_get_cob_allocation(vc4_crtc);
  1013. CRTC_WRITE(PV_INTEN, 0);
  1014. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  1015. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  1016. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  1017. if (ret)
  1018. goto err_destroy_planes;
  1019. vc4_set_crtc_possible_masks(drm, crtc);
  1020. for (i = 0; i < crtc->gamma_size; i++) {
  1021. vc4_crtc->lut_r[i] = i;
  1022. vc4_crtc->lut_g[i] = i;
  1023. vc4_crtc->lut_b[i] = i;
  1024. }
  1025. platform_set_drvdata(pdev, vc4_crtc);
  1026. return 0;
  1027. err_destroy_planes:
  1028. list_for_each_entry_safe(destroy_plane, temp,
  1029. &drm->mode_config.plane_list, head) {
  1030. if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
  1031. destroy_plane->funcs->destroy(destroy_plane);
  1032. }
  1033. err:
  1034. return ret;
  1035. }
  1036. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  1037. void *data)
  1038. {
  1039. struct platform_device *pdev = to_platform_device(dev);
  1040. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  1041. vc4_crtc_destroy(&vc4_crtc->base);
  1042. CRTC_WRITE(PV_INTEN, 0);
  1043. platform_set_drvdata(pdev, NULL);
  1044. }
  1045. static const struct component_ops vc4_crtc_ops = {
  1046. .bind = vc4_crtc_bind,
  1047. .unbind = vc4_crtc_unbind,
  1048. };
  1049. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  1050. {
  1051. return component_add(&pdev->dev, &vc4_crtc_ops);
  1052. }
  1053. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  1054. {
  1055. component_del(&pdev->dev, &vc4_crtc_ops);
  1056. return 0;
  1057. }
  1058. struct platform_driver vc4_crtc_driver = {
  1059. .probe = vc4_crtc_dev_probe,
  1060. .remove = vc4_crtc_dev_remove,
  1061. .driver = {
  1062. .name = "vc4_crtc",
  1063. .of_match_table = vc4_crtc_dt_match,
  1064. },
  1065. };