pll.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. /*
  2. * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com/
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #define DSS_SUBSYS_NAME "PLL"
  17. #include <linux/delay.h>
  18. #include <linux/clk.h>
  19. #include <linux/io.h>
  20. #include <linux/kernel.h>
  21. #include <linux/regulator/consumer.h>
  22. #include <linux/sched.h>
  23. #include "omapdss.h"
  24. #include "dss.h"
  25. #define PLL_CONTROL 0x0000
  26. #define PLL_STATUS 0x0004
  27. #define PLL_GO 0x0008
  28. #define PLL_CONFIGURATION1 0x000C
  29. #define PLL_CONFIGURATION2 0x0010
  30. #define PLL_CONFIGURATION3 0x0014
  31. #define PLL_SSC_CONFIGURATION1 0x0018
  32. #define PLL_SSC_CONFIGURATION2 0x001C
  33. #define PLL_CONFIGURATION4 0x0020
  34. int dss_pll_register(struct dss_device *dss, struct dss_pll *pll)
  35. {
  36. int i;
  37. for (i = 0; i < ARRAY_SIZE(dss->plls); ++i) {
  38. if (!dss->plls[i]) {
  39. dss->plls[i] = pll;
  40. pll->dss = dss;
  41. return 0;
  42. }
  43. }
  44. return -EBUSY;
  45. }
  46. void dss_pll_unregister(struct dss_pll *pll)
  47. {
  48. struct dss_device *dss = pll->dss;
  49. int i;
  50. for (i = 0; i < ARRAY_SIZE(dss->plls); ++i) {
  51. if (dss->plls[i] == pll) {
  52. dss->plls[i] = NULL;
  53. pll->dss = NULL;
  54. return;
  55. }
  56. }
  57. }
  58. struct dss_pll *dss_pll_find(struct dss_device *dss, const char *name)
  59. {
  60. int i;
  61. for (i = 0; i < ARRAY_SIZE(dss->plls); ++i) {
  62. if (dss->plls[i] && strcmp(dss->plls[i]->name, name) == 0)
  63. return dss->plls[i];
  64. }
  65. return NULL;
  66. }
  67. struct dss_pll *dss_pll_find_by_src(struct dss_device *dss,
  68. enum dss_clk_source src)
  69. {
  70. struct dss_pll *pll;
  71. switch (src) {
  72. default:
  73. case DSS_CLK_SRC_FCK:
  74. return NULL;
  75. case DSS_CLK_SRC_HDMI_PLL:
  76. return dss_pll_find(dss, "hdmi");
  77. case DSS_CLK_SRC_PLL1_1:
  78. case DSS_CLK_SRC_PLL1_2:
  79. case DSS_CLK_SRC_PLL1_3:
  80. pll = dss_pll_find(dss, "dsi0");
  81. if (!pll)
  82. pll = dss_pll_find(dss, "video0");
  83. return pll;
  84. case DSS_CLK_SRC_PLL2_1:
  85. case DSS_CLK_SRC_PLL2_2:
  86. case DSS_CLK_SRC_PLL2_3:
  87. pll = dss_pll_find(dss, "dsi1");
  88. if (!pll)
  89. pll = dss_pll_find(dss, "video1");
  90. return pll;
  91. }
  92. }
  93. unsigned int dss_pll_get_clkout_idx_for_src(enum dss_clk_source src)
  94. {
  95. switch (src) {
  96. case DSS_CLK_SRC_HDMI_PLL:
  97. return 0;
  98. case DSS_CLK_SRC_PLL1_1:
  99. case DSS_CLK_SRC_PLL2_1:
  100. return 0;
  101. case DSS_CLK_SRC_PLL1_2:
  102. case DSS_CLK_SRC_PLL2_2:
  103. return 1;
  104. case DSS_CLK_SRC_PLL1_3:
  105. case DSS_CLK_SRC_PLL2_3:
  106. return 2;
  107. default:
  108. return 0;
  109. }
  110. }
  111. int dss_pll_enable(struct dss_pll *pll)
  112. {
  113. int r;
  114. r = clk_prepare_enable(pll->clkin);
  115. if (r)
  116. return r;
  117. if (pll->regulator) {
  118. r = regulator_enable(pll->regulator);
  119. if (r)
  120. goto err_reg;
  121. }
  122. r = pll->ops->enable(pll);
  123. if (r)
  124. goto err_enable;
  125. return 0;
  126. err_enable:
  127. if (pll->regulator)
  128. regulator_disable(pll->regulator);
  129. err_reg:
  130. clk_disable_unprepare(pll->clkin);
  131. return r;
  132. }
  133. void dss_pll_disable(struct dss_pll *pll)
  134. {
  135. pll->ops->disable(pll);
  136. if (pll->regulator)
  137. regulator_disable(pll->regulator);
  138. clk_disable_unprepare(pll->clkin);
  139. memset(&pll->cinfo, 0, sizeof(pll->cinfo));
  140. }
  141. int dss_pll_set_config(struct dss_pll *pll, const struct dss_pll_clock_info *cinfo)
  142. {
  143. int r;
  144. r = pll->ops->set_config(pll, cinfo);
  145. if (r)
  146. return r;
  147. pll->cinfo = *cinfo;
  148. return 0;
  149. }
  150. bool dss_pll_hsdiv_calc_a(const struct dss_pll *pll, unsigned long clkdco,
  151. unsigned long out_min, unsigned long out_max,
  152. dss_hsdiv_calc_func func, void *data)
  153. {
  154. const struct dss_pll_hw *hw = pll->hw;
  155. int m, m_start, m_stop;
  156. unsigned long out;
  157. out_min = out_min ? out_min : 1;
  158. out_max = out_max ? out_max : ULONG_MAX;
  159. m_start = max(DIV_ROUND_UP(clkdco, out_max), 1ul);
  160. m_stop = min((unsigned)(clkdco / out_min), hw->mX_max);
  161. for (m = m_start; m <= m_stop; ++m) {
  162. out = clkdco / m;
  163. if (func(m, out, data))
  164. return true;
  165. }
  166. return false;
  167. }
  168. /*
  169. * clkdco = clkin / n * m * 2
  170. * clkoutX = clkdco / mX
  171. */
  172. bool dss_pll_calc_a(const struct dss_pll *pll, unsigned long clkin,
  173. unsigned long pll_min, unsigned long pll_max,
  174. dss_pll_calc_func func, void *data)
  175. {
  176. const struct dss_pll_hw *hw = pll->hw;
  177. int n, n_start, n_stop, n_inc;
  178. int m, m_start, m_stop, m_inc;
  179. unsigned long fint, clkdco;
  180. unsigned long pll_hw_max;
  181. unsigned long fint_hw_min, fint_hw_max;
  182. pll_hw_max = hw->clkdco_max;
  183. fint_hw_min = hw->fint_min;
  184. fint_hw_max = hw->fint_max;
  185. n_start = max(DIV_ROUND_UP(clkin, fint_hw_max), 1ul);
  186. n_stop = min((unsigned)(clkin / fint_hw_min), hw->n_max);
  187. n_inc = 1;
  188. if (hw->errata_i886) {
  189. swap(n_start, n_stop);
  190. n_inc = -1;
  191. }
  192. pll_max = pll_max ? pll_max : ULONG_MAX;
  193. for (n = n_start; n != n_stop; n += n_inc) {
  194. fint = clkin / n;
  195. m_start = max(DIV_ROUND_UP(DIV_ROUND_UP(pll_min, fint), 2),
  196. 1ul);
  197. m_stop = min3((unsigned)(pll_max / fint / 2),
  198. (unsigned)(pll_hw_max / fint / 2),
  199. hw->m_max);
  200. m_inc = 1;
  201. if (hw->errata_i886) {
  202. swap(m_start, m_stop);
  203. m_inc = -1;
  204. }
  205. for (m = m_start; m != m_stop; m += m_inc) {
  206. clkdco = 2 * m * fint;
  207. if (func(n, m, fint, clkdco, data))
  208. return true;
  209. }
  210. }
  211. return false;
  212. }
  213. /*
  214. * This calculates a PLL config that will provide the target_clkout rate
  215. * for clkout. Additionally clkdco rate will be the same as clkout rate
  216. * when clkout rate is >= min_clkdco.
  217. *
  218. * clkdco = clkin / n * m + clkin / n * mf / 262144
  219. * clkout = clkdco / m2
  220. */
  221. bool dss_pll_calc_b(const struct dss_pll *pll, unsigned long clkin,
  222. unsigned long target_clkout, struct dss_pll_clock_info *cinfo)
  223. {
  224. unsigned long fint, clkdco, clkout;
  225. unsigned long target_clkdco;
  226. unsigned long min_dco;
  227. unsigned int n, m, mf, m2, sd;
  228. const struct dss_pll_hw *hw = pll->hw;
  229. DSSDBG("clkin %lu, target clkout %lu\n", clkin, target_clkout);
  230. /* Fint */
  231. n = DIV_ROUND_UP(clkin, hw->fint_max);
  232. fint = clkin / n;
  233. /* adjust m2 so that the clkdco will be high enough */
  234. min_dco = roundup(hw->clkdco_min, fint);
  235. m2 = DIV_ROUND_UP(min_dco, target_clkout);
  236. if (m2 == 0)
  237. m2 = 1;
  238. target_clkdco = target_clkout * m2;
  239. m = target_clkdco / fint;
  240. clkdco = fint * m;
  241. /* adjust clkdco with fractional mf */
  242. if (WARN_ON(target_clkdco - clkdco > fint))
  243. mf = 0;
  244. else
  245. mf = (u32)div_u64(262144ull * (target_clkdco - clkdco), fint);
  246. if (mf > 0)
  247. clkdco += (u32)div_u64((u64)mf * fint, 262144);
  248. clkout = clkdco / m2;
  249. /* sigma-delta */
  250. sd = DIV_ROUND_UP(fint * m, 250000000);
  251. DSSDBG("N = %u, M = %u, M.f = %u, M2 = %u, SD = %u\n",
  252. n, m, mf, m2, sd);
  253. DSSDBG("Fint %lu, clkdco %lu, clkout %lu\n", fint, clkdco, clkout);
  254. cinfo->n = n;
  255. cinfo->m = m;
  256. cinfo->mf = mf;
  257. cinfo->mX[0] = m2;
  258. cinfo->sd = sd;
  259. cinfo->fint = fint;
  260. cinfo->clkdco = clkdco;
  261. cinfo->clkout[0] = clkout;
  262. return true;
  263. }
  264. static int wait_for_bit_change(void __iomem *reg, int bitnum, int value)
  265. {
  266. unsigned long timeout;
  267. ktime_t wait;
  268. int t;
  269. /* first busyloop to see if the bit changes right away */
  270. t = 100;
  271. while (t-- > 0) {
  272. if (FLD_GET(readl_relaxed(reg), bitnum, bitnum) == value)
  273. return value;
  274. }
  275. /* then loop for 500ms, sleeping for 1ms in between */
  276. timeout = jiffies + msecs_to_jiffies(500);
  277. while (time_before(jiffies, timeout)) {
  278. if (FLD_GET(readl_relaxed(reg), bitnum, bitnum) == value)
  279. return value;
  280. wait = ns_to_ktime(1000 * 1000);
  281. set_current_state(TASK_UNINTERRUPTIBLE);
  282. schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
  283. }
  284. return !value;
  285. }
  286. int dss_pll_wait_reset_done(struct dss_pll *pll)
  287. {
  288. void __iomem *base = pll->base;
  289. if (wait_for_bit_change(base + PLL_STATUS, 0, 1) != 1)
  290. return -ETIMEDOUT;
  291. else
  292. return 0;
  293. }
  294. static int dss_wait_hsdiv_ack(struct dss_pll *pll, u32 hsdiv_ack_mask)
  295. {
  296. int t = 100;
  297. while (t-- > 0) {
  298. u32 v = readl_relaxed(pll->base + PLL_STATUS);
  299. v &= hsdiv_ack_mask;
  300. if (v == hsdiv_ack_mask)
  301. return 0;
  302. }
  303. return -ETIMEDOUT;
  304. }
  305. static bool pll_is_locked(u32 stat)
  306. {
  307. /*
  308. * Required value for each bitfield listed below
  309. *
  310. * PLL_STATUS[6] = 0 PLL_BYPASS
  311. * PLL_STATUS[5] = 0 PLL_HIGHJITTER
  312. *
  313. * PLL_STATUS[3] = 0 PLL_LOSSREF
  314. * PLL_STATUS[2] = 0 PLL_RECAL
  315. * PLL_STATUS[1] = 1 PLL_LOCK
  316. * PLL_STATUS[0] = 1 PLL_CTRL_RESET_DONE
  317. */
  318. return ((stat & 0x6f) == 0x3);
  319. }
  320. int dss_pll_write_config_type_a(struct dss_pll *pll,
  321. const struct dss_pll_clock_info *cinfo)
  322. {
  323. const struct dss_pll_hw *hw = pll->hw;
  324. void __iomem *base = pll->base;
  325. int r = 0;
  326. u32 l;
  327. l = 0;
  328. if (hw->has_stopmode)
  329. l = FLD_MOD(l, 1, 0, 0); /* PLL_STOPMODE */
  330. l = FLD_MOD(l, cinfo->n - 1, hw->n_msb, hw->n_lsb); /* PLL_REGN */
  331. l = FLD_MOD(l, cinfo->m, hw->m_msb, hw->m_lsb); /* PLL_REGM */
  332. /* M4 */
  333. l = FLD_MOD(l, cinfo->mX[0] ? cinfo->mX[0] - 1 : 0,
  334. hw->mX_msb[0], hw->mX_lsb[0]);
  335. /* M5 */
  336. l = FLD_MOD(l, cinfo->mX[1] ? cinfo->mX[1] - 1 : 0,
  337. hw->mX_msb[1], hw->mX_lsb[1]);
  338. writel_relaxed(l, base + PLL_CONFIGURATION1);
  339. l = 0;
  340. /* M6 */
  341. l = FLD_MOD(l, cinfo->mX[2] ? cinfo->mX[2] - 1 : 0,
  342. hw->mX_msb[2], hw->mX_lsb[2]);
  343. /* M7 */
  344. l = FLD_MOD(l, cinfo->mX[3] ? cinfo->mX[3] - 1 : 0,
  345. hw->mX_msb[3], hw->mX_lsb[3]);
  346. writel_relaxed(l, base + PLL_CONFIGURATION3);
  347. l = readl_relaxed(base + PLL_CONFIGURATION2);
  348. if (hw->has_freqsel) {
  349. u32 f = cinfo->fint < 1000000 ? 0x3 :
  350. cinfo->fint < 1250000 ? 0x4 :
  351. cinfo->fint < 1500000 ? 0x5 :
  352. cinfo->fint < 1750000 ? 0x6 :
  353. 0x7;
  354. l = FLD_MOD(l, f, 4, 1); /* PLL_FREQSEL */
  355. } else if (hw->has_selfreqdco) {
  356. u32 f = cinfo->clkdco < hw->clkdco_low ? 0x2 : 0x4;
  357. l = FLD_MOD(l, f, 3, 1); /* PLL_SELFREQDCO */
  358. }
  359. l = FLD_MOD(l, 1, 13, 13); /* PLL_REFEN */
  360. l = FLD_MOD(l, 0, 14, 14); /* PHY_CLKINEN */
  361. l = FLD_MOD(l, 0, 16, 16); /* M4_CLOCK_EN */
  362. l = FLD_MOD(l, 0, 18, 18); /* M5_CLOCK_EN */
  363. l = FLD_MOD(l, 1, 20, 20); /* HSDIVBYPASS */
  364. if (hw->has_refsel)
  365. l = FLD_MOD(l, 3, 22, 21); /* REFSEL = sysclk */
  366. l = FLD_MOD(l, 0, 23, 23); /* M6_CLOCK_EN */
  367. l = FLD_MOD(l, 0, 25, 25); /* M7_CLOCK_EN */
  368. writel_relaxed(l, base + PLL_CONFIGURATION2);
  369. if (hw->errata_i932) {
  370. int cnt = 0;
  371. u32 sleep_time;
  372. const u32 max_lock_retries = 20;
  373. /*
  374. * Calculate wait time for PLL LOCK
  375. * 1000 REFCLK cycles in us.
  376. */
  377. sleep_time = DIV_ROUND_UP(1000*1000*1000, cinfo->fint);
  378. for (cnt = 0; cnt < max_lock_retries; cnt++) {
  379. writel_relaxed(1, base + PLL_GO); /* PLL_GO */
  380. /**
  381. * read the register back to ensure the write is
  382. * flushed
  383. */
  384. readl_relaxed(base + PLL_GO);
  385. usleep_range(sleep_time, sleep_time + 5);
  386. l = readl_relaxed(base + PLL_STATUS);
  387. if (pll_is_locked(l) &&
  388. !(readl_relaxed(base + PLL_GO) & 0x1))
  389. break;
  390. }
  391. if (cnt == max_lock_retries) {
  392. DSSERR("cannot lock PLL\n");
  393. r = -EIO;
  394. goto err;
  395. }
  396. } else {
  397. writel_relaxed(1, base + PLL_GO); /* PLL_GO */
  398. if (wait_for_bit_change(base + PLL_GO, 0, 0) != 0) {
  399. DSSERR("DSS DPLL GO bit not going down.\n");
  400. r = -EIO;
  401. goto err;
  402. }
  403. if (wait_for_bit_change(base + PLL_STATUS, 1, 1) != 1) {
  404. DSSERR("cannot lock DSS DPLL\n");
  405. r = -EIO;
  406. goto err;
  407. }
  408. }
  409. l = readl_relaxed(base + PLL_CONFIGURATION2);
  410. l = FLD_MOD(l, 1, 14, 14); /* PHY_CLKINEN */
  411. l = FLD_MOD(l, cinfo->mX[0] ? 1 : 0, 16, 16); /* M4_CLOCK_EN */
  412. l = FLD_MOD(l, cinfo->mX[1] ? 1 : 0, 18, 18); /* M5_CLOCK_EN */
  413. l = FLD_MOD(l, 0, 20, 20); /* HSDIVBYPASS */
  414. l = FLD_MOD(l, cinfo->mX[2] ? 1 : 0, 23, 23); /* M6_CLOCK_EN */
  415. l = FLD_MOD(l, cinfo->mX[3] ? 1 : 0, 25, 25); /* M7_CLOCK_EN */
  416. writel_relaxed(l, base + PLL_CONFIGURATION2);
  417. r = dss_wait_hsdiv_ack(pll,
  418. (cinfo->mX[0] ? BIT(7) : 0) |
  419. (cinfo->mX[1] ? BIT(8) : 0) |
  420. (cinfo->mX[2] ? BIT(10) : 0) |
  421. (cinfo->mX[3] ? BIT(11) : 0));
  422. if (r) {
  423. DSSERR("failed to enable HSDIV clocks\n");
  424. goto err;
  425. }
  426. err:
  427. return r;
  428. }
  429. int dss_pll_write_config_type_b(struct dss_pll *pll,
  430. const struct dss_pll_clock_info *cinfo)
  431. {
  432. const struct dss_pll_hw *hw = pll->hw;
  433. void __iomem *base = pll->base;
  434. u32 l;
  435. l = 0;
  436. l = FLD_MOD(l, cinfo->m, 20, 9); /* PLL_REGM */
  437. l = FLD_MOD(l, cinfo->n - 1, 8, 1); /* PLL_REGN */
  438. writel_relaxed(l, base + PLL_CONFIGURATION1);
  439. l = readl_relaxed(base + PLL_CONFIGURATION2);
  440. l = FLD_MOD(l, 0x0, 12, 12); /* PLL_HIGHFREQ divide by 2 */
  441. l = FLD_MOD(l, 0x1, 13, 13); /* PLL_REFEN */
  442. l = FLD_MOD(l, 0x0, 14, 14); /* PHY_CLKINEN */
  443. if (hw->has_refsel)
  444. l = FLD_MOD(l, 0x3, 22, 21); /* REFSEL = SYSCLK */
  445. /* PLL_SELFREQDCO */
  446. if (cinfo->clkdco > hw->clkdco_low)
  447. l = FLD_MOD(l, 0x4, 3, 1);
  448. else
  449. l = FLD_MOD(l, 0x2, 3, 1);
  450. writel_relaxed(l, base + PLL_CONFIGURATION2);
  451. l = readl_relaxed(base + PLL_CONFIGURATION3);
  452. l = FLD_MOD(l, cinfo->sd, 17, 10); /* PLL_REGSD */
  453. writel_relaxed(l, base + PLL_CONFIGURATION3);
  454. l = readl_relaxed(base + PLL_CONFIGURATION4);
  455. l = FLD_MOD(l, cinfo->mX[0], 24, 18); /* PLL_REGM2 */
  456. l = FLD_MOD(l, cinfo->mf, 17, 0); /* PLL_REGM_F */
  457. writel_relaxed(l, base + PLL_CONFIGURATION4);
  458. writel_relaxed(1, base + PLL_GO); /* PLL_GO */
  459. if (wait_for_bit_change(base + PLL_GO, 0, 0) != 0) {
  460. DSSERR("DSS DPLL GO bit not going down.\n");
  461. return -EIO;
  462. }
  463. if (wait_for_bit_change(base + PLL_STATUS, 1, 1) != 1) {
  464. DSSERR("cannot lock DSS DPLL\n");
  465. return -ETIMEDOUT;
  466. }
  467. return 0;
  468. }