dsi_host.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461
  1. /*
  2. * Copyright (c) 2015, The Linux Foundation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 and
  6. * only version 2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/clk.h>
  14. #include <linux/delay.h>
  15. #include <linux/err.h>
  16. #include <linux/gpio.h>
  17. #include <linux/gpio/consumer.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/of_device.h>
  20. #include <linux/of_gpio.h>
  21. #include <linux/of_irq.h>
  22. #include <linux/pinctrl/consumer.h>
  23. #include <linux/of_graph.h>
  24. #include <linux/regulator/consumer.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/mfd/syscon.h>
  27. #include <linux/regmap.h>
  28. #include <video/mipi_display.h>
  29. #include "dsi.h"
  30. #include "dsi.xml.h"
  31. #include "sfpb.xml.h"
  32. #include "dsi_cfg.h"
  33. #include "msm_kms.h"
  34. static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
  35. {
  36. u32 ver;
  37. if (!major || !minor)
  38. return -EINVAL;
  39. /*
  40. * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
  41. * makes all other registers 4-byte shifted down.
  42. *
  43. * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
  44. * older, we read the DSI_VERSION register without any shift(offset
  45. * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
  46. * the case of DSI6G, this has to be zero (the offset points to a
  47. * scratch register which we never touch)
  48. */
  49. ver = msm_readl(base + REG_DSI_VERSION);
  50. if (ver) {
  51. /* older dsi host, there is no register shift */
  52. ver = FIELD(ver, DSI_VERSION_MAJOR);
  53. if (ver <= MSM_DSI_VER_MAJOR_V2) {
  54. /* old versions */
  55. *major = ver;
  56. *minor = 0;
  57. return 0;
  58. } else {
  59. return -EINVAL;
  60. }
  61. } else {
  62. /*
  63. * newer host, offset 0 has 6G_HW_VERSION, the rest of the
  64. * registers are shifted down, read DSI_VERSION again with
  65. * the shifted offset
  66. */
  67. ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
  68. ver = FIELD(ver, DSI_VERSION_MAJOR);
  69. if (ver == MSM_DSI_VER_MAJOR_6G) {
  70. /* 6G version */
  71. *major = ver;
  72. *minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
  73. return 0;
  74. } else {
  75. return -EINVAL;
  76. }
  77. }
  78. }
  79. #define DSI_ERR_STATE_ACK 0x0000
  80. #define DSI_ERR_STATE_TIMEOUT 0x0001
  81. #define DSI_ERR_STATE_DLN0_PHY 0x0002
  82. #define DSI_ERR_STATE_FIFO 0x0004
  83. #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008
  84. #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010
  85. #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020
  86. #define DSI_CLK_CTRL_ENABLE_CLKS \
  87. (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
  88. DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
  89. DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
  90. DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
  91. struct msm_dsi_host {
  92. struct mipi_dsi_host base;
  93. struct platform_device *pdev;
  94. struct drm_device *dev;
  95. int id;
  96. void __iomem *ctrl_base;
  97. struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
  98. struct clk *bus_clks[DSI_BUS_CLK_MAX];
  99. struct clk *byte_clk;
  100. struct clk *esc_clk;
  101. struct clk *pixel_clk;
  102. struct clk *byte_clk_src;
  103. struct clk *pixel_clk_src;
  104. struct clk *byte_intf_clk;
  105. u32 byte_clk_rate;
  106. u32 pixel_clk_rate;
  107. u32 esc_clk_rate;
  108. /* DSI v2 specific clocks */
  109. struct clk *src_clk;
  110. struct clk *esc_clk_src;
  111. struct clk *dsi_clk_src;
  112. u32 src_clk_rate;
  113. struct gpio_desc *disp_en_gpio;
  114. struct gpio_desc *te_gpio;
  115. const struct msm_dsi_cfg_handler *cfg_hnd;
  116. struct completion dma_comp;
  117. struct completion video_comp;
  118. struct mutex dev_mutex;
  119. struct mutex cmd_mutex;
  120. spinlock_t intr_lock; /* Protect interrupt ctrl register */
  121. u32 err_work_state;
  122. struct work_struct err_work;
  123. struct work_struct hpd_work;
  124. struct workqueue_struct *workqueue;
  125. /* DSI 6G TX buffer*/
  126. struct drm_gem_object *tx_gem_obj;
  127. /* DSI v2 TX buffer */
  128. void *tx_buf;
  129. dma_addr_t tx_buf_paddr;
  130. int tx_size;
  131. u8 *rx_buf;
  132. struct regmap *sfpb;
  133. struct drm_display_mode *mode;
  134. /* connected device info */
  135. struct device_node *device_node;
  136. unsigned int channel;
  137. unsigned int lanes;
  138. enum mipi_dsi_pixel_format format;
  139. unsigned long mode_flags;
  140. /* lane data parsed via DT */
  141. int dlane_swap;
  142. int num_data_lanes;
  143. u32 dma_cmd_ctrl_restore;
  144. bool registered;
  145. bool power_on;
  146. bool enabled;
  147. int irq;
  148. };
  149. static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
  150. {
  151. switch (fmt) {
  152. case MIPI_DSI_FMT_RGB565: return 16;
  153. case MIPI_DSI_FMT_RGB666_PACKED: return 18;
  154. case MIPI_DSI_FMT_RGB666:
  155. case MIPI_DSI_FMT_RGB888:
  156. default: return 24;
  157. }
  158. }
  159. static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
  160. {
  161. return msm_readl(msm_host->ctrl_base + reg);
  162. }
  163. static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
  164. {
  165. msm_writel(data, msm_host->ctrl_base + reg);
  166. }
  167. static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
  168. static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
  169. static const struct msm_dsi_cfg_handler *dsi_get_config(
  170. struct msm_dsi_host *msm_host)
  171. {
  172. const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
  173. struct device *dev = &msm_host->pdev->dev;
  174. struct regulator *gdsc_reg;
  175. struct clk *ahb_clk;
  176. int ret;
  177. u32 major = 0, minor = 0;
  178. gdsc_reg = regulator_get(dev, "gdsc");
  179. if (IS_ERR(gdsc_reg)) {
  180. pr_err("%s: cannot get gdsc\n", __func__);
  181. goto exit;
  182. }
  183. ahb_clk = msm_clk_get(msm_host->pdev, "iface");
  184. if (IS_ERR(ahb_clk)) {
  185. pr_err("%s: cannot get interface clock\n", __func__);
  186. goto put_gdsc;
  187. }
  188. pm_runtime_get_sync(dev);
  189. ret = regulator_enable(gdsc_reg);
  190. if (ret) {
  191. pr_err("%s: unable to enable gdsc\n", __func__);
  192. goto put_gdsc;
  193. }
  194. ret = clk_prepare_enable(ahb_clk);
  195. if (ret) {
  196. pr_err("%s: unable to enable ahb_clk\n", __func__);
  197. goto disable_gdsc;
  198. }
  199. ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
  200. if (ret) {
  201. pr_err("%s: Invalid version\n", __func__);
  202. goto disable_clks;
  203. }
  204. cfg_hnd = msm_dsi_cfg_get(major, minor);
  205. DBG("%s: Version %x:%x\n", __func__, major, minor);
  206. disable_clks:
  207. clk_disable_unprepare(ahb_clk);
  208. disable_gdsc:
  209. regulator_disable(gdsc_reg);
  210. pm_runtime_put_sync(dev);
  211. put_gdsc:
  212. regulator_put(gdsc_reg);
  213. exit:
  214. return cfg_hnd;
  215. }
  216. static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
  217. {
  218. return container_of(host, struct msm_dsi_host, base);
  219. }
  220. static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
  221. {
  222. struct regulator_bulk_data *s = msm_host->supplies;
  223. const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
  224. int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
  225. int i;
  226. DBG("");
  227. for (i = num - 1; i >= 0; i--)
  228. if (regs[i].disable_load >= 0)
  229. regulator_set_load(s[i].consumer,
  230. regs[i].disable_load);
  231. regulator_bulk_disable(num, s);
  232. }
  233. static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
  234. {
  235. struct regulator_bulk_data *s = msm_host->supplies;
  236. const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
  237. int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
  238. int ret, i;
  239. DBG("");
  240. for (i = 0; i < num; i++) {
  241. if (regs[i].enable_load >= 0) {
  242. ret = regulator_set_load(s[i].consumer,
  243. regs[i].enable_load);
  244. if (ret < 0) {
  245. pr_err("regulator %d set op mode failed, %d\n",
  246. i, ret);
  247. goto fail;
  248. }
  249. }
  250. }
  251. ret = regulator_bulk_enable(num, s);
  252. if (ret < 0) {
  253. pr_err("regulator enable failed, %d\n", ret);
  254. goto fail;
  255. }
  256. return 0;
  257. fail:
  258. for (i--; i >= 0; i--)
  259. regulator_set_load(s[i].consumer, regs[i].disable_load);
  260. return ret;
  261. }
  262. static int dsi_regulator_init(struct msm_dsi_host *msm_host)
  263. {
  264. struct regulator_bulk_data *s = msm_host->supplies;
  265. const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
  266. int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
  267. int i, ret;
  268. for (i = 0; i < num; i++)
  269. s[i].supply = regs[i].name;
  270. ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
  271. if (ret < 0) {
  272. pr_err("%s: failed to init regulator, ret=%d\n",
  273. __func__, ret);
  274. return ret;
  275. }
  276. return 0;
  277. }
  278. int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
  279. {
  280. struct platform_device *pdev = msm_host->pdev;
  281. int ret = 0;
  282. msm_host->src_clk = msm_clk_get(pdev, "src");
  283. if (IS_ERR(msm_host->src_clk)) {
  284. ret = PTR_ERR(msm_host->src_clk);
  285. pr_err("%s: can't find src clock. ret=%d\n",
  286. __func__, ret);
  287. msm_host->src_clk = NULL;
  288. return ret;
  289. }
  290. msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
  291. if (!msm_host->esc_clk_src) {
  292. ret = -ENODEV;
  293. pr_err("%s: can't get esc clock parent. ret=%d\n",
  294. __func__, ret);
  295. return ret;
  296. }
  297. msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
  298. if (!msm_host->dsi_clk_src) {
  299. ret = -ENODEV;
  300. pr_err("%s: can't get src clock parent. ret=%d\n",
  301. __func__, ret);
  302. }
  303. return ret;
  304. }
  305. int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
  306. {
  307. struct platform_device *pdev = msm_host->pdev;
  308. int ret = 0;
  309. msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
  310. if (IS_ERR(msm_host->byte_intf_clk)) {
  311. ret = PTR_ERR(msm_host->byte_intf_clk);
  312. pr_err("%s: can't find byte_intf clock. ret=%d\n",
  313. __func__, ret);
  314. }
  315. return ret;
  316. }
  317. static int dsi_clk_init(struct msm_dsi_host *msm_host)
  318. {
  319. struct platform_device *pdev = msm_host->pdev;
  320. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  321. const struct msm_dsi_config *cfg = cfg_hnd->cfg;
  322. int i, ret = 0;
  323. /* get bus clocks */
  324. for (i = 0; i < cfg->num_bus_clks; i++) {
  325. msm_host->bus_clks[i] = msm_clk_get(pdev,
  326. cfg->bus_clk_names[i]);
  327. if (IS_ERR(msm_host->bus_clks[i])) {
  328. ret = PTR_ERR(msm_host->bus_clks[i]);
  329. pr_err("%s: Unable to get %s clock, ret = %d\n",
  330. __func__, cfg->bus_clk_names[i], ret);
  331. goto exit;
  332. }
  333. }
  334. /* get link and source clocks */
  335. msm_host->byte_clk = msm_clk_get(pdev, "byte");
  336. if (IS_ERR(msm_host->byte_clk)) {
  337. ret = PTR_ERR(msm_host->byte_clk);
  338. pr_err("%s: can't find dsi_byte clock. ret=%d\n",
  339. __func__, ret);
  340. msm_host->byte_clk = NULL;
  341. goto exit;
  342. }
  343. msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
  344. if (IS_ERR(msm_host->pixel_clk)) {
  345. ret = PTR_ERR(msm_host->pixel_clk);
  346. pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
  347. __func__, ret);
  348. msm_host->pixel_clk = NULL;
  349. goto exit;
  350. }
  351. msm_host->esc_clk = msm_clk_get(pdev, "core");
  352. if (IS_ERR(msm_host->esc_clk)) {
  353. ret = PTR_ERR(msm_host->esc_clk);
  354. pr_err("%s: can't find dsi_esc clock. ret=%d\n",
  355. __func__, ret);
  356. msm_host->esc_clk = NULL;
  357. goto exit;
  358. }
  359. msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
  360. if (!msm_host->byte_clk_src) {
  361. ret = -ENODEV;
  362. pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
  363. goto exit;
  364. }
  365. msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
  366. if (!msm_host->pixel_clk_src) {
  367. ret = -ENODEV;
  368. pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
  369. goto exit;
  370. }
  371. if (cfg_hnd->ops->clk_init_ver)
  372. ret = cfg_hnd->ops->clk_init_ver(msm_host);
  373. exit:
  374. return ret;
  375. }
  376. static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host)
  377. {
  378. const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
  379. int i, ret;
  380. DBG("id=%d", msm_host->id);
  381. for (i = 0; i < cfg->num_bus_clks; i++) {
  382. ret = clk_prepare_enable(msm_host->bus_clks[i]);
  383. if (ret) {
  384. pr_err("%s: failed to enable bus clock %d ret %d\n",
  385. __func__, i, ret);
  386. goto err;
  387. }
  388. }
  389. return 0;
  390. err:
  391. for (; i > 0; i--)
  392. clk_disable_unprepare(msm_host->bus_clks[i]);
  393. return ret;
  394. }
  395. static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host)
  396. {
  397. const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
  398. int i;
  399. DBG("");
  400. for (i = cfg->num_bus_clks - 1; i >= 0; i--)
  401. clk_disable_unprepare(msm_host->bus_clks[i]);
  402. }
  403. int msm_dsi_runtime_suspend(struct device *dev)
  404. {
  405. struct platform_device *pdev = to_platform_device(dev);
  406. struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
  407. struct mipi_dsi_host *host = msm_dsi->host;
  408. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  409. if (!msm_host->cfg_hnd)
  410. return 0;
  411. dsi_bus_clk_disable(msm_host);
  412. return 0;
  413. }
  414. int msm_dsi_runtime_resume(struct device *dev)
  415. {
  416. struct platform_device *pdev = to_platform_device(dev);
  417. struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
  418. struct mipi_dsi_host *host = msm_dsi->host;
  419. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  420. if (!msm_host->cfg_hnd)
  421. return 0;
  422. return dsi_bus_clk_enable(msm_host);
  423. }
  424. int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
  425. {
  426. int ret;
  427. DBG("Set clk rates: pclk=%d, byteclk=%d",
  428. msm_host->mode->clock, msm_host->byte_clk_rate);
  429. ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
  430. if (ret) {
  431. pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
  432. goto error;
  433. }
  434. ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
  435. if (ret) {
  436. pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
  437. goto error;
  438. }
  439. if (msm_host->byte_intf_clk) {
  440. ret = clk_set_rate(msm_host->byte_intf_clk,
  441. msm_host->byte_clk_rate / 2);
  442. if (ret) {
  443. pr_err("%s: Failed to set rate byte intf clk, %d\n",
  444. __func__, ret);
  445. goto error;
  446. }
  447. }
  448. ret = clk_prepare_enable(msm_host->esc_clk);
  449. if (ret) {
  450. pr_err("%s: Failed to enable dsi esc clk\n", __func__);
  451. goto error;
  452. }
  453. ret = clk_prepare_enable(msm_host->byte_clk);
  454. if (ret) {
  455. pr_err("%s: Failed to enable dsi byte clk\n", __func__);
  456. goto byte_clk_err;
  457. }
  458. ret = clk_prepare_enable(msm_host->pixel_clk);
  459. if (ret) {
  460. pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
  461. goto pixel_clk_err;
  462. }
  463. if (msm_host->byte_intf_clk) {
  464. ret = clk_prepare_enable(msm_host->byte_intf_clk);
  465. if (ret) {
  466. pr_err("%s: Failed to enable byte intf clk\n",
  467. __func__);
  468. goto byte_intf_clk_err;
  469. }
  470. }
  471. return 0;
  472. byte_intf_clk_err:
  473. clk_disable_unprepare(msm_host->pixel_clk);
  474. pixel_clk_err:
  475. clk_disable_unprepare(msm_host->byte_clk);
  476. byte_clk_err:
  477. clk_disable_unprepare(msm_host->esc_clk);
  478. error:
  479. return ret;
  480. }
  481. int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
  482. {
  483. int ret;
  484. DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d",
  485. msm_host->mode->clock, msm_host->byte_clk_rate,
  486. msm_host->esc_clk_rate, msm_host->src_clk_rate);
  487. ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
  488. if (ret) {
  489. pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
  490. goto error;
  491. }
  492. ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
  493. if (ret) {
  494. pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
  495. goto error;
  496. }
  497. ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
  498. if (ret) {
  499. pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
  500. goto error;
  501. }
  502. ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
  503. if (ret) {
  504. pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
  505. goto error;
  506. }
  507. ret = clk_prepare_enable(msm_host->byte_clk);
  508. if (ret) {
  509. pr_err("%s: Failed to enable dsi byte clk\n", __func__);
  510. goto error;
  511. }
  512. ret = clk_prepare_enable(msm_host->esc_clk);
  513. if (ret) {
  514. pr_err("%s: Failed to enable dsi esc clk\n", __func__);
  515. goto esc_clk_err;
  516. }
  517. ret = clk_prepare_enable(msm_host->src_clk);
  518. if (ret) {
  519. pr_err("%s: Failed to enable dsi src clk\n", __func__);
  520. goto src_clk_err;
  521. }
  522. ret = clk_prepare_enable(msm_host->pixel_clk);
  523. if (ret) {
  524. pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
  525. goto pixel_clk_err;
  526. }
  527. return 0;
  528. pixel_clk_err:
  529. clk_disable_unprepare(msm_host->src_clk);
  530. src_clk_err:
  531. clk_disable_unprepare(msm_host->esc_clk);
  532. esc_clk_err:
  533. clk_disable_unprepare(msm_host->byte_clk);
  534. error:
  535. return ret;
  536. }
  537. void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
  538. {
  539. clk_disable_unprepare(msm_host->esc_clk);
  540. clk_disable_unprepare(msm_host->pixel_clk);
  541. if (msm_host->byte_intf_clk)
  542. clk_disable_unprepare(msm_host->byte_intf_clk);
  543. clk_disable_unprepare(msm_host->byte_clk);
  544. }
  545. void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
  546. {
  547. clk_disable_unprepare(msm_host->pixel_clk);
  548. clk_disable_unprepare(msm_host->src_clk);
  549. clk_disable_unprepare(msm_host->esc_clk);
  550. clk_disable_unprepare(msm_host->byte_clk);
  551. }
  552. static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi)
  553. {
  554. struct drm_display_mode *mode = msm_host->mode;
  555. u32 pclk_rate;
  556. pclk_rate = mode->clock * 1000;
  557. /*
  558. * For dual DSI mode, the current DRM mode has the complete width of the
  559. * panel. Since, the complete panel is driven by two DSI controllers,
  560. * the clock rates have to be split between the two dsi controllers.
  561. * Adjust the byte and pixel clock rates for each dsi host accordingly.
  562. */
  563. if (is_dual_dsi)
  564. pclk_rate /= 2;
  565. return pclk_rate;
  566. }
  567. static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi)
  568. {
  569. u8 lanes = msm_host->lanes;
  570. u32 bpp = dsi_get_bpp(msm_host->format);
  571. u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi);
  572. u64 pclk_bpp = (u64)pclk_rate * bpp;
  573. if (lanes == 0) {
  574. pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
  575. lanes = 1;
  576. }
  577. do_div(pclk_bpp, (8 * lanes));
  578. msm_host->pixel_clk_rate = pclk_rate;
  579. msm_host->byte_clk_rate = pclk_bpp;
  580. DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate,
  581. msm_host->byte_clk_rate);
  582. }
  583. int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi)
  584. {
  585. if (!msm_host->mode) {
  586. pr_err("%s: mode not set\n", __func__);
  587. return -EINVAL;
  588. }
  589. dsi_calc_pclk(msm_host, is_dual_dsi);
  590. msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
  591. return 0;
  592. }
  593. int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi)
  594. {
  595. u32 bpp = dsi_get_bpp(msm_host->format);
  596. u64 pclk_bpp;
  597. unsigned int esc_mhz, esc_div;
  598. unsigned long byte_mhz;
  599. dsi_calc_pclk(msm_host, is_dual_dsi);
  600. pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp;
  601. do_div(pclk_bpp, 8);
  602. msm_host->src_clk_rate = pclk_bpp;
  603. /*
  604. * esc clock is byte clock followed by a 4 bit divider,
  605. * we need to find an escape clock frequency within the
  606. * mipi DSI spec range within the maximum divider limit
  607. * We iterate here between an escape clock frequencey
  608. * between 20 Mhz to 5 Mhz and pick up the first one
  609. * that can be supported by our divider
  610. */
  611. byte_mhz = msm_host->byte_clk_rate / 1000000;
  612. for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
  613. esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
  614. /*
  615. * TODO: Ideally, we shouldn't know what sort of divider
  616. * is available in mmss_cc, we're just assuming that
  617. * it'll always be a 4 bit divider. Need to come up with
  618. * a better way here.
  619. */
  620. if (esc_div >= 1 && esc_div <= 16)
  621. break;
  622. }
  623. if (esc_mhz < 5)
  624. return -EINVAL;
  625. msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
  626. DBG("esc=%d, src=%d", msm_host->esc_clk_rate,
  627. msm_host->src_clk_rate);
  628. return 0;
  629. }
  630. static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
  631. {
  632. u32 intr;
  633. unsigned long flags;
  634. spin_lock_irqsave(&msm_host->intr_lock, flags);
  635. intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
  636. if (enable)
  637. intr |= mask;
  638. else
  639. intr &= ~mask;
  640. DBG("intr=%x enable=%d", intr, enable);
  641. dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
  642. spin_unlock_irqrestore(&msm_host->intr_lock, flags);
  643. }
  644. static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
  645. {
  646. if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
  647. return BURST_MODE;
  648. else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
  649. return NON_BURST_SYNCH_PULSE;
  650. return NON_BURST_SYNCH_EVENT;
  651. }
  652. static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
  653. const enum mipi_dsi_pixel_format mipi_fmt)
  654. {
  655. switch (mipi_fmt) {
  656. case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888;
  657. case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE;
  658. case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666;
  659. case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565;
  660. default: return VID_DST_FORMAT_RGB888;
  661. }
  662. }
  663. static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
  664. const enum mipi_dsi_pixel_format mipi_fmt)
  665. {
  666. switch (mipi_fmt) {
  667. case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888;
  668. case MIPI_DSI_FMT_RGB666_PACKED:
  669. case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666;
  670. case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565;
  671. default: return CMD_DST_FORMAT_RGB888;
  672. }
  673. }
  674. static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
  675. struct msm_dsi_phy_shared_timings *phy_shared_timings)
  676. {
  677. u32 flags = msm_host->mode_flags;
  678. enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
  679. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  680. u32 data = 0;
  681. if (!enable) {
  682. dsi_write(msm_host, REG_DSI_CTRL, 0);
  683. return;
  684. }
  685. if (flags & MIPI_DSI_MODE_VIDEO) {
  686. if (flags & MIPI_DSI_MODE_VIDEO_HSE)
  687. data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
  688. if (flags & MIPI_DSI_MODE_VIDEO_HFP)
  689. data |= DSI_VID_CFG0_HFP_POWER_STOP;
  690. if (flags & MIPI_DSI_MODE_VIDEO_HBP)
  691. data |= DSI_VID_CFG0_HBP_POWER_STOP;
  692. if (flags & MIPI_DSI_MODE_VIDEO_HSA)
  693. data |= DSI_VID_CFG0_HSA_POWER_STOP;
  694. /* Always set low power stop mode for BLLP
  695. * to let command engine send packets
  696. */
  697. data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
  698. DSI_VID_CFG0_BLLP_POWER_STOP;
  699. data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
  700. data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
  701. data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
  702. dsi_write(msm_host, REG_DSI_VID_CFG0, data);
  703. /* Do not swap RGB colors */
  704. data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
  705. dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
  706. } else {
  707. /* Do not swap RGB colors */
  708. data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
  709. data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
  710. dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
  711. data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
  712. DSI_CMD_CFG1_WR_MEM_CONTINUE(
  713. MIPI_DCS_WRITE_MEMORY_CONTINUE);
  714. /* Always insert DCS command */
  715. data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
  716. dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
  717. }
  718. dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
  719. DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
  720. DSI_CMD_DMA_CTRL_LOW_POWER);
  721. data = 0;
  722. /* Always assume dedicated TE pin */
  723. data |= DSI_TRIG_CTRL_TE;
  724. data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
  725. data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
  726. data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
  727. if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
  728. (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
  729. data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
  730. dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
  731. data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
  732. DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
  733. dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
  734. if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
  735. (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
  736. phy_shared_timings->clk_pre_inc_by_2)
  737. dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
  738. DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
  739. data = 0;
  740. if (!(flags & MIPI_DSI_MODE_EOT_PACKET))
  741. data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
  742. dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
  743. /* allow only ack-err-status to generate interrupt */
  744. dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
  745. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
  746. dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
  747. data = DSI_CTRL_CLK_EN;
  748. DBG("lane number=%d", msm_host->lanes);
  749. data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
  750. dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
  751. DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
  752. if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
  753. dsi_write(msm_host, REG_DSI_LANE_CTRL,
  754. DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
  755. data |= DSI_CTRL_ENABLE;
  756. dsi_write(msm_host, REG_DSI_CTRL, data);
  757. }
  758. static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi)
  759. {
  760. struct drm_display_mode *mode = msm_host->mode;
  761. u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
  762. u32 h_total = mode->htotal;
  763. u32 v_total = mode->vtotal;
  764. u32 hs_end = mode->hsync_end - mode->hsync_start;
  765. u32 vs_end = mode->vsync_end - mode->vsync_start;
  766. u32 ha_start = h_total - mode->hsync_start;
  767. u32 ha_end = ha_start + mode->hdisplay;
  768. u32 va_start = v_total - mode->vsync_start;
  769. u32 va_end = va_start + mode->vdisplay;
  770. u32 hdisplay = mode->hdisplay;
  771. u32 wc;
  772. DBG("");
  773. /*
  774. * For dual DSI mode, the current DRM mode has
  775. * the complete width of the panel. Since, the complete
  776. * panel is driven by two DSI controllers, the horizontal
  777. * timings have to be split between the two dsi controllers.
  778. * Adjust the DSI host timing values accordingly.
  779. */
  780. if (is_dual_dsi) {
  781. h_total /= 2;
  782. hs_end /= 2;
  783. ha_start /= 2;
  784. ha_end /= 2;
  785. hdisplay /= 2;
  786. }
  787. if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
  788. dsi_write(msm_host, REG_DSI_ACTIVE_H,
  789. DSI_ACTIVE_H_START(ha_start) |
  790. DSI_ACTIVE_H_END(ha_end));
  791. dsi_write(msm_host, REG_DSI_ACTIVE_V,
  792. DSI_ACTIVE_V_START(va_start) |
  793. DSI_ACTIVE_V_END(va_end));
  794. dsi_write(msm_host, REG_DSI_TOTAL,
  795. DSI_TOTAL_H_TOTAL(h_total - 1) |
  796. DSI_TOTAL_V_TOTAL(v_total - 1));
  797. dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
  798. DSI_ACTIVE_HSYNC_START(hs_start) |
  799. DSI_ACTIVE_HSYNC_END(hs_end));
  800. dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
  801. dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
  802. DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
  803. DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
  804. } else { /* command mode */
  805. /* image data and 1 byte write_memory_start cmd */
  806. wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
  807. dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL,
  808. DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) |
  809. DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL(
  810. msm_host->channel) |
  811. DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE(
  812. MIPI_DSI_DCS_LONG_WRITE));
  813. dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL,
  814. DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) |
  815. DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay));
  816. }
  817. }
  818. static void dsi_sw_reset(struct msm_dsi_host *msm_host)
  819. {
  820. dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
  821. wmb(); /* clocks need to be enabled before reset */
  822. dsi_write(msm_host, REG_DSI_RESET, 1);
  823. wmb(); /* make sure reset happen */
  824. dsi_write(msm_host, REG_DSI_RESET, 0);
  825. }
  826. static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
  827. bool video_mode, bool enable)
  828. {
  829. u32 dsi_ctrl;
  830. dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
  831. if (!enable) {
  832. dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
  833. DSI_CTRL_CMD_MODE_EN);
  834. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
  835. DSI_IRQ_MASK_VIDEO_DONE, 0);
  836. } else {
  837. if (video_mode) {
  838. dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
  839. } else { /* command mode */
  840. dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
  841. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
  842. }
  843. dsi_ctrl |= DSI_CTRL_ENABLE;
  844. }
  845. dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
  846. }
  847. static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
  848. {
  849. u32 data;
  850. data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
  851. if (mode == 0)
  852. data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
  853. else
  854. data |= DSI_CMD_DMA_CTRL_LOW_POWER;
  855. dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
  856. }
  857. static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
  858. {
  859. u32 ret = 0;
  860. struct device *dev = &msm_host->pdev->dev;
  861. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
  862. reinit_completion(&msm_host->video_comp);
  863. ret = wait_for_completion_timeout(&msm_host->video_comp,
  864. msecs_to_jiffies(70));
  865. if (ret <= 0)
  866. dev_err(dev, "wait for video done timed out\n");
  867. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
  868. }
  869. static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
  870. {
  871. if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
  872. return;
  873. if (msm_host->power_on && msm_host->enabled) {
  874. dsi_wait4video_done(msm_host);
  875. /* delay 4 ms to skip BLLP */
  876. usleep_range(2000, 4000);
  877. }
  878. }
  879. int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
  880. {
  881. struct drm_device *dev = msm_host->dev;
  882. struct msm_drm_private *priv = dev->dev_private;
  883. uint64_t iova;
  884. u8 *data;
  885. data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED,
  886. priv->kms->aspace,
  887. &msm_host->tx_gem_obj, &iova);
  888. if (IS_ERR(data)) {
  889. msm_host->tx_gem_obj = NULL;
  890. return PTR_ERR(data);
  891. }
  892. msm_host->tx_size = msm_host->tx_gem_obj->size;
  893. return 0;
  894. }
  895. int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
  896. {
  897. struct drm_device *dev = msm_host->dev;
  898. msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
  899. &msm_host->tx_buf_paddr, GFP_KERNEL);
  900. if (!msm_host->tx_buf)
  901. return -ENOMEM;
  902. msm_host->tx_size = size;
  903. return 0;
  904. }
  905. static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
  906. {
  907. struct drm_device *dev = msm_host->dev;
  908. struct msm_drm_private *priv;
  909. /*
  910. * This is possible if we're tearing down before we've had a chance to
  911. * fully initialize. A very real possibility if our probe is deferred,
  912. * in which case we'll hit msm_dsi_host_destroy() without having run
  913. * through the dsi_tx_buf_alloc().
  914. */
  915. if (!dev)
  916. return;
  917. priv = dev->dev_private;
  918. if (msm_host->tx_gem_obj) {
  919. msm_gem_put_iova(msm_host->tx_gem_obj, priv->kms->aspace);
  920. drm_gem_object_put_unlocked(msm_host->tx_gem_obj);
  921. msm_host->tx_gem_obj = NULL;
  922. }
  923. if (msm_host->tx_buf)
  924. dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
  925. msm_host->tx_buf_paddr);
  926. }
  927. void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
  928. {
  929. return msm_gem_get_vaddr(msm_host->tx_gem_obj);
  930. }
  931. void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
  932. {
  933. return msm_host->tx_buf;
  934. }
  935. void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
  936. {
  937. msm_gem_put_vaddr(msm_host->tx_gem_obj);
  938. }
  939. /*
  940. * prepare cmd buffer to be txed
  941. */
  942. static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
  943. const struct mipi_dsi_msg *msg)
  944. {
  945. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  946. struct mipi_dsi_packet packet;
  947. int len;
  948. int ret;
  949. u8 *data;
  950. ret = mipi_dsi_create_packet(&packet, msg);
  951. if (ret) {
  952. pr_err("%s: create packet failed, %d\n", __func__, ret);
  953. return ret;
  954. }
  955. len = (packet.size + 3) & (~0x3);
  956. if (len > msm_host->tx_size) {
  957. pr_err("%s: packet size is too big\n", __func__);
  958. return -EINVAL;
  959. }
  960. data = cfg_hnd->ops->tx_buf_get(msm_host);
  961. if (IS_ERR(data)) {
  962. ret = PTR_ERR(data);
  963. pr_err("%s: get vaddr failed, %d\n", __func__, ret);
  964. return ret;
  965. }
  966. /* MSM specific command format in memory */
  967. data[0] = packet.header[1];
  968. data[1] = packet.header[2];
  969. data[2] = packet.header[0];
  970. data[3] = BIT(7); /* Last packet */
  971. if (mipi_dsi_packet_format_is_long(msg->type))
  972. data[3] |= BIT(6);
  973. if (msg->rx_buf && msg->rx_len)
  974. data[3] |= BIT(5);
  975. /* Long packet */
  976. if (packet.payload && packet.payload_length)
  977. memcpy(data + 4, packet.payload, packet.payload_length);
  978. /* Append 0xff to the end */
  979. if (packet.size < len)
  980. memset(data + packet.size, 0xff, len - packet.size);
  981. if (cfg_hnd->ops->tx_buf_put)
  982. cfg_hnd->ops->tx_buf_put(msm_host);
  983. return len;
  984. }
  985. /*
  986. * dsi_short_read1_resp: 1 parameter
  987. */
  988. static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
  989. {
  990. u8 *data = msg->rx_buf;
  991. if (data && (msg->rx_len >= 1)) {
  992. *data = buf[1]; /* strip out dcs type */
  993. return 1;
  994. } else {
  995. pr_err("%s: read data does not match with rx_buf len %zu\n",
  996. __func__, msg->rx_len);
  997. return -EINVAL;
  998. }
  999. }
  1000. /*
  1001. * dsi_short_read2_resp: 2 parameter
  1002. */
  1003. static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
  1004. {
  1005. u8 *data = msg->rx_buf;
  1006. if (data && (msg->rx_len >= 2)) {
  1007. data[0] = buf[1]; /* strip out dcs type */
  1008. data[1] = buf[2];
  1009. return 2;
  1010. } else {
  1011. pr_err("%s: read data does not match with rx_buf len %zu\n",
  1012. __func__, msg->rx_len);
  1013. return -EINVAL;
  1014. }
  1015. }
  1016. static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
  1017. {
  1018. /* strip out 4 byte dcs header */
  1019. if (msg->rx_buf && msg->rx_len)
  1020. memcpy(msg->rx_buf, buf + 4, msg->rx_len);
  1021. return msg->rx_len;
  1022. }
  1023. int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
  1024. {
  1025. struct drm_device *dev = msm_host->dev;
  1026. struct msm_drm_private *priv = dev->dev_private;
  1027. if (!dma_base)
  1028. return -EINVAL;
  1029. return msm_gem_get_iova(msm_host->tx_gem_obj,
  1030. priv->kms->aspace, dma_base);
  1031. }
  1032. int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
  1033. {
  1034. if (!dma_base)
  1035. return -EINVAL;
  1036. *dma_base = msm_host->tx_buf_paddr;
  1037. return 0;
  1038. }
  1039. static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
  1040. {
  1041. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  1042. int ret;
  1043. uint64_t dma_base;
  1044. bool triggered;
  1045. ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
  1046. if (ret) {
  1047. pr_err("%s: failed to get iova: %d\n", __func__, ret);
  1048. return ret;
  1049. }
  1050. reinit_completion(&msm_host->dma_comp);
  1051. dsi_wait4video_eng_busy(msm_host);
  1052. triggered = msm_dsi_manager_cmd_xfer_trigger(
  1053. msm_host->id, dma_base, len);
  1054. if (triggered) {
  1055. ret = wait_for_completion_timeout(&msm_host->dma_comp,
  1056. msecs_to_jiffies(200));
  1057. DBG("ret=%d", ret);
  1058. if (ret == 0)
  1059. ret = -ETIMEDOUT;
  1060. else
  1061. ret = len;
  1062. } else
  1063. ret = len;
  1064. return ret;
  1065. }
  1066. static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
  1067. u8 *buf, int rx_byte, int pkt_size)
  1068. {
  1069. u32 *lp, *temp, data;
  1070. int i, j = 0, cnt;
  1071. u32 read_cnt;
  1072. u8 reg[16];
  1073. int repeated_bytes = 0;
  1074. int buf_offset = buf - msm_host->rx_buf;
  1075. lp = (u32 *)buf;
  1076. temp = (u32 *)reg;
  1077. cnt = (rx_byte + 3) >> 2;
  1078. if (cnt > 4)
  1079. cnt = 4; /* 4 x 32 bits registers only */
  1080. if (rx_byte == 4)
  1081. read_cnt = 4;
  1082. else
  1083. read_cnt = pkt_size + 6;
  1084. /*
  1085. * In case of multiple reads from the panel, after the first read, there
  1086. * is possibility that there are some bytes in the payload repeating in
  1087. * the RDBK_DATA registers. Since we read all the parameters from the
  1088. * panel right from the first byte for every pass. We need to skip the
  1089. * repeating bytes and then append the new parameters to the rx buffer.
  1090. */
  1091. if (read_cnt > 16) {
  1092. int bytes_shifted;
  1093. /* Any data more than 16 bytes will be shifted out.
  1094. * The temp read buffer should already contain these bytes.
  1095. * The remaining bytes in read buffer are the repeated bytes.
  1096. */
  1097. bytes_shifted = read_cnt - 16;
  1098. repeated_bytes = buf_offset - bytes_shifted;
  1099. }
  1100. for (i = cnt - 1; i >= 0; i--) {
  1101. data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
  1102. *temp++ = ntohl(data); /* to host byte order */
  1103. DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
  1104. }
  1105. for (i = repeated_bytes; i < 16; i++)
  1106. buf[j++] = reg[i];
  1107. return j;
  1108. }
  1109. static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
  1110. const struct mipi_dsi_msg *msg)
  1111. {
  1112. int len, ret;
  1113. int bllp_len = msm_host->mode->hdisplay *
  1114. dsi_get_bpp(msm_host->format) / 8;
  1115. len = dsi_cmd_dma_add(msm_host, msg);
  1116. if (!len) {
  1117. pr_err("%s: failed to add cmd type = 0x%x\n",
  1118. __func__, msg->type);
  1119. return -EINVAL;
  1120. }
  1121. /* for video mode, do not send cmds more than
  1122. * one pixel line, since it only transmit it
  1123. * during BLLP.
  1124. */
  1125. /* TODO: if the command is sent in LP mode, the bit rate is only
  1126. * half of esc clk rate. In this case, if the video is already
  1127. * actively streaming, we need to check more carefully if the
  1128. * command can be fit into one BLLP.
  1129. */
  1130. if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
  1131. pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
  1132. __func__, len);
  1133. return -EINVAL;
  1134. }
  1135. ret = dsi_cmd_dma_tx(msm_host, len);
  1136. if (ret < len) {
  1137. pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
  1138. __func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
  1139. return -ECOMM;
  1140. }
  1141. return len;
  1142. }
  1143. static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
  1144. {
  1145. u32 data0, data1;
  1146. data0 = dsi_read(msm_host, REG_DSI_CTRL);
  1147. data1 = data0;
  1148. data1 &= ~DSI_CTRL_ENABLE;
  1149. dsi_write(msm_host, REG_DSI_CTRL, data1);
  1150. /*
  1151. * dsi controller need to be disabled before
  1152. * clocks turned on
  1153. */
  1154. wmb();
  1155. dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
  1156. wmb(); /* make sure clocks enabled */
  1157. /* dsi controller can only be reset while clocks are running */
  1158. dsi_write(msm_host, REG_DSI_RESET, 1);
  1159. wmb(); /* make sure reset happen */
  1160. dsi_write(msm_host, REG_DSI_RESET, 0);
  1161. wmb(); /* controller out of reset */
  1162. dsi_write(msm_host, REG_DSI_CTRL, data0);
  1163. wmb(); /* make sure dsi controller enabled again */
  1164. }
  1165. static void dsi_hpd_worker(struct work_struct *work)
  1166. {
  1167. struct msm_dsi_host *msm_host =
  1168. container_of(work, struct msm_dsi_host, hpd_work);
  1169. drm_helper_hpd_irq_event(msm_host->dev);
  1170. }
  1171. static void dsi_err_worker(struct work_struct *work)
  1172. {
  1173. struct msm_dsi_host *msm_host =
  1174. container_of(work, struct msm_dsi_host, err_work);
  1175. u32 status = msm_host->err_work_state;
  1176. pr_err_ratelimited("%s: status=%x\n", __func__, status);
  1177. if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
  1178. dsi_sw_reset_restore(msm_host);
  1179. /* It is safe to clear here because error irq is disabled. */
  1180. msm_host->err_work_state = 0;
  1181. /* enable dsi error interrupt */
  1182. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
  1183. }
  1184. static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
  1185. {
  1186. u32 status;
  1187. status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
  1188. if (status) {
  1189. dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
  1190. /* Writing of an extra 0 needed to clear error bits */
  1191. dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
  1192. msm_host->err_work_state |= DSI_ERR_STATE_ACK;
  1193. }
  1194. }
  1195. static void dsi_timeout_status(struct msm_dsi_host *msm_host)
  1196. {
  1197. u32 status;
  1198. status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
  1199. if (status) {
  1200. dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
  1201. msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
  1202. }
  1203. }
  1204. static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
  1205. {
  1206. u32 status;
  1207. status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
  1208. if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
  1209. DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
  1210. DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
  1211. DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
  1212. DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
  1213. dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
  1214. msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
  1215. }
  1216. }
  1217. static void dsi_fifo_status(struct msm_dsi_host *msm_host)
  1218. {
  1219. u32 status;
  1220. status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
  1221. /* fifo underflow, overflow */
  1222. if (status) {
  1223. dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
  1224. msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
  1225. if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
  1226. msm_host->err_work_state |=
  1227. DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
  1228. }
  1229. }
  1230. static void dsi_status(struct msm_dsi_host *msm_host)
  1231. {
  1232. u32 status;
  1233. status = dsi_read(msm_host, REG_DSI_STATUS0);
  1234. if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
  1235. dsi_write(msm_host, REG_DSI_STATUS0, status);
  1236. msm_host->err_work_state |=
  1237. DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
  1238. }
  1239. }
  1240. static void dsi_clk_status(struct msm_dsi_host *msm_host)
  1241. {
  1242. u32 status;
  1243. status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
  1244. if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
  1245. dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
  1246. msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
  1247. }
  1248. }
  1249. static void dsi_error(struct msm_dsi_host *msm_host)
  1250. {
  1251. /* disable dsi error interrupt */
  1252. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
  1253. dsi_clk_status(msm_host);
  1254. dsi_fifo_status(msm_host);
  1255. dsi_ack_err_status(msm_host);
  1256. dsi_timeout_status(msm_host);
  1257. dsi_status(msm_host);
  1258. dsi_dln0_phy_err(msm_host);
  1259. queue_work(msm_host->workqueue, &msm_host->err_work);
  1260. }
  1261. static irqreturn_t dsi_host_irq(int irq, void *ptr)
  1262. {
  1263. struct msm_dsi_host *msm_host = ptr;
  1264. u32 isr;
  1265. unsigned long flags;
  1266. if (!msm_host->ctrl_base)
  1267. return IRQ_HANDLED;
  1268. spin_lock_irqsave(&msm_host->intr_lock, flags);
  1269. isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
  1270. dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
  1271. spin_unlock_irqrestore(&msm_host->intr_lock, flags);
  1272. DBG("isr=0x%x, id=%d", isr, msm_host->id);
  1273. if (isr & DSI_IRQ_ERROR)
  1274. dsi_error(msm_host);
  1275. if (isr & DSI_IRQ_VIDEO_DONE)
  1276. complete(&msm_host->video_comp);
  1277. if (isr & DSI_IRQ_CMD_DMA_DONE)
  1278. complete(&msm_host->dma_comp);
  1279. return IRQ_HANDLED;
  1280. }
  1281. static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
  1282. struct device *panel_device)
  1283. {
  1284. msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
  1285. "disp-enable",
  1286. GPIOD_OUT_LOW);
  1287. if (IS_ERR(msm_host->disp_en_gpio)) {
  1288. DBG("cannot get disp-enable-gpios %ld",
  1289. PTR_ERR(msm_host->disp_en_gpio));
  1290. return PTR_ERR(msm_host->disp_en_gpio);
  1291. }
  1292. msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
  1293. GPIOD_IN);
  1294. if (IS_ERR(msm_host->te_gpio)) {
  1295. DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
  1296. return PTR_ERR(msm_host->te_gpio);
  1297. }
  1298. return 0;
  1299. }
  1300. static int dsi_host_attach(struct mipi_dsi_host *host,
  1301. struct mipi_dsi_device *dsi)
  1302. {
  1303. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1304. int ret;
  1305. if (dsi->lanes > msm_host->num_data_lanes)
  1306. return -EINVAL;
  1307. msm_host->channel = dsi->channel;
  1308. msm_host->lanes = dsi->lanes;
  1309. msm_host->format = dsi->format;
  1310. msm_host->mode_flags = dsi->mode_flags;
  1311. msm_dsi_manager_attach_dsi_device(msm_host->id, dsi->mode_flags);
  1312. /* Some gpios defined in panel DT need to be controlled by host */
  1313. ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
  1314. if (ret)
  1315. return ret;
  1316. DBG("id=%d", msm_host->id);
  1317. if (msm_host->dev)
  1318. queue_work(msm_host->workqueue, &msm_host->hpd_work);
  1319. return 0;
  1320. }
  1321. static int dsi_host_detach(struct mipi_dsi_host *host,
  1322. struct mipi_dsi_device *dsi)
  1323. {
  1324. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1325. msm_host->device_node = NULL;
  1326. DBG("id=%d", msm_host->id);
  1327. if (msm_host->dev)
  1328. queue_work(msm_host->workqueue, &msm_host->hpd_work);
  1329. return 0;
  1330. }
  1331. static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
  1332. const struct mipi_dsi_msg *msg)
  1333. {
  1334. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1335. int ret;
  1336. if (!msg || !msm_host->power_on)
  1337. return -EINVAL;
  1338. mutex_lock(&msm_host->cmd_mutex);
  1339. ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
  1340. mutex_unlock(&msm_host->cmd_mutex);
  1341. return ret;
  1342. }
  1343. static struct mipi_dsi_host_ops dsi_host_ops = {
  1344. .attach = dsi_host_attach,
  1345. .detach = dsi_host_detach,
  1346. .transfer = dsi_host_transfer,
  1347. };
  1348. /*
  1349. * List of supported physical to logical lane mappings.
  1350. * For example, the 2nd entry represents the following mapping:
  1351. *
  1352. * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
  1353. */
  1354. static const int supported_data_lane_swaps[][4] = {
  1355. { 0, 1, 2, 3 },
  1356. { 3, 0, 1, 2 },
  1357. { 2, 3, 0, 1 },
  1358. { 1, 2, 3, 0 },
  1359. { 0, 3, 2, 1 },
  1360. { 1, 0, 3, 2 },
  1361. { 2, 1, 0, 3 },
  1362. { 3, 2, 1, 0 },
  1363. };
  1364. static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
  1365. struct device_node *ep)
  1366. {
  1367. struct device *dev = &msm_host->pdev->dev;
  1368. struct property *prop;
  1369. u32 lane_map[4];
  1370. int ret, i, len, num_lanes;
  1371. prop = of_find_property(ep, "data-lanes", &len);
  1372. if (!prop) {
  1373. dev_dbg(dev,
  1374. "failed to find data lane mapping, using default\n");
  1375. return 0;
  1376. }
  1377. num_lanes = len / sizeof(u32);
  1378. if (num_lanes < 1 || num_lanes > 4) {
  1379. dev_err(dev, "bad number of data lanes\n");
  1380. return -EINVAL;
  1381. }
  1382. msm_host->num_data_lanes = num_lanes;
  1383. ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
  1384. num_lanes);
  1385. if (ret) {
  1386. dev_err(dev, "failed to read lane data\n");
  1387. return ret;
  1388. }
  1389. /*
  1390. * compare DT specified physical-logical lane mappings with the ones
  1391. * supported by hardware
  1392. */
  1393. for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
  1394. const int *swap = supported_data_lane_swaps[i];
  1395. int j;
  1396. /*
  1397. * the data-lanes array we get from DT has a logical->physical
  1398. * mapping. The "data lane swap" register field represents
  1399. * supported configurations in a physical->logical mapping.
  1400. * Translate the DT mapping to what we understand and find a
  1401. * configuration that works.
  1402. */
  1403. for (j = 0; j < num_lanes; j++) {
  1404. if (lane_map[j] < 0 || lane_map[j] > 3)
  1405. dev_err(dev, "bad physical lane entry %u\n",
  1406. lane_map[j]);
  1407. if (swap[lane_map[j]] != j)
  1408. break;
  1409. }
  1410. if (j == num_lanes) {
  1411. msm_host->dlane_swap = i;
  1412. return 0;
  1413. }
  1414. }
  1415. return -EINVAL;
  1416. }
  1417. static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
  1418. {
  1419. struct device *dev = &msm_host->pdev->dev;
  1420. struct device_node *np = dev->of_node;
  1421. struct device_node *endpoint, *device_node;
  1422. int ret = 0;
  1423. /*
  1424. * Get the endpoint of the output port of the DSI host. In our case,
  1425. * this is mapped to port number with reg = 1. Don't return an error if
  1426. * the remote endpoint isn't defined. It's possible that there is
  1427. * nothing connected to the dsi output.
  1428. */
  1429. endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
  1430. if (!endpoint) {
  1431. dev_dbg(dev, "%s: no endpoint\n", __func__);
  1432. return 0;
  1433. }
  1434. ret = dsi_host_parse_lane_data(msm_host, endpoint);
  1435. if (ret) {
  1436. dev_err(dev, "%s: invalid lane configuration %d\n",
  1437. __func__, ret);
  1438. ret = -EINVAL;
  1439. goto err;
  1440. }
  1441. /* Get panel node from the output port's endpoint data */
  1442. device_node = of_graph_get_remote_node(np, 1, 0);
  1443. if (!device_node) {
  1444. dev_dbg(dev, "%s: no valid device\n", __func__);
  1445. ret = -ENODEV;
  1446. goto err;
  1447. }
  1448. msm_host->device_node = device_node;
  1449. if (of_property_read_bool(np, "syscon-sfpb")) {
  1450. msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
  1451. "syscon-sfpb");
  1452. if (IS_ERR(msm_host->sfpb)) {
  1453. dev_err(dev, "%s: failed to get sfpb regmap\n",
  1454. __func__);
  1455. ret = PTR_ERR(msm_host->sfpb);
  1456. }
  1457. }
  1458. of_node_put(device_node);
  1459. err:
  1460. of_node_put(endpoint);
  1461. return ret;
  1462. }
  1463. static int dsi_host_get_id(struct msm_dsi_host *msm_host)
  1464. {
  1465. struct platform_device *pdev = msm_host->pdev;
  1466. const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
  1467. struct resource *res;
  1468. int i;
  1469. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
  1470. if (!res)
  1471. return -EINVAL;
  1472. for (i = 0; i < cfg->num_dsi; i++) {
  1473. if (cfg->io_start[i] == res->start)
  1474. return i;
  1475. }
  1476. return -EINVAL;
  1477. }
  1478. int msm_dsi_host_init(struct msm_dsi *msm_dsi)
  1479. {
  1480. struct msm_dsi_host *msm_host = NULL;
  1481. struct platform_device *pdev = msm_dsi->pdev;
  1482. int ret;
  1483. msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
  1484. if (!msm_host) {
  1485. pr_err("%s: FAILED: cannot alloc dsi host\n",
  1486. __func__);
  1487. ret = -ENOMEM;
  1488. goto fail;
  1489. }
  1490. msm_host->pdev = pdev;
  1491. msm_dsi->host = &msm_host->base;
  1492. ret = dsi_host_parse_dt(msm_host);
  1493. if (ret) {
  1494. pr_err("%s: failed to parse dt\n", __func__);
  1495. goto fail;
  1496. }
  1497. msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL");
  1498. if (IS_ERR(msm_host->ctrl_base)) {
  1499. pr_err("%s: unable to map Dsi ctrl base\n", __func__);
  1500. ret = PTR_ERR(msm_host->ctrl_base);
  1501. goto fail;
  1502. }
  1503. pm_runtime_enable(&pdev->dev);
  1504. msm_host->cfg_hnd = dsi_get_config(msm_host);
  1505. if (!msm_host->cfg_hnd) {
  1506. ret = -EINVAL;
  1507. pr_err("%s: get config failed\n", __func__);
  1508. goto fail;
  1509. }
  1510. msm_host->id = dsi_host_get_id(msm_host);
  1511. if (msm_host->id < 0) {
  1512. ret = msm_host->id;
  1513. pr_err("%s: unable to identify DSI host index\n", __func__);
  1514. goto fail;
  1515. }
  1516. /* fixup base address by io offset */
  1517. msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
  1518. ret = dsi_regulator_init(msm_host);
  1519. if (ret) {
  1520. pr_err("%s: regulator init failed\n", __func__);
  1521. goto fail;
  1522. }
  1523. ret = dsi_clk_init(msm_host);
  1524. if (ret) {
  1525. pr_err("%s: unable to initialize dsi clks\n", __func__);
  1526. goto fail;
  1527. }
  1528. msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
  1529. if (!msm_host->rx_buf) {
  1530. ret = -ENOMEM;
  1531. pr_err("%s: alloc rx temp buf failed\n", __func__);
  1532. goto fail;
  1533. }
  1534. init_completion(&msm_host->dma_comp);
  1535. init_completion(&msm_host->video_comp);
  1536. mutex_init(&msm_host->dev_mutex);
  1537. mutex_init(&msm_host->cmd_mutex);
  1538. spin_lock_init(&msm_host->intr_lock);
  1539. /* setup workqueue */
  1540. msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
  1541. INIT_WORK(&msm_host->err_work, dsi_err_worker);
  1542. INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
  1543. msm_dsi->id = msm_host->id;
  1544. DBG("Dsi Host %d initialized", msm_host->id);
  1545. return 0;
  1546. fail:
  1547. return ret;
  1548. }
  1549. void msm_dsi_host_destroy(struct mipi_dsi_host *host)
  1550. {
  1551. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1552. DBG("");
  1553. dsi_tx_buf_free(msm_host);
  1554. if (msm_host->workqueue) {
  1555. flush_workqueue(msm_host->workqueue);
  1556. destroy_workqueue(msm_host->workqueue);
  1557. msm_host->workqueue = NULL;
  1558. }
  1559. mutex_destroy(&msm_host->cmd_mutex);
  1560. mutex_destroy(&msm_host->dev_mutex);
  1561. pm_runtime_disable(&msm_host->pdev->dev);
  1562. }
  1563. int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
  1564. struct drm_device *dev)
  1565. {
  1566. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1567. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  1568. struct platform_device *pdev = msm_host->pdev;
  1569. int ret;
  1570. msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
  1571. if (msm_host->irq < 0) {
  1572. ret = msm_host->irq;
  1573. dev_err(dev->dev, "failed to get irq: %d\n", ret);
  1574. return ret;
  1575. }
  1576. ret = devm_request_irq(&pdev->dev, msm_host->irq,
  1577. dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
  1578. "dsi_isr", msm_host);
  1579. if (ret < 0) {
  1580. dev_err(&pdev->dev, "failed to request IRQ%u: %d\n",
  1581. msm_host->irq, ret);
  1582. return ret;
  1583. }
  1584. msm_host->dev = dev;
  1585. ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
  1586. if (ret) {
  1587. pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
  1588. return ret;
  1589. }
  1590. return 0;
  1591. }
  1592. int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer)
  1593. {
  1594. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1595. int ret;
  1596. /* Register mipi dsi host */
  1597. if (!msm_host->registered) {
  1598. host->dev = &msm_host->pdev->dev;
  1599. host->ops = &dsi_host_ops;
  1600. ret = mipi_dsi_host_register(host);
  1601. if (ret)
  1602. return ret;
  1603. msm_host->registered = true;
  1604. /* If the panel driver has not been probed after host register,
  1605. * we should defer the host's probe.
  1606. * It makes sure panel is connected when fbcon detects
  1607. * connector status and gets the proper display mode to
  1608. * create framebuffer.
  1609. * Don't try to defer if there is nothing connected to the dsi
  1610. * output
  1611. */
  1612. if (check_defer && msm_host->device_node) {
  1613. if (IS_ERR(of_drm_find_panel(msm_host->device_node)))
  1614. if (!of_drm_find_bridge(msm_host->device_node))
  1615. return -EPROBE_DEFER;
  1616. }
  1617. }
  1618. return 0;
  1619. }
  1620. void msm_dsi_host_unregister(struct mipi_dsi_host *host)
  1621. {
  1622. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1623. if (msm_host->registered) {
  1624. mipi_dsi_host_unregister(host);
  1625. host->dev = NULL;
  1626. host->ops = NULL;
  1627. msm_host->registered = false;
  1628. }
  1629. }
  1630. int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
  1631. const struct mipi_dsi_msg *msg)
  1632. {
  1633. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1634. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  1635. /* TODO: make sure dsi_cmd_mdp is idle.
  1636. * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
  1637. * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
  1638. * How to handle the old versions? Wait for mdp cmd done?
  1639. */
  1640. /*
  1641. * mdss interrupt is generated in mdp core clock domain
  1642. * mdp clock need to be enabled to receive dsi interrupt
  1643. */
  1644. pm_runtime_get_sync(&msm_host->pdev->dev);
  1645. cfg_hnd->ops->link_clk_enable(msm_host);
  1646. /* TODO: vote for bus bandwidth */
  1647. if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
  1648. dsi_set_tx_power_mode(0, msm_host);
  1649. msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
  1650. dsi_write(msm_host, REG_DSI_CTRL,
  1651. msm_host->dma_cmd_ctrl_restore |
  1652. DSI_CTRL_CMD_MODE_EN |
  1653. DSI_CTRL_ENABLE);
  1654. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
  1655. return 0;
  1656. }
  1657. void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
  1658. const struct mipi_dsi_msg *msg)
  1659. {
  1660. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1661. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  1662. dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
  1663. dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
  1664. if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
  1665. dsi_set_tx_power_mode(1, msm_host);
  1666. /* TODO: unvote for bus bandwidth */
  1667. cfg_hnd->ops->link_clk_disable(msm_host);
  1668. pm_runtime_put_autosuspend(&msm_host->pdev->dev);
  1669. }
  1670. int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
  1671. const struct mipi_dsi_msg *msg)
  1672. {
  1673. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1674. return dsi_cmds2buf_tx(msm_host, msg);
  1675. }
  1676. int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
  1677. const struct mipi_dsi_msg *msg)
  1678. {
  1679. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1680. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  1681. int data_byte, rx_byte, dlen, end;
  1682. int short_response, diff, pkt_size, ret = 0;
  1683. char cmd;
  1684. int rlen = msg->rx_len;
  1685. u8 *buf;
  1686. if (rlen <= 2) {
  1687. short_response = 1;
  1688. pkt_size = rlen;
  1689. rx_byte = 4;
  1690. } else {
  1691. short_response = 0;
  1692. data_byte = 10; /* first read */
  1693. if (rlen < data_byte)
  1694. pkt_size = rlen;
  1695. else
  1696. pkt_size = data_byte;
  1697. rx_byte = data_byte + 6; /* 4 header + 2 crc */
  1698. }
  1699. buf = msm_host->rx_buf;
  1700. end = 0;
  1701. while (!end) {
  1702. u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
  1703. struct mipi_dsi_msg max_pkt_size_msg = {
  1704. .channel = msg->channel,
  1705. .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
  1706. .tx_len = 2,
  1707. .tx_buf = tx,
  1708. };
  1709. DBG("rlen=%d pkt_size=%d rx_byte=%d",
  1710. rlen, pkt_size, rx_byte);
  1711. ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
  1712. if (ret < 2) {
  1713. pr_err("%s: Set max pkt size failed, %d\n",
  1714. __func__, ret);
  1715. return -EINVAL;
  1716. }
  1717. if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
  1718. (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
  1719. /* Clear the RDBK_DATA registers */
  1720. dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
  1721. DSI_RDBK_DATA_CTRL_CLR);
  1722. wmb(); /* make sure the RDBK registers are cleared */
  1723. dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
  1724. wmb(); /* release cleared status before transfer */
  1725. }
  1726. ret = dsi_cmds2buf_tx(msm_host, msg);
  1727. if (ret < msg->tx_len) {
  1728. pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
  1729. return ret;
  1730. }
  1731. /*
  1732. * once cmd_dma_done interrupt received,
  1733. * return data from client is ready and stored
  1734. * at RDBK_DATA register already
  1735. * since rx fifo is 16 bytes, dcs header is kept at first loop,
  1736. * after that dcs header lost during shift into registers
  1737. */
  1738. dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
  1739. if (dlen <= 0)
  1740. return 0;
  1741. if (short_response)
  1742. break;
  1743. if (rlen <= data_byte) {
  1744. diff = data_byte - rlen;
  1745. end = 1;
  1746. } else {
  1747. diff = 0;
  1748. rlen -= data_byte;
  1749. }
  1750. if (!end) {
  1751. dlen -= 2; /* 2 crc */
  1752. dlen -= diff;
  1753. buf += dlen; /* next start position */
  1754. data_byte = 14; /* NOT first read */
  1755. if (rlen < data_byte)
  1756. pkt_size += rlen;
  1757. else
  1758. pkt_size += data_byte;
  1759. DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
  1760. }
  1761. }
  1762. /*
  1763. * For single Long read, if the requested rlen < 10,
  1764. * we need to shift the start position of rx
  1765. * data buffer to skip the bytes which are not
  1766. * updated.
  1767. */
  1768. if (pkt_size < 10 && !short_response)
  1769. buf = msm_host->rx_buf + (10 - rlen);
  1770. else
  1771. buf = msm_host->rx_buf;
  1772. cmd = buf[0];
  1773. switch (cmd) {
  1774. case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
  1775. pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
  1776. ret = 0;
  1777. break;
  1778. case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
  1779. case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
  1780. ret = dsi_short_read1_resp(buf, msg);
  1781. break;
  1782. case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
  1783. case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
  1784. ret = dsi_short_read2_resp(buf, msg);
  1785. break;
  1786. case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
  1787. case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
  1788. ret = dsi_long_read_resp(buf, msg);
  1789. break;
  1790. default:
  1791. pr_warn("%s:Invalid response cmd\n", __func__);
  1792. ret = 0;
  1793. }
  1794. return ret;
  1795. }
  1796. void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
  1797. u32 len)
  1798. {
  1799. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1800. dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
  1801. dsi_write(msm_host, REG_DSI_DMA_LEN, len);
  1802. dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
  1803. /* Make sure trigger happens */
  1804. wmb();
  1805. }
  1806. int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host,
  1807. struct msm_dsi_pll *src_pll)
  1808. {
  1809. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1810. struct clk *byte_clk_provider, *pixel_clk_provider;
  1811. int ret;
  1812. ret = msm_dsi_pll_get_clk_provider(src_pll,
  1813. &byte_clk_provider, &pixel_clk_provider);
  1814. if (ret) {
  1815. pr_info("%s: can't get provider from pll, don't set parent\n",
  1816. __func__);
  1817. return 0;
  1818. }
  1819. ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider);
  1820. if (ret) {
  1821. pr_err("%s: can't set parent to byte_clk_src. ret=%d\n",
  1822. __func__, ret);
  1823. goto exit;
  1824. }
  1825. ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider);
  1826. if (ret) {
  1827. pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n",
  1828. __func__, ret);
  1829. goto exit;
  1830. }
  1831. if (msm_host->dsi_clk_src) {
  1832. ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider);
  1833. if (ret) {
  1834. pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n",
  1835. __func__, ret);
  1836. goto exit;
  1837. }
  1838. }
  1839. if (msm_host->esc_clk_src) {
  1840. ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider);
  1841. if (ret) {
  1842. pr_err("%s: can't set parent to esc_clk_src. ret=%d\n",
  1843. __func__, ret);
  1844. goto exit;
  1845. }
  1846. }
  1847. exit:
  1848. return ret;
  1849. }
  1850. void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
  1851. {
  1852. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1853. DBG("");
  1854. dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
  1855. /* Make sure fully reset */
  1856. wmb();
  1857. udelay(1000);
  1858. dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
  1859. udelay(100);
  1860. }
  1861. void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
  1862. struct msm_dsi_phy_clk_request *clk_req,
  1863. bool is_dual_dsi)
  1864. {
  1865. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1866. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  1867. int ret;
  1868. ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi);
  1869. if (ret) {
  1870. pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
  1871. return;
  1872. }
  1873. clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
  1874. clk_req->escclk_rate = msm_host->esc_clk_rate;
  1875. }
  1876. int msm_dsi_host_enable(struct mipi_dsi_host *host)
  1877. {
  1878. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1879. dsi_op_mode_config(msm_host,
  1880. !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
  1881. /* TODO: clock should be turned off for command mode,
  1882. * and only turned on before MDP START.
  1883. * This part of code should be enabled once mdp driver support it.
  1884. */
  1885. /* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
  1886. * dsi_link_clk_disable(msm_host);
  1887. * pm_runtime_put_autosuspend(&msm_host->pdev->dev);
  1888. * }
  1889. */
  1890. msm_host->enabled = true;
  1891. return 0;
  1892. }
  1893. int msm_dsi_host_disable(struct mipi_dsi_host *host)
  1894. {
  1895. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1896. msm_host->enabled = false;
  1897. dsi_op_mode_config(msm_host,
  1898. !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
  1899. /* Since we have disabled INTF, the video engine won't stop so that
  1900. * the cmd engine will be blocked.
  1901. * Reset to disable video engine so that we can send off cmd.
  1902. */
  1903. dsi_sw_reset(msm_host);
  1904. return 0;
  1905. }
  1906. static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
  1907. {
  1908. enum sfpb_ahb_arb_master_port_en en;
  1909. if (!msm_host->sfpb)
  1910. return;
  1911. en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
  1912. regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
  1913. SFPB_GPREG_MASTER_PORT_EN__MASK,
  1914. SFPB_GPREG_MASTER_PORT_EN(en));
  1915. }
  1916. int msm_dsi_host_power_on(struct mipi_dsi_host *host,
  1917. struct msm_dsi_phy_shared_timings *phy_shared_timings,
  1918. bool is_dual_dsi)
  1919. {
  1920. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1921. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  1922. int ret = 0;
  1923. mutex_lock(&msm_host->dev_mutex);
  1924. if (msm_host->power_on) {
  1925. DBG("dsi host already on");
  1926. goto unlock_ret;
  1927. }
  1928. msm_dsi_sfpb_config(msm_host, true);
  1929. ret = dsi_host_regulator_enable(msm_host);
  1930. if (ret) {
  1931. pr_err("%s:Failed to enable vregs.ret=%d\n",
  1932. __func__, ret);
  1933. goto unlock_ret;
  1934. }
  1935. pm_runtime_get_sync(&msm_host->pdev->dev);
  1936. ret = cfg_hnd->ops->link_clk_enable(msm_host);
  1937. if (ret) {
  1938. pr_err("%s: failed to enable link clocks. ret=%d\n",
  1939. __func__, ret);
  1940. goto fail_disable_reg;
  1941. }
  1942. ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
  1943. if (ret) {
  1944. pr_err("%s: failed to set pinctrl default state, %d\n",
  1945. __func__, ret);
  1946. goto fail_disable_clk;
  1947. }
  1948. dsi_timing_setup(msm_host, is_dual_dsi);
  1949. dsi_sw_reset(msm_host);
  1950. dsi_ctrl_config(msm_host, true, phy_shared_timings);
  1951. if (msm_host->disp_en_gpio)
  1952. gpiod_set_value(msm_host->disp_en_gpio, 1);
  1953. msm_host->power_on = true;
  1954. mutex_unlock(&msm_host->dev_mutex);
  1955. return 0;
  1956. fail_disable_clk:
  1957. cfg_hnd->ops->link_clk_disable(msm_host);
  1958. pm_runtime_put_autosuspend(&msm_host->pdev->dev);
  1959. fail_disable_reg:
  1960. dsi_host_regulator_disable(msm_host);
  1961. unlock_ret:
  1962. mutex_unlock(&msm_host->dev_mutex);
  1963. return ret;
  1964. }
  1965. int msm_dsi_host_power_off(struct mipi_dsi_host *host)
  1966. {
  1967. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1968. const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
  1969. mutex_lock(&msm_host->dev_mutex);
  1970. if (!msm_host->power_on) {
  1971. DBG("dsi host already off");
  1972. goto unlock_ret;
  1973. }
  1974. dsi_ctrl_config(msm_host, false, NULL);
  1975. if (msm_host->disp_en_gpio)
  1976. gpiod_set_value(msm_host->disp_en_gpio, 0);
  1977. pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
  1978. cfg_hnd->ops->link_clk_disable(msm_host);
  1979. pm_runtime_put_autosuspend(&msm_host->pdev->dev);
  1980. dsi_host_regulator_disable(msm_host);
  1981. msm_dsi_sfpb_config(msm_host, false);
  1982. DBG("-");
  1983. msm_host->power_on = false;
  1984. unlock_ret:
  1985. mutex_unlock(&msm_host->dev_mutex);
  1986. return 0;
  1987. }
  1988. int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
  1989. struct drm_display_mode *mode)
  1990. {
  1991. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  1992. if (msm_host->mode) {
  1993. drm_mode_destroy(msm_host->dev, msm_host->mode);
  1994. msm_host->mode = NULL;
  1995. }
  1996. msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
  1997. if (!msm_host->mode) {
  1998. pr_err("%s: cannot duplicate mode\n", __func__);
  1999. return -ENOMEM;
  2000. }
  2001. return 0;
  2002. }
  2003. struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host,
  2004. unsigned long *panel_flags)
  2005. {
  2006. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  2007. struct drm_panel *panel;
  2008. panel = of_drm_find_panel(msm_host->device_node);
  2009. if (panel_flags)
  2010. *panel_flags = msm_host->mode_flags;
  2011. return panel;
  2012. }
  2013. struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
  2014. {
  2015. struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
  2016. return of_drm_find_bridge(msm_host->device_node);
  2017. }