intel_psr.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137
  1. /*
  2. * Copyright © 2014 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. /**
  24. * DOC: Panel Self Refresh (PSR/SRD)
  25. *
  26. * Since Haswell Display controller supports Panel Self-Refresh on display
  27. * panels witch have a remote frame buffer (RFB) implemented according to PSR
  28. * spec in eDP1.3. PSR feature allows the display to go to lower standby states
  29. * when system is idle but display is on as it eliminates display refresh
  30. * request to DDR memory completely as long as the frame buffer for that
  31. * display is unchanged.
  32. *
  33. * Panel Self Refresh must be supported by both Hardware (source) and
  34. * Panel (sink).
  35. *
  36. * PSR saves power by caching the framebuffer in the panel RFB, which allows us
  37. * to power down the link and memory controller. For DSI panels the same idea
  38. * is called "manual mode".
  39. *
  40. * The implementation uses the hardware-based PSR support which automatically
  41. * enters/exits self-refresh mode. The hardware takes care of sending the
  42. * required DP aux message and could even retrain the link (that part isn't
  43. * enabled yet though). The hardware also keeps track of any frontbuffer
  44. * changes to know when to exit self-refresh mode again. Unfortunately that
  45. * part doesn't work too well, hence why the i915 PSR support uses the
  46. * software frontbuffer tracking to make sure it doesn't miss a screen
  47. * update. For this integration intel_psr_invalidate() and intel_psr_flush()
  48. * get called by the frontbuffer tracking code. Note that because of locking
  49. * issues the self-refresh re-enable code is done from a work queue, which
  50. * must be correctly synchronized/cancelled when shutting down the pipe."
  51. */
  52. #include <drm/drmP.h>
  53. #include "intel_drv.h"
  54. #include "i915_drv.h"
  55. static bool psr_global_enabled(u32 debug)
  56. {
  57. switch (debug & I915_PSR_DEBUG_MODE_MASK) {
  58. case I915_PSR_DEBUG_DEFAULT:
  59. return i915_modparams.enable_psr;
  60. case I915_PSR_DEBUG_DISABLE:
  61. return false;
  62. default:
  63. return true;
  64. }
  65. }
  66. static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
  67. const struct intel_crtc_state *crtc_state)
  68. {
  69. switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
  70. case I915_PSR_DEBUG_FORCE_PSR1:
  71. return false;
  72. default:
  73. return crtc_state->has_psr2;
  74. }
  75. }
  76. void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug)
  77. {
  78. u32 debug_mask, mask;
  79. mask = EDP_PSR_ERROR(TRANSCODER_EDP);
  80. debug_mask = EDP_PSR_POST_EXIT(TRANSCODER_EDP) |
  81. EDP_PSR_PRE_ENTRY(TRANSCODER_EDP);
  82. if (INTEL_GEN(dev_priv) >= 8) {
  83. mask |= EDP_PSR_ERROR(TRANSCODER_A) |
  84. EDP_PSR_ERROR(TRANSCODER_B) |
  85. EDP_PSR_ERROR(TRANSCODER_C);
  86. debug_mask |= EDP_PSR_POST_EXIT(TRANSCODER_A) |
  87. EDP_PSR_PRE_ENTRY(TRANSCODER_A) |
  88. EDP_PSR_POST_EXIT(TRANSCODER_B) |
  89. EDP_PSR_PRE_ENTRY(TRANSCODER_B) |
  90. EDP_PSR_POST_EXIT(TRANSCODER_C) |
  91. EDP_PSR_PRE_ENTRY(TRANSCODER_C);
  92. }
  93. if (debug & I915_PSR_DEBUG_IRQ)
  94. mask |= debug_mask;
  95. I915_WRITE(EDP_PSR_IMR, ~mask);
  96. }
  97. static void psr_event_print(u32 val, bool psr2_enabled)
  98. {
  99. DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
  100. if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
  101. DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
  102. if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
  103. DRM_DEBUG_KMS("\tPSR2 disabled\n");
  104. if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
  105. DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
  106. if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
  107. DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
  108. if (val & PSR_EVENT_GRAPHICS_RESET)
  109. DRM_DEBUG_KMS("\tGraphics reset\n");
  110. if (val & PSR_EVENT_PCH_INTERRUPT)
  111. DRM_DEBUG_KMS("\tPCH interrupt\n");
  112. if (val & PSR_EVENT_MEMORY_UP)
  113. DRM_DEBUG_KMS("\tMemory up\n");
  114. if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
  115. DRM_DEBUG_KMS("\tFront buffer modification\n");
  116. if (val & PSR_EVENT_WD_TIMER_EXPIRE)
  117. DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
  118. if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
  119. DRM_DEBUG_KMS("\tPIPE registers updated\n");
  120. if (val & PSR_EVENT_REGISTER_UPDATE)
  121. DRM_DEBUG_KMS("\tRegister updated\n");
  122. if (val & PSR_EVENT_HDCP_ENABLE)
  123. DRM_DEBUG_KMS("\tHDCP enabled\n");
  124. if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
  125. DRM_DEBUG_KMS("\tKVMR session enabled\n");
  126. if (val & PSR_EVENT_VBI_ENABLE)
  127. DRM_DEBUG_KMS("\tVBI enabled\n");
  128. if (val & PSR_EVENT_LPSP_MODE_EXIT)
  129. DRM_DEBUG_KMS("\tLPSP mode exited\n");
  130. if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
  131. DRM_DEBUG_KMS("\tPSR disabled\n");
  132. }
  133. void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
  134. {
  135. u32 transcoders = BIT(TRANSCODER_EDP);
  136. enum transcoder cpu_transcoder;
  137. ktime_t time_ns = ktime_get();
  138. if (INTEL_GEN(dev_priv) >= 8)
  139. transcoders |= BIT(TRANSCODER_A) |
  140. BIT(TRANSCODER_B) |
  141. BIT(TRANSCODER_C);
  142. for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
  143. /* FIXME: Exit PSR and link train manually when this happens. */
  144. if (psr_iir & EDP_PSR_ERROR(cpu_transcoder))
  145. DRM_DEBUG_KMS("[transcoder %s] PSR aux error\n",
  146. transcoder_name(cpu_transcoder));
  147. if (psr_iir & EDP_PSR_PRE_ENTRY(cpu_transcoder)) {
  148. dev_priv->psr.last_entry_attempt = time_ns;
  149. DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
  150. transcoder_name(cpu_transcoder));
  151. }
  152. if (psr_iir & EDP_PSR_POST_EXIT(cpu_transcoder)) {
  153. dev_priv->psr.last_exit = time_ns;
  154. DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
  155. transcoder_name(cpu_transcoder));
  156. if (INTEL_GEN(dev_priv) >= 9) {
  157. u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
  158. bool psr2_enabled = dev_priv->psr.psr2_enabled;
  159. I915_WRITE(PSR_EVENT(cpu_transcoder), val);
  160. psr_event_print(val, psr2_enabled);
  161. }
  162. }
  163. }
  164. }
  165. static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
  166. {
  167. uint8_t dprx = 0;
  168. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
  169. &dprx) != 1)
  170. return false;
  171. return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
  172. }
  173. static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
  174. {
  175. uint8_t alpm_caps = 0;
  176. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
  177. &alpm_caps) != 1)
  178. return false;
  179. return alpm_caps & DP_ALPM_CAP;
  180. }
  181. static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
  182. {
  183. u8 val = 8; /* assume the worst if we can't read the value */
  184. if (drm_dp_dpcd_readb(&intel_dp->aux,
  185. DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
  186. val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
  187. else
  188. DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
  189. return val;
  190. }
  191. void intel_psr_init_dpcd(struct intel_dp *intel_dp)
  192. {
  193. struct drm_i915_private *dev_priv =
  194. to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
  195. drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
  196. sizeof(intel_dp->psr_dpcd));
  197. if (!intel_dp->psr_dpcd[0])
  198. return;
  199. DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
  200. intel_dp->psr_dpcd[0]);
  201. if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
  202. DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
  203. return;
  204. }
  205. dev_priv->psr.sink_support = true;
  206. dev_priv->psr.sink_sync_latency =
  207. intel_dp_get_sink_sync_latency(intel_dp);
  208. WARN_ON(dev_priv->psr.dp);
  209. dev_priv->psr.dp = intel_dp;
  210. if (INTEL_GEN(dev_priv) >= 9 &&
  211. (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
  212. bool y_req = intel_dp->psr_dpcd[1] &
  213. DP_PSR2_SU_Y_COORDINATE_REQUIRED;
  214. bool alpm = intel_dp_get_alpm_status(intel_dp);
  215. /*
  216. * All panels that supports PSR version 03h (PSR2 +
  217. * Y-coordinate) can handle Y-coordinates in VSC but we are
  218. * only sure that it is going to be used when required by the
  219. * panel. This way panel is capable to do selective update
  220. * without a aux frame sync.
  221. *
  222. * To support PSR version 02h and PSR version 03h without
  223. * Y-coordinate requirement panels we would need to enable
  224. * GTC first.
  225. */
  226. dev_priv->psr.sink_psr2_support = y_req && alpm;
  227. DRM_DEBUG_KMS("PSR2 %ssupported\n",
  228. dev_priv->psr.sink_psr2_support ? "" : "not ");
  229. if (dev_priv->psr.sink_psr2_support) {
  230. dev_priv->psr.colorimetry_support =
  231. intel_dp_get_colorimetry_status(intel_dp);
  232. }
  233. }
  234. }
  235. static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
  236. const struct intel_crtc_state *crtc_state)
  237. {
  238. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  239. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  240. struct edp_vsc_psr psr_vsc;
  241. if (dev_priv->psr.psr2_enabled) {
  242. /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
  243. memset(&psr_vsc, 0, sizeof(psr_vsc));
  244. psr_vsc.sdp_header.HB0 = 0;
  245. psr_vsc.sdp_header.HB1 = 0x7;
  246. if (dev_priv->psr.colorimetry_support) {
  247. psr_vsc.sdp_header.HB2 = 0x5;
  248. psr_vsc.sdp_header.HB3 = 0x13;
  249. } else {
  250. psr_vsc.sdp_header.HB2 = 0x4;
  251. psr_vsc.sdp_header.HB3 = 0xe;
  252. }
  253. } else {
  254. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  255. memset(&psr_vsc, 0, sizeof(psr_vsc));
  256. psr_vsc.sdp_header.HB0 = 0;
  257. psr_vsc.sdp_header.HB1 = 0x7;
  258. psr_vsc.sdp_header.HB2 = 0x2;
  259. psr_vsc.sdp_header.HB3 = 0x8;
  260. }
  261. intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state,
  262. DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
  263. }
  264. static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
  265. {
  266. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  267. u32 aux_clock_divider, aux_ctl;
  268. int i;
  269. static const uint8_t aux_msg[] = {
  270. [0] = DP_AUX_NATIVE_WRITE << 4,
  271. [1] = DP_SET_POWER >> 8,
  272. [2] = DP_SET_POWER & 0xff,
  273. [3] = 1 - 1,
  274. [4] = DP_SET_POWER_D0,
  275. };
  276. u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
  277. EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
  278. EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
  279. EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
  280. BUILD_BUG_ON(sizeof(aux_msg) > 20);
  281. for (i = 0; i < sizeof(aux_msg); i += 4)
  282. I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
  283. intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
  284. aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
  285. /* Start with bits set for DDI_AUX_CTL register */
  286. aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
  287. aux_clock_divider);
  288. /* Select only valid bits for SRD_AUX_CTL */
  289. aux_ctl &= psr_aux_mask;
  290. I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
  291. }
  292. static void intel_psr_enable_sink(struct intel_dp *intel_dp)
  293. {
  294. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  295. u8 dpcd_val = DP_PSR_ENABLE;
  296. /* Enable ALPM at sink for psr2 */
  297. if (dev_priv->psr.psr2_enabled) {
  298. drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
  299. DP_ALPM_ENABLE);
  300. dpcd_val |= DP_PSR_ENABLE_PSR2;
  301. }
  302. if (dev_priv->psr.link_standby)
  303. dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
  304. if (!dev_priv->psr.psr2_enabled && INTEL_GEN(dev_priv) >= 8)
  305. dpcd_val |= DP_PSR_CRC_VERIFICATION;
  306. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
  307. drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
  308. }
  309. static void hsw_activate_psr1(struct intel_dp *intel_dp)
  310. {
  311. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  312. u32 max_sleep_time = 0x1f;
  313. u32 val = EDP_PSR_ENABLE;
  314. /* Let's use 6 as the minimum to cover all known cases including the
  315. * off-by-one issue that HW has in some cases.
  316. */
  317. int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
  318. /* sink_sync_latency of 8 means source has to wait for more than 8
  319. * frames, we'll go with 9 frames for now
  320. */
  321. idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
  322. val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
  323. val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
  324. if (IS_HASWELL(dev_priv))
  325. val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
  326. if (dev_priv->psr.link_standby)
  327. val |= EDP_PSR_LINK_STANDBY;
  328. if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
  329. val |= EDP_PSR_TP1_TIME_0us;
  330. else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
  331. val |= EDP_PSR_TP1_TIME_100us;
  332. else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
  333. val |= EDP_PSR_TP1_TIME_500us;
  334. else
  335. val |= EDP_PSR_TP1_TIME_2500us;
  336. if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
  337. val |= EDP_PSR_TP2_TP3_TIME_0us;
  338. else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
  339. val |= EDP_PSR_TP2_TP3_TIME_100us;
  340. else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
  341. val |= EDP_PSR_TP2_TP3_TIME_500us;
  342. else
  343. val |= EDP_PSR_TP2_TP3_TIME_2500us;
  344. if (intel_dp_source_supports_hbr2(intel_dp) &&
  345. drm_dp_tps3_supported(intel_dp->dpcd))
  346. val |= EDP_PSR_TP1_TP3_SEL;
  347. else
  348. val |= EDP_PSR_TP1_TP2_SEL;
  349. if (INTEL_GEN(dev_priv) >= 8)
  350. val |= EDP_PSR_CRC_ENABLE;
  351. val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
  352. I915_WRITE(EDP_PSR_CTL, val);
  353. }
  354. static void hsw_activate_psr2(struct intel_dp *intel_dp)
  355. {
  356. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  357. u32 val;
  358. /* Let's use 6 as the minimum to cover all known cases including the
  359. * off-by-one issue that HW has in some cases.
  360. */
  361. int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
  362. idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
  363. val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
  364. /* FIXME: selective update is probably totally broken because it doesn't
  365. * mesh at all with our frontbuffer tracking. And the hw alone isn't
  366. * good enough. */
  367. val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
  368. if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
  369. val |= EDP_Y_COORDINATE_ENABLE;
  370. val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
  371. if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us >= 0 &&
  372. dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 50)
  373. val |= EDP_PSR2_TP2_TIME_50us;
  374. else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
  375. val |= EDP_PSR2_TP2_TIME_100us;
  376. else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
  377. val |= EDP_PSR2_TP2_TIME_500us;
  378. else
  379. val |= EDP_PSR2_TP2_TIME_2500us;
  380. I915_WRITE(EDP_PSR2_CTL, val);
  381. }
  382. static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
  383. struct intel_crtc_state *crtc_state)
  384. {
  385. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  386. int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
  387. int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
  388. int psr_max_h = 0, psr_max_v = 0;
  389. /*
  390. * FIXME psr2_support is messed up. It's both computed
  391. * dynamically during PSR enable, and extracted from sink
  392. * caps during eDP detection.
  393. */
  394. if (!dev_priv->psr.sink_psr2_support)
  395. return false;
  396. if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
  397. psr_max_h = 4096;
  398. psr_max_v = 2304;
  399. } else if (IS_GEN9(dev_priv)) {
  400. psr_max_h = 3640;
  401. psr_max_v = 2304;
  402. }
  403. if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
  404. DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
  405. crtc_hdisplay, crtc_vdisplay,
  406. psr_max_h, psr_max_v);
  407. return false;
  408. }
  409. return true;
  410. }
  411. void intel_psr_compute_config(struct intel_dp *intel_dp,
  412. struct intel_crtc_state *crtc_state)
  413. {
  414. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  415. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  416. const struct drm_display_mode *adjusted_mode =
  417. &crtc_state->base.adjusted_mode;
  418. int psr_setup_time;
  419. if (!CAN_PSR(dev_priv))
  420. return;
  421. if (intel_dp != dev_priv->psr.dp)
  422. return;
  423. /*
  424. * HSW spec explicitly says PSR is tied to port A.
  425. * BDW+ platforms with DDI implementation of PSR have different
  426. * PSR registers per transcoder and we only implement transcoder EDP
  427. * ones. Since by Display design transcoder EDP is tied to port A
  428. * we can safely escape based on the port A.
  429. */
  430. if (dig_port->base.port != PORT_A) {
  431. DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
  432. return;
  433. }
  434. if (IS_HASWELL(dev_priv) &&
  435. I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) &
  436. S3D_ENABLE) {
  437. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  438. return;
  439. }
  440. if (IS_HASWELL(dev_priv) &&
  441. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  442. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  443. return;
  444. }
  445. psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
  446. if (psr_setup_time < 0) {
  447. DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
  448. intel_dp->psr_dpcd[1]);
  449. return;
  450. }
  451. if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
  452. adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
  453. DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
  454. psr_setup_time);
  455. return;
  456. }
  457. crtc_state->has_psr = true;
  458. crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
  459. }
  460. static void intel_psr_activate(struct intel_dp *intel_dp)
  461. {
  462. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  463. if (INTEL_GEN(dev_priv) >= 9)
  464. WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
  465. WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
  466. WARN_ON(dev_priv->psr.active);
  467. lockdep_assert_held(&dev_priv->psr.lock);
  468. /* psr1 and psr2 are mutually exclusive.*/
  469. if (dev_priv->psr.psr2_enabled)
  470. hsw_activate_psr2(intel_dp);
  471. else
  472. hsw_activate_psr1(intel_dp);
  473. dev_priv->psr.active = true;
  474. }
  475. static void intel_psr_enable_source(struct intel_dp *intel_dp,
  476. const struct intel_crtc_state *crtc_state)
  477. {
  478. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  479. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  480. /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
  481. * use hardcoded values PSR AUX transactions
  482. */
  483. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  484. hsw_psr_setup_aux(intel_dp);
  485. if (dev_priv->psr.psr2_enabled) {
  486. u32 chicken = I915_READ(CHICKEN_TRANS(cpu_transcoder));
  487. if (INTEL_GEN(dev_priv) == 9 && !IS_GEMINILAKE(dev_priv))
  488. chicken |= (PSR2_VSC_ENABLE_PROG_HEADER
  489. | PSR2_ADD_VERTICAL_LINE_COUNT);
  490. else
  491. chicken &= ~VSC_DATA_SEL_SOFTWARE_CONTROL;
  492. I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
  493. I915_WRITE(EDP_PSR_DEBUG,
  494. EDP_PSR_DEBUG_MASK_MEMUP |
  495. EDP_PSR_DEBUG_MASK_HPD |
  496. EDP_PSR_DEBUG_MASK_LPSP |
  497. EDP_PSR_DEBUG_MASK_MAX_SLEEP |
  498. EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
  499. } else {
  500. /*
  501. * Per Spec: Avoid continuous PSR exit by masking MEMUP
  502. * and HPD. also mask LPSP to avoid dependency on other
  503. * drivers that might block runtime_pm besides
  504. * preventing other hw tracking issues now we can rely
  505. * on frontbuffer tracking.
  506. */
  507. I915_WRITE(EDP_PSR_DEBUG,
  508. EDP_PSR_DEBUG_MASK_MEMUP |
  509. EDP_PSR_DEBUG_MASK_HPD |
  510. EDP_PSR_DEBUG_MASK_LPSP |
  511. EDP_PSR_DEBUG_MASK_DISP_REG_WRITE |
  512. EDP_PSR_DEBUG_MASK_MAX_SLEEP);
  513. }
  514. }
  515. static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
  516. const struct intel_crtc_state *crtc_state)
  517. {
  518. struct intel_dp *intel_dp = dev_priv->psr.dp;
  519. if (dev_priv->psr.enabled)
  520. return;
  521. DRM_DEBUG_KMS("Enabling PSR%s\n",
  522. dev_priv->psr.psr2_enabled ? "2" : "1");
  523. intel_psr_setup_vsc(intel_dp, crtc_state);
  524. intel_psr_enable_sink(intel_dp);
  525. intel_psr_enable_source(intel_dp, crtc_state);
  526. dev_priv->psr.enabled = true;
  527. intel_psr_activate(intel_dp);
  528. }
  529. /**
  530. * intel_psr_enable - Enable PSR
  531. * @intel_dp: Intel DP
  532. * @crtc_state: new CRTC state
  533. *
  534. * This function can only be called after the pipe is fully trained and enabled.
  535. */
  536. void intel_psr_enable(struct intel_dp *intel_dp,
  537. const struct intel_crtc_state *crtc_state)
  538. {
  539. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  540. if (!crtc_state->has_psr)
  541. return;
  542. if (WARN_ON(!CAN_PSR(dev_priv)))
  543. return;
  544. WARN_ON(dev_priv->drrs.dp);
  545. mutex_lock(&dev_priv->psr.lock);
  546. if (dev_priv->psr.prepared) {
  547. DRM_DEBUG_KMS("PSR already in use\n");
  548. goto unlock;
  549. }
  550. dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
  551. dev_priv->psr.busy_frontbuffer_bits = 0;
  552. dev_priv->psr.prepared = true;
  553. if (psr_global_enabled(dev_priv->psr.debug))
  554. intel_psr_enable_locked(dev_priv, crtc_state);
  555. else
  556. DRM_DEBUG_KMS("PSR disabled by flag\n");
  557. unlock:
  558. mutex_unlock(&dev_priv->psr.lock);
  559. }
  560. static void
  561. intel_psr_disable_source(struct intel_dp *intel_dp)
  562. {
  563. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  564. if (dev_priv->psr.active) {
  565. i915_reg_t psr_status;
  566. u32 psr_status_mask;
  567. if (dev_priv->psr.psr2_enabled) {
  568. psr_status = EDP_PSR2_STATUS;
  569. psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
  570. I915_WRITE(EDP_PSR2_CTL,
  571. I915_READ(EDP_PSR2_CTL) &
  572. ~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
  573. } else {
  574. psr_status = EDP_PSR_STATUS;
  575. psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
  576. I915_WRITE(EDP_PSR_CTL,
  577. I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
  578. }
  579. /* Wait till PSR is idle */
  580. if (intel_wait_for_register(dev_priv,
  581. psr_status, psr_status_mask, 0,
  582. 2000))
  583. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  584. dev_priv->psr.active = false;
  585. } else {
  586. if (dev_priv->psr.psr2_enabled)
  587. WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
  588. else
  589. WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
  590. }
  591. }
  592. static void intel_psr_disable_locked(struct intel_dp *intel_dp)
  593. {
  594. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  595. lockdep_assert_held(&dev_priv->psr.lock);
  596. if (!dev_priv->psr.enabled)
  597. return;
  598. DRM_DEBUG_KMS("Disabling PSR%s\n",
  599. dev_priv->psr.psr2_enabled ? "2" : "1");
  600. intel_psr_disable_source(intel_dp);
  601. /* Disable PSR on Sink */
  602. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
  603. dev_priv->psr.enabled = false;
  604. }
  605. /**
  606. * intel_psr_disable - Disable PSR
  607. * @intel_dp: Intel DP
  608. * @old_crtc_state: old CRTC state
  609. *
  610. * This function needs to be called before disabling pipe.
  611. */
  612. void intel_psr_disable(struct intel_dp *intel_dp,
  613. const struct intel_crtc_state *old_crtc_state)
  614. {
  615. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  616. if (!old_crtc_state->has_psr)
  617. return;
  618. if (WARN_ON(!CAN_PSR(dev_priv)))
  619. return;
  620. mutex_lock(&dev_priv->psr.lock);
  621. if (!dev_priv->psr.prepared) {
  622. mutex_unlock(&dev_priv->psr.lock);
  623. return;
  624. }
  625. intel_psr_disable_locked(intel_dp);
  626. dev_priv->psr.prepared = false;
  627. mutex_unlock(&dev_priv->psr.lock);
  628. cancel_work_sync(&dev_priv->psr.work);
  629. }
  630. /**
  631. * intel_psr_wait_for_idle - wait for PSR1 to idle
  632. * @new_crtc_state: new CRTC state
  633. * @out_value: PSR status in case of failure
  634. *
  635. * This function is expected to be called from pipe_update_start() where it is
  636. * not expected to race with PSR enable or disable.
  637. *
  638. * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
  639. */
  640. int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
  641. u32 *out_value)
  642. {
  643. struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
  644. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  645. if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
  646. return 0;
  647. /* FIXME: Update this for PSR2 if we need to wait for idle */
  648. if (READ_ONCE(dev_priv->psr.psr2_enabled))
  649. return 0;
  650. /*
  651. * From bspec: Panel Self Refresh (BDW+)
  652. * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
  653. * exit training time + 1.5 ms of aux channel handshake. 50 ms is
  654. * defensive enough to cover everything.
  655. */
  656. return __intel_wait_for_register(dev_priv, EDP_PSR_STATUS,
  657. EDP_PSR_STATUS_STATE_MASK,
  658. EDP_PSR_STATUS_STATE_IDLE, 2, 50,
  659. out_value);
  660. }
  661. static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
  662. {
  663. i915_reg_t reg;
  664. u32 mask;
  665. int err;
  666. if (!dev_priv->psr.enabled)
  667. return false;
  668. if (dev_priv->psr.psr2_enabled) {
  669. reg = EDP_PSR2_STATUS;
  670. mask = EDP_PSR2_STATUS_STATE_MASK;
  671. } else {
  672. reg = EDP_PSR_STATUS;
  673. mask = EDP_PSR_STATUS_STATE_MASK;
  674. }
  675. mutex_unlock(&dev_priv->psr.lock);
  676. err = intel_wait_for_register(dev_priv, reg, mask, 0, 50);
  677. if (err)
  678. DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
  679. /* After the unlocked wait, verify that PSR is still wanted! */
  680. mutex_lock(&dev_priv->psr.lock);
  681. return err == 0 && dev_priv->psr.enabled;
  682. }
  683. static bool switching_psr(struct drm_i915_private *dev_priv,
  684. struct intel_crtc_state *crtc_state,
  685. u32 mode)
  686. {
  687. /* Can't switch psr state anyway if PSR2 is not supported. */
  688. if (!crtc_state || !crtc_state->has_psr2)
  689. return false;
  690. if (dev_priv->psr.psr2_enabled && mode == I915_PSR_DEBUG_FORCE_PSR1)
  691. return true;
  692. if (!dev_priv->psr.psr2_enabled && mode != I915_PSR_DEBUG_FORCE_PSR1)
  693. return true;
  694. return false;
  695. }
  696. int intel_psr_set_debugfs_mode(struct drm_i915_private *dev_priv,
  697. struct drm_modeset_acquire_ctx *ctx,
  698. u64 val)
  699. {
  700. struct drm_device *dev = &dev_priv->drm;
  701. struct drm_connector_state *conn_state;
  702. struct intel_crtc_state *crtc_state = NULL;
  703. struct drm_crtc_commit *commit;
  704. struct drm_crtc *crtc;
  705. struct intel_dp *dp;
  706. int ret;
  707. bool enable;
  708. u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
  709. if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
  710. mode > I915_PSR_DEBUG_FORCE_PSR1) {
  711. DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
  712. return -EINVAL;
  713. }
  714. ret = drm_modeset_lock(&dev->mode_config.connection_mutex, ctx);
  715. if (ret)
  716. return ret;
  717. /* dev_priv->psr.dp should be set once and then never touched again. */
  718. dp = READ_ONCE(dev_priv->psr.dp);
  719. conn_state = dp->attached_connector->base.state;
  720. crtc = conn_state->crtc;
  721. if (crtc) {
  722. ret = drm_modeset_lock(&crtc->mutex, ctx);
  723. if (ret)
  724. return ret;
  725. crtc_state = to_intel_crtc_state(crtc->state);
  726. commit = crtc_state->base.commit;
  727. } else {
  728. commit = conn_state->commit;
  729. }
  730. if (commit) {
  731. ret = wait_for_completion_interruptible(&commit->hw_done);
  732. if (ret)
  733. return ret;
  734. }
  735. ret = mutex_lock_interruptible(&dev_priv->psr.lock);
  736. if (ret)
  737. return ret;
  738. enable = psr_global_enabled(val);
  739. if (!enable || switching_psr(dev_priv, crtc_state, mode))
  740. intel_psr_disable_locked(dev_priv->psr.dp);
  741. dev_priv->psr.debug = val;
  742. if (crtc)
  743. dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
  744. intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
  745. if (dev_priv->psr.prepared && enable)
  746. intel_psr_enable_locked(dev_priv, crtc_state);
  747. mutex_unlock(&dev_priv->psr.lock);
  748. return ret;
  749. }
  750. static void intel_psr_work(struct work_struct *work)
  751. {
  752. struct drm_i915_private *dev_priv =
  753. container_of(work, typeof(*dev_priv), psr.work);
  754. mutex_lock(&dev_priv->psr.lock);
  755. if (!dev_priv->psr.enabled)
  756. goto unlock;
  757. /*
  758. * We have to make sure PSR is ready for re-enable
  759. * otherwise it keeps disabled until next full enable/disable cycle.
  760. * PSR might take some time to get fully disabled
  761. * and be ready for re-enable.
  762. */
  763. if (!__psr_wait_for_idle_locked(dev_priv))
  764. goto unlock;
  765. /*
  766. * The delayed work can race with an invalidate hence we need to
  767. * recheck. Since psr_flush first clears this and then reschedules we
  768. * won't ever miss a flush when bailing out here.
  769. */
  770. if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
  771. goto unlock;
  772. intel_psr_activate(dev_priv->psr.dp);
  773. unlock:
  774. mutex_unlock(&dev_priv->psr.lock);
  775. }
  776. static void intel_psr_exit(struct drm_i915_private *dev_priv)
  777. {
  778. u32 val;
  779. if (!dev_priv->psr.active)
  780. return;
  781. if (dev_priv->psr.psr2_enabled) {
  782. val = I915_READ(EDP_PSR2_CTL);
  783. WARN_ON(!(val & EDP_PSR2_ENABLE));
  784. I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
  785. } else {
  786. val = I915_READ(EDP_PSR_CTL);
  787. WARN_ON(!(val & EDP_PSR_ENABLE));
  788. I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
  789. }
  790. dev_priv->psr.active = false;
  791. }
  792. /**
  793. * intel_psr_invalidate - Invalidade PSR
  794. * @dev_priv: i915 device
  795. * @frontbuffer_bits: frontbuffer plane tracking bits
  796. * @origin: which operation caused the invalidate
  797. *
  798. * Since the hardware frontbuffer tracking has gaps we need to integrate
  799. * with the software frontbuffer tracking. This function gets called every
  800. * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
  801. * disabled if the frontbuffer mask contains a buffer relevant to PSR.
  802. *
  803. * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
  804. */
  805. void intel_psr_invalidate(struct drm_i915_private *dev_priv,
  806. unsigned frontbuffer_bits, enum fb_op_origin origin)
  807. {
  808. struct drm_crtc *crtc;
  809. enum pipe pipe;
  810. if (!CAN_PSR(dev_priv))
  811. return;
  812. if (origin == ORIGIN_FLIP)
  813. return;
  814. mutex_lock(&dev_priv->psr.lock);
  815. if (!dev_priv->psr.enabled) {
  816. mutex_unlock(&dev_priv->psr.lock);
  817. return;
  818. }
  819. crtc = dp_to_dig_port(dev_priv->psr.dp)->base.base.crtc;
  820. pipe = to_intel_crtc(crtc)->pipe;
  821. frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
  822. dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
  823. if (frontbuffer_bits)
  824. intel_psr_exit(dev_priv);
  825. mutex_unlock(&dev_priv->psr.lock);
  826. }
  827. /**
  828. * intel_psr_flush - Flush PSR
  829. * @dev_priv: i915 device
  830. * @frontbuffer_bits: frontbuffer plane tracking bits
  831. * @origin: which operation caused the flush
  832. *
  833. * Since the hardware frontbuffer tracking has gaps we need to integrate
  834. * with the software frontbuffer tracking. This function gets called every
  835. * time frontbuffer rendering has completed and flushed out to memory. PSR
  836. * can be enabled again if no other frontbuffer relevant to PSR is dirty.
  837. *
  838. * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
  839. */
  840. void intel_psr_flush(struct drm_i915_private *dev_priv,
  841. unsigned frontbuffer_bits, enum fb_op_origin origin)
  842. {
  843. struct drm_crtc *crtc;
  844. enum pipe pipe;
  845. if (!CAN_PSR(dev_priv))
  846. return;
  847. if (origin == ORIGIN_FLIP)
  848. return;
  849. mutex_lock(&dev_priv->psr.lock);
  850. if (!dev_priv->psr.enabled) {
  851. mutex_unlock(&dev_priv->psr.lock);
  852. return;
  853. }
  854. crtc = dp_to_dig_port(dev_priv->psr.dp)->base.base.crtc;
  855. pipe = to_intel_crtc(crtc)->pipe;
  856. frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
  857. dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
  858. /* By definition flush = invalidate + flush */
  859. if (frontbuffer_bits) {
  860. if (dev_priv->psr.psr2_enabled) {
  861. intel_psr_exit(dev_priv);
  862. } else {
  863. /*
  864. * Display WA #0884: all
  865. * This documented WA for bxt can be safely applied
  866. * broadly so we can force HW tracking to exit PSR
  867. * instead of disabling and re-enabling.
  868. * Workaround tells us to write 0 to CUR_SURFLIVE_A,
  869. * but it makes more sense write to the current active
  870. * pipe.
  871. */
  872. I915_WRITE(CURSURFLIVE(pipe), 0);
  873. }
  874. }
  875. if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
  876. schedule_work(&dev_priv->psr.work);
  877. mutex_unlock(&dev_priv->psr.lock);
  878. }
  879. /**
  880. * intel_psr_init - Init basic PSR work and mutex.
  881. * @dev_priv: i915 device private
  882. *
  883. * This function is called only once at driver load to initialize basic
  884. * PSR stuff.
  885. */
  886. void intel_psr_init(struct drm_i915_private *dev_priv)
  887. {
  888. if (!HAS_PSR(dev_priv))
  889. return;
  890. dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
  891. HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
  892. if (!dev_priv->psr.sink_support)
  893. return;
  894. if (i915_modparams.enable_psr == -1) {
  895. i915_modparams.enable_psr = dev_priv->vbt.psr.enable;
  896. /* Per platform default: all disabled. */
  897. i915_modparams.enable_psr = 0;
  898. }
  899. /* Set link_standby x link_off defaults */
  900. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  901. /* HSW and BDW require workarounds that we don't implement. */
  902. dev_priv->psr.link_standby = false;
  903. else
  904. /* For new platforms let's respect VBT back again */
  905. dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
  906. INIT_WORK(&dev_priv->psr.work, intel_psr_work);
  907. mutex_init(&dev_priv->psr.lock);
  908. }
  909. void intel_psr_short_pulse(struct intel_dp *intel_dp)
  910. {
  911. struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
  912. struct i915_psr *psr = &dev_priv->psr;
  913. u8 val;
  914. const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
  915. DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
  916. DP_PSR_LINK_CRC_ERROR;
  917. if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
  918. return;
  919. mutex_lock(&psr->lock);
  920. if (!psr->enabled || psr->dp != intel_dp)
  921. goto exit;
  922. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
  923. DRM_ERROR("PSR_STATUS dpcd read failed\n");
  924. goto exit;
  925. }
  926. if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
  927. DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
  928. intel_psr_disable_locked(intel_dp);
  929. }
  930. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
  931. DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
  932. goto exit;
  933. }
  934. if (val & DP_PSR_RFB_STORAGE_ERROR)
  935. DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
  936. if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
  937. DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
  938. if (val & DP_PSR_LINK_CRC_ERROR)
  939. DRM_ERROR("PSR Link CRC error, disabling PSR\n");
  940. if (val & ~errors)
  941. DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
  942. val & ~errors);
  943. if (val & errors)
  944. intel_psr_disable_locked(intel_dp);
  945. /* clear status register */
  946. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
  947. /* TODO: handle PSR2 errors */
  948. exit:
  949. mutex_unlock(&psr->lock);
  950. }