sched_policy.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. /*
  2. * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. * SOFTWARE.
  22. *
  23. * Authors:
  24. * Anhua Xu
  25. * Kevin Tian <kevin.tian@intel.com>
  26. *
  27. * Contributors:
  28. * Min He <min.he@intel.com>
  29. * Bing Niu <bing.niu@intel.com>
  30. * Zhi Wang <zhi.a.wang@intel.com>
  31. *
  32. */
  33. #include "i915_drv.h"
  34. #include "gvt.h"
  35. static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
  36. {
  37. enum intel_engine_id i;
  38. struct intel_engine_cs *engine;
  39. for_each_engine(engine, vgpu->gvt->dev_priv, i) {
  40. if (!list_empty(workload_q_head(vgpu, i)))
  41. return true;
  42. }
  43. return false;
  44. }
  45. /* We give 2 seconds higher prio for vGPU during start */
  46. #define GVT_SCHED_VGPU_PRI_TIME 2
  47. struct vgpu_sched_data {
  48. struct list_head lru_list;
  49. struct intel_vgpu *vgpu;
  50. bool active;
  51. bool pri_sched;
  52. ktime_t pri_time;
  53. ktime_t sched_in_time;
  54. ktime_t sched_time;
  55. ktime_t left_ts;
  56. ktime_t allocated_ts;
  57. struct vgpu_sched_ctl sched_ctl;
  58. };
  59. struct gvt_sched_data {
  60. struct intel_gvt *gvt;
  61. struct hrtimer timer;
  62. unsigned long period;
  63. struct list_head lru_runq_head;
  64. ktime_t expire_time;
  65. };
  66. static void vgpu_update_timeslice(struct intel_vgpu *vgpu, ktime_t cur_time)
  67. {
  68. ktime_t delta_ts;
  69. struct vgpu_sched_data *vgpu_data;
  70. if (!vgpu || vgpu == vgpu->gvt->idle_vgpu)
  71. return;
  72. vgpu_data = vgpu->sched_data;
  73. delta_ts = ktime_sub(cur_time, vgpu_data->sched_in_time);
  74. vgpu_data->sched_time = ktime_add(vgpu_data->sched_time, delta_ts);
  75. vgpu_data->left_ts = ktime_sub(vgpu_data->left_ts, delta_ts);
  76. vgpu_data->sched_in_time = cur_time;
  77. }
  78. #define GVT_TS_BALANCE_PERIOD_MS 100
  79. #define GVT_TS_BALANCE_STAGE_NUM 10
  80. static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
  81. {
  82. struct vgpu_sched_data *vgpu_data;
  83. struct list_head *pos;
  84. static uint64_t stage_check;
  85. int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;
  86. /* The timeslice accumulation reset at stage 0, which is
  87. * allocated again without adding previous debt.
  88. */
  89. if (stage == 0) {
  90. int total_weight = 0;
  91. ktime_t fair_timeslice;
  92. list_for_each(pos, &sched_data->lru_runq_head) {
  93. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  94. total_weight += vgpu_data->sched_ctl.weight;
  95. }
  96. list_for_each(pos, &sched_data->lru_runq_head) {
  97. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  98. fair_timeslice = ktime_divns(ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS),
  99. total_weight) * vgpu_data->sched_ctl.weight;
  100. vgpu_data->allocated_ts = fair_timeslice;
  101. vgpu_data->left_ts = vgpu_data->allocated_ts;
  102. }
  103. } else {
  104. list_for_each(pos, &sched_data->lru_runq_head) {
  105. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  106. /* timeslice for next 100ms should add the left/debt
  107. * slice of previous stages.
  108. */
  109. vgpu_data->left_ts += vgpu_data->allocated_ts;
  110. }
  111. }
  112. }
  113. static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
  114. {
  115. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  116. enum intel_engine_id i;
  117. struct intel_engine_cs *engine;
  118. struct vgpu_sched_data *vgpu_data;
  119. ktime_t cur_time;
  120. /* no need to schedule if next_vgpu is the same with current_vgpu,
  121. * let scheduler chose next_vgpu again by setting it to NULL.
  122. */
  123. if (scheduler->next_vgpu == scheduler->current_vgpu) {
  124. scheduler->next_vgpu = NULL;
  125. return;
  126. }
  127. /*
  128. * after the flag is set, workload dispatch thread will
  129. * stop dispatching workload for current vgpu
  130. */
  131. scheduler->need_reschedule = true;
  132. /* still have uncompleted workload? */
  133. for_each_engine(engine, gvt->dev_priv, i) {
  134. if (scheduler->current_workload[i])
  135. return;
  136. }
  137. cur_time = ktime_get();
  138. vgpu_update_timeslice(scheduler->current_vgpu, cur_time);
  139. vgpu_data = scheduler->next_vgpu->sched_data;
  140. vgpu_data->sched_in_time = cur_time;
  141. /* switch current vgpu */
  142. scheduler->current_vgpu = scheduler->next_vgpu;
  143. scheduler->next_vgpu = NULL;
  144. scheduler->need_reschedule = false;
  145. /* wake up workload dispatch thread */
  146. for_each_engine(engine, gvt->dev_priv, i)
  147. wake_up(&scheduler->waitq[i]);
  148. }
  149. static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
  150. {
  151. struct vgpu_sched_data *vgpu_data;
  152. struct intel_vgpu *vgpu = NULL;
  153. struct list_head *head = &sched_data->lru_runq_head;
  154. struct list_head *pos;
  155. /* search a vgpu with pending workload */
  156. list_for_each(pos, head) {
  157. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  158. if (!vgpu_has_pending_workload(vgpu_data->vgpu))
  159. continue;
  160. if (vgpu_data->pri_sched) {
  161. if (ktime_before(ktime_get(), vgpu_data->pri_time)) {
  162. vgpu = vgpu_data->vgpu;
  163. break;
  164. } else
  165. vgpu_data->pri_sched = false;
  166. }
  167. /* Return the vGPU only if it has time slice left */
  168. if (vgpu_data->left_ts > 0) {
  169. vgpu = vgpu_data->vgpu;
  170. break;
  171. }
  172. }
  173. return vgpu;
  174. }
  175. /* in nanosecond */
  176. #define GVT_DEFAULT_TIME_SLICE 1000000
  177. static void tbs_sched_func(struct gvt_sched_data *sched_data)
  178. {
  179. struct intel_gvt *gvt = sched_data->gvt;
  180. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  181. struct vgpu_sched_data *vgpu_data;
  182. struct intel_vgpu *vgpu = NULL;
  183. /* no active vgpu or has already had a target */
  184. if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
  185. goto out;
  186. vgpu = find_busy_vgpu(sched_data);
  187. if (vgpu) {
  188. scheduler->next_vgpu = vgpu;
  189. vgpu_data = vgpu->sched_data;
  190. if (!vgpu_data->pri_sched) {
  191. /* Move the last used vGPU to the tail of lru_list */
  192. list_del_init(&vgpu_data->lru_list);
  193. list_add_tail(&vgpu_data->lru_list,
  194. &sched_data->lru_runq_head);
  195. }
  196. } else {
  197. scheduler->next_vgpu = gvt->idle_vgpu;
  198. }
  199. out:
  200. if (scheduler->next_vgpu)
  201. try_to_schedule_next_vgpu(gvt);
  202. }
  203. void intel_gvt_schedule(struct intel_gvt *gvt)
  204. {
  205. struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
  206. ktime_t cur_time;
  207. mutex_lock(&gvt->sched_lock);
  208. cur_time = ktime_get();
  209. if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED,
  210. (void *)&gvt->service_request)) {
  211. if (cur_time >= sched_data->expire_time) {
  212. gvt_balance_timeslice(sched_data);
  213. sched_data->expire_time = ktime_add_ms(
  214. cur_time, GVT_TS_BALANCE_PERIOD_MS);
  215. }
  216. }
  217. clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request);
  218. vgpu_update_timeslice(gvt->scheduler.current_vgpu, cur_time);
  219. tbs_sched_func(sched_data);
  220. mutex_unlock(&gvt->sched_lock);
  221. }
  222. static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
  223. {
  224. struct gvt_sched_data *data;
  225. data = container_of(timer_data, struct gvt_sched_data, timer);
  226. intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);
  227. hrtimer_add_expires_ns(&data->timer, data->period);
  228. return HRTIMER_RESTART;
  229. }
  230. static int tbs_sched_init(struct intel_gvt *gvt)
  231. {
  232. struct intel_gvt_workload_scheduler *scheduler =
  233. &gvt->scheduler;
  234. struct gvt_sched_data *data;
  235. data = kzalloc(sizeof(*data), GFP_KERNEL);
  236. if (!data)
  237. return -ENOMEM;
  238. INIT_LIST_HEAD(&data->lru_runq_head);
  239. hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  240. data->timer.function = tbs_timer_fn;
  241. data->period = GVT_DEFAULT_TIME_SLICE;
  242. data->gvt = gvt;
  243. scheduler->sched_data = data;
  244. return 0;
  245. }
  246. static void tbs_sched_clean(struct intel_gvt *gvt)
  247. {
  248. struct intel_gvt_workload_scheduler *scheduler =
  249. &gvt->scheduler;
  250. struct gvt_sched_data *data = scheduler->sched_data;
  251. hrtimer_cancel(&data->timer);
  252. kfree(data);
  253. scheduler->sched_data = NULL;
  254. }
  255. static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
  256. {
  257. struct vgpu_sched_data *data;
  258. data = kzalloc(sizeof(*data), GFP_KERNEL);
  259. if (!data)
  260. return -ENOMEM;
  261. data->sched_ctl.weight = vgpu->sched_ctl.weight;
  262. data->vgpu = vgpu;
  263. INIT_LIST_HEAD(&data->lru_list);
  264. vgpu->sched_data = data;
  265. return 0;
  266. }
  267. static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
  268. {
  269. struct intel_gvt *gvt = vgpu->gvt;
  270. struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
  271. kfree(vgpu->sched_data);
  272. vgpu->sched_data = NULL;
  273. /* this vgpu id has been removed */
  274. if (idr_is_empty(&gvt->vgpu_idr))
  275. hrtimer_cancel(&sched_data->timer);
  276. }
  277. static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
  278. {
  279. struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
  280. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  281. ktime_t now;
  282. if (!list_empty(&vgpu_data->lru_list))
  283. return;
  284. now = ktime_get();
  285. vgpu_data->pri_time = ktime_add(now,
  286. ktime_set(GVT_SCHED_VGPU_PRI_TIME, 0));
  287. vgpu_data->pri_sched = true;
  288. list_add(&vgpu_data->lru_list, &sched_data->lru_runq_head);
  289. if (!hrtimer_active(&sched_data->timer))
  290. hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
  291. sched_data->period), HRTIMER_MODE_ABS);
  292. vgpu_data->active = true;
  293. }
  294. static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
  295. {
  296. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  297. list_del_init(&vgpu_data->lru_list);
  298. vgpu_data->active = false;
  299. }
  300. static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
  301. .init = tbs_sched_init,
  302. .clean = tbs_sched_clean,
  303. .init_vgpu = tbs_sched_init_vgpu,
  304. .clean_vgpu = tbs_sched_clean_vgpu,
  305. .start_schedule = tbs_sched_start_schedule,
  306. .stop_schedule = tbs_sched_stop_schedule,
  307. };
  308. int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
  309. {
  310. int ret;
  311. mutex_lock(&gvt->sched_lock);
  312. gvt->scheduler.sched_ops = &tbs_schedule_ops;
  313. ret = gvt->scheduler.sched_ops->init(gvt);
  314. mutex_unlock(&gvt->sched_lock);
  315. return ret;
  316. }
  317. void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
  318. {
  319. mutex_lock(&gvt->sched_lock);
  320. gvt->scheduler.sched_ops->clean(gvt);
  321. mutex_unlock(&gvt->sched_lock);
  322. }
  323. /* for per-vgpu scheduler policy, there are 2 per-vgpu data:
  324. * sched_data, and sched_ctl. We see these 2 data as part of
  325. * the global scheduler which are proteced by gvt->sched_lock.
  326. * Caller should make their decision if the vgpu_lock should
  327. * be hold outside.
  328. */
  329. int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
  330. {
  331. int ret;
  332. mutex_lock(&vgpu->gvt->sched_lock);
  333. ret = vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
  334. mutex_unlock(&vgpu->gvt->sched_lock);
  335. return ret;
  336. }
  337. void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
  338. {
  339. mutex_lock(&vgpu->gvt->sched_lock);
  340. vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
  341. mutex_unlock(&vgpu->gvt->sched_lock);
  342. }
  343. void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
  344. {
  345. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  346. mutex_lock(&vgpu->gvt->sched_lock);
  347. if (!vgpu_data->active) {
  348. gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
  349. vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
  350. }
  351. mutex_unlock(&vgpu->gvt->sched_lock);
  352. }
  353. void intel_gvt_kick_schedule(struct intel_gvt *gvt)
  354. {
  355. mutex_lock(&gvt->sched_lock);
  356. intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
  357. mutex_unlock(&gvt->sched_lock);
  358. }
  359. void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
  360. {
  361. struct intel_gvt_workload_scheduler *scheduler =
  362. &vgpu->gvt->scheduler;
  363. int ring_id;
  364. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  365. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  366. if (!vgpu_data->active)
  367. return;
  368. gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);
  369. mutex_lock(&vgpu->gvt->sched_lock);
  370. scheduler->sched_ops->stop_schedule(vgpu);
  371. if (scheduler->next_vgpu == vgpu)
  372. scheduler->next_vgpu = NULL;
  373. if (scheduler->current_vgpu == vgpu) {
  374. /* stop workload dispatching */
  375. scheduler->need_reschedule = true;
  376. scheduler->current_vgpu = NULL;
  377. }
  378. intel_runtime_pm_get(dev_priv);
  379. spin_lock_bh(&scheduler->mmio_context_lock);
  380. for (ring_id = 0; ring_id < I915_NUM_ENGINES; ring_id++) {
  381. if (scheduler->engine_owner[ring_id] == vgpu) {
  382. intel_gvt_switch_mmio(vgpu, NULL, ring_id);
  383. scheduler->engine_owner[ring_id] = NULL;
  384. }
  385. }
  386. spin_unlock_bh(&scheduler->mmio_context_lock);
  387. intel_runtime_pm_put(dev_priv);
  388. mutex_unlock(&vgpu->gvt->sched_lock);
  389. }