sdma_v3_0.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. #include "ivsrcid/ivsrcid_vislands30.h"
  42. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  45. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  47. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  49. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  51. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  52. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  56. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  57. MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  58. MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  59. MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
  60. MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
  61. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  62. {
  63. SDMA0_REGISTER_OFFSET,
  64. SDMA1_REGISTER_OFFSET
  65. };
  66. static const u32 golden_settings_tonga_a11[] =
  67. {
  68. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  74. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  75. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  76. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  77. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  78. };
  79. static const u32 tonga_mgcg_cgcg_init[] =
  80. {
  81. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  82. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  83. };
  84. static const u32 golden_settings_fiji_a10[] =
  85. {
  86. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  87. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  89. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  90. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  91. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  92. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  93. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  94. };
  95. static const u32 fiji_mgcg_cgcg_init[] =
  96. {
  97. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  98. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  99. };
  100. static const u32 golden_settings_polaris11_a11[] =
  101. {
  102. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  103. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  104. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  107. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  108. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  109. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  110. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  111. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  112. };
  113. static const u32 golden_settings_polaris10_a11[] =
  114. {
  115. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  116. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  117. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  120. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  121. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  122. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  123. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  124. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  125. };
  126. static const u32 cz_golden_settings_a11[] =
  127. {
  128. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  129. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  130. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  131. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  132. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  133. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  135. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  136. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  137. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  138. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  139. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  140. };
  141. static const u32 cz_mgcg_cgcg_init[] =
  142. {
  143. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  144. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  145. };
  146. static const u32 stoney_golden_settings_a11[] =
  147. {
  148. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  149. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  150. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  151. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  152. };
  153. static const u32 stoney_mgcg_cgcg_init[] =
  154. {
  155. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  156. };
  157. /*
  158. * sDMA - System DMA
  159. * Starting with CIK, the GPU has new asynchronous
  160. * DMA engines. These engines are used for compute
  161. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  162. * and each one supports 1 ring buffer used for gfx
  163. * and 2 queues used for compute.
  164. *
  165. * The programming model is very similar to the CP
  166. * (ring buffer, IBs, etc.), but sDMA has it's own
  167. * packet format that is different from the PM4 format
  168. * used by the CP. sDMA supports copying data, writing
  169. * embedded data, solid fills, and a number of other
  170. * things. It also has support for tiling/detiling of
  171. * buffers.
  172. */
  173. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  174. {
  175. switch (adev->asic_type) {
  176. case CHIP_FIJI:
  177. amdgpu_device_program_register_sequence(adev,
  178. fiji_mgcg_cgcg_init,
  179. ARRAY_SIZE(fiji_mgcg_cgcg_init));
  180. amdgpu_device_program_register_sequence(adev,
  181. golden_settings_fiji_a10,
  182. ARRAY_SIZE(golden_settings_fiji_a10));
  183. break;
  184. case CHIP_TONGA:
  185. amdgpu_device_program_register_sequence(adev,
  186. tonga_mgcg_cgcg_init,
  187. ARRAY_SIZE(tonga_mgcg_cgcg_init));
  188. amdgpu_device_program_register_sequence(adev,
  189. golden_settings_tonga_a11,
  190. ARRAY_SIZE(golden_settings_tonga_a11));
  191. break;
  192. case CHIP_POLARIS11:
  193. case CHIP_POLARIS12:
  194. case CHIP_VEGAM:
  195. amdgpu_device_program_register_sequence(adev,
  196. golden_settings_polaris11_a11,
  197. ARRAY_SIZE(golden_settings_polaris11_a11));
  198. break;
  199. case CHIP_POLARIS10:
  200. amdgpu_device_program_register_sequence(adev,
  201. golden_settings_polaris10_a11,
  202. ARRAY_SIZE(golden_settings_polaris10_a11));
  203. break;
  204. case CHIP_CARRIZO:
  205. amdgpu_device_program_register_sequence(adev,
  206. cz_mgcg_cgcg_init,
  207. ARRAY_SIZE(cz_mgcg_cgcg_init));
  208. amdgpu_device_program_register_sequence(adev,
  209. cz_golden_settings_a11,
  210. ARRAY_SIZE(cz_golden_settings_a11));
  211. break;
  212. case CHIP_STONEY:
  213. amdgpu_device_program_register_sequence(adev,
  214. stoney_mgcg_cgcg_init,
  215. ARRAY_SIZE(stoney_mgcg_cgcg_init));
  216. amdgpu_device_program_register_sequence(adev,
  217. stoney_golden_settings_a11,
  218. ARRAY_SIZE(stoney_golden_settings_a11));
  219. break;
  220. default:
  221. break;
  222. }
  223. }
  224. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  225. {
  226. int i;
  227. for (i = 0; i < adev->sdma.num_instances; i++) {
  228. release_firmware(adev->sdma.instance[i].fw);
  229. adev->sdma.instance[i].fw = NULL;
  230. }
  231. }
  232. /**
  233. * sdma_v3_0_init_microcode - load ucode images from disk
  234. *
  235. * @adev: amdgpu_device pointer
  236. *
  237. * Use the firmware interface to load the ucode images into
  238. * the driver (not loaded into hw).
  239. * Returns 0 on success, error on failure.
  240. */
  241. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  242. {
  243. const char *chip_name;
  244. char fw_name[30];
  245. int err = 0, i;
  246. struct amdgpu_firmware_info *info = NULL;
  247. const struct common_firmware_header *header = NULL;
  248. const struct sdma_firmware_header_v1_0 *hdr;
  249. DRM_DEBUG("\n");
  250. switch (adev->asic_type) {
  251. case CHIP_TONGA:
  252. chip_name = "tonga";
  253. break;
  254. case CHIP_FIJI:
  255. chip_name = "fiji";
  256. break;
  257. case CHIP_POLARIS10:
  258. chip_name = "polaris10";
  259. break;
  260. case CHIP_POLARIS11:
  261. chip_name = "polaris11";
  262. break;
  263. case CHIP_POLARIS12:
  264. chip_name = "polaris12";
  265. break;
  266. case CHIP_VEGAM:
  267. chip_name = "vegam";
  268. break;
  269. case CHIP_CARRIZO:
  270. chip_name = "carrizo";
  271. break;
  272. case CHIP_STONEY:
  273. chip_name = "stoney";
  274. break;
  275. default: BUG();
  276. }
  277. for (i = 0; i < adev->sdma.num_instances; i++) {
  278. if (i == 0)
  279. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  280. else
  281. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  282. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  283. if (err)
  284. goto out;
  285. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  286. if (err)
  287. goto out;
  288. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  289. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  290. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  291. if (adev->sdma.instance[i].feature_version >= 20)
  292. adev->sdma.instance[i].burst_nop = true;
  293. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  294. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  295. info->fw = adev->sdma.instance[i].fw;
  296. header = (const struct common_firmware_header *)info->fw->data;
  297. adev->firmware.fw_size +=
  298. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  299. }
  300. out:
  301. if (err) {
  302. pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
  303. for (i = 0; i < adev->sdma.num_instances; i++) {
  304. release_firmware(adev->sdma.instance[i].fw);
  305. adev->sdma.instance[i].fw = NULL;
  306. }
  307. }
  308. return err;
  309. }
  310. /**
  311. * sdma_v3_0_ring_get_rptr - get the current read pointer
  312. *
  313. * @ring: amdgpu ring pointer
  314. *
  315. * Get the current rptr from the hardware (VI+).
  316. */
  317. static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  318. {
  319. /* XXX check if swapping is necessary on BE */
  320. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  321. }
  322. /**
  323. * sdma_v3_0_ring_get_wptr - get the current write pointer
  324. *
  325. * @ring: amdgpu ring pointer
  326. *
  327. * Get the current wptr from the hardware (VI+).
  328. */
  329. static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  330. {
  331. struct amdgpu_device *adev = ring->adev;
  332. u32 wptr;
  333. if (ring->use_doorbell || ring->use_pollmem) {
  334. /* XXX check if swapping is necessary on BE */
  335. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  336. } else {
  337. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
  338. }
  339. return wptr;
  340. }
  341. /**
  342. * sdma_v3_0_ring_set_wptr - commit the write pointer
  343. *
  344. * @ring: amdgpu ring pointer
  345. *
  346. * Write the wptr back to the hardware (VI+).
  347. */
  348. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  349. {
  350. struct amdgpu_device *adev = ring->adev;
  351. if (ring->use_doorbell) {
  352. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  353. /* XXX check if swapping is necessary on BE */
  354. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  355. WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
  356. } else if (ring->use_pollmem) {
  357. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  358. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  359. } else {
  360. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2);
  361. }
  362. }
  363. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  364. {
  365. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  366. int i;
  367. for (i = 0; i < count; i++)
  368. if (sdma && sdma->burst_nop && (i == 0))
  369. amdgpu_ring_write(ring, ring->funcs->nop |
  370. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  371. else
  372. amdgpu_ring_write(ring, ring->funcs->nop);
  373. }
  374. /**
  375. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  376. *
  377. * @ring: amdgpu ring pointer
  378. * @ib: IB object to schedule
  379. *
  380. * Schedule an IB in the DMA ring (VI).
  381. */
  382. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  383. struct amdgpu_ib *ib,
  384. unsigned vmid, bool ctx_switch)
  385. {
  386. /* IB packet must end on a 8 DW boundary */
  387. sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  388. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  389. SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
  390. /* base must be 32 byte aligned */
  391. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  392. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  393. amdgpu_ring_write(ring, ib->length_dw);
  394. amdgpu_ring_write(ring, 0);
  395. amdgpu_ring_write(ring, 0);
  396. }
  397. /**
  398. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  399. *
  400. * @ring: amdgpu ring pointer
  401. *
  402. * Emit an hdp flush packet on the requested DMA ring.
  403. */
  404. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  405. {
  406. u32 ref_and_mask = 0;
  407. if (ring->me == 0)
  408. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  409. else
  410. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  411. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  412. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  413. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  414. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  415. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  416. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  417. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  418. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  419. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  420. }
  421. /**
  422. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  423. *
  424. * @ring: amdgpu ring pointer
  425. * @fence: amdgpu fence object
  426. *
  427. * Add a DMA fence packet to the ring to write
  428. * the fence seq number and DMA trap packet to generate
  429. * an interrupt if needed (VI).
  430. */
  431. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  432. unsigned flags)
  433. {
  434. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  435. /* write the fence */
  436. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  437. amdgpu_ring_write(ring, lower_32_bits(addr));
  438. amdgpu_ring_write(ring, upper_32_bits(addr));
  439. amdgpu_ring_write(ring, lower_32_bits(seq));
  440. /* optionally write high bits as well */
  441. if (write64bit) {
  442. addr += 4;
  443. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  444. amdgpu_ring_write(ring, lower_32_bits(addr));
  445. amdgpu_ring_write(ring, upper_32_bits(addr));
  446. amdgpu_ring_write(ring, upper_32_bits(seq));
  447. }
  448. /* generate an interrupt */
  449. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  450. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  451. }
  452. /**
  453. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  454. *
  455. * @adev: amdgpu_device pointer
  456. *
  457. * Stop the gfx async dma ring buffers (VI).
  458. */
  459. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  460. {
  461. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  462. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  463. u32 rb_cntl, ib_cntl;
  464. int i;
  465. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  466. (adev->mman.buffer_funcs_ring == sdma1))
  467. amdgpu_ttm_set_buffer_funcs_status(adev, false);
  468. for (i = 0; i < adev->sdma.num_instances; i++) {
  469. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  470. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  471. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  472. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  473. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  474. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  475. }
  476. sdma0->ready = false;
  477. sdma1->ready = false;
  478. }
  479. /**
  480. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  481. *
  482. * @adev: amdgpu_device pointer
  483. *
  484. * Stop the compute async dma queues (VI).
  485. */
  486. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  487. {
  488. /* XXX todo */
  489. }
  490. /**
  491. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  492. *
  493. * @adev: amdgpu_device pointer
  494. * @enable: enable/disable the DMA MEs context switch.
  495. *
  496. * Halt or unhalt the async dma engines context switch (VI).
  497. */
  498. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  499. {
  500. u32 f32_cntl, phase_quantum = 0;
  501. int i;
  502. if (amdgpu_sdma_phase_quantum) {
  503. unsigned value = amdgpu_sdma_phase_quantum;
  504. unsigned unit = 0;
  505. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  506. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  507. value = (value + 1) >> 1;
  508. unit++;
  509. }
  510. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  511. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  512. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  513. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  514. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  515. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  516. WARN_ONCE(1,
  517. "clamping sdma_phase_quantum to %uK clock cycles\n",
  518. value << unit);
  519. }
  520. phase_quantum =
  521. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  522. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  523. }
  524. for (i = 0; i < adev->sdma.num_instances; i++) {
  525. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  526. if (enable) {
  527. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  528. AUTO_CTXSW_ENABLE, 1);
  529. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  530. ATC_L1_ENABLE, 1);
  531. if (amdgpu_sdma_phase_quantum) {
  532. WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
  533. phase_quantum);
  534. WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
  535. phase_quantum);
  536. }
  537. } else {
  538. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  539. AUTO_CTXSW_ENABLE, 0);
  540. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  541. ATC_L1_ENABLE, 1);
  542. }
  543. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  544. }
  545. }
  546. /**
  547. * sdma_v3_0_enable - stop the async dma engines
  548. *
  549. * @adev: amdgpu_device pointer
  550. * @enable: enable/disable the DMA MEs.
  551. *
  552. * Halt or unhalt the async dma engines (VI).
  553. */
  554. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  555. {
  556. u32 f32_cntl;
  557. int i;
  558. if (!enable) {
  559. sdma_v3_0_gfx_stop(adev);
  560. sdma_v3_0_rlc_stop(adev);
  561. }
  562. for (i = 0; i < adev->sdma.num_instances; i++) {
  563. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  564. if (enable)
  565. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  566. else
  567. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  568. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  569. }
  570. }
  571. /**
  572. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  573. *
  574. * @adev: amdgpu_device pointer
  575. *
  576. * Set up the gfx DMA ring buffers and enable them (VI).
  577. * Returns 0 for success, error for failure.
  578. */
  579. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  580. {
  581. struct amdgpu_ring *ring;
  582. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  583. u32 rb_bufsz;
  584. u32 wb_offset;
  585. u32 doorbell;
  586. u64 wptr_gpu_addr;
  587. int i, j, r;
  588. for (i = 0; i < adev->sdma.num_instances; i++) {
  589. ring = &adev->sdma.instance[i].ring;
  590. amdgpu_ring_clear_ring(ring);
  591. wb_offset = (ring->rptr_offs * 4);
  592. mutex_lock(&adev->srbm_mutex);
  593. for (j = 0; j < 16; j++) {
  594. vi_srbm_select(adev, 0, 0, 0, j);
  595. /* SDMA GFX */
  596. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  597. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  598. }
  599. vi_srbm_select(adev, 0, 0, 0, 0);
  600. mutex_unlock(&adev->srbm_mutex);
  601. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  602. adev->gfx.config.gb_addr_config & 0x70);
  603. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  604. /* Set ring buffer size in dwords */
  605. rb_bufsz = order_base_2(ring->ring_size / 4);
  606. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  607. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  608. #ifdef __BIG_ENDIAN
  609. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  610. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  611. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  612. #endif
  613. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  614. /* Initialize the ring buffer's read and write pointers */
  615. ring->wptr = 0;
  616. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  617. sdma_v3_0_ring_set_wptr(ring);
  618. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  619. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  620. /* set the wb address whether it's enabled or not */
  621. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  622. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  623. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  624. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  625. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  626. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  627. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  628. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  629. if (ring->use_doorbell) {
  630. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  631. OFFSET, ring->doorbell_index);
  632. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  633. } else {
  634. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  635. }
  636. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  637. /* setup the wptr shadow polling */
  638. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  639. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
  640. lower_32_bits(wptr_gpu_addr));
  641. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
  642. upper_32_bits(wptr_gpu_addr));
  643. wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
  644. if (ring->use_pollmem) {
  645. /*wptr polling is not enogh fast, directly clean the wptr register */
  646. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  647. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
  648. SDMA0_GFX_RB_WPTR_POLL_CNTL,
  649. ENABLE, 1);
  650. } else {
  651. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
  652. SDMA0_GFX_RB_WPTR_POLL_CNTL,
  653. ENABLE, 0);
  654. }
  655. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
  656. /* enable DMA RB */
  657. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  658. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  659. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  660. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  661. #ifdef __BIG_ENDIAN
  662. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  663. #endif
  664. /* enable DMA IBs */
  665. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  666. ring->ready = true;
  667. }
  668. /* unhalt the MEs */
  669. sdma_v3_0_enable(adev, true);
  670. /* enable sdma ring preemption */
  671. sdma_v3_0_ctx_switch_enable(adev, true);
  672. for (i = 0; i < adev->sdma.num_instances; i++) {
  673. ring = &adev->sdma.instance[i].ring;
  674. r = amdgpu_ring_test_ring(ring);
  675. if (r) {
  676. ring->ready = false;
  677. return r;
  678. }
  679. if (adev->mman.buffer_funcs_ring == ring)
  680. amdgpu_ttm_set_buffer_funcs_status(adev, true);
  681. }
  682. return 0;
  683. }
  684. /**
  685. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  686. *
  687. * @adev: amdgpu_device pointer
  688. *
  689. * Set up the compute DMA queues and enable them (VI).
  690. * Returns 0 for success, error for failure.
  691. */
  692. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  693. {
  694. /* XXX todo */
  695. return 0;
  696. }
  697. /**
  698. * sdma_v3_0_start - setup and start the async dma engines
  699. *
  700. * @adev: amdgpu_device pointer
  701. *
  702. * Set up the DMA engines and enable them (VI).
  703. * Returns 0 for success, error for failure.
  704. */
  705. static int sdma_v3_0_start(struct amdgpu_device *adev)
  706. {
  707. int r;
  708. /* disable sdma engine before programing it */
  709. sdma_v3_0_ctx_switch_enable(adev, false);
  710. sdma_v3_0_enable(adev, false);
  711. /* start the gfx rings and rlc compute queues */
  712. r = sdma_v3_0_gfx_resume(adev);
  713. if (r)
  714. return r;
  715. r = sdma_v3_0_rlc_resume(adev);
  716. if (r)
  717. return r;
  718. return 0;
  719. }
  720. /**
  721. * sdma_v3_0_ring_test_ring - simple async dma engine test
  722. *
  723. * @ring: amdgpu_ring structure holding ring information
  724. *
  725. * Test the DMA engine by writing using it to write an
  726. * value to memory. (VI).
  727. * Returns 0 for success, error for failure.
  728. */
  729. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  730. {
  731. struct amdgpu_device *adev = ring->adev;
  732. unsigned i;
  733. unsigned index;
  734. int r;
  735. u32 tmp;
  736. u64 gpu_addr;
  737. r = amdgpu_device_wb_get(adev, &index);
  738. if (r) {
  739. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  740. return r;
  741. }
  742. gpu_addr = adev->wb.gpu_addr + (index * 4);
  743. tmp = 0xCAFEDEAD;
  744. adev->wb.wb[index] = cpu_to_le32(tmp);
  745. r = amdgpu_ring_alloc(ring, 5);
  746. if (r) {
  747. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  748. amdgpu_device_wb_free(adev, index);
  749. return r;
  750. }
  751. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  752. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  753. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  754. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  755. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  756. amdgpu_ring_write(ring, 0xDEADBEEF);
  757. amdgpu_ring_commit(ring);
  758. for (i = 0; i < adev->usec_timeout; i++) {
  759. tmp = le32_to_cpu(adev->wb.wb[index]);
  760. if (tmp == 0xDEADBEEF)
  761. break;
  762. DRM_UDELAY(1);
  763. }
  764. if (i < adev->usec_timeout) {
  765. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  766. } else {
  767. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  768. ring->idx, tmp);
  769. r = -EINVAL;
  770. }
  771. amdgpu_device_wb_free(adev, index);
  772. return r;
  773. }
  774. /**
  775. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  776. *
  777. * @ring: amdgpu_ring structure holding ring information
  778. *
  779. * Test a simple IB in the DMA ring (VI).
  780. * Returns 0 on success, error on failure.
  781. */
  782. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  783. {
  784. struct amdgpu_device *adev = ring->adev;
  785. struct amdgpu_ib ib;
  786. struct dma_fence *f = NULL;
  787. unsigned index;
  788. u32 tmp = 0;
  789. u64 gpu_addr;
  790. long r;
  791. r = amdgpu_device_wb_get(adev, &index);
  792. if (r) {
  793. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  794. return r;
  795. }
  796. gpu_addr = adev->wb.gpu_addr + (index * 4);
  797. tmp = 0xCAFEDEAD;
  798. adev->wb.wb[index] = cpu_to_le32(tmp);
  799. memset(&ib, 0, sizeof(ib));
  800. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  801. if (r) {
  802. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  803. goto err0;
  804. }
  805. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  806. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  807. ib.ptr[1] = lower_32_bits(gpu_addr);
  808. ib.ptr[2] = upper_32_bits(gpu_addr);
  809. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  810. ib.ptr[4] = 0xDEADBEEF;
  811. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  812. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  813. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  814. ib.length_dw = 8;
  815. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  816. if (r)
  817. goto err1;
  818. r = dma_fence_wait_timeout(f, false, timeout);
  819. if (r == 0) {
  820. DRM_ERROR("amdgpu: IB test timed out\n");
  821. r = -ETIMEDOUT;
  822. goto err1;
  823. } else if (r < 0) {
  824. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  825. goto err1;
  826. }
  827. tmp = le32_to_cpu(adev->wb.wb[index]);
  828. if (tmp == 0xDEADBEEF) {
  829. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  830. r = 0;
  831. } else {
  832. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  833. r = -EINVAL;
  834. }
  835. err1:
  836. amdgpu_ib_free(adev, &ib, NULL);
  837. dma_fence_put(f);
  838. err0:
  839. amdgpu_device_wb_free(adev, index);
  840. return r;
  841. }
  842. /**
  843. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  844. *
  845. * @ib: indirect buffer to fill with commands
  846. * @pe: addr of the page entry
  847. * @src: src addr to copy from
  848. * @count: number of page entries to update
  849. *
  850. * Update PTEs by copying them from the GART using sDMA (CIK).
  851. */
  852. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  853. uint64_t pe, uint64_t src,
  854. unsigned count)
  855. {
  856. unsigned bytes = count * 8;
  857. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  858. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  859. ib->ptr[ib->length_dw++] = bytes;
  860. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  861. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  862. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  863. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  864. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  865. }
  866. /**
  867. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  868. *
  869. * @ib: indirect buffer to fill with commands
  870. * @pe: addr of the page entry
  871. * @value: dst addr to write into pe
  872. * @count: number of page entries to update
  873. * @incr: increase next addr by incr bytes
  874. *
  875. * Update PTEs by writing them manually using sDMA (CIK).
  876. */
  877. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  878. uint64_t value, unsigned count,
  879. uint32_t incr)
  880. {
  881. unsigned ndw = count * 2;
  882. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  883. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  884. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  885. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  886. ib->ptr[ib->length_dw++] = ndw;
  887. for (; ndw > 0; ndw -= 2) {
  888. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  889. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  890. value += incr;
  891. }
  892. }
  893. /**
  894. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  895. *
  896. * @ib: indirect buffer to fill with commands
  897. * @pe: addr of the page entry
  898. * @addr: dst addr to write into pe
  899. * @count: number of page entries to update
  900. * @incr: increase next addr by incr bytes
  901. * @flags: access flags
  902. *
  903. * Update the page tables using sDMA (CIK).
  904. */
  905. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  906. uint64_t addr, unsigned count,
  907. uint32_t incr, uint64_t flags)
  908. {
  909. /* for physically contiguous pages (vram) */
  910. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  911. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  912. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  913. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  914. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  915. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  916. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  917. ib->ptr[ib->length_dw++] = incr; /* increment size */
  918. ib->ptr[ib->length_dw++] = 0;
  919. ib->ptr[ib->length_dw++] = count; /* number of entries */
  920. }
  921. /**
  922. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  923. *
  924. * @ib: indirect buffer to fill with padding
  925. *
  926. */
  927. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  928. {
  929. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  930. u32 pad_count;
  931. int i;
  932. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  933. for (i = 0; i < pad_count; i++)
  934. if (sdma && sdma->burst_nop && (i == 0))
  935. ib->ptr[ib->length_dw++] =
  936. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  937. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  938. else
  939. ib->ptr[ib->length_dw++] =
  940. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  941. }
  942. /**
  943. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  944. *
  945. * @ring: amdgpu_ring pointer
  946. *
  947. * Make sure all previous operations are completed (CIK).
  948. */
  949. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  950. {
  951. uint32_t seq = ring->fence_drv.sync_seq;
  952. uint64_t addr = ring->fence_drv.gpu_addr;
  953. /* wait for idle */
  954. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  955. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  956. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  957. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  958. amdgpu_ring_write(ring, addr & 0xfffffffc);
  959. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  960. amdgpu_ring_write(ring, seq); /* reference */
  961. amdgpu_ring_write(ring, 0xffffffff); /* mask */
  962. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  963. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  964. }
  965. /**
  966. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  967. *
  968. * @ring: amdgpu_ring pointer
  969. * @vm: amdgpu_vm pointer
  970. *
  971. * Update the page table base and flush the VM TLB
  972. * using sDMA (VI).
  973. */
  974. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  975. unsigned vmid, uint64_t pd_addr)
  976. {
  977. amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
  978. /* wait for flush */
  979. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  980. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  981. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  982. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  983. amdgpu_ring_write(ring, 0);
  984. amdgpu_ring_write(ring, 0); /* reference */
  985. amdgpu_ring_write(ring, 0); /* mask */
  986. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  987. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  988. }
  989. static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
  990. uint32_t reg, uint32_t val)
  991. {
  992. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  993. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  994. amdgpu_ring_write(ring, reg);
  995. amdgpu_ring_write(ring, val);
  996. }
  997. static int sdma_v3_0_early_init(void *handle)
  998. {
  999. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1000. switch (adev->asic_type) {
  1001. case CHIP_STONEY:
  1002. adev->sdma.num_instances = 1;
  1003. break;
  1004. default:
  1005. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1006. break;
  1007. }
  1008. sdma_v3_0_set_ring_funcs(adev);
  1009. sdma_v3_0_set_buffer_funcs(adev);
  1010. sdma_v3_0_set_vm_pte_funcs(adev);
  1011. sdma_v3_0_set_irq_funcs(adev);
  1012. return 0;
  1013. }
  1014. static int sdma_v3_0_sw_init(void *handle)
  1015. {
  1016. struct amdgpu_ring *ring;
  1017. int r, i;
  1018. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1019. /* SDMA trap event */
  1020. r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
  1021. &adev->sdma.trap_irq);
  1022. if (r)
  1023. return r;
  1024. /* SDMA Privileged inst */
  1025. r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
  1026. &adev->sdma.illegal_inst_irq);
  1027. if (r)
  1028. return r;
  1029. /* SDMA Privileged inst */
  1030. r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
  1031. &adev->sdma.illegal_inst_irq);
  1032. if (r)
  1033. return r;
  1034. r = sdma_v3_0_init_microcode(adev);
  1035. if (r) {
  1036. DRM_ERROR("Failed to load sdma firmware!\n");
  1037. return r;
  1038. }
  1039. for (i = 0; i < adev->sdma.num_instances; i++) {
  1040. ring = &adev->sdma.instance[i].ring;
  1041. ring->ring_obj = NULL;
  1042. if (!amdgpu_sriov_vf(adev)) {
  1043. ring->use_doorbell = true;
  1044. ring->doorbell_index = (i == 0) ?
  1045. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1046. } else {
  1047. ring->use_pollmem = true;
  1048. }
  1049. sprintf(ring->name, "sdma%d", i);
  1050. r = amdgpu_ring_init(adev, ring, 1024,
  1051. &adev->sdma.trap_irq,
  1052. (i == 0) ?
  1053. AMDGPU_SDMA_IRQ_TRAP0 :
  1054. AMDGPU_SDMA_IRQ_TRAP1);
  1055. if (r)
  1056. return r;
  1057. }
  1058. return r;
  1059. }
  1060. static int sdma_v3_0_sw_fini(void *handle)
  1061. {
  1062. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1063. int i;
  1064. for (i = 0; i < adev->sdma.num_instances; i++)
  1065. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1066. sdma_v3_0_free_microcode(adev);
  1067. return 0;
  1068. }
  1069. static int sdma_v3_0_hw_init(void *handle)
  1070. {
  1071. int r;
  1072. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1073. sdma_v3_0_init_golden_registers(adev);
  1074. r = sdma_v3_0_start(adev);
  1075. if (r)
  1076. return r;
  1077. return r;
  1078. }
  1079. static int sdma_v3_0_hw_fini(void *handle)
  1080. {
  1081. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1082. sdma_v3_0_ctx_switch_enable(adev, false);
  1083. sdma_v3_0_enable(adev, false);
  1084. return 0;
  1085. }
  1086. static int sdma_v3_0_suspend(void *handle)
  1087. {
  1088. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1089. return sdma_v3_0_hw_fini(adev);
  1090. }
  1091. static int sdma_v3_0_resume(void *handle)
  1092. {
  1093. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1094. return sdma_v3_0_hw_init(adev);
  1095. }
  1096. static bool sdma_v3_0_is_idle(void *handle)
  1097. {
  1098. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1099. u32 tmp = RREG32(mmSRBM_STATUS2);
  1100. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1101. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1102. return false;
  1103. return true;
  1104. }
  1105. static int sdma_v3_0_wait_for_idle(void *handle)
  1106. {
  1107. unsigned i;
  1108. u32 tmp;
  1109. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1110. for (i = 0; i < adev->usec_timeout; i++) {
  1111. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1112. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1113. if (!tmp)
  1114. return 0;
  1115. udelay(1);
  1116. }
  1117. return -ETIMEDOUT;
  1118. }
  1119. static bool sdma_v3_0_check_soft_reset(void *handle)
  1120. {
  1121. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1122. u32 srbm_soft_reset = 0;
  1123. u32 tmp = RREG32(mmSRBM_STATUS2);
  1124. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1125. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1126. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1127. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1128. }
  1129. if (srbm_soft_reset) {
  1130. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1131. return true;
  1132. } else {
  1133. adev->sdma.srbm_soft_reset = 0;
  1134. return false;
  1135. }
  1136. }
  1137. static int sdma_v3_0_pre_soft_reset(void *handle)
  1138. {
  1139. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1140. u32 srbm_soft_reset = 0;
  1141. if (!adev->sdma.srbm_soft_reset)
  1142. return 0;
  1143. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1144. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1145. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1146. sdma_v3_0_ctx_switch_enable(adev, false);
  1147. sdma_v3_0_enable(adev, false);
  1148. }
  1149. return 0;
  1150. }
  1151. static int sdma_v3_0_post_soft_reset(void *handle)
  1152. {
  1153. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1154. u32 srbm_soft_reset = 0;
  1155. if (!adev->sdma.srbm_soft_reset)
  1156. return 0;
  1157. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1158. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1159. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1160. sdma_v3_0_gfx_resume(adev);
  1161. sdma_v3_0_rlc_resume(adev);
  1162. }
  1163. return 0;
  1164. }
  1165. static int sdma_v3_0_soft_reset(void *handle)
  1166. {
  1167. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1168. u32 srbm_soft_reset = 0;
  1169. u32 tmp;
  1170. if (!adev->sdma.srbm_soft_reset)
  1171. return 0;
  1172. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1173. if (srbm_soft_reset) {
  1174. tmp = RREG32(mmSRBM_SOFT_RESET);
  1175. tmp |= srbm_soft_reset;
  1176. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1177. WREG32(mmSRBM_SOFT_RESET, tmp);
  1178. tmp = RREG32(mmSRBM_SOFT_RESET);
  1179. udelay(50);
  1180. tmp &= ~srbm_soft_reset;
  1181. WREG32(mmSRBM_SOFT_RESET, tmp);
  1182. tmp = RREG32(mmSRBM_SOFT_RESET);
  1183. /* Wait a little for things to settle down */
  1184. udelay(50);
  1185. }
  1186. return 0;
  1187. }
  1188. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1189. struct amdgpu_irq_src *source,
  1190. unsigned type,
  1191. enum amdgpu_interrupt_state state)
  1192. {
  1193. u32 sdma_cntl;
  1194. switch (type) {
  1195. case AMDGPU_SDMA_IRQ_TRAP0:
  1196. switch (state) {
  1197. case AMDGPU_IRQ_STATE_DISABLE:
  1198. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1199. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1200. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1201. break;
  1202. case AMDGPU_IRQ_STATE_ENABLE:
  1203. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1204. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1205. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1206. break;
  1207. default:
  1208. break;
  1209. }
  1210. break;
  1211. case AMDGPU_SDMA_IRQ_TRAP1:
  1212. switch (state) {
  1213. case AMDGPU_IRQ_STATE_DISABLE:
  1214. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1215. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1216. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1217. break;
  1218. case AMDGPU_IRQ_STATE_ENABLE:
  1219. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1220. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1221. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1222. break;
  1223. default:
  1224. break;
  1225. }
  1226. break;
  1227. default:
  1228. break;
  1229. }
  1230. return 0;
  1231. }
  1232. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1233. struct amdgpu_irq_src *source,
  1234. struct amdgpu_iv_entry *entry)
  1235. {
  1236. u8 instance_id, queue_id;
  1237. instance_id = (entry->ring_id & 0x3) >> 0;
  1238. queue_id = (entry->ring_id & 0xc) >> 2;
  1239. DRM_DEBUG("IH: SDMA trap\n");
  1240. switch (instance_id) {
  1241. case 0:
  1242. switch (queue_id) {
  1243. case 0:
  1244. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1245. break;
  1246. case 1:
  1247. /* XXX compute */
  1248. break;
  1249. case 2:
  1250. /* XXX compute */
  1251. break;
  1252. }
  1253. break;
  1254. case 1:
  1255. switch (queue_id) {
  1256. case 0:
  1257. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1258. break;
  1259. case 1:
  1260. /* XXX compute */
  1261. break;
  1262. case 2:
  1263. /* XXX compute */
  1264. break;
  1265. }
  1266. break;
  1267. }
  1268. return 0;
  1269. }
  1270. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1271. struct amdgpu_irq_src *source,
  1272. struct amdgpu_iv_entry *entry)
  1273. {
  1274. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1275. schedule_work(&adev->reset_work);
  1276. return 0;
  1277. }
  1278. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1279. struct amdgpu_device *adev,
  1280. bool enable)
  1281. {
  1282. uint32_t temp, data;
  1283. int i;
  1284. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1285. for (i = 0; i < adev->sdma.num_instances; i++) {
  1286. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1287. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1288. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1289. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1290. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1291. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1292. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1293. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1294. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1295. if (data != temp)
  1296. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1297. }
  1298. } else {
  1299. for (i = 0; i < adev->sdma.num_instances; i++) {
  1300. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1301. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1302. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1303. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1304. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1305. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1306. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1307. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1308. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1309. if (data != temp)
  1310. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1311. }
  1312. }
  1313. }
  1314. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1315. struct amdgpu_device *adev,
  1316. bool enable)
  1317. {
  1318. uint32_t temp, data;
  1319. int i;
  1320. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1321. for (i = 0; i < adev->sdma.num_instances; i++) {
  1322. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1323. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1324. if (temp != data)
  1325. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1326. }
  1327. } else {
  1328. for (i = 0; i < adev->sdma.num_instances; i++) {
  1329. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1330. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1331. if (temp != data)
  1332. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1333. }
  1334. }
  1335. }
  1336. static int sdma_v3_0_set_clockgating_state(void *handle,
  1337. enum amd_clockgating_state state)
  1338. {
  1339. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1340. if (amdgpu_sriov_vf(adev))
  1341. return 0;
  1342. switch (adev->asic_type) {
  1343. case CHIP_FIJI:
  1344. case CHIP_CARRIZO:
  1345. case CHIP_STONEY:
  1346. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1347. state == AMD_CG_STATE_GATE);
  1348. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1349. state == AMD_CG_STATE_GATE);
  1350. break;
  1351. default:
  1352. break;
  1353. }
  1354. return 0;
  1355. }
  1356. static int sdma_v3_0_set_powergating_state(void *handle,
  1357. enum amd_powergating_state state)
  1358. {
  1359. return 0;
  1360. }
  1361. static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
  1362. {
  1363. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1364. int data;
  1365. if (amdgpu_sriov_vf(adev))
  1366. *flags = 0;
  1367. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1368. data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
  1369. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
  1370. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1371. /* AMD_CG_SUPPORT_SDMA_LS */
  1372. data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
  1373. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1374. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1375. }
  1376. static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1377. .name = "sdma_v3_0",
  1378. .early_init = sdma_v3_0_early_init,
  1379. .late_init = NULL,
  1380. .sw_init = sdma_v3_0_sw_init,
  1381. .sw_fini = sdma_v3_0_sw_fini,
  1382. .hw_init = sdma_v3_0_hw_init,
  1383. .hw_fini = sdma_v3_0_hw_fini,
  1384. .suspend = sdma_v3_0_suspend,
  1385. .resume = sdma_v3_0_resume,
  1386. .is_idle = sdma_v3_0_is_idle,
  1387. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1388. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1389. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1390. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1391. .soft_reset = sdma_v3_0_soft_reset,
  1392. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1393. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1394. .get_clockgating_state = sdma_v3_0_get_clockgating_state,
  1395. };
  1396. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1397. .type = AMDGPU_RING_TYPE_SDMA,
  1398. .align_mask = 0xf,
  1399. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1400. .support_64bit_ptrs = false,
  1401. .get_rptr = sdma_v3_0_ring_get_rptr,
  1402. .get_wptr = sdma_v3_0_ring_get_wptr,
  1403. .set_wptr = sdma_v3_0_ring_set_wptr,
  1404. .emit_frame_size =
  1405. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1406. 3 + /* hdp invalidate */
  1407. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1408. VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
  1409. 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1410. .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
  1411. .emit_ib = sdma_v3_0_ring_emit_ib,
  1412. .emit_fence = sdma_v3_0_ring_emit_fence,
  1413. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1414. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1415. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1416. .test_ring = sdma_v3_0_ring_test_ring,
  1417. .test_ib = sdma_v3_0_ring_test_ib,
  1418. .insert_nop = sdma_v3_0_ring_insert_nop,
  1419. .pad_ib = sdma_v3_0_ring_pad_ib,
  1420. .emit_wreg = sdma_v3_0_ring_emit_wreg,
  1421. };
  1422. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1423. {
  1424. int i;
  1425. for (i = 0; i < adev->sdma.num_instances; i++) {
  1426. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1427. adev->sdma.instance[i].ring.me = i;
  1428. }
  1429. }
  1430. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1431. .set = sdma_v3_0_set_trap_irq_state,
  1432. .process = sdma_v3_0_process_trap_irq,
  1433. };
  1434. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1435. .process = sdma_v3_0_process_illegal_inst_irq,
  1436. };
  1437. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1438. {
  1439. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1440. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1441. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1442. }
  1443. /**
  1444. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1445. *
  1446. * @ring: amdgpu_ring structure holding ring information
  1447. * @src_offset: src GPU address
  1448. * @dst_offset: dst GPU address
  1449. * @byte_count: number of bytes to xfer
  1450. *
  1451. * Copy GPU buffers using the DMA engine (VI).
  1452. * Used by the amdgpu ttm implementation to move pages if
  1453. * registered as the asic copy callback.
  1454. */
  1455. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1456. uint64_t src_offset,
  1457. uint64_t dst_offset,
  1458. uint32_t byte_count)
  1459. {
  1460. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1461. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1462. ib->ptr[ib->length_dw++] = byte_count;
  1463. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1464. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1465. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1466. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1467. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1468. }
  1469. /**
  1470. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1471. *
  1472. * @ring: amdgpu_ring structure holding ring information
  1473. * @src_data: value to write to buffer
  1474. * @dst_offset: dst GPU address
  1475. * @byte_count: number of bytes to xfer
  1476. *
  1477. * Fill GPU buffers using the DMA engine (VI).
  1478. */
  1479. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1480. uint32_t src_data,
  1481. uint64_t dst_offset,
  1482. uint32_t byte_count)
  1483. {
  1484. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1485. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1486. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1487. ib->ptr[ib->length_dw++] = src_data;
  1488. ib->ptr[ib->length_dw++] = byte_count;
  1489. }
  1490. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1491. .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1492. .copy_num_dw = 7,
  1493. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1494. .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1495. .fill_num_dw = 5,
  1496. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1497. };
  1498. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1499. {
  1500. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1501. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1502. }
  1503. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1504. .copy_pte_num_dw = 7,
  1505. .copy_pte = sdma_v3_0_vm_copy_pte,
  1506. .write_pte = sdma_v3_0_vm_write_pte,
  1507. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1508. };
  1509. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1510. {
  1511. struct drm_gpu_scheduler *sched;
  1512. unsigned i;
  1513. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1514. for (i = 0; i < adev->sdma.num_instances; i++) {
  1515. sched = &adev->sdma.instance[i].ring.sched;
  1516. adev->vm_manager.vm_pte_rqs[i] =
  1517. &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
  1518. }
  1519. adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
  1520. }
  1521. const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
  1522. {
  1523. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1524. .major = 3,
  1525. .minor = 0,
  1526. .rev = 0,
  1527. .funcs = &sdma_v3_0_ip_funcs,
  1528. };
  1529. const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
  1530. {
  1531. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1532. .major = 3,
  1533. .minor = 1,
  1534. .rev = 0,
  1535. .funcs = &sdma_v3_0_ip_funcs,
  1536. };