amdgpu_amdkfd_gfx_v7.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. enum {
  46. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  47. MAX_WATCH_ADDRESSES = 4
  48. };
  49. enum {
  50. ADDRESS_WATCH_REG_ADDR_HI = 0,
  51. ADDRESS_WATCH_REG_ADDR_LO,
  52. ADDRESS_WATCH_REG_CNTL,
  53. ADDRESS_WATCH_REG_MAX
  54. };
  55. /* not defined in the CI/KV reg file */
  56. enum {
  57. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  58. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  59. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  60. /* extend the mask to 26 bits to match the low address field */
  61. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  62. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  63. };
  64. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  65. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  66. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  67. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  68. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  69. };
  70. union TCP_WATCH_CNTL_BITS {
  71. struct {
  72. uint32_t mask:24;
  73. uint32_t vmid:4;
  74. uint32_t atc:1;
  75. uint32_t mode:2;
  76. uint32_t valid:1;
  77. } bitfields, bits;
  78. uint32_t u32All;
  79. signed int i32All;
  80. float f32All;
  81. };
  82. /*
  83. * Register access functions
  84. */
  85. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  86. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  87. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  88. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  89. unsigned int vmid);
  90. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  91. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  92. uint32_t queue_id, uint32_t __user *wptr,
  93. uint32_t wptr_shift, uint32_t wptr_mask,
  94. struct mm_struct *mm);
  95. static int kgd_hqd_dump(struct kgd_dev *kgd,
  96. uint32_t pipe_id, uint32_t queue_id,
  97. uint32_t (**dump)[2], uint32_t *n_regs);
  98. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  99. uint32_t __user *wptr, struct mm_struct *mm);
  100. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  101. uint32_t engine_id, uint32_t queue_id,
  102. uint32_t (**dump)[2], uint32_t *n_regs);
  103. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  104. uint32_t pipe_id, uint32_t queue_id);
  105. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  106. enum kfd_preempt_type reset_type,
  107. unsigned int utimeout, uint32_t pipe_id,
  108. uint32_t queue_id);
  109. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  110. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  111. unsigned int utimeout);
  112. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  113. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  114. unsigned int watch_point_id,
  115. uint32_t cntl_val,
  116. uint32_t addr_hi,
  117. uint32_t addr_lo);
  118. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  119. uint32_t gfx_index_val,
  120. uint32_t sq_cmd);
  121. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  122. unsigned int watch_point_id,
  123. unsigned int reg_offset);
  124. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  125. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  126. uint8_t vmid);
  127. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  128. static void set_scratch_backing_va(struct kgd_dev *kgd,
  129. uint64_t va, uint32_t vmid);
  130. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  131. uint64_t page_table_base);
  132. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
  133. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
  134. static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
  135. /* Because of REG_GET_FIELD() being used, we put this function in the
  136. * asic specific file.
  137. */
  138. static int get_tile_config(struct kgd_dev *kgd,
  139. struct tile_config *config)
  140. {
  141. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  142. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  143. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  144. MC_ARB_RAMCFG, NOOFBANK);
  145. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  146. MC_ARB_RAMCFG, NOOFRANKS);
  147. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  148. config->num_tile_configs =
  149. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  150. config->macro_tile_config_ptr =
  151. adev->gfx.config.macrotile_mode_array;
  152. config->num_macro_tile_configs =
  153. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  154. return 0;
  155. }
  156. static const struct kfd2kgd_calls kfd2kgd = {
  157. .init_gtt_mem_allocation = alloc_gtt_mem,
  158. .free_gtt_mem = free_gtt_mem,
  159. .get_local_mem_info = get_local_mem_info,
  160. .get_gpu_clock_counter = get_gpu_clock_counter,
  161. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  162. .alloc_pasid = amdgpu_pasid_alloc,
  163. .free_pasid = amdgpu_pasid_free,
  164. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  165. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  166. .init_interrupts = kgd_init_interrupts,
  167. .hqd_load = kgd_hqd_load,
  168. .hqd_sdma_load = kgd_hqd_sdma_load,
  169. .hqd_dump = kgd_hqd_dump,
  170. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  171. .hqd_is_occupied = kgd_hqd_is_occupied,
  172. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  173. .hqd_destroy = kgd_hqd_destroy,
  174. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  175. .address_watch_disable = kgd_address_watch_disable,
  176. .address_watch_execute = kgd_address_watch_execute,
  177. .wave_control_execute = kgd_wave_control_execute,
  178. .address_watch_get_offset = kgd_address_watch_get_offset,
  179. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  180. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  181. .get_fw_version = get_fw_version,
  182. .set_scratch_backing_va = set_scratch_backing_va,
  183. .get_tile_config = get_tile_config,
  184. .get_cu_info = get_cu_info,
  185. .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
  186. .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
  187. .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
  188. .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
  189. .release_process_vm = amdgpu_amdkfd_gpuvm_release_process_vm,
  190. .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
  191. .set_vm_context_page_table_base = set_vm_context_page_table_base,
  192. .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
  193. .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
  194. .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
  195. .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
  196. .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
  197. .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
  198. .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
  199. .invalidate_tlbs = invalidate_tlbs,
  200. .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
  201. .submit_ib = amdgpu_amdkfd_submit_ib,
  202. .get_vm_fault_info = amdgpu_amdkfd_gpuvm_get_vm_fault_info,
  203. .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
  204. .gpu_recover = amdgpu_amdkfd_gpu_reset,
  205. .set_compute_idle = amdgpu_amdkfd_set_compute_idle
  206. };
  207. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  208. {
  209. return (struct kfd2kgd_calls *)&kfd2kgd;
  210. }
  211. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  212. {
  213. return (struct amdgpu_device *)kgd;
  214. }
  215. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  216. uint32_t queue, uint32_t vmid)
  217. {
  218. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  219. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  220. mutex_lock(&adev->srbm_mutex);
  221. WREG32(mmSRBM_GFX_CNTL, value);
  222. }
  223. static void unlock_srbm(struct kgd_dev *kgd)
  224. {
  225. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  226. WREG32(mmSRBM_GFX_CNTL, 0);
  227. mutex_unlock(&adev->srbm_mutex);
  228. }
  229. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  230. uint32_t queue_id)
  231. {
  232. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  233. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  234. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  235. lock_srbm(kgd, mec, pipe, queue_id, 0);
  236. }
  237. static void release_queue(struct kgd_dev *kgd)
  238. {
  239. unlock_srbm(kgd);
  240. }
  241. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  242. uint32_t sh_mem_config,
  243. uint32_t sh_mem_ape1_base,
  244. uint32_t sh_mem_ape1_limit,
  245. uint32_t sh_mem_bases)
  246. {
  247. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  248. lock_srbm(kgd, 0, 0, 0, vmid);
  249. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  250. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  251. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  252. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  253. unlock_srbm(kgd);
  254. }
  255. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  256. unsigned int vmid)
  257. {
  258. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  259. /*
  260. * We have to assume that there is no outstanding mapping.
  261. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  262. * a mapping is in progress or because a mapping finished and the
  263. * SW cleared it. So the protocol is to always wait & clear.
  264. */
  265. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  266. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  267. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  268. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  269. cpu_relax();
  270. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  271. /* Mapping vmid to pasid also for IH block */
  272. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  273. return 0;
  274. }
  275. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  276. {
  277. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  278. uint32_t mec;
  279. uint32_t pipe;
  280. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  281. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  282. lock_srbm(kgd, mec, pipe, 0, 0);
  283. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  284. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  285. unlock_srbm(kgd);
  286. return 0;
  287. }
  288. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  289. {
  290. uint32_t retval;
  291. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  292. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  293. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  294. return retval;
  295. }
  296. static inline struct cik_mqd *get_mqd(void *mqd)
  297. {
  298. return (struct cik_mqd *)mqd;
  299. }
  300. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  301. {
  302. return (struct cik_sdma_rlc_registers *)mqd;
  303. }
  304. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  305. uint32_t queue_id, uint32_t __user *wptr,
  306. uint32_t wptr_shift, uint32_t wptr_mask,
  307. struct mm_struct *mm)
  308. {
  309. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  310. struct cik_mqd *m;
  311. uint32_t *mqd_hqd;
  312. uint32_t reg, wptr_val, data;
  313. bool valid_wptr = false;
  314. m = get_mqd(mqd);
  315. acquire_queue(kgd, pipe_id, queue_id);
  316. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
  317. mqd_hqd = &m->cp_mqd_base_addr_lo;
  318. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  319. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  320. /* Copy userspace write pointer value to register.
  321. * Activate doorbell logic to monitor subsequent changes.
  322. */
  323. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  324. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  325. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  326. /* read_user_ptr may take the mm->mmap_sem.
  327. * release srbm_mutex to avoid circular dependency between
  328. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  329. */
  330. release_queue(kgd);
  331. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  332. acquire_queue(kgd, pipe_id, queue_id);
  333. if (valid_wptr)
  334. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  335. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  336. WREG32(mmCP_HQD_ACTIVE, data);
  337. release_queue(kgd);
  338. return 0;
  339. }
  340. static int kgd_hqd_dump(struct kgd_dev *kgd,
  341. uint32_t pipe_id, uint32_t queue_id,
  342. uint32_t (**dump)[2], uint32_t *n_regs)
  343. {
  344. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  345. uint32_t i = 0, reg;
  346. #define HQD_N_REGS (35+4)
  347. #define DUMP_REG(addr) do { \
  348. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  349. break; \
  350. (*dump)[i][0] = (addr) << 2; \
  351. (*dump)[i++][1] = RREG32(addr); \
  352. } while (0)
  353. *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
  354. if (*dump == NULL)
  355. return -ENOMEM;
  356. acquire_queue(kgd, pipe_id, queue_id);
  357. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  358. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  359. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  360. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  361. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  362. DUMP_REG(reg);
  363. release_queue(kgd);
  364. WARN_ON_ONCE(i != HQD_N_REGS);
  365. *n_regs = i;
  366. return 0;
  367. }
  368. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  369. uint32_t __user *wptr, struct mm_struct *mm)
  370. {
  371. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  372. struct cik_sdma_rlc_registers *m;
  373. unsigned long end_jiffies;
  374. uint32_t sdma_base_addr;
  375. uint32_t data;
  376. m = get_sdma_mqd(mqd);
  377. sdma_base_addr = get_sdma_base_addr(m);
  378. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  379. m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  380. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  381. while (true) {
  382. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  383. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  384. break;
  385. if (time_after(jiffies, end_jiffies))
  386. return -ETIME;
  387. usleep_range(500, 1000);
  388. }
  389. if (m->sdma_engine_id) {
  390. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  391. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  392. RESUME_CTX, 0);
  393. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  394. } else {
  395. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  396. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  397. RESUME_CTX, 0);
  398. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  399. }
  400. data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
  401. ENABLE, 1);
  402. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  403. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
  404. if (read_user_wptr(mm, wptr, data))
  405. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  406. else
  407. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  408. m->sdma_rlc_rb_rptr);
  409. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  410. m->sdma_rlc_virtual_addr);
  411. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
  412. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  413. m->sdma_rlc_rb_base_hi);
  414. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  415. m->sdma_rlc_rb_rptr_addr_lo);
  416. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  417. m->sdma_rlc_rb_rptr_addr_hi);
  418. data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
  419. RB_ENABLE, 1);
  420. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  421. return 0;
  422. }
  423. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  424. uint32_t engine_id, uint32_t queue_id,
  425. uint32_t (**dump)[2], uint32_t *n_regs)
  426. {
  427. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  428. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  429. queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  430. uint32_t i = 0, reg;
  431. #undef HQD_N_REGS
  432. #define HQD_N_REGS (19+4)
  433. *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
  434. if (*dump == NULL)
  435. return -ENOMEM;
  436. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  437. DUMP_REG(sdma_offset + reg);
  438. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  439. reg++)
  440. DUMP_REG(sdma_offset + reg);
  441. WARN_ON_ONCE(i != HQD_N_REGS);
  442. *n_regs = i;
  443. return 0;
  444. }
  445. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  446. uint32_t pipe_id, uint32_t queue_id)
  447. {
  448. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  449. uint32_t act;
  450. bool retval = false;
  451. uint32_t low, high;
  452. acquire_queue(kgd, pipe_id, queue_id);
  453. act = RREG32(mmCP_HQD_ACTIVE);
  454. if (act) {
  455. low = lower_32_bits(queue_address >> 8);
  456. high = upper_32_bits(queue_address >> 8);
  457. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  458. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  459. retval = true;
  460. }
  461. release_queue(kgd);
  462. return retval;
  463. }
  464. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  465. {
  466. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  467. struct cik_sdma_rlc_registers *m;
  468. uint32_t sdma_base_addr;
  469. uint32_t sdma_rlc_rb_cntl;
  470. m = get_sdma_mqd(mqd);
  471. sdma_base_addr = get_sdma_base_addr(m);
  472. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  473. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  474. return true;
  475. return false;
  476. }
  477. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  478. enum kfd_preempt_type reset_type,
  479. unsigned int utimeout, uint32_t pipe_id,
  480. uint32_t queue_id)
  481. {
  482. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  483. uint32_t temp;
  484. enum hqd_dequeue_request_type type;
  485. unsigned long flags, end_jiffies;
  486. int retry;
  487. if (adev->in_gpu_reset)
  488. return -EIO;
  489. acquire_queue(kgd, pipe_id, queue_id);
  490. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  491. switch (reset_type) {
  492. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  493. type = DRAIN_PIPE;
  494. break;
  495. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  496. type = RESET_WAVES;
  497. break;
  498. default:
  499. type = DRAIN_PIPE;
  500. break;
  501. }
  502. /* Workaround: If IQ timer is active and the wait time is close to or
  503. * equal to 0, dequeueing is not safe. Wait until either the wait time
  504. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  505. * cleared before continuing. Also, ensure wait times are set to at
  506. * least 0x3.
  507. */
  508. local_irq_save(flags);
  509. preempt_disable();
  510. retry = 5000; /* wait for 500 usecs at maximum */
  511. while (true) {
  512. temp = RREG32(mmCP_HQD_IQ_TIMER);
  513. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  514. pr_debug("HW is processing IQ\n");
  515. goto loop;
  516. }
  517. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  518. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  519. == 3) /* SEM-rearm is safe */
  520. break;
  521. /* Wait time 3 is safe for CP, but our MMIO read/write
  522. * time is close to 1 microsecond, so check for 10 to
  523. * leave more buffer room
  524. */
  525. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  526. >= 10)
  527. break;
  528. pr_debug("IQ timer is active\n");
  529. } else
  530. break;
  531. loop:
  532. if (!retry) {
  533. pr_err("CP HQD IQ timer status time out\n");
  534. break;
  535. }
  536. ndelay(100);
  537. --retry;
  538. }
  539. retry = 1000;
  540. while (true) {
  541. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  542. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  543. break;
  544. pr_debug("Dequeue request is pending\n");
  545. if (!retry) {
  546. pr_err("CP HQD dequeue request time out\n");
  547. break;
  548. }
  549. ndelay(100);
  550. --retry;
  551. }
  552. local_irq_restore(flags);
  553. preempt_enable();
  554. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  555. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  556. while (true) {
  557. temp = RREG32(mmCP_HQD_ACTIVE);
  558. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  559. break;
  560. if (time_after(jiffies, end_jiffies)) {
  561. pr_err("cp queue preemption time out\n");
  562. release_queue(kgd);
  563. return -ETIME;
  564. }
  565. usleep_range(500, 1000);
  566. }
  567. release_queue(kgd);
  568. return 0;
  569. }
  570. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  571. unsigned int utimeout)
  572. {
  573. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  574. struct cik_sdma_rlc_registers *m;
  575. uint32_t sdma_base_addr;
  576. uint32_t temp;
  577. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  578. m = get_sdma_mqd(mqd);
  579. sdma_base_addr = get_sdma_base_addr(m);
  580. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  581. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  582. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  583. while (true) {
  584. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  585. if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  586. break;
  587. if (time_after(jiffies, end_jiffies))
  588. return -ETIME;
  589. usleep_range(500, 1000);
  590. }
  591. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  592. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  593. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  594. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  595. m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  596. return 0;
  597. }
  598. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  599. {
  600. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  601. union TCP_WATCH_CNTL_BITS cntl;
  602. unsigned int i;
  603. cntl.u32All = 0;
  604. cntl.bitfields.valid = 0;
  605. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  606. cntl.bitfields.atc = 1;
  607. /* Turning off this address until we set all the registers */
  608. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  609. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  610. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  611. return 0;
  612. }
  613. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  614. unsigned int watch_point_id,
  615. uint32_t cntl_val,
  616. uint32_t addr_hi,
  617. uint32_t addr_lo)
  618. {
  619. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  620. union TCP_WATCH_CNTL_BITS cntl;
  621. cntl.u32All = cntl_val;
  622. /* Turning off this watch point until we set all the registers */
  623. cntl.bitfields.valid = 0;
  624. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  625. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  626. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  627. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  628. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  629. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  630. /* Enable the watch point */
  631. cntl.bitfields.valid = 1;
  632. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  633. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  634. return 0;
  635. }
  636. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  637. uint32_t gfx_index_val,
  638. uint32_t sq_cmd)
  639. {
  640. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  641. uint32_t data;
  642. mutex_lock(&adev->grbm_idx_mutex);
  643. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  644. WREG32(mmSQ_CMD, sq_cmd);
  645. /* Restore the GRBM_GFX_INDEX register */
  646. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  647. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  648. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  649. WREG32(mmGRBM_GFX_INDEX, data);
  650. mutex_unlock(&adev->grbm_idx_mutex);
  651. return 0;
  652. }
  653. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  654. unsigned int watch_point_id,
  655. unsigned int reg_offset)
  656. {
  657. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  658. }
  659. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  660. uint8_t vmid)
  661. {
  662. uint32_t reg;
  663. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  664. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  665. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  666. }
  667. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  668. uint8_t vmid)
  669. {
  670. uint32_t reg;
  671. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  672. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  673. return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
  674. }
  675. static void set_scratch_backing_va(struct kgd_dev *kgd,
  676. uint64_t va, uint32_t vmid)
  677. {
  678. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  679. lock_srbm(kgd, 0, 0, 0, vmid);
  680. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  681. unlock_srbm(kgd);
  682. }
  683. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  684. {
  685. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  686. const union amdgpu_firmware_header *hdr;
  687. switch (type) {
  688. case KGD_ENGINE_PFP:
  689. hdr = (const union amdgpu_firmware_header *)
  690. adev->gfx.pfp_fw->data;
  691. break;
  692. case KGD_ENGINE_ME:
  693. hdr = (const union amdgpu_firmware_header *)
  694. adev->gfx.me_fw->data;
  695. break;
  696. case KGD_ENGINE_CE:
  697. hdr = (const union amdgpu_firmware_header *)
  698. adev->gfx.ce_fw->data;
  699. break;
  700. case KGD_ENGINE_MEC1:
  701. hdr = (const union amdgpu_firmware_header *)
  702. adev->gfx.mec_fw->data;
  703. break;
  704. case KGD_ENGINE_MEC2:
  705. hdr = (const union amdgpu_firmware_header *)
  706. adev->gfx.mec2_fw->data;
  707. break;
  708. case KGD_ENGINE_RLC:
  709. hdr = (const union amdgpu_firmware_header *)
  710. adev->gfx.rlc_fw->data;
  711. break;
  712. case KGD_ENGINE_SDMA1:
  713. hdr = (const union amdgpu_firmware_header *)
  714. adev->sdma.instance[0].fw->data;
  715. break;
  716. case KGD_ENGINE_SDMA2:
  717. hdr = (const union amdgpu_firmware_header *)
  718. adev->sdma.instance[1].fw->data;
  719. break;
  720. default:
  721. return 0;
  722. }
  723. if (hdr == NULL)
  724. return 0;
  725. /* Only 12 bit in use*/
  726. return hdr->common.ucode_version;
  727. }
  728. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  729. uint64_t page_table_base)
  730. {
  731. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  732. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  733. pr_err("trying to set page table base for wrong VMID\n");
  734. return;
  735. }
  736. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
  737. lower_32_bits(page_table_base));
  738. }
  739. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
  740. {
  741. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  742. int vmid;
  743. unsigned int tmp;
  744. if (adev->in_gpu_reset)
  745. return -EIO;
  746. for (vmid = 0; vmid < 16; vmid++) {
  747. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
  748. continue;
  749. tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  750. if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
  751. (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
  752. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  753. RREG32(mmVM_INVALIDATE_RESPONSE);
  754. break;
  755. }
  756. }
  757. return 0;
  758. }
  759. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
  760. {
  761. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  762. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  763. pr_err("non kfd vmid\n");
  764. return 0;
  765. }
  766. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  767. RREG32(mmVM_INVALIDATE_RESPONSE);
  768. return 0;
  769. }
  770. /**
  771. * read_vmid_from_vmfault_reg - read vmid from register
  772. *
  773. * adev: amdgpu_device pointer
  774. * @vmid: vmid pointer
  775. * read vmid from register (CIK).
  776. */
  777. static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
  778. {
  779. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  780. uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  781. return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  782. }