123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- /*
- * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- */
- #include <linux/efi.h>
- #include <asm/efi.h>
- #include "efistub.h"
- efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
- {
- int block;
- /* non-LPAE kernels can run anywhere */
- if (!IS_ENABLED(CONFIG_ARM_LPAE))
- return EFI_SUCCESS;
- /* LPAE kernels need compatible hardware */
- block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
- if (block < 5) {
- pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
- return EFI_UNSUPPORTED;
- }
- return EFI_SUCCESS;
- }
- static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
- struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
- {
- struct screen_info *si;
- efi_status_t status;
- /*
- * Unlike on arm64, where we can directly fill out the screen_info
- * structure from the stub, we need to allocate a buffer to hold
- * its contents while we hand over to the kernel proper from the
- * decompressor.
- */
- status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
- sizeof(*si), (void **)&si);
- if (status != EFI_SUCCESS)
- return NULL;
- status = efi_call_early(install_configuration_table,
- &screen_info_guid, si);
- if (status == EFI_SUCCESS)
- return si;
- efi_call_early(free_pool, si);
- return NULL;
- }
- void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
- {
- if (!si)
- return;
- efi_call_early(install_configuration_table, &screen_info_guid, NULL);
- efi_call_early(free_pool, si);
- }
- static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
- unsigned long dram_base,
- unsigned long *reserve_addr,
- unsigned long *reserve_size)
- {
- efi_physical_addr_t alloc_addr;
- efi_memory_desc_t *memory_map;
- unsigned long nr_pages, map_size, desc_size, buff_size;
- efi_status_t status;
- unsigned long l;
- struct efi_boot_memmap map = {
- .map = &memory_map,
- .map_size = &map_size,
- .desc_size = &desc_size,
- .desc_ver = NULL,
- .key_ptr = NULL,
- .buff_size = &buff_size,
- };
- /*
- * Reserve memory for the uncompressed kernel image. This is
- * all that prevents any future allocations from conflicting
- * with the kernel. Since we can't tell from the compressed
- * image how much DRAM the kernel actually uses (due to BSS
- * size uncertainty) we allocate the maximum possible size.
- * Do this very early, as prints can cause memory allocations
- * that may conflict with this.
- */
- alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
- nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
- status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
- EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
- if (status == EFI_SUCCESS) {
- if (alloc_addr == dram_base) {
- *reserve_addr = alloc_addr;
- *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
- return EFI_SUCCESS;
- }
- /*
- * If we end up here, the allocation succeeded but starts below
- * dram_base. This can only occur if the real base of DRAM is
- * not a multiple of 128 MB, in which case dram_base will have
- * been rounded up. Since this implies that a part of the region
- * was already occupied, we need to fall through to the code
- * below to ensure that the existing allocations don't conflict.
- * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
- * EFI_LOADER_DATA, which we wouldn't able to distinguish from
- * allocations that we want to disallow.
- */
- }
- /*
- * If the allocation above failed, we may still be able to proceed:
- * if the only allocations in the region are of types that will be
- * released to the OS after ExitBootServices(), the decompressor can
- * safely overwrite them.
- */
- status = efi_get_memory_map(sys_table_arg, &map);
- if (status != EFI_SUCCESS) {
- pr_efi_err(sys_table_arg,
- "reserve_kernel_base(): Unable to retrieve memory map.\n");
- return status;
- }
- for (l = 0; l < map_size; l += desc_size) {
- efi_memory_desc_t *desc;
- u64 start, end;
- desc = (void *)memory_map + l;
- start = desc->phys_addr;
- end = start + desc->num_pages * EFI_PAGE_SIZE;
- /* Skip if entry does not intersect with region */
- if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
- end <= dram_base)
- continue;
- switch (desc->type) {
- case EFI_BOOT_SERVICES_CODE:
- case EFI_BOOT_SERVICES_DATA:
- /* Ignore types that are released to the OS anyway */
- continue;
- case EFI_CONVENTIONAL_MEMORY:
- /*
- * Reserve the intersection between this entry and the
- * region.
- */
- start = max(start, (u64)dram_base);
- end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
- status = efi_call_early(allocate_pages,
- EFI_ALLOCATE_ADDRESS,
- EFI_LOADER_DATA,
- (end - start) / EFI_PAGE_SIZE,
- &start);
- if (status != EFI_SUCCESS) {
- pr_efi_err(sys_table_arg,
- "reserve_kernel_base(): alloc failed.\n");
- goto out;
- }
- break;
- case EFI_LOADER_CODE:
- case EFI_LOADER_DATA:
- /*
- * These regions may be released and reallocated for
- * another purpose (including EFI_RUNTIME_SERVICE_DATA)
- * at any time during the execution of the OS loader,
- * so we cannot consider them as safe.
- */
- default:
- /*
- * Treat any other allocation in the region as unsafe */
- status = EFI_OUT_OF_RESOURCES;
- goto out;
- }
- }
- status = EFI_SUCCESS;
- out:
- efi_call_early(free_pool, memory_map);
- return status;
- }
- efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
- unsigned long *image_addr,
- unsigned long *image_size,
- unsigned long *reserve_addr,
- unsigned long *reserve_size,
- unsigned long dram_base,
- efi_loaded_image_t *image)
- {
- efi_status_t status;
- /*
- * Verify that the DRAM base address is compatible with the ARM
- * boot protocol, which determines the base of DRAM by masking
- * off the low 27 bits of the address at which the zImage is
- * loaded. These assumptions are made by the decompressor,
- * before any memory map is available.
- */
- dram_base = round_up(dram_base, SZ_128M);
- status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
- reserve_size);
- if (status != EFI_SUCCESS) {
- pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
- return status;
- }
- /*
- * Relocate the zImage, so that it appears in the lowest 128 MB
- * memory window.
- */
- *image_size = image->image_size;
- status = efi_relocate_kernel(sys_table, image_addr, *image_size,
- *image_size,
- dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
- if (status != EFI_SUCCESS) {
- pr_efi_err(sys_table, "Failed to relocate kernel.\n");
- efi_free(sys_table, *reserve_size, *reserve_addr);
- *reserve_size = 0;
- return status;
- }
- /*
- * Check to see if we were able to allocate memory low enough
- * in memory. The kernel determines the base of DRAM from the
- * address at which the zImage is loaded.
- */
- if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
- pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
- efi_free(sys_table, *reserve_size, *reserve_addr);
- *reserve_size = 0;
- efi_free(sys_table, *image_size, *image_addr);
- *image_size = 0;
- return EFI_LOAD_ERROR;
- }
- return EFI_SUCCESS;
- }
|