safexcel_cipher.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2017 Marvell
  4. *
  5. * Antoine Tenart <antoine.tenart@free-electrons.com>
  6. */
  7. #include <linux/device.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/dmapool.h>
  10. #include <crypto/aead.h>
  11. #include <crypto/aes.h>
  12. #include <crypto/authenc.h>
  13. #include <crypto/des.h>
  14. #include <crypto/sha.h>
  15. #include <crypto/skcipher.h>
  16. #include <crypto/internal/aead.h>
  17. #include <crypto/internal/skcipher.h>
  18. #include "safexcel.h"
  19. enum safexcel_cipher_direction {
  20. SAFEXCEL_ENCRYPT,
  21. SAFEXCEL_DECRYPT,
  22. };
  23. enum safexcel_cipher_alg {
  24. SAFEXCEL_DES,
  25. SAFEXCEL_3DES,
  26. SAFEXCEL_AES,
  27. };
  28. struct safexcel_cipher_ctx {
  29. struct safexcel_context base;
  30. struct safexcel_crypto_priv *priv;
  31. u32 mode;
  32. enum safexcel_cipher_alg alg;
  33. bool aead;
  34. __le32 key[8];
  35. unsigned int key_len;
  36. /* All the below is AEAD specific */
  37. u32 hash_alg;
  38. u32 state_sz;
  39. u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
  40. u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
  41. };
  42. struct safexcel_cipher_req {
  43. enum safexcel_cipher_direction direction;
  44. bool needs_inv;
  45. };
  46. static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  47. struct safexcel_command_desc *cdesc,
  48. u32 length)
  49. {
  50. struct safexcel_token *token;
  51. unsigned offset = 0;
  52. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  53. switch (ctx->alg) {
  54. case SAFEXCEL_DES:
  55. offset = DES_BLOCK_SIZE / sizeof(u32);
  56. memcpy(cdesc->control_data.token, iv, DES_BLOCK_SIZE);
  57. cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
  58. break;
  59. case SAFEXCEL_3DES:
  60. offset = DES3_EDE_BLOCK_SIZE / sizeof(u32);
  61. memcpy(cdesc->control_data.token, iv, DES3_EDE_BLOCK_SIZE);
  62. cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
  63. break;
  64. case SAFEXCEL_AES:
  65. offset = AES_BLOCK_SIZE / sizeof(u32);
  66. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  67. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  68. break;
  69. }
  70. }
  71. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  72. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  73. token[0].packet_length = length;
  74. token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
  75. EIP197_TOKEN_STAT_LAST_HASH;
  76. token[0].instructions = EIP197_TOKEN_INS_LAST |
  77. EIP197_TOKEN_INS_TYPE_CRYTO |
  78. EIP197_TOKEN_INS_TYPE_OUTPUT;
  79. }
  80. static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  81. struct safexcel_command_desc *cdesc,
  82. enum safexcel_cipher_direction direction,
  83. u32 cryptlen, u32 assoclen, u32 digestsize)
  84. {
  85. struct safexcel_token *token;
  86. unsigned offset = 0;
  87. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  88. offset = AES_BLOCK_SIZE / sizeof(u32);
  89. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  90. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  91. }
  92. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  93. if (direction == SAFEXCEL_DECRYPT)
  94. cryptlen -= digestsize;
  95. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  96. token[0].packet_length = assoclen;
  97. token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
  98. EIP197_TOKEN_INS_TYPE_OUTPUT;
  99. token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  100. token[1].packet_length = cryptlen;
  101. token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
  102. token[1].instructions = EIP197_TOKEN_INS_LAST |
  103. EIP197_TOKEN_INS_TYPE_CRYTO |
  104. EIP197_TOKEN_INS_TYPE_HASH |
  105. EIP197_TOKEN_INS_TYPE_OUTPUT;
  106. if (direction == SAFEXCEL_ENCRYPT) {
  107. token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
  108. token[2].packet_length = digestsize;
  109. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  110. EIP197_TOKEN_STAT_LAST_PACKET;
  111. token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
  112. EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  113. } else {
  114. token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
  115. token[2].packet_length = digestsize;
  116. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  117. EIP197_TOKEN_STAT_LAST_PACKET;
  118. token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  119. token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
  120. token[3].packet_length = digestsize |
  121. EIP197_TOKEN_HASH_RESULT_VERIFY;
  122. token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
  123. EIP197_TOKEN_STAT_LAST_PACKET;
  124. token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
  125. }
  126. }
  127. static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
  128. const u8 *key, unsigned int len)
  129. {
  130. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  131. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  132. struct safexcel_crypto_priv *priv = ctx->priv;
  133. struct crypto_aes_ctx aes;
  134. int ret, i;
  135. ret = crypto_aes_expand_key(&aes, key, len);
  136. if (ret) {
  137. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  138. return ret;
  139. }
  140. if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
  141. for (i = 0; i < len / sizeof(u32); i++) {
  142. if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
  143. ctx->base.needs_inv = true;
  144. break;
  145. }
  146. }
  147. }
  148. for (i = 0; i < len / sizeof(u32); i++)
  149. ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
  150. ctx->key_len = len;
  151. memzero_explicit(&aes, sizeof(aes));
  152. return 0;
  153. }
  154. static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
  155. unsigned int len)
  156. {
  157. struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
  158. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  159. struct safexcel_ahash_export_state istate, ostate;
  160. struct safexcel_crypto_priv *priv = ctx->priv;
  161. struct crypto_authenc_keys keys;
  162. if (crypto_authenc_extractkeys(&keys, key, len) != 0)
  163. goto badkey;
  164. if (keys.enckeylen > sizeof(ctx->key))
  165. goto badkey;
  166. /* Encryption key */
  167. if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
  168. memcmp(ctx->key, keys.enckey, keys.enckeylen))
  169. ctx->base.needs_inv = true;
  170. /* Auth key */
  171. switch (ctx->hash_alg) {
  172. case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
  173. if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
  174. keys.authkeylen, &istate, &ostate))
  175. goto badkey;
  176. break;
  177. case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
  178. if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
  179. keys.authkeylen, &istate, &ostate))
  180. goto badkey;
  181. break;
  182. case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
  183. if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
  184. keys.authkeylen, &istate, &ostate))
  185. goto badkey;
  186. break;
  187. case CONTEXT_CONTROL_CRYPTO_ALG_SHA384:
  188. if (safexcel_hmac_setkey("safexcel-sha384", keys.authkey,
  189. keys.authkeylen, &istate, &ostate))
  190. goto badkey;
  191. break;
  192. case CONTEXT_CONTROL_CRYPTO_ALG_SHA512:
  193. if (safexcel_hmac_setkey("safexcel-sha512", keys.authkey,
  194. keys.authkeylen, &istate, &ostate))
  195. goto badkey;
  196. break;
  197. default:
  198. dev_err(priv->dev, "aead: unsupported hash algorithm\n");
  199. goto badkey;
  200. }
  201. crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
  202. CRYPTO_TFM_RES_MASK);
  203. if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
  204. (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
  205. memcmp(ctx->opad, ostate.state, ctx->state_sz)))
  206. ctx->base.needs_inv = true;
  207. /* Now copy the keys into the context */
  208. memcpy(ctx->key, keys.enckey, keys.enckeylen);
  209. ctx->key_len = keys.enckeylen;
  210. memcpy(ctx->ipad, &istate.state, ctx->state_sz);
  211. memcpy(ctx->opad, &ostate.state, ctx->state_sz);
  212. memzero_explicit(&keys, sizeof(keys));
  213. return 0;
  214. badkey:
  215. crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  216. memzero_explicit(&keys, sizeof(keys));
  217. return -EINVAL;
  218. }
  219. static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
  220. struct crypto_async_request *async,
  221. struct safexcel_cipher_req *sreq,
  222. struct safexcel_command_desc *cdesc)
  223. {
  224. struct safexcel_crypto_priv *priv = ctx->priv;
  225. int ctrl_size;
  226. if (ctx->aead) {
  227. if (sreq->direction == SAFEXCEL_ENCRYPT)
  228. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
  229. else
  230. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
  231. } else {
  232. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
  233. /* The decryption control type is a combination of the
  234. * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
  235. * types.
  236. */
  237. if (sreq->direction == SAFEXCEL_DECRYPT)
  238. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
  239. }
  240. cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
  241. cdesc->control_data.control1 |= ctx->mode;
  242. if (ctx->aead)
  243. cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
  244. ctx->hash_alg;
  245. if (ctx->alg == SAFEXCEL_DES) {
  246. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_DES;
  247. } else if (ctx->alg == SAFEXCEL_3DES) {
  248. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_3DES;
  249. } else if (ctx->alg == SAFEXCEL_AES) {
  250. switch (ctx->key_len) {
  251. case AES_KEYSIZE_128:
  252. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
  253. break;
  254. case AES_KEYSIZE_192:
  255. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
  256. break;
  257. case AES_KEYSIZE_256:
  258. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
  259. break;
  260. default:
  261. dev_err(priv->dev, "aes keysize not supported: %u\n",
  262. ctx->key_len);
  263. return -EINVAL;
  264. }
  265. }
  266. ctrl_size = ctx->key_len / sizeof(u32);
  267. if (ctx->aead)
  268. /* Take in account the ipad+opad digests */
  269. ctrl_size += ctx->state_sz / sizeof(u32) * 2;
  270. cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
  271. return 0;
  272. }
  273. static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
  274. struct crypto_async_request *async,
  275. struct scatterlist *src,
  276. struct scatterlist *dst,
  277. unsigned int cryptlen,
  278. struct safexcel_cipher_req *sreq,
  279. bool *should_complete, int *ret)
  280. {
  281. struct safexcel_result_desc *rdesc;
  282. int ndesc = 0;
  283. *ret = 0;
  284. do {
  285. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  286. if (IS_ERR(rdesc)) {
  287. dev_err(priv->dev,
  288. "cipher: result: could not retrieve the result descriptor\n");
  289. *ret = PTR_ERR(rdesc);
  290. break;
  291. }
  292. if (likely(!*ret))
  293. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  294. ndesc++;
  295. } while (!rdesc->last_seg);
  296. safexcel_complete(priv, ring);
  297. if (src == dst) {
  298. dma_unmap_sg(priv->dev, src,
  299. sg_nents_for_len(src, cryptlen),
  300. DMA_BIDIRECTIONAL);
  301. } else {
  302. dma_unmap_sg(priv->dev, src,
  303. sg_nents_for_len(src, cryptlen),
  304. DMA_TO_DEVICE);
  305. dma_unmap_sg(priv->dev, dst,
  306. sg_nents_for_len(dst, cryptlen),
  307. DMA_FROM_DEVICE);
  308. }
  309. *should_complete = true;
  310. return ndesc;
  311. }
  312. static int safexcel_send_req(struct crypto_async_request *base, int ring,
  313. struct safexcel_cipher_req *sreq,
  314. struct scatterlist *src, struct scatterlist *dst,
  315. unsigned int cryptlen, unsigned int assoclen,
  316. unsigned int digestsize, u8 *iv, int *commands,
  317. int *results)
  318. {
  319. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  320. struct safexcel_crypto_priv *priv = ctx->priv;
  321. struct safexcel_command_desc *cdesc;
  322. struct safexcel_result_desc *rdesc, *first_rdesc = NULL;
  323. struct scatterlist *sg;
  324. unsigned int totlen = cryptlen + assoclen;
  325. int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
  326. int i, ret = 0;
  327. if (src == dst) {
  328. nr_src = dma_map_sg(priv->dev, src,
  329. sg_nents_for_len(src, totlen),
  330. DMA_BIDIRECTIONAL);
  331. nr_dst = nr_src;
  332. if (!nr_src)
  333. return -EINVAL;
  334. } else {
  335. nr_src = dma_map_sg(priv->dev, src,
  336. sg_nents_for_len(src, totlen),
  337. DMA_TO_DEVICE);
  338. if (!nr_src)
  339. return -EINVAL;
  340. nr_dst = dma_map_sg(priv->dev, dst,
  341. sg_nents_for_len(dst, totlen),
  342. DMA_FROM_DEVICE);
  343. if (!nr_dst) {
  344. dma_unmap_sg(priv->dev, src,
  345. sg_nents_for_len(src, totlen),
  346. DMA_TO_DEVICE);
  347. return -EINVAL;
  348. }
  349. }
  350. memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
  351. if (ctx->aead) {
  352. memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
  353. ctx->ipad, ctx->state_sz);
  354. memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
  355. ctx->opad, ctx->state_sz);
  356. }
  357. /* command descriptors */
  358. for_each_sg(src, sg, nr_src, i) {
  359. int len = sg_dma_len(sg);
  360. /* Do not overflow the request */
  361. if (queued - len < 0)
  362. len = queued;
  363. cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
  364. sg_dma_address(sg), len, totlen,
  365. ctx->base.ctxr_dma);
  366. if (IS_ERR(cdesc)) {
  367. /* No space left in the command descriptor ring */
  368. ret = PTR_ERR(cdesc);
  369. goto cdesc_rollback;
  370. }
  371. n_cdesc++;
  372. if (n_cdesc == 1) {
  373. safexcel_context_control(ctx, base, sreq, cdesc);
  374. if (ctx->aead)
  375. safexcel_aead_token(ctx, iv, cdesc,
  376. sreq->direction, cryptlen,
  377. assoclen, digestsize);
  378. else
  379. safexcel_skcipher_token(ctx, iv, cdesc,
  380. cryptlen);
  381. }
  382. queued -= len;
  383. if (!queued)
  384. break;
  385. }
  386. /* result descriptors */
  387. for_each_sg(dst, sg, nr_dst, i) {
  388. bool first = !i, last = (i == nr_dst - 1);
  389. u32 len = sg_dma_len(sg);
  390. rdesc = safexcel_add_rdesc(priv, ring, first, last,
  391. sg_dma_address(sg), len);
  392. if (IS_ERR(rdesc)) {
  393. /* No space left in the result descriptor ring */
  394. ret = PTR_ERR(rdesc);
  395. goto rdesc_rollback;
  396. }
  397. if (first)
  398. first_rdesc = rdesc;
  399. n_rdesc++;
  400. }
  401. safexcel_rdr_req_set(priv, ring, first_rdesc, base);
  402. *commands = n_cdesc;
  403. *results = n_rdesc;
  404. return 0;
  405. rdesc_rollback:
  406. for (i = 0; i < n_rdesc; i++)
  407. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
  408. cdesc_rollback:
  409. for (i = 0; i < n_cdesc; i++)
  410. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
  411. if (src == dst) {
  412. dma_unmap_sg(priv->dev, src,
  413. sg_nents_for_len(src, totlen),
  414. DMA_BIDIRECTIONAL);
  415. } else {
  416. dma_unmap_sg(priv->dev, src,
  417. sg_nents_for_len(src, totlen),
  418. DMA_TO_DEVICE);
  419. dma_unmap_sg(priv->dev, dst,
  420. sg_nents_for_len(dst, totlen),
  421. DMA_FROM_DEVICE);
  422. }
  423. return ret;
  424. }
  425. static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
  426. int ring,
  427. struct crypto_async_request *base,
  428. bool *should_complete, int *ret)
  429. {
  430. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  431. struct safexcel_result_desc *rdesc;
  432. int ndesc = 0, enq_ret;
  433. *ret = 0;
  434. do {
  435. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  436. if (IS_ERR(rdesc)) {
  437. dev_err(priv->dev,
  438. "cipher: invalidate: could not retrieve the result descriptor\n");
  439. *ret = PTR_ERR(rdesc);
  440. break;
  441. }
  442. if (likely(!*ret))
  443. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  444. ndesc++;
  445. } while (!rdesc->last_seg);
  446. safexcel_complete(priv, ring);
  447. if (ctx->base.exit_inv) {
  448. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  449. ctx->base.ctxr_dma);
  450. *should_complete = true;
  451. return ndesc;
  452. }
  453. ring = safexcel_select_ring(priv);
  454. ctx->base.ring = ring;
  455. spin_lock_bh(&priv->ring[ring].queue_lock);
  456. enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  457. spin_unlock_bh(&priv->ring[ring].queue_lock);
  458. if (enq_ret != -EINPROGRESS)
  459. *ret = enq_ret;
  460. queue_work(priv->ring[ring].workqueue,
  461. &priv->ring[ring].work_data.work);
  462. *should_complete = false;
  463. return ndesc;
  464. }
  465. static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
  466. int ring,
  467. struct crypto_async_request *async,
  468. bool *should_complete, int *ret)
  469. {
  470. struct skcipher_request *req = skcipher_request_cast(async);
  471. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  472. int err;
  473. if (sreq->needs_inv) {
  474. sreq->needs_inv = false;
  475. err = safexcel_handle_inv_result(priv, ring, async,
  476. should_complete, ret);
  477. } else {
  478. err = safexcel_handle_req_result(priv, ring, async, req->src,
  479. req->dst, req->cryptlen, sreq,
  480. should_complete, ret);
  481. }
  482. return err;
  483. }
  484. static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
  485. int ring,
  486. struct crypto_async_request *async,
  487. bool *should_complete, int *ret)
  488. {
  489. struct aead_request *req = aead_request_cast(async);
  490. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  491. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  492. int err;
  493. if (sreq->needs_inv) {
  494. sreq->needs_inv = false;
  495. err = safexcel_handle_inv_result(priv, ring, async,
  496. should_complete, ret);
  497. } else {
  498. err = safexcel_handle_req_result(priv, ring, async, req->src,
  499. req->dst,
  500. req->cryptlen + crypto_aead_authsize(tfm),
  501. sreq, should_complete, ret);
  502. }
  503. return err;
  504. }
  505. static int safexcel_cipher_send_inv(struct crypto_async_request *base,
  506. int ring, int *commands, int *results)
  507. {
  508. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  509. struct safexcel_crypto_priv *priv = ctx->priv;
  510. int ret;
  511. ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring);
  512. if (unlikely(ret))
  513. return ret;
  514. *commands = 1;
  515. *results = 1;
  516. return 0;
  517. }
  518. static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
  519. int *commands, int *results)
  520. {
  521. struct skcipher_request *req = skcipher_request_cast(async);
  522. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  523. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  524. struct safexcel_crypto_priv *priv = ctx->priv;
  525. int ret;
  526. BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
  527. if (sreq->needs_inv)
  528. ret = safexcel_cipher_send_inv(async, ring, commands, results);
  529. else
  530. ret = safexcel_send_req(async, ring, sreq, req->src,
  531. req->dst, req->cryptlen, 0, 0, req->iv,
  532. commands, results);
  533. return ret;
  534. }
  535. static int safexcel_aead_send(struct crypto_async_request *async, int ring,
  536. int *commands, int *results)
  537. {
  538. struct aead_request *req = aead_request_cast(async);
  539. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  540. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  541. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  542. struct safexcel_crypto_priv *priv = ctx->priv;
  543. int ret;
  544. BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
  545. if (sreq->needs_inv)
  546. ret = safexcel_cipher_send_inv(async, ring, commands, results);
  547. else
  548. ret = safexcel_send_req(async, ring, sreq, req->src, req->dst,
  549. req->cryptlen, req->assoclen,
  550. crypto_aead_authsize(tfm), req->iv,
  551. commands, results);
  552. return ret;
  553. }
  554. static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
  555. struct crypto_async_request *base,
  556. struct safexcel_cipher_req *sreq,
  557. struct safexcel_inv_result *result)
  558. {
  559. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  560. struct safexcel_crypto_priv *priv = ctx->priv;
  561. int ring = ctx->base.ring;
  562. init_completion(&result->completion);
  563. ctx = crypto_tfm_ctx(base->tfm);
  564. ctx->base.exit_inv = true;
  565. sreq->needs_inv = true;
  566. spin_lock_bh(&priv->ring[ring].queue_lock);
  567. crypto_enqueue_request(&priv->ring[ring].queue, base);
  568. spin_unlock_bh(&priv->ring[ring].queue_lock);
  569. queue_work(priv->ring[ring].workqueue,
  570. &priv->ring[ring].work_data.work);
  571. wait_for_completion(&result->completion);
  572. if (result->error) {
  573. dev_warn(priv->dev,
  574. "cipher: sync: invalidate: completion error %d\n",
  575. result->error);
  576. return result->error;
  577. }
  578. return 0;
  579. }
  580. static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
  581. {
  582. EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
  583. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  584. struct safexcel_inv_result result = {};
  585. memset(req, 0, sizeof(struct skcipher_request));
  586. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  587. safexcel_inv_complete, &result);
  588. skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
  589. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  590. }
  591. static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
  592. {
  593. EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
  594. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  595. struct safexcel_inv_result result = {};
  596. memset(req, 0, sizeof(struct aead_request));
  597. aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  598. safexcel_inv_complete, &result);
  599. aead_request_set_tfm(req, __crypto_aead_cast(tfm));
  600. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  601. }
  602. static int safexcel_queue_req(struct crypto_async_request *base,
  603. struct safexcel_cipher_req *sreq,
  604. enum safexcel_cipher_direction dir, u32 mode,
  605. enum safexcel_cipher_alg alg)
  606. {
  607. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  608. struct safexcel_crypto_priv *priv = ctx->priv;
  609. int ret, ring;
  610. sreq->needs_inv = false;
  611. sreq->direction = dir;
  612. ctx->alg = alg;
  613. ctx->mode = mode;
  614. if (ctx->base.ctxr) {
  615. if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) {
  616. sreq->needs_inv = true;
  617. ctx->base.needs_inv = false;
  618. }
  619. } else {
  620. ctx->base.ring = safexcel_select_ring(priv);
  621. ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
  622. EIP197_GFP_FLAGS(*base),
  623. &ctx->base.ctxr_dma);
  624. if (!ctx->base.ctxr)
  625. return -ENOMEM;
  626. }
  627. ring = ctx->base.ring;
  628. spin_lock_bh(&priv->ring[ring].queue_lock);
  629. ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  630. spin_unlock_bh(&priv->ring[ring].queue_lock);
  631. queue_work(priv->ring[ring].workqueue,
  632. &priv->ring[ring].work_data.work);
  633. return ret;
  634. }
  635. static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
  636. {
  637. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  638. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  639. SAFEXCEL_AES);
  640. }
  641. static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
  642. {
  643. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  644. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  645. SAFEXCEL_AES);
  646. }
  647. static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
  648. {
  649. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  650. struct safexcel_alg_template *tmpl =
  651. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  652. alg.skcipher.base);
  653. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  654. sizeof(struct safexcel_cipher_req));
  655. ctx->priv = tmpl->priv;
  656. ctx->base.send = safexcel_skcipher_send;
  657. ctx->base.handle_result = safexcel_skcipher_handle_result;
  658. return 0;
  659. }
  660. static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
  661. {
  662. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  663. memzero_explicit(ctx->key, sizeof(ctx->key));
  664. /* context not allocated, skip invalidation */
  665. if (!ctx->base.ctxr)
  666. return -ENOMEM;
  667. memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
  668. return 0;
  669. }
  670. static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
  671. {
  672. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  673. struct safexcel_crypto_priv *priv = ctx->priv;
  674. int ret;
  675. if (safexcel_cipher_cra_exit(tfm))
  676. return;
  677. if (priv->flags & EIP197_TRC_CACHE) {
  678. ret = safexcel_skcipher_exit_inv(tfm);
  679. if (ret)
  680. dev_warn(priv->dev, "skcipher: invalidation error %d\n",
  681. ret);
  682. } else {
  683. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  684. ctx->base.ctxr_dma);
  685. }
  686. }
  687. static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
  688. {
  689. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  690. struct safexcel_crypto_priv *priv = ctx->priv;
  691. int ret;
  692. if (safexcel_cipher_cra_exit(tfm))
  693. return;
  694. if (priv->flags & EIP197_TRC_CACHE) {
  695. ret = safexcel_aead_exit_inv(tfm);
  696. if (ret)
  697. dev_warn(priv->dev, "aead: invalidation error %d\n",
  698. ret);
  699. } else {
  700. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  701. ctx->base.ctxr_dma);
  702. }
  703. }
  704. struct safexcel_alg_template safexcel_alg_ecb_aes = {
  705. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  706. .engines = EIP97IES | EIP197B | EIP197D,
  707. .alg.skcipher = {
  708. .setkey = safexcel_skcipher_aes_setkey,
  709. .encrypt = safexcel_ecb_aes_encrypt,
  710. .decrypt = safexcel_ecb_aes_decrypt,
  711. .min_keysize = AES_MIN_KEY_SIZE,
  712. .max_keysize = AES_MAX_KEY_SIZE,
  713. .base = {
  714. .cra_name = "ecb(aes)",
  715. .cra_driver_name = "safexcel-ecb-aes",
  716. .cra_priority = 300,
  717. .cra_flags = CRYPTO_ALG_ASYNC |
  718. CRYPTO_ALG_KERN_DRIVER_ONLY,
  719. .cra_blocksize = AES_BLOCK_SIZE,
  720. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  721. .cra_alignmask = 0,
  722. .cra_init = safexcel_skcipher_cra_init,
  723. .cra_exit = safexcel_skcipher_cra_exit,
  724. .cra_module = THIS_MODULE,
  725. },
  726. },
  727. };
  728. static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
  729. {
  730. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  731. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  732. SAFEXCEL_AES);
  733. }
  734. static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
  735. {
  736. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  737. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  738. SAFEXCEL_AES);
  739. }
  740. struct safexcel_alg_template safexcel_alg_cbc_aes = {
  741. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  742. .engines = EIP97IES | EIP197B | EIP197D,
  743. .alg.skcipher = {
  744. .setkey = safexcel_skcipher_aes_setkey,
  745. .encrypt = safexcel_cbc_aes_encrypt,
  746. .decrypt = safexcel_cbc_aes_decrypt,
  747. .min_keysize = AES_MIN_KEY_SIZE,
  748. .max_keysize = AES_MAX_KEY_SIZE,
  749. .ivsize = AES_BLOCK_SIZE,
  750. .base = {
  751. .cra_name = "cbc(aes)",
  752. .cra_driver_name = "safexcel-cbc-aes",
  753. .cra_priority = 300,
  754. .cra_flags = CRYPTO_ALG_ASYNC |
  755. CRYPTO_ALG_KERN_DRIVER_ONLY,
  756. .cra_blocksize = AES_BLOCK_SIZE,
  757. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  758. .cra_alignmask = 0,
  759. .cra_init = safexcel_skcipher_cra_init,
  760. .cra_exit = safexcel_skcipher_cra_exit,
  761. .cra_module = THIS_MODULE,
  762. },
  763. },
  764. };
  765. static int safexcel_cbc_des_encrypt(struct skcipher_request *req)
  766. {
  767. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  768. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  769. SAFEXCEL_DES);
  770. }
  771. static int safexcel_cbc_des_decrypt(struct skcipher_request *req)
  772. {
  773. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  774. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  775. SAFEXCEL_DES);
  776. }
  777. static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key,
  778. unsigned int len)
  779. {
  780. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  781. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  782. u32 tmp[DES_EXPKEY_WORDS];
  783. int ret;
  784. if (len != DES_KEY_SIZE) {
  785. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  786. return -EINVAL;
  787. }
  788. ret = des_ekey(tmp, key);
  789. if (!ret && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
  790. tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
  791. return -EINVAL;
  792. }
  793. /* if context exits and key changed, need to invalidate it */
  794. if (ctx->base.ctxr_dma)
  795. if (memcmp(ctx->key, key, len))
  796. ctx->base.needs_inv = true;
  797. memcpy(ctx->key, key, len);
  798. ctx->key_len = len;
  799. return 0;
  800. }
  801. struct safexcel_alg_template safexcel_alg_cbc_des = {
  802. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  803. .engines = EIP97IES | EIP197B | EIP197D,
  804. .alg.skcipher = {
  805. .setkey = safexcel_des_setkey,
  806. .encrypt = safexcel_cbc_des_encrypt,
  807. .decrypt = safexcel_cbc_des_decrypt,
  808. .min_keysize = DES_KEY_SIZE,
  809. .max_keysize = DES_KEY_SIZE,
  810. .ivsize = DES_BLOCK_SIZE,
  811. .base = {
  812. .cra_name = "cbc(des)",
  813. .cra_driver_name = "safexcel-cbc-des",
  814. .cra_priority = 300,
  815. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  816. CRYPTO_ALG_KERN_DRIVER_ONLY,
  817. .cra_blocksize = DES_BLOCK_SIZE,
  818. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  819. .cra_alignmask = 0,
  820. .cra_init = safexcel_skcipher_cra_init,
  821. .cra_exit = safexcel_skcipher_cra_exit,
  822. .cra_module = THIS_MODULE,
  823. },
  824. },
  825. };
  826. static int safexcel_ecb_des_encrypt(struct skcipher_request *req)
  827. {
  828. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  829. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  830. SAFEXCEL_DES);
  831. }
  832. static int safexcel_ecb_des_decrypt(struct skcipher_request *req)
  833. {
  834. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  835. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  836. SAFEXCEL_DES);
  837. }
  838. struct safexcel_alg_template safexcel_alg_ecb_des = {
  839. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  840. .engines = EIP97IES | EIP197B | EIP197D,
  841. .alg.skcipher = {
  842. .setkey = safexcel_des_setkey,
  843. .encrypt = safexcel_ecb_des_encrypt,
  844. .decrypt = safexcel_ecb_des_decrypt,
  845. .min_keysize = DES_KEY_SIZE,
  846. .max_keysize = DES_KEY_SIZE,
  847. .ivsize = DES_BLOCK_SIZE,
  848. .base = {
  849. .cra_name = "ecb(des)",
  850. .cra_driver_name = "safexcel-ecb-des",
  851. .cra_priority = 300,
  852. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  853. CRYPTO_ALG_KERN_DRIVER_ONLY,
  854. .cra_blocksize = DES_BLOCK_SIZE,
  855. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  856. .cra_alignmask = 0,
  857. .cra_init = safexcel_skcipher_cra_init,
  858. .cra_exit = safexcel_skcipher_cra_exit,
  859. .cra_module = THIS_MODULE,
  860. },
  861. },
  862. };
  863. static int safexcel_cbc_des3_ede_encrypt(struct skcipher_request *req)
  864. {
  865. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  866. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  867. SAFEXCEL_3DES);
  868. }
  869. static int safexcel_cbc_des3_ede_decrypt(struct skcipher_request *req)
  870. {
  871. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  872. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  873. SAFEXCEL_3DES);
  874. }
  875. static int safexcel_des3_ede_setkey(struct crypto_skcipher *ctfm,
  876. const u8 *key, unsigned int len)
  877. {
  878. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  879. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  880. if (len != DES3_EDE_KEY_SIZE) {
  881. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  882. return -EINVAL;
  883. }
  884. /* if context exits and key changed, need to invalidate it */
  885. if (ctx->base.ctxr_dma) {
  886. if (memcmp(ctx->key, key, len))
  887. ctx->base.needs_inv = true;
  888. }
  889. memcpy(ctx->key, key, len);
  890. ctx->key_len = len;
  891. return 0;
  892. }
  893. struct safexcel_alg_template safexcel_alg_cbc_des3_ede = {
  894. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  895. .engines = EIP97IES | EIP197B | EIP197D,
  896. .alg.skcipher = {
  897. .setkey = safexcel_des3_ede_setkey,
  898. .encrypt = safexcel_cbc_des3_ede_encrypt,
  899. .decrypt = safexcel_cbc_des3_ede_decrypt,
  900. .min_keysize = DES3_EDE_KEY_SIZE,
  901. .max_keysize = DES3_EDE_KEY_SIZE,
  902. .ivsize = DES3_EDE_BLOCK_SIZE,
  903. .base = {
  904. .cra_name = "cbc(des3_ede)",
  905. .cra_driver_name = "safexcel-cbc-des3_ede",
  906. .cra_priority = 300,
  907. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  908. CRYPTO_ALG_KERN_DRIVER_ONLY,
  909. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  910. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  911. .cra_alignmask = 0,
  912. .cra_init = safexcel_skcipher_cra_init,
  913. .cra_exit = safexcel_skcipher_cra_exit,
  914. .cra_module = THIS_MODULE,
  915. },
  916. },
  917. };
  918. static int safexcel_ecb_des3_ede_encrypt(struct skcipher_request *req)
  919. {
  920. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  921. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  922. SAFEXCEL_3DES);
  923. }
  924. static int safexcel_ecb_des3_ede_decrypt(struct skcipher_request *req)
  925. {
  926. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  927. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  928. SAFEXCEL_3DES);
  929. }
  930. struct safexcel_alg_template safexcel_alg_ecb_des3_ede = {
  931. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  932. .engines = EIP97IES | EIP197B | EIP197D,
  933. .alg.skcipher = {
  934. .setkey = safexcel_des3_ede_setkey,
  935. .encrypt = safexcel_ecb_des3_ede_encrypt,
  936. .decrypt = safexcel_ecb_des3_ede_decrypt,
  937. .min_keysize = DES3_EDE_KEY_SIZE,
  938. .max_keysize = DES3_EDE_KEY_SIZE,
  939. .ivsize = DES3_EDE_BLOCK_SIZE,
  940. .base = {
  941. .cra_name = "ecb(des3_ede)",
  942. .cra_driver_name = "safexcel-ecb-des3_ede",
  943. .cra_priority = 300,
  944. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  945. CRYPTO_ALG_KERN_DRIVER_ONLY,
  946. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  947. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  948. .cra_alignmask = 0,
  949. .cra_init = safexcel_skcipher_cra_init,
  950. .cra_exit = safexcel_skcipher_cra_exit,
  951. .cra_module = THIS_MODULE,
  952. },
  953. },
  954. };
  955. static int safexcel_aead_encrypt(struct aead_request *req)
  956. {
  957. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  958. return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT,
  959. CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
  960. }
  961. static int safexcel_aead_decrypt(struct aead_request *req)
  962. {
  963. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  964. return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT,
  965. CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
  966. }
  967. static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
  968. {
  969. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  970. struct safexcel_alg_template *tmpl =
  971. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  972. alg.aead.base);
  973. crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
  974. sizeof(struct safexcel_cipher_req));
  975. ctx->priv = tmpl->priv;
  976. ctx->aead = true;
  977. ctx->base.send = safexcel_aead_send;
  978. ctx->base.handle_result = safexcel_aead_handle_result;
  979. return 0;
  980. }
  981. static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
  982. {
  983. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  984. safexcel_aead_cra_init(tfm);
  985. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
  986. ctx->state_sz = SHA1_DIGEST_SIZE;
  987. return 0;
  988. }
  989. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
  990. .type = SAFEXCEL_ALG_TYPE_AEAD,
  991. .engines = EIP97IES | EIP197B | EIP197D,
  992. .alg.aead = {
  993. .setkey = safexcel_aead_aes_setkey,
  994. .encrypt = safexcel_aead_encrypt,
  995. .decrypt = safexcel_aead_decrypt,
  996. .ivsize = AES_BLOCK_SIZE,
  997. .maxauthsize = SHA1_DIGEST_SIZE,
  998. .base = {
  999. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  1000. .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
  1001. .cra_priority = 300,
  1002. .cra_flags = CRYPTO_ALG_ASYNC |
  1003. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1004. .cra_blocksize = AES_BLOCK_SIZE,
  1005. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  1006. .cra_alignmask = 0,
  1007. .cra_init = safexcel_aead_sha1_cra_init,
  1008. .cra_exit = safexcel_aead_cra_exit,
  1009. .cra_module = THIS_MODULE,
  1010. },
  1011. },
  1012. };
  1013. static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
  1014. {
  1015. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  1016. safexcel_aead_cra_init(tfm);
  1017. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
  1018. ctx->state_sz = SHA256_DIGEST_SIZE;
  1019. return 0;
  1020. }
  1021. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
  1022. .type = SAFEXCEL_ALG_TYPE_AEAD,
  1023. .engines = EIP97IES | EIP197B | EIP197D,
  1024. .alg.aead = {
  1025. .setkey = safexcel_aead_aes_setkey,
  1026. .encrypt = safexcel_aead_encrypt,
  1027. .decrypt = safexcel_aead_decrypt,
  1028. .ivsize = AES_BLOCK_SIZE,
  1029. .maxauthsize = SHA256_DIGEST_SIZE,
  1030. .base = {
  1031. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  1032. .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
  1033. .cra_priority = 300,
  1034. .cra_flags = CRYPTO_ALG_ASYNC |
  1035. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1036. .cra_blocksize = AES_BLOCK_SIZE,
  1037. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  1038. .cra_alignmask = 0,
  1039. .cra_init = safexcel_aead_sha256_cra_init,
  1040. .cra_exit = safexcel_aead_cra_exit,
  1041. .cra_module = THIS_MODULE,
  1042. },
  1043. },
  1044. };
  1045. static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
  1046. {
  1047. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  1048. safexcel_aead_cra_init(tfm);
  1049. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
  1050. ctx->state_sz = SHA256_DIGEST_SIZE;
  1051. return 0;
  1052. }
  1053. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
  1054. .type = SAFEXCEL_ALG_TYPE_AEAD,
  1055. .engines = EIP97IES | EIP197B | EIP197D,
  1056. .alg.aead = {
  1057. .setkey = safexcel_aead_aes_setkey,
  1058. .encrypt = safexcel_aead_encrypt,
  1059. .decrypt = safexcel_aead_decrypt,
  1060. .ivsize = AES_BLOCK_SIZE,
  1061. .maxauthsize = SHA224_DIGEST_SIZE,
  1062. .base = {
  1063. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  1064. .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
  1065. .cra_priority = 300,
  1066. .cra_flags = CRYPTO_ALG_ASYNC |
  1067. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1068. .cra_blocksize = AES_BLOCK_SIZE,
  1069. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  1070. .cra_alignmask = 0,
  1071. .cra_init = safexcel_aead_sha224_cra_init,
  1072. .cra_exit = safexcel_aead_cra_exit,
  1073. .cra_module = THIS_MODULE,
  1074. },
  1075. },
  1076. };
  1077. static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm)
  1078. {
  1079. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  1080. safexcel_aead_cra_init(tfm);
  1081. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
  1082. ctx->state_sz = SHA512_DIGEST_SIZE;
  1083. return 0;
  1084. }
  1085. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = {
  1086. .type = SAFEXCEL_ALG_TYPE_AEAD,
  1087. .engines = EIP97IES | EIP197B | EIP197D,
  1088. .alg.aead = {
  1089. .setkey = safexcel_aead_aes_setkey,
  1090. .encrypt = safexcel_aead_encrypt,
  1091. .decrypt = safexcel_aead_decrypt,
  1092. .ivsize = AES_BLOCK_SIZE,
  1093. .maxauthsize = SHA512_DIGEST_SIZE,
  1094. .base = {
  1095. .cra_name = "authenc(hmac(sha512),cbc(aes))",
  1096. .cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes",
  1097. .cra_priority = 300,
  1098. .cra_flags = CRYPTO_ALG_ASYNC |
  1099. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1100. .cra_blocksize = AES_BLOCK_SIZE,
  1101. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  1102. .cra_alignmask = 0,
  1103. .cra_init = safexcel_aead_sha512_cra_init,
  1104. .cra_exit = safexcel_aead_cra_exit,
  1105. .cra_module = THIS_MODULE,
  1106. },
  1107. },
  1108. };
  1109. static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm)
  1110. {
  1111. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  1112. safexcel_aead_cra_init(tfm);
  1113. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
  1114. ctx->state_sz = SHA512_DIGEST_SIZE;
  1115. return 0;
  1116. }
  1117. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = {
  1118. .type = SAFEXCEL_ALG_TYPE_AEAD,
  1119. .engines = EIP97IES | EIP197B | EIP197D,
  1120. .alg.aead = {
  1121. .setkey = safexcel_aead_aes_setkey,
  1122. .encrypt = safexcel_aead_encrypt,
  1123. .decrypt = safexcel_aead_decrypt,
  1124. .ivsize = AES_BLOCK_SIZE,
  1125. .maxauthsize = SHA384_DIGEST_SIZE,
  1126. .base = {
  1127. .cra_name = "authenc(hmac(sha384),cbc(aes))",
  1128. .cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes",
  1129. .cra_priority = 300,
  1130. .cra_flags = CRYPTO_ALG_ASYNC |
  1131. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1132. .cra_blocksize = AES_BLOCK_SIZE,
  1133. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  1134. .cra_alignmask = 0,
  1135. .cra_init = safexcel_aead_sha384_cra_init,
  1136. .cra_exit = safexcel_aead_cra_exit,
  1137. .cra_module = THIS_MODULE,
  1138. },
  1139. },
  1140. };