cc_hash.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
  3. #include <linux/kernel.h>
  4. #include <linux/module.h>
  5. #include <crypto/algapi.h>
  6. #include <crypto/hash.h>
  7. #include <crypto/md5.h>
  8. #include <crypto/internal/hash.h>
  9. #include "cc_driver.h"
  10. #include "cc_request_mgr.h"
  11. #include "cc_buffer_mgr.h"
  12. #include "cc_hash.h"
  13. #include "cc_sram_mgr.h"
  14. #define CC_MAX_HASH_SEQ_LEN 12
  15. #define CC_MAX_OPAD_KEYS_SIZE CC_MAX_HASH_BLCK_SIZE
  16. struct cc_hash_handle {
  17. cc_sram_addr_t digest_len_sram_addr; /* const value in SRAM*/
  18. cc_sram_addr_t larval_digest_sram_addr; /* const value in SRAM */
  19. struct list_head hash_list;
  20. };
  21. static const u32 digest_len_init[] = {
  22. 0x00000040, 0x00000000, 0x00000000, 0x00000000 };
  23. static const u32 md5_init[] = {
  24. SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
  25. static const u32 sha1_init[] = {
  26. SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
  27. static const u32 sha224_init[] = {
  28. SHA224_H7, SHA224_H6, SHA224_H5, SHA224_H4,
  29. SHA224_H3, SHA224_H2, SHA224_H1, SHA224_H0 };
  30. static const u32 sha256_init[] = {
  31. SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
  32. SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
  33. static const u32 digest_len_sha512_init[] = {
  34. 0x00000080, 0x00000000, 0x00000000, 0x00000000 };
  35. static u64 sha384_init[] = {
  36. SHA384_H7, SHA384_H6, SHA384_H5, SHA384_H4,
  37. SHA384_H3, SHA384_H2, SHA384_H1, SHA384_H0 };
  38. static u64 sha512_init[] = {
  39. SHA512_H7, SHA512_H6, SHA512_H5, SHA512_H4,
  40. SHA512_H3, SHA512_H2, SHA512_H1, SHA512_H0 };
  41. static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
  42. unsigned int *seq_size);
  43. static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
  44. unsigned int *seq_size);
  45. static const void *cc_larval_digest(struct device *dev, u32 mode);
  46. struct cc_hash_alg {
  47. struct list_head entry;
  48. int hash_mode;
  49. int hw_mode;
  50. int inter_digestsize;
  51. struct cc_drvdata *drvdata;
  52. struct ahash_alg ahash_alg;
  53. };
  54. struct hash_key_req_ctx {
  55. u32 keylen;
  56. dma_addr_t key_dma_addr;
  57. };
  58. /* hash per-session context */
  59. struct cc_hash_ctx {
  60. struct cc_drvdata *drvdata;
  61. /* holds the origin digest; the digest after "setkey" if HMAC,*
  62. * the initial digest if HASH.
  63. */
  64. u8 digest_buff[CC_MAX_HASH_DIGEST_SIZE] ____cacheline_aligned;
  65. u8 opad_tmp_keys_buff[CC_MAX_OPAD_KEYS_SIZE] ____cacheline_aligned;
  66. dma_addr_t opad_tmp_keys_dma_addr ____cacheline_aligned;
  67. dma_addr_t digest_buff_dma_addr;
  68. /* use for hmac with key large then mode block size */
  69. struct hash_key_req_ctx key_params;
  70. int hash_mode;
  71. int hw_mode;
  72. int inter_digestsize;
  73. struct completion setkey_comp;
  74. bool is_hmac;
  75. };
  76. static void cc_set_desc(struct ahash_req_ctx *areq_ctx, struct cc_hash_ctx *ctx,
  77. unsigned int flow_mode, struct cc_hw_desc desc[],
  78. bool is_not_last_data, unsigned int *seq_size);
  79. static void cc_set_endianity(u32 mode, struct cc_hw_desc *desc)
  80. {
  81. if (mode == DRV_HASH_MD5 || mode == DRV_HASH_SHA384 ||
  82. mode == DRV_HASH_SHA512) {
  83. set_bytes_swap(desc, 1);
  84. } else {
  85. set_cipher_config0(desc, HASH_DIGEST_RESULT_LITTLE_ENDIAN);
  86. }
  87. }
  88. static int cc_map_result(struct device *dev, struct ahash_req_ctx *state,
  89. unsigned int digestsize)
  90. {
  91. state->digest_result_dma_addr =
  92. dma_map_single(dev, state->digest_result_buff,
  93. digestsize, DMA_BIDIRECTIONAL);
  94. if (dma_mapping_error(dev, state->digest_result_dma_addr)) {
  95. dev_err(dev, "Mapping digest result buffer %u B for DMA failed\n",
  96. digestsize);
  97. return -ENOMEM;
  98. }
  99. dev_dbg(dev, "Mapped digest result buffer %u B at va=%pK to dma=%pad\n",
  100. digestsize, state->digest_result_buff,
  101. &state->digest_result_dma_addr);
  102. return 0;
  103. }
  104. static void cc_init_req(struct device *dev, struct ahash_req_ctx *state,
  105. struct cc_hash_ctx *ctx)
  106. {
  107. bool is_hmac = ctx->is_hmac;
  108. memset(state, 0, sizeof(*state));
  109. if (is_hmac) {
  110. if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC &&
  111. ctx->hw_mode != DRV_CIPHER_CMAC) {
  112. dma_sync_single_for_cpu(dev, ctx->digest_buff_dma_addr,
  113. ctx->inter_digestsize,
  114. DMA_BIDIRECTIONAL);
  115. memcpy(state->digest_buff, ctx->digest_buff,
  116. ctx->inter_digestsize);
  117. if (ctx->hash_mode == DRV_HASH_SHA512 ||
  118. ctx->hash_mode == DRV_HASH_SHA384)
  119. memcpy(state->digest_bytes_len,
  120. digest_len_sha512_init,
  121. ctx->drvdata->hash_len_sz);
  122. else
  123. memcpy(state->digest_bytes_len, digest_len_init,
  124. ctx->drvdata->hash_len_sz);
  125. }
  126. if (ctx->hash_mode != DRV_HASH_NULL) {
  127. dma_sync_single_for_cpu(dev,
  128. ctx->opad_tmp_keys_dma_addr,
  129. ctx->inter_digestsize,
  130. DMA_BIDIRECTIONAL);
  131. memcpy(state->opad_digest_buff,
  132. ctx->opad_tmp_keys_buff, ctx->inter_digestsize);
  133. }
  134. } else { /*hash*/
  135. /* Copy the initial digests if hash flow. */
  136. const void *larval = cc_larval_digest(dev, ctx->hash_mode);
  137. memcpy(state->digest_buff, larval, ctx->inter_digestsize);
  138. }
  139. }
  140. static int cc_map_req(struct device *dev, struct ahash_req_ctx *state,
  141. struct cc_hash_ctx *ctx)
  142. {
  143. bool is_hmac = ctx->is_hmac;
  144. state->digest_buff_dma_addr =
  145. dma_map_single(dev, state->digest_buff,
  146. ctx->inter_digestsize, DMA_BIDIRECTIONAL);
  147. if (dma_mapping_error(dev, state->digest_buff_dma_addr)) {
  148. dev_err(dev, "Mapping digest len %d B at va=%pK for DMA failed\n",
  149. ctx->inter_digestsize, state->digest_buff);
  150. return -EINVAL;
  151. }
  152. dev_dbg(dev, "Mapped digest %d B at va=%pK to dma=%pad\n",
  153. ctx->inter_digestsize, state->digest_buff,
  154. &state->digest_buff_dma_addr);
  155. if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC) {
  156. state->digest_bytes_len_dma_addr =
  157. dma_map_single(dev, state->digest_bytes_len,
  158. HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
  159. if (dma_mapping_error(dev, state->digest_bytes_len_dma_addr)) {
  160. dev_err(dev, "Mapping digest len %u B at va=%pK for DMA failed\n",
  161. HASH_MAX_LEN_SIZE, state->digest_bytes_len);
  162. goto unmap_digest_buf;
  163. }
  164. dev_dbg(dev, "Mapped digest len %u B at va=%pK to dma=%pad\n",
  165. HASH_MAX_LEN_SIZE, state->digest_bytes_len,
  166. &state->digest_bytes_len_dma_addr);
  167. }
  168. if (is_hmac && ctx->hash_mode != DRV_HASH_NULL) {
  169. state->opad_digest_dma_addr =
  170. dma_map_single(dev, state->opad_digest_buff,
  171. ctx->inter_digestsize,
  172. DMA_BIDIRECTIONAL);
  173. if (dma_mapping_error(dev, state->opad_digest_dma_addr)) {
  174. dev_err(dev, "Mapping opad digest %d B at va=%pK for DMA failed\n",
  175. ctx->inter_digestsize,
  176. state->opad_digest_buff);
  177. goto unmap_digest_len;
  178. }
  179. dev_dbg(dev, "Mapped opad digest %d B at va=%pK to dma=%pad\n",
  180. ctx->inter_digestsize, state->opad_digest_buff,
  181. &state->opad_digest_dma_addr);
  182. }
  183. return 0;
  184. unmap_digest_len:
  185. if (state->digest_bytes_len_dma_addr) {
  186. dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
  187. HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
  188. state->digest_bytes_len_dma_addr = 0;
  189. }
  190. unmap_digest_buf:
  191. if (state->digest_buff_dma_addr) {
  192. dma_unmap_single(dev, state->digest_buff_dma_addr,
  193. ctx->inter_digestsize, DMA_BIDIRECTIONAL);
  194. state->digest_buff_dma_addr = 0;
  195. }
  196. return -EINVAL;
  197. }
  198. static void cc_unmap_req(struct device *dev, struct ahash_req_ctx *state,
  199. struct cc_hash_ctx *ctx)
  200. {
  201. if (state->digest_buff_dma_addr) {
  202. dma_unmap_single(dev, state->digest_buff_dma_addr,
  203. ctx->inter_digestsize, DMA_BIDIRECTIONAL);
  204. dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
  205. &state->digest_buff_dma_addr);
  206. state->digest_buff_dma_addr = 0;
  207. }
  208. if (state->digest_bytes_len_dma_addr) {
  209. dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
  210. HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
  211. dev_dbg(dev, "Unmapped digest-bytes-len buffer: digest_bytes_len_dma_addr=%pad\n",
  212. &state->digest_bytes_len_dma_addr);
  213. state->digest_bytes_len_dma_addr = 0;
  214. }
  215. if (state->opad_digest_dma_addr) {
  216. dma_unmap_single(dev, state->opad_digest_dma_addr,
  217. ctx->inter_digestsize, DMA_BIDIRECTIONAL);
  218. dev_dbg(dev, "Unmapped opad-digest: opad_digest_dma_addr=%pad\n",
  219. &state->opad_digest_dma_addr);
  220. state->opad_digest_dma_addr = 0;
  221. }
  222. }
  223. static void cc_unmap_result(struct device *dev, struct ahash_req_ctx *state,
  224. unsigned int digestsize, u8 *result)
  225. {
  226. if (state->digest_result_dma_addr) {
  227. dma_unmap_single(dev, state->digest_result_dma_addr, digestsize,
  228. DMA_BIDIRECTIONAL);
  229. dev_dbg(dev, "unmpa digest result buffer va (%pK) pa (%pad) len %u\n",
  230. state->digest_result_buff,
  231. &state->digest_result_dma_addr, digestsize);
  232. memcpy(result, state->digest_result_buff, digestsize);
  233. }
  234. state->digest_result_dma_addr = 0;
  235. }
  236. static void cc_update_complete(struct device *dev, void *cc_req, int err)
  237. {
  238. struct ahash_request *req = (struct ahash_request *)cc_req;
  239. struct ahash_req_ctx *state = ahash_request_ctx(req);
  240. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  241. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  242. dev_dbg(dev, "req=%pK\n", req);
  243. cc_unmap_hash_request(dev, state, req->src, false);
  244. cc_unmap_req(dev, state, ctx);
  245. req->base.complete(&req->base, err);
  246. }
  247. static void cc_digest_complete(struct device *dev, void *cc_req, int err)
  248. {
  249. struct ahash_request *req = (struct ahash_request *)cc_req;
  250. struct ahash_req_ctx *state = ahash_request_ctx(req);
  251. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  252. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  253. u32 digestsize = crypto_ahash_digestsize(tfm);
  254. dev_dbg(dev, "req=%pK\n", req);
  255. cc_unmap_hash_request(dev, state, req->src, false);
  256. cc_unmap_result(dev, state, digestsize, req->result);
  257. cc_unmap_req(dev, state, ctx);
  258. req->base.complete(&req->base, err);
  259. }
  260. static void cc_hash_complete(struct device *dev, void *cc_req, int err)
  261. {
  262. struct ahash_request *req = (struct ahash_request *)cc_req;
  263. struct ahash_req_ctx *state = ahash_request_ctx(req);
  264. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  265. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  266. u32 digestsize = crypto_ahash_digestsize(tfm);
  267. dev_dbg(dev, "req=%pK\n", req);
  268. cc_unmap_hash_request(dev, state, req->src, false);
  269. cc_unmap_result(dev, state, digestsize, req->result);
  270. cc_unmap_req(dev, state, ctx);
  271. req->base.complete(&req->base, err);
  272. }
  273. static int cc_fin_result(struct cc_hw_desc *desc, struct ahash_request *req,
  274. int idx)
  275. {
  276. struct ahash_req_ctx *state = ahash_request_ctx(req);
  277. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  278. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  279. u32 digestsize = crypto_ahash_digestsize(tfm);
  280. /* Get final MAC result */
  281. hw_desc_init(&desc[idx]);
  282. set_cipher_mode(&desc[idx], ctx->hw_mode);
  283. /* TODO */
  284. set_dout_dlli(&desc[idx], state->digest_result_dma_addr, digestsize,
  285. NS_BIT, 1);
  286. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  287. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  288. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  289. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  290. cc_set_endianity(ctx->hash_mode, &desc[idx]);
  291. idx++;
  292. return idx;
  293. }
  294. static int cc_fin_hmac(struct cc_hw_desc *desc, struct ahash_request *req,
  295. int idx)
  296. {
  297. struct ahash_req_ctx *state = ahash_request_ctx(req);
  298. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  299. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  300. u32 digestsize = crypto_ahash_digestsize(tfm);
  301. /* store the hash digest result in the context */
  302. hw_desc_init(&desc[idx]);
  303. set_cipher_mode(&desc[idx], ctx->hw_mode);
  304. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, digestsize,
  305. NS_BIT, 0);
  306. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  307. cc_set_endianity(ctx->hash_mode, &desc[idx]);
  308. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  309. idx++;
  310. /* Loading hash opad xor key state */
  311. hw_desc_init(&desc[idx]);
  312. set_cipher_mode(&desc[idx], ctx->hw_mode);
  313. set_din_type(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr,
  314. ctx->inter_digestsize, NS_BIT);
  315. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  316. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  317. idx++;
  318. /* Load the hash current length */
  319. hw_desc_init(&desc[idx]);
  320. set_cipher_mode(&desc[idx], ctx->hw_mode);
  321. set_din_sram(&desc[idx],
  322. cc_digest_len_addr(ctx->drvdata, ctx->hash_mode),
  323. ctx->drvdata->hash_len_sz);
  324. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  325. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  326. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  327. idx++;
  328. /* Memory Barrier: wait for IPAD/OPAD axi write to complete */
  329. hw_desc_init(&desc[idx]);
  330. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  331. set_dout_no_dma(&desc[idx], 0, 0, 1);
  332. idx++;
  333. /* Perform HASH update */
  334. hw_desc_init(&desc[idx]);
  335. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  336. digestsize, NS_BIT);
  337. set_flow_mode(&desc[idx], DIN_HASH);
  338. idx++;
  339. return idx;
  340. }
  341. static int cc_hash_digest(struct ahash_request *req)
  342. {
  343. struct ahash_req_ctx *state = ahash_request_ctx(req);
  344. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  345. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  346. u32 digestsize = crypto_ahash_digestsize(tfm);
  347. struct scatterlist *src = req->src;
  348. unsigned int nbytes = req->nbytes;
  349. u8 *result = req->result;
  350. struct device *dev = drvdata_to_dev(ctx->drvdata);
  351. bool is_hmac = ctx->is_hmac;
  352. struct cc_crypto_req cc_req = {};
  353. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  354. cc_sram_addr_t larval_digest_addr =
  355. cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode);
  356. int idx = 0;
  357. int rc = 0;
  358. gfp_t flags = cc_gfp_flags(&req->base);
  359. dev_dbg(dev, "===== %s-digest (%d) ====\n", is_hmac ? "hmac" : "hash",
  360. nbytes);
  361. cc_init_req(dev, state, ctx);
  362. if (cc_map_req(dev, state, ctx)) {
  363. dev_err(dev, "map_ahash_source() failed\n");
  364. return -ENOMEM;
  365. }
  366. if (cc_map_result(dev, state, digestsize)) {
  367. dev_err(dev, "map_ahash_digest() failed\n");
  368. cc_unmap_req(dev, state, ctx);
  369. return -ENOMEM;
  370. }
  371. if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, 1,
  372. flags)) {
  373. dev_err(dev, "map_ahash_request_final() failed\n");
  374. cc_unmap_result(dev, state, digestsize, result);
  375. cc_unmap_req(dev, state, ctx);
  376. return -ENOMEM;
  377. }
  378. /* Setup request structure */
  379. cc_req.user_cb = cc_digest_complete;
  380. cc_req.user_arg = req;
  381. /* If HMAC then load hash IPAD xor key, if HASH then load initial
  382. * digest
  383. */
  384. hw_desc_init(&desc[idx]);
  385. set_cipher_mode(&desc[idx], ctx->hw_mode);
  386. if (is_hmac) {
  387. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  388. ctx->inter_digestsize, NS_BIT);
  389. } else {
  390. set_din_sram(&desc[idx], larval_digest_addr,
  391. ctx->inter_digestsize);
  392. }
  393. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  394. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  395. idx++;
  396. /* Load the hash current length */
  397. hw_desc_init(&desc[idx]);
  398. set_cipher_mode(&desc[idx], ctx->hw_mode);
  399. if (is_hmac) {
  400. set_din_type(&desc[idx], DMA_DLLI,
  401. state->digest_bytes_len_dma_addr,
  402. ctx->drvdata->hash_len_sz, NS_BIT);
  403. } else {
  404. set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
  405. if (nbytes)
  406. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  407. else
  408. set_cipher_do(&desc[idx], DO_PAD);
  409. }
  410. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  411. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  412. idx++;
  413. cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
  414. if (is_hmac) {
  415. /* HW last hash block padding (aka. "DO_PAD") */
  416. hw_desc_init(&desc[idx]);
  417. set_cipher_mode(&desc[idx], ctx->hw_mode);
  418. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
  419. ctx->drvdata->hash_len_sz, NS_BIT, 0);
  420. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  421. set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
  422. set_cipher_do(&desc[idx], DO_PAD);
  423. idx++;
  424. idx = cc_fin_hmac(desc, req, idx);
  425. }
  426. idx = cc_fin_result(desc, req, idx);
  427. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  428. if (rc != -EINPROGRESS && rc != -EBUSY) {
  429. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  430. cc_unmap_hash_request(dev, state, src, true);
  431. cc_unmap_result(dev, state, digestsize, result);
  432. cc_unmap_req(dev, state, ctx);
  433. }
  434. return rc;
  435. }
  436. static int cc_restore_hash(struct cc_hw_desc *desc, struct cc_hash_ctx *ctx,
  437. struct ahash_req_ctx *state, unsigned int idx)
  438. {
  439. /* Restore hash digest */
  440. hw_desc_init(&desc[idx]);
  441. set_cipher_mode(&desc[idx], ctx->hw_mode);
  442. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  443. ctx->inter_digestsize, NS_BIT);
  444. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  445. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  446. idx++;
  447. /* Restore hash current length */
  448. hw_desc_init(&desc[idx]);
  449. set_cipher_mode(&desc[idx], ctx->hw_mode);
  450. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  451. set_din_type(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr,
  452. ctx->drvdata->hash_len_sz, NS_BIT);
  453. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  454. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  455. idx++;
  456. cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
  457. return idx;
  458. }
  459. static int cc_hash_update(struct ahash_request *req)
  460. {
  461. struct ahash_req_ctx *state = ahash_request_ctx(req);
  462. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  463. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  464. unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
  465. struct scatterlist *src = req->src;
  466. unsigned int nbytes = req->nbytes;
  467. struct device *dev = drvdata_to_dev(ctx->drvdata);
  468. struct cc_crypto_req cc_req = {};
  469. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  470. u32 idx = 0;
  471. int rc;
  472. gfp_t flags = cc_gfp_flags(&req->base);
  473. dev_dbg(dev, "===== %s-update (%d) ====\n", ctx->is_hmac ?
  474. "hmac" : "hash", nbytes);
  475. if (nbytes == 0) {
  476. /* no real updates required */
  477. return 0;
  478. }
  479. rc = cc_map_hash_request_update(ctx->drvdata, state, src, nbytes,
  480. block_size, flags);
  481. if (rc) {
  482. if (rc == 1) {
  483. dev_dbg(dev, " data size not require HW update %x\n",
  484. nbytes);
  485. /* No hardware updates are required */
  486. return 0;
  487. }
  488. dev_err(dev, "map_ahash_request_update() failed\n");
  489. return -ENOMEM;
  490. }
  491. if (cc_map_req(dev, state, ctx)) {
  492. dev_err(dev, "map_ahash_source() failed\n");
  493. cc_unmap_hash_request(dev, state, src, true);
  494. return -EINVAL;
  495. }
  496. /* Setup request structure */
  497. cc_req.user_cb = cc_update_complete;
  498. cc_req.user_arg = req;
  499. idx = cc_restore_hash(desc, ctx, state, idx);
  500. /* store the hash digest result in context */
  501. hw_desc_init(&desc[idx]);
  502. set_cipher_mode(&desc[idx], ctx->hw_mode);
  503. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
  504. ctx->inter_digestsize, NS_BIT, 0);
  505. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  506. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  507. idx++;
  508. /* store current hash length in context */
  509. hw_desc_init(&desc[idx]);
  510. set_cipher_mode(&desc[idx], ctx->hw_mode);
  511. set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
  512. ctx->drvdata->hash_len_sz, NS_BIT, 1);
  513. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  514. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  515. set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
  516. idx++;
  517. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  518. if (rc != -EINPROGRESS && rc != -EBUSY) {
  519. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  520. cc_unmap_hash_request(dev, state, src, true);
  521. cc_unmap_req(dev, state, ctx);
  522. }
  523. return rc;
  524. }
  525. static int cc_do_finup(struct ahash_request *req, bool update)
  526. {
  527. struct ahash_req_ctx *state = ahash_request_ctx(req);
  528. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  529. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  530. u32 digestsize = crypto_ahash_digestsize(tfm);
  531. struct scatterlist *src = req->src;
  532. unsigned int nbytes = req->nbytes;
  533. u8 *result = req->result;
  534. struct device *dev = drvdata_to_dev(ctx->drvdata);
  535. bool is_hmac = ctx->is_hmac;
  536. struct cc_crypto_req cc_req = {};
  537. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  538. unsigned int idx = 0;
  539. int rc;
  540. gfp_t flags = cc_gfp_flags(&req->base);
  541. dev_dbg(dev, "===== %s-%s (%d) ====\n", is_hmac ? "hmac" : "hash",
  542. update ? "finup" : "final", nbytes);
  543. if (cc_map_req(dev, state, ctx)) {
  544. dev_err(dev, "map_ahash_source() failed\n");
  545. return -EINVAL;
  546. }
  547. if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, update,
  548. flags)) {
  549. dev_err(dev, "map_ahash_request_final() failed\n");
  550. cc_unmap_req(dev, state, ctx);
  551. return -ENOMEM;
  552. }
  553. if (cc_map_result(dev, state, digestsize)) {
  554. dev_err(dev, "map_ahash_digest() failed\n");
  555. cc_unmap_hash_request(dev, state, src, true);
  556. cc_unmap_req(dev, state, ctx);
  557. return -ENOMEM;
  558. }
  559. /* Setup request structure */
  560. cc_req.user_cb = cc_hash_complete;
  561. cc_req.user_arg = req;
  562. idx = cc_restore_hash(desc, ctx, state, idx);
  563. /* Pad the hash */
  564. hw_desc_init(&desc[idx]);
  565. set_cipher_do(&desc[idx], DO_PAD);
  566. set_cipher_mode(&desc[idx], ctx->hw_mode);
  567. set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
  568. ctx->drvdata->hash_len_sz, NS_BIT, 0);
  569. set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
  570. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  571. idx++;
  572. if (is_hmac)
  573. idx = cc_fin_hmac(desc, req, idx);
  574. idx = cc_fin_result(desc, req, idx);
  575. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  576. if (rc != -EINPROGRESS && rc != -EBUSY) {
  577. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  578. cc_unmap_hash_request(dev, state, src, true);
  579. cc_unmap_result(dev, state, digestsize, result);
  580. cc_unmap_req(dev, state, ctx);
  581. }
  582. return rc;
  583. }
  584. static int cc_hash_finup(struct ahash_request *req)
  585. {
  586. return cc_do_finup(req, true);
  587. }
  588. static int cc_hash_final(struct ahash_request *req)
  589. {
  590. return cc_do_finup(req, false);
  591. }
  592. static int cc_hash_init(struct ahash_request *req)
  593. {
  594. struct ahash_req_ctx *state = ahash_request_ctx(req);
  595. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  596. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  597. struct device *dev = drvdata_to_dev(ctx->drvdata);
  598. dev_dbg(dev, "===== init (%d) ====\n", req->nbytes);
  599. cc_init_req(dev, state, ctx);
  600. return 0;
  601. }
  602. static int cc_hash_setkey(struct crypto_ahash *ahash, const u8 *key,
  603. unsigned int keylen)
  604. {
  605. unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
  606. struct cc_crypto_req cc_req = {};
  607. struct cc_hash_ctx *ctx = NULL;
  608. int blocksize = 0;
  609. int digestsize = 0;
  610. int i, idx = 0, rc = 0;
  611. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  612. cc_sram_addr_t larval_addr;
  613. struct device *dev;
  614. ctx = crypto_ahash_ctx(ahash);
  615. dev = drvdata_to_dev(ctx->drvdata);
  616. dev_dbg(dev, "start keylen: %d", keylen);
  617. blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  618. digestsize = crypto_ahash_digestsize(ahash);
  619. larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode);
  620. /* The keylen value distinguishes HASH in case keylen is ZERO bytes,
  621. * any NON-ZERO value utilizes HMAC flow
  622. */
  623. ctx->key_params.keylen = keylen;
  624. ctx->key_params.key_dma_addr = 0;
  625. ctx->is_hmac = true;
  626. if (keylen) {
  627. ctx->key_params.key_dma_addr =
  628. dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE);
  629. if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
  630. dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
  631. key, keylen);
  632. return -ENOMEM;
  633. }
  634. dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
  635. &ctx->key_params.key_dma_addr, ctx->key_params.keylen);
  636. if (keylen > blocksize) {
  637. /* Load hash initial state */
  638. hw_desc_init(&desc[idx]);
  639. set_cipher_mode(&desc[idx], ctx->hw_mode);
  640. set_din_sram(&desc[idx], larval_addr,
  641. ctx->inter_digestsize);
  642. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  643. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  644. idx++;
  645. /* Load the hash current length*/
  646. hw_desc_init(&desc[idx]);
  647. set_cipher_mode(&desc[idx], ctx->hw_mode);
  648. set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
  649. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  650. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  651. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  652. idx++;
  653. hw_desc_init(&desc[idx]);
  654. set_din_type(&desc[idx], DMA_DLLI,
  655. ctx->key_params.key_dma_addr, keylen,
  656. NS_BIT);
  657. set_flow_mode(&desc[idx], DIN_HASH);
  658. idx++;
  659. /* Get hashed key */
  660. hw_desc_init(&desc[idx]);
  661. set_cipher_mode(&desc[idx], ctx->hw_mode);
  662. set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
  663. digestsize, NS_BIT, 0);
  664. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  665. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  666. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  667. cc_set_endianity(ctx->hash_mode, &desc[idx]);
  668. idx++;
  669. hw_desc_init(&desc[idx]);
  670. set_din_const(&desc[idx], 0, (blocksize - digestsize));
  671. set_flow_mode(&desc[idx], BYPASS);
  672. set_dout_dlli(&desc[idx],
  673. (ctx->opad_tmp_keys_dma_addr +
  674. digestsize),
  675. (blocksize - digestsize), NS_BIT, 0);
  676. idx++;
  677. } else {
  678. hw_desc_init(&desc[idx]);
  679. set_din_type(&desc[idx], DMA_DLLI,
  680. ctx->key_params.key_dma_addr, keylen,
  681. NS_BIT);
  682. set_flow_mode(&desc[idx], BYPASS);
  683. set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
  684. keylen, NS_BIT, 0);
  685. idx++;
  686. if ((blocksize - keylen)) {
  687. hw_desc_init(&desc[idx]);
  688. set_din_const(&desc[idx], 0,
  689. (blocksize - keylen));
  690. set_flow_mode(&desc[idx], BYPASS);
  691. set_dout_dlli(&desc[idx],
  692. (ctx->opad_tmp_keys_dma_addr +
  693. keylen), (blocksize - keylen),
  694. NS_BIT, 0);
  695. idx++;
  696. }
  697. }
  698. } else {
  699. hw_desc_init(&desc[idx]);
  700. set_din_const(&desc[idx], 0, blocksize);
  701. set_flow_mode(&desc[idx], BYPASS);
  702. set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr),
  703. blocksize, NS_BIT, 0);
  704. idx++;
  705. }
  706. rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
  707. if (rc) {
  708. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  709. goto out;
  710. }
  711. /* calc derived HMAC key */
  712. for (idx = 0, i = 0; i < 2; i++) {
  713. /* Load hash initial state */
  714. hw_desc_init(&desc[idx]);
  715. set_cipher_mode(&desc[idx], ctx->hw_mode);
  716. set_din_sram(&desc[idx], larval_addr, ctx->inter_digestsize);
  717. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  718. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  719. idx++;
  720. /* Load the hash current length*/
  721. hw_desc_init(&desc[idx]);
  722. set_cipher_mode(&desc[idx], ctx->hw_mode);
  723. set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
  724. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  725. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  726. idx++;
  727. /* Prepare ipad key */
  728. hw_desc_init(&desc[idx]);
  729. set_xor_val(&desc[idx], hmac_pad_const[i]);
  730. set_cipher_mode(&desc[idx], ctx->hw_mode);
  731. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  732. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  733. idx++;
  734. /* Perform HASH update */
  735. hw_desc_init(&desc[idx]);
  736. set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
  737. blocksize, NS_BIT);
  738. set_cipher_mode(&desc[idx], ctx->hw_mode);
  739. set_xor_active(&desc[idx]);
  740. set_flow_mode(&desc[idx], DIN_HASH);
  741. idx++;
  742. /* Get the IPAD/OPAD xor key (Note, IPAD is the initial digest
  743. * of the first HASH "update" state)
  744. */
  745. hw_desc_init(&desc[idx]);
  746. set_cipher_mode(&desc[idx], ctx->hw_mode);
  747. if (i > 0) /* Not first iteration */
  748. set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
  749. ctx->inter_digestsize, NS_BIT, 0);
  750. else /* First iteration */
  751. set_dout_dlli(&desc[idx], ctx->digest_buff_dma_addr,
  752. ctx->inter_digestsize, NS_BIT, 0);
  753. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  754. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  755. idx++;
  756. }
  757. rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
  758. out:
  759. if (rc)
  760. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  761. if (ctx->key_params.key_dma_addr) {
  762. dma_unmap_single(dev, ctx->key_params.key_dma_addr,
  763. ctx->key_params.keylen, DMA_TO_DEVICE);
  764. dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
  765. &ctx->key_params.key_dma_addr, ctx->key_params.keylen);
  766. }
  767. return rc;
  768. }
  769. static int cc_xcbc_setkey(struct crypto_ahash *ahash,
  770. const u8 *key, unsigned int keylen)
  771. {
  772. struct cc_crypto_req cc_req = {};
  773. struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  774. struct device *dev = drvdata_to_dev(ctx->drvdata);
  775. int rc = 0;
  776. unsigned int idx = 0;
  777. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  778. dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
  779. switch (keylen) {
  780. case AES_KEYSIZE_128:
  781. case AES_KEYSIZE_192:
  782. case AES_KEYSIZE_256:
  783. break;
  784. default:
  785. return -EINVAL;
  786. }
  787. ctx->key_params.keylen = keylen;
  788. ctx->key_params.key_dma_addr =
  789. dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE);
  790. if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
  791. dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
  792. key, keylen);
  793. return -ENOMEM;
  794. }
  795. dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
  796. &ctx->key_params.key_dma_addr, ctx->key_params.keylen);
  797. ctx->is_hmac = true;
  798. /* 1. Load the AES key */
  799. hw_desc_init(&desc[idx]);
  800. set_din_type(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr,
  801. keylen, NS_BIT);
  802. set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
  803. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
  804. set_key_size_aes(&desc[idx], keylen);
  805. set_flow_mode(&desc[idx], S_DIN_to_AES);
  806. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  807. idx++;
  808. hw_desc_init(&desc[idx]);
  809. set_din_const(&desc[idx], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
  810. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  811. set_dout_dlli(&desc[idx],
  812. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
  813. CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
  814. idx++;
  815. hw_desc_init(&desc[idx]);
  816. set_din_const(&desc[idx], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
  817. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  818. set_dout_dlli(&desc[idx],
  819. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
  820. CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
  821. idx++;
  822. hw_desc_init(&desc[idx]);
  823. set_din_const(&desc[idx], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
  824. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  825. set_dout_dlli(&desc[idx],
  826. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
  827. CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
  828. idx++;
  829. rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
  830. if (rc)
  831. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  832. dma_unmap_single(dev, ctx->key_params.key_dma_addr,
  833. ctx->key_params.keylen, DMA_TO_DEVICE);
  834. dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
  835. &ctx->key_params.key_dma_addr, ctx->key_params.keylen);
  836. return rc;
  837. }
  838. static int cc_cmac_setkey(struct crypto_ahash *ahash,
  839. const u8 *key, unsigned int keylen)
  840. {
  841. struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  842. struct device *dev = drvdata_to_dev(ctx->drvdata);
  843. dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
  844. ctx->is_hmac = true;
  845. switch (keylen) {
  846. case AES_KEYSIZE_128:
  847. case AES_KEYSIZE_192:
  848. case AES_KEYSIZE_256:
  849. break;
  850. default:
  851. return -EINVAL;
  852. }
  853. ctx->key_params.keylen = keylen;
  854. /* STAT_PHASE_1: Copy key to ctx */
  855. dma_sync_single_for_cpu(dev, ctx->opad_tmp_keys_dma_addr,
  856. keylen, DMA_TO_DEVICE);
  857. memcpy(ctx->opad_tmp_keys_buff, key, keylen);
  858. if (keylen == 24) {
  859. memset(ctx->opad_tmp_keys_buff + 24, 0,
  860. CC_AES_KEY_SIZE_MAX - 24);
  861. }
  862. dma_sync_single_for_device(dev, ctx->opad_tmp_keys_dma_addr,
  863. keylen, DMA_TO_DEVICE);
  864. ctx->key_params.keylen = keylen;
  865. return 0;
  866. }
  867. static void cc_free_ctx(struct cc_hash_ctx *ctx)
  868. {
  869. struct device *dev = drvdata_to_dev(ctx->drvdata);
  870. if (ctx->digest_buff_dma_addr) {
  871. dma_unmap_single(dev, ctx->digest_buff_dma_addr,
  872. sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
  873. dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
  874. &ctx->digest_buff_dma_addr);
  875. ctx->digest_buff_dma_addr = 0;
  876. }
  877. if (ctx->opad_tmp_keys_dma_addr) {
  878. dma_unmap_single(dev, ctx->opad_tmp_keys_dma_addr,
  879. sizeof(ctx->opad_tmp_keys_buff),
  880. DMA_BIDIRECTIONAL);
  881. dev_dbg(dev, "Unmapped opad-digest: opad_tmp_keys_dma_addr=%pad\n",
  882. &ctx->opad_tmp_keys_dma_addr);
  883. ctx->opad_tmp_keys_dma_addr = 0;
  884. }
  885. ctx->key_params.keylen = 0;
  886. }
  887. static int cc_alloc_ctx(struct cc_hash_ctx *ctx)
  888. {
  889. struct device *dev = drvdata_to_dev(ctx->drvdata);
  890. ctx->key_params.keylen = 0;
  891. ctx->digest_buff_dma_addr =
  892. dma_map_single(dev, (void *)ctx->digest_buff,
  893. sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
  894. if (dma_mapping_error(dev, ctx->digest_buff_dma_addr)) {
  895. dev_err(dev, "Mapping digest len %zu B at va=%pK for DMA failed\n",
  896. sizeof(ctx->digest_buff), ctx->digest_buff);
  897. goto fail;
  898. }
  899. dev_dbg(dev, "Mapped digest %zu B at va=%pK to dma=%pad\n",
  900. sizeof(ctx->digest_buff), ctx->digest_buff,
  901. &ctx->digest_buff_dma_addr);
  902. ctx->opad_tmp_keys_dma_addr =
  903. dma_map_single(dev, (void *)ctx->opad_tmp_keys_buff,
  904. sizeof(ctx->opad_tmp_keys_buff),
  905. DMA_BIDIRECTIONAL);
  906. if (dma_mapping_error(dev, ctx->opad_tmp_keys_dma_addr)) {
  907. dev_err(dev, "Mapping opad digest %zu B at va=%pK for DMA failed\n",
  908. sizeof(ctx->opad_tmp_keys_buff),
  909. ctx->opad_tmp_keys_buff);
  910. goto fail;
  911. }
  912. dev_dbg(dev, "Mapped opad_tmp_keys %zu B at va=%pK to dma=%pad\n",
  913. sizeof(ctx->opad_tmp_keys_buff), ctx->opad_tmp_keys_buff,
  914. &ctx->opad_tmp_keys_dma_addr);
  915. ctx->is_hmac = false;
  916. return 0;
  917. fail:
  918. cc_free_ctx(ctx);
  919. return -ENOMEM;
  920. }
  921. static int cc_cra_init(struct crypto_tfm *tfm)
  922. {
  923. struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  924. struct hash_alg_common *hash_alg_common =
  925. container_of(tfm->__crt_alg, struct hash_alg_common, base);
  926. struct ahash_alg *ahash_alg =
  927. container_of(hash_alg_common, struct ahash_alg, halg);
  928. struct cc_hash_alg *cc_alg =
  929. container_of(ahash_alg, struct cc_hash_alg, ahash_alg);
  930. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  931. sizeof(struct ahash_req_ctx));
  932. ctx->hash_mode = cc_alg->hash_mode;
  933. ctx->hw_mode = cc_alg->hw_mode;
  934. ctx->inter_digestsize = cc_alg->inter_digestsize;
  935. ctx->drvdata = cc_alg->drvdata;
  936. return cc_alloc_ctx(ctx);
  937. }
  938. static void cc_cra_exit(struct crypto_tfm *tfm)
  939. {
  940. struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  941. struct device *dev = drvdata_to_dev(ctx->drvdata);
  942. dev_dbg(dev, "cc_cra_exit");
  943. cc_free_ctx(ctx);
  944. }
  945. static int cc_mac_update(struct ahash_request *req)
  946. {
  947. struct ahash_req_ctx *state = ahash_request_ctx(req);
  948. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  949. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  950. struct device *dev = drvdata_to_dev(ctx->drvdata);
  951. unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
  952. struct cc_crypto_req cc_req = {};
  953. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  954. int rc;
  955. u32 idx = 0;
  956. gfp_t flags = cc_gfp_flags(&req->base);
  957. if (req->nbytes == 0) {
  958. /* no real updates required */
  959. return 0;
  960. }
  961. state->xcbc_count++;
  962. rc = cc_map_hash_request_update(ctx->drvdata, state, req->src,
  963. req->nbytes, block_size, flags);
  964. if (rc) {
  965. if (rc == 1) {
  966. dev_dbg(dev, " data size not require HW update %x\n",
  967. req->nbytes);
  968. /* No hardware updates are required */
  969. return 0;
  970. }
  971. dev_err(dev, "map_ahash_request_update() failed\n");
  972. return -ENOMEM;
  973. }
  974. if (cc_map_req(dev, state, ctx)) {
  975. dev_err(dev, "map_ahash_source() failed\n");
  976. return -EINVAL;
  977. }
  978. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
  979. cc_setup_xcbc(req, desc, &idx);
  980. else
  981. cc_setup_cmac(req, desc, &idx);
  982. cc_set_desc(state, ctx, DIN_AES_DOUT, desc, true, &idx);
  983. /* store the hash digest result in context */
  984. hw_desc_init(&desc[idx]);
  985. set_cipher_mode(&desc[idx], ctx->hw_mode);
  986. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
  987. ctx->inter_digestsize, NS_BIT, 1);
  988. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  989. set_flow_mode(&desc[idx], S_AES_to_DOUT);
  990. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  991. idx++;
  992. /* Setup request structure */
  993. cc_req.user_cb = (void *)cc_update_complete;
  994. cc_req.user_arg = (void *)req;
  995. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  996. if (rc != -EINPROGRESS && rc != -EBUSY) {
  997. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  998. cc_unmap_hash_request(dev, state, req->src, true);
  999. cc_unmap_req(dev, state, ctx);
  1000. }
  1001. return rc;
  1002. }
  1003. static int cc_mac_final(struct ahash_request *req)
  1004. {
  1005. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1006. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1007. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1008. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1009. struct cc_crypto_req cc_req = {};
  1010. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  1011. int idx = 0;
  1012. int rc = 0;
  1013. u32 key_size, key_len;
  1014. u32 digestsize = crypto_ahash_digestsize(tfm);
  1015. gfp_t flags = cc_gfp_flags(&req->base);
  1016. u32 rem_cnt = *cc_hash_buf_cnt(state);
  1017. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
  1018. key_size = CC_AES_128_BIT_KEY_SIZE;
  1019. key_len = CC_AES_128_BIT_KEY_SIZE;
  1020. } else {
  1021. key_size = (ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
  1022. ctx->key_params.keylen;
  1023. key_len = ctx->key_params.keylen;
  1024. }
  1025. dev_dbg(dev, "===== final xcbc reminder (%d) ====\n", rem_cnt);
  1026. if (cc_map_req(dev, state, ctx)) {
  1027. dev_err(dev, "map_ahash_source() failed\n");
  1028. return -EINVAL;
  1029. }
  1030. if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
  1031. req->nbytes, 0, flags)) {
  1032. dev_err(dev, "map_ahash_request_final() failed\n");
  1033. cc_unmap_req(dev, state, ctx);
  1034. return -ENOMEM;
  1035. }
  1036. if (cc_map_result(dev, state, digestsize)) {
  1037. dev_err(dev, "map_ahash_digest() failed\n");
  1038. cc_unmap_hash_request(dev, state, req->src, true);
  1039. cc_unmap_req(dev, state, ctx);
  1040. return -ENOMEM;
  1041. }
  1042. /* Setup request structure */
  1043. cc_req.user_cb = (void *)cc_hash_complete;
  1044. cc_req.user_arg = (void *)req;
  1045. if (state->xcbc_count && rem_cnt == 0) {
  1046. /* Load key for ECB decryption */
  1047. hw_desc_init(&desc[idx]);
  1048. set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
  1049. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_DECRYPT);
  1050. set_din_type(&desc[idx], DMA_DLLI,
  1051. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
  1052. key_size, NS_BIT);
  1053. set_key_size_aes(&desc[idx], key_len);
  1054. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1055. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1056. idx++;
  1057. /* Initiate decryption of block state to previous
  1058. * block_state-XOR-M[n]
  1059. */
  1060. hw_desc_init(&desc[idx]);
  1061. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  1062. CC_AES_BLOCK_SIZE, NS_BIT);
  1063. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
  1064. CC_AES_BLOCK_SIZE, NS_BIT, 0);
  1065. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  1066. idx++;
  1067. /* Memory Barrier: wait for axi write to complete */
  1068. hw_desc_init(&desc[idx]);
  1069. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  1070. set_dout_no_dma(&desc[idx], 0, 0, 1);
  1071. idx++;
  1072. }
  1073. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
  1074. cc_setup_xcbc(req, desc, &idx);
  1075. else
  1076. cc_setup_cmac(req, desc, &idx);
  1077. if (state->xcbc_count == 0) {
  1078. hw_desc_init(&desc[idx]);
  1079. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1080. set_key_size_aes(&desc[idx], key_len);
  1081. set_cmac_size0_mode(&desc[idx]);
  1082. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1083. idx++;
  1084. } else if (rem_cnt > 0) {
  1085. cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
  1086. } else {
  1087. hw_desc_init(&desc[idx]);
  1088. set_din_const(&desc[idx], 0x00, CC_AES_BLOCK_SIZE);
  1089. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  1090. idx++;
  1091. }
  1092. /* Get final MAC result */
  1093. hw_desc_init(&desc[idx]);
  1094. /* TODO */
  1095. set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
  1096. digestsize, NS_BIT, 1);
  1097. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1098. set_flow_mode(&desc[idx], S_AES_to_DOUT);
  1099. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1100. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1101. idx++;
  1102. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  1103. if (rc != -EINPROGRESS && rc != -EBUSY) {
  1104. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  1105. cc_unmap_hash_request(dev, state, req->src, true);
  1106. cc_unmap_result(dev, state, digestsize, req->result);
  1107. cc_unmap_req(dev, state, ctx);
  1108. }
  1109. return rc;
  1110. }
  1111. static int cc_mac_finup(struct ahash_request *req)
  1112. {
  1113. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1114. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1115. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1116. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1117. struct cc_crypto_req cc_req = {};
  1118. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  1119. int idx = 0;
  1120. int rc = 0;
  1121. u32 key_len = 0;
  1122. u32 digestsize = crypto_ahash_digestsize(tfm);
  1123. gfp_t flags = cc_gfp_flags(&req->base);
  1124. dev_dbg(dev, "===== finup xcbc(%d) ====\n", req->nbytes);
  1125. if (state->xcbc_count > 0 && req->nbytes == 0) {
  1126. dev_dbg(dev, "No data to update. Call to fdx_mac_final\n");
  1127. return cc_mac_final(req);
  1128. }
  1129. if (cc_map_req(dev, state, ctx)) {
  1130. dev_err(dev, "map_ahash_source() failed\n");
  1131. return -EINVAL;
  1132. }
  1133. if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
  1134. req->nbytes, 1, flags)) {
  1135. dev_err(dev, "map_ahash_request_final() failed\n");
  1136. cc_unmap_req(dev, state, ctx);
  1137. return -ENOMEM;
  1138. }
  1139. if (cc_map_result(dev, state, digestsize)) {
  1140. dev_err(dev, "map_ahash_digest() failed\n");
  1141. cc_unmap_hash_request(dev, state, req->src, true);
  1142. cc_unmap_req(dev, state, ctx);
  1143. return -ENOMEM;
  1144. }
  1145. /* Setup request structure */
  1146. cc_req.user_cb = (void *)cc_hash_complete;
  1147. cc_req.user_arg = (void *)req;
  1148. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
  1149. key_len = CC_AES_128_BIT_KEY_SIZE;
  1150. cc_setup_xcbc(req, desc, &idx);
  1151. } else {
  1152. key_len = ctx->key_params.keylen;
  1153. cc_setup_cmac(req, desc, &idx);
  1154. }
  1155. if (req->nbytes == 0) {
  1156. hw_desc_init(&desc[idx]);
  1157. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1158. set_key_size_aes(&desc[idx], key_len);
  1159. set_cmac_size0_mode(&desc[idx]);
  1160. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1161. idx++;
  1162. } else {
  1163. cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
  1164. }
  1165. /* Get final MAC result */
  1166. hw_desc_init(&desc[idx]);
  1167. /* TODO */
  1168. set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
  1169. digestsize, NS_BIT, 1);
  1170. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1171. set_flow_mode(&desc[idx], S_AES_to_DOUT);
  1172. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1173. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1174. idx++;
  1175. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  1176. if (rc != -EINPROGRESS && rc != -EBUSY) {
  1177. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  1178. cc_unmap_hash_request(dev, state, req->src, true);
  1179. cc_unmap_result(dev, state, digestsize, req->result);
  1180. cc_unmap_req(dev, state, ctx);
  1181. }
  1182. return rc;
  1183. }
  1184. static int cc_mac_digest(struct ahash_request *req)
  1185. {
  1186. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1187. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1188. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1189. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1190. u32 digestsize = crypto_ahash_digestsize(tfm);
  1191. struct cc_crypto_req cc_req = {};
  1192. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  1193. u32 key_len;
  1194. unsigned int idx = 0;
  1195. int rc;
  1196. gfp_t flags = cc_gfp_flags(&req->base);
  1197. dev_dbg(dev, "===== -digest mac (%d) ====\n", req->nbytes);
  1198. cc_init_req(dev, state, ctx);
  1199. if (cc_map_req(dev, state, ctx)) {
  1200. dev_err(dev, "map_ahash_source() failed\n");
  1201. return -ENOMEM;
  1202. }
  1203. if (cc_map_result(dev, state, digestsize)) {
  1204. dev_err(dev, "map_ahash_digest() failed\n");
  1205. cc_unmap_req(dev, state, ctx);
  1206. return -ENOMEM;
  1207. }
  1208. if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
  1209. req->nbytes, 1, flags)) {
  1210. dev_err(dev, "map_ahash_request_final() failed\n");
  1211. cc_unmap_req(dev, state, ctx);
  1212. return -ENOMEM;
  1213. }
  1214. /* Setup request structure */
  1215. cc_req.user_cb = (void *)cc_digest_complete;
  1216. cc_req.user_arg = (void *)req;
  1217. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
  1218. key_len = CC_AES_128_BIT_KEY_SIZE;
  1219. cc_setup_xcbc(req, desc, &idx);
  1220. } else {
  1221. key_len = ctx->key_params.keylen;
  1222. cc_setup_cmac(req, desc, &idx);
  1223. }
  1224. if (req->nbytes == 0) {
  1225. hw_desc_init(&desc[idx]);
  1226. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1227. set_key_size_aes(&desc[idx], key_len);
  1228. set_cmac_size0_mode(&desc[idx]);
  1229. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1230. idx++;
  1231. } else {
  1232. cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
  1233. }
  1234. /* Get final MAC result */
  1235. hw_desc_init(&desc[idx]);
  1236. set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
  1237. CC_AES_BLOCK_SIZE, NS_BIT, 1);
  1238. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1239. set_flow_mode(&desc[idx], S_AES_to_DOUT);
  1240. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1241. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1242. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1243. idx++;
  1244. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  1245. if (rc != -EINPROGRESS && rc != -EBUSY) {
  1246. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  1247. cc_unmap_hash_request(dev, state, req->src, true);
  1248. cc_unmap_result(dev, state, digestsize, req->result);
  1249. cc_unmap_req(dev, state, ctx);
  1250. }
  1251. return rc;
  1252. }
  1253. static int cc_hash_export(struct ahash_request *req, void *out)
  1254. {
  1255. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1256. struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1257. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1258. u8 *curr_buff = cc_hash_buf(state);
  1259. u32 curr_buff_cnt = *cc_hash_buf_cnt(state);
  1260. const u32 tmp = CC_EXPORT_MAGIC;
  1261. memcpy(out, &tmp, sizeof(u32));
  1262. out += sizeof(u32);
  1263. memcpy(out, state->digest_buff, ctx->inter_digestsize);
  1264. out += ctx->inter_digestsize;
  1265. memcpy(out, state->digest_bytes_len, ctx->drvdata->hash_len_sz);
  1266. out += ctx->drvdata->hash_len_sz;
  1267. memcpy(out, &curr_buff_cnt, sizeof(u32));
  1268. out += sizeof(u32);
  1269. memcpy(out, curr_buff, curr_buff_cnt);
  1270. return 0;
  1271. }
  1272. static int cc_hash_import(struct ahash_request *req, const void *in)
  1273. {
  1274. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1275. struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1276. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1277. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1278. u32 tmp;
  1279. memcpy(&tmp, in, sizeof(u32));
  1280. if (tmp != CC_EXPORT_MAGIC)
  1281. return -EINVAL;
  1282. in += sizeof(u32);
  1283. cc_init_req(dev, state, ctx);
  1284. memcpy(state->digest_buff, in, ctx->inter_digestsize);
  1285. in += ctx->inter_digestsize;
  1286. memcpy(state->digest_bytes_len, in, ctx->drvdata->hash_len_sz);
  1287. in += ctx->drvdata->hash_len_sz;
  1288. /* Sanity check the data as much as possible */
  1289. memcpy(&tmp, in, sizeof(u32));
  1290. if (tmp > CC_MAX_HASH_BLCK_SIZE)
  1291. return -EINVAL;
  1292. in += sizeof(u32);
  1293. state->buf_cnt[0] = tmp;
  1294. memcpy(state->buffers[0], in, tmp);
  1295. return 0;
  1296. }
  1297. struct cc_hash_template {
  1298. char name[CRYPTO_MAX_ALG_NAME];
  1299. char driver_name[CRYPTO_MAX_ALG_NAME];
  1300. char mac_name[CRYPTO_MAX_ALG_NAME];
  1301. char mac_driver_name[CRYPTO_MAX_ALG_NAME];
  1302. unsigned int blocksize;
  1303. bool synchronize;
  1304. struct ahash_alg template_ahash;
  1305. int hash_mode;
  1306. int hw_mode;
  1307. int inter_digestsize;
  1308. struct cc_drvdata *drvdata;
  1309. u32 min_hw_rev;
  1310. };
  1311. #define CC_STATE_SIZE(_x) \
  1312. ((_x) + HASH_MAX_LEN_SIZE + CC_MAX_HASH_BLCK_SIZE + (2 * sizeof(u32)))
  1313. /* hash descriptors */
  1314. static struct cc_hash_template driver_hash[] = {
  1315. //Asynchronize hash template
  1316. {
  1317. .name = "sha1",
  1318. .driver_name = "sha1-ccree",
  1319. .mac_name = "hmac(sha1)",
  1320. .mac_driver_name = "hmac-sha1-ccree",
  1321. .blocksize = SHA1_BLOCK_SIZE,
  1322. .synchronize = false,
  1323. .template_ahash = {
  1324. .init = cc_hash_init,
  1325. .update = cc_hash_update,
  1326. .final = cc_hash_final,
  1327. .finup = cc_hash_finup,
  1328. .digest = cc_hash_digest,
  1329. .export = cc_hash_export,
  1330. .import = cc_hash_import,
  1331. .setkey = cc_hash_setkey,
  1332. .halg = {
  1333. .digestsize = SHA1_DIGEST_SIZE,
  1334. .statesize = CC_STATE_SIZE(SHA1_DIGEST_SIZE),
  1335. },
  1336. },
  1337. .hash_mode = DRV_HASH_SHA1,
  1338. .hw_mode = DRV_HASH_HW_SHA1,
  1339. .inter_digestsize = SHA1_DIGEST_SIZE,
  1340. .min_hw_rev = CC_HW_REV_630,
  1341. },
  1342. {
  1343. .name = "sha256",
  1344. .driver_name = "sha256-ccree",
  1345. .mac_name = "hmac(sha256)",
  1346. .mac_driver_name = "hmac-sha256-ccree",
  1347. .blocksize = SHA256_BLOCK_SIZE,
  1348. .template_ahash = {
  1349. .init = cc_hash_init,
  1350. .update = cc_hash_update,
  1351. .final = cc_hash_final,
  1352. .finup = cc_hash_finup,
  1353. .digest = cc_hash_digest,
  1354. .export = cc_hash_export,
  1355. .import = cc_hash_import,
  1356. .setkey = cc_hash_setkey,
  1357. .halg = {
  1358. .digestsize = SHA256_DIGEST_SIZE,
  1359. .statesize = CC_STATE_SIZE(SHA256_DIGEST_SIZE)
  1360. },
  1361. },
  1362. .hash_mode = DRV_HASH_SHA256,
  1363. .hw_mode = DRV_HASH_HW_SHA256,
  1364. .inter_digestsize = SHA256_DIGEST_SIZE,
  1365. .min_hw_rev = CC_HW_REV_630,
  1366. },
  1367. {
  1368. .name = "sha224",
  1369. .driver_name = "sha224-ccree",
  1370. .mac_name = "hmac(sha224)",
  1371. .mac_driver_name = "hmac-sha224-ccree",
  1372. .blocksize = SHA224_BLOCK_SIZE,
  1373. .template_ahash = {
  1374. .init = cc_hash_init,
  1375. .update = cc_hash_update,
  1376. .final = cc_hash_final,
  1377. .finup = cc_hash_finup,
  1378. .digest = cc_hash_digest,
  1379. .export = cc_hash_export,
  1380. .import = cc_hash_import,
  1381. .setkey = cc_hash_setkey,
  1382. .halg = {
  1383. .digestsize = SHA224_DIGEST_SIZE,
  1384. .statesize = CC_STATE_SIZE(SHA224_DIGEST_SIZE),
  1385. },
  1386. },
  1387. .hash_mode = DRV_HASH_SHA224,
  1388. .hw_mode = DRV_HASH_HW_SHA256,
  1389. .inter_digestsize = SHA256_DIGEST_SIZE,
  1390. .min_hw_rev = CC_HW_REV_630,
  1391. },
  1392. {
  1393. .name = "sha384",
  1394. .driver_name = "sha384-ccree",
  1395. .mac_name = "hmac(sha384)",
  1396. .mac_driver_name = "hmac-sha384-ccree",
  1397. .blocksize = SHA384_BLOCK_SIZE,
  1398. .template_ahash = {
  1399. .init = cc_hash_init,
  1400. .update = cc_hash_update,
  1401. .final = cc_hash_final,
  1402. .finup = cc_hash_finup,
  1403. .digest = cc_hash_digest,
  1404. .export = cc_hash_export,
  1405. .import = cc_hash_import,
  1406. .setkey = cc_hash_setkey,
  1407. .halg = {
  1408. .digestsize = SHA384_DIGEST_SIZE,
  1409. .statesize = CC_STATE_SIZE(SHA384_DIGEST_SIZE),
  1410. },
  1411. },
  1412. .hash_mode = DRV_HASH_SHA384,
  1413. .hw_mode = DRV_HASH_HW_SHA512,
  1414. .inter_digestsize = SHA512_DIGEST_SIZE,
  1415. .min_hw_rev = CC_HW_REV_712,
  1416. },
  1417. {
  1418. .name = "sha512",
  1419. .driver_name = "sha512-ccree",
  1420. .mac_name = "hmac(sha512)",
  1421. .mac_driver_name = "hmac-sha512-ccree",
  1422. .blocksize = SHA512_BLOCK_SIZE,
  1423. .template_ahash = {
  1424. .init = cc_hash_init,
  1425. .update = cc_hash_update,
  1426. .final = cc_hash_final,
  1427. .finup = cc_hash_finup,
  1428. .digest = cc_hash_digest,
  1429. .export = cc_hash_export,
  1430. .import = cc_hash_import,
  1431. .setkey = cc_hash_setkey,
  1432. .halg = {
  1433. .digestsize = SHA512_DIGEST_SIZE,
  1434. .statesize = CC_STATE_SIZE(SHA512_DIGEST_SIZE),
  1435. },
  1436. },
  1437. .hash_mode = DRV_HASH_SHA512,
  1438. .hw_mode = DRV_HASH_HW_SHA512,
  1439. .inter_digestsize = SHA512_DIGEST_SIZE,
  1440. .min_hw_rev = CC_HW_REV_712,
  1441. },
  1442. {
  1443. .name = "md5",
  1444. .driver_name = "md5-ccree",
  1445. .mac_name = "hmac(md5)",
  1446. .mac_driver_name = "hmac-md5-ccree",
  1447. .blocksize = MD5_HMAC_BLOCK_SIZE,
  1448. .template_ahash = {
  1449. .init = cc_hash_init,
  1450. .update = cc_hash_update,
  1451. .final = cc_hash_final,
  1452. .finup = cc_hash_finup,
  1453. .digest = cc_hash_digest,
  1454. .export = cc_hash_export,
  1455. .import = cc_hash_import,
  1456. .setkey = cc_hash_setkey,
  1457. .halg = {
  1458. .digestsize = MD5_DIGEST_SIZE,
  1459. .statesize = CC_STATE_SIZE(MD5_DIGEST_SIZE),
  1460. },
  1461. },
  1462. .hash_mode = DRV_HASH_MD5,
  1463. .hw_mode = DRV_HASH_HW_MD5,
  1464. .inter_digestsize = MD5_DIGEST_SIZE,
  1465. .min_hw_rev = CC_HW_REV_630,
  1466. },
  1467. {
  1468. .mac_name = "xcbc(aes)",
  1469. .mac_driver_name = "xcbc-aes-ccree",
  1470. .blocksize = AES_BLOCK_SIZE,
  1471. .template_ahash = {
  1472. .init = cc_hash_init,
  1473. .update = cc_mac_update,
  1474. .final = cc_mac_final,
  1475. .finup = cc_mac_finup,
  1476. .digest = cc_mac_digest,
  1477. .setkey = cc_xcbc_setkey,
  1478. .export = cc_hash_export,
  1479. .import = cc_hash_import,
  1480. .halg = {
  1481. .digestsize = AES_BLOCK_SIZE,
  1482. .statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
  1483. },
  1484. },
  1485. .hash_mode = DRV_HASH_NULL,
  1486. .hw_mode = DRV_CIPHER_XCBC_MAC,
  1487. .inter_digestsize = AES_BLOCK_SIZE,
  1488. .min_hw_rev = CC_HW_REV_630,
  1489. },
  1490. {
  1491. .mac_name = "cmac(aes)",
  1492. .mac_driver_name = "cmac-aes-ccree",
  1493. .blocksize = AES_BLOCK_SIZE,
  1494. .template_ahash = {
  1495. .init = cc_hash_init,
  1496. .update = cc_mac_update,
  1497. .final = cc_mac_final,
  1498. .finup = cc_mac_finup,
  1499. .digest = cc_mac_digest,
  1500. .setkey = cc_cmac_setkey,
  1501. .export = cc_hash_export,
  1502. .import = cc_hash_import,
  1503. .halg = {
  1504. .digestsize = AES_BLOCK_SIZE,
  1505. .statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
  1506. },
  1507. },
  1508. .hash_mode = DRV_HASH_NULL,
  1509. .hw_mode = DRV_CIPHER_CMAC,
  1510. .inter_digestsize = AES_BLOCK_SIZE,
  1511. .min_hw_rev = CC_HW_REV_630,
  1512. },
  1513. };
  1514. static struct cc_hash_alg *cc_alloc_hash_alg(struct cc_hash_template *template,
  1515. struct device *dev, bool keyed)
  1516. {
  1517. struct cc_hash_alg *t_crypto_alg;
  1518. struct crypto_alg *alg;
  1519. struct ahash_alg *halg;
  1520. t_crypto_alg = kzalloc(sizeof(*t_crypto_alg), GFP_KERNEL);
  1521. if (!t_crypto_alg)
  1522. return ERR_PTR(-ENOMEM);
  1523. t_crypto_alg->ahash_alg = template->template_ahash;
  1524. halg = &t_crypto_alg->ahash_alg;
  1525. alg = &halg->halg.base;
  1526. if (keyed) {
  1527. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1528. template->mac_name);
  1529. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1530. template->mac_driver_name);
  1531. } else {
  1532. halg->setkey = NULL;
  1533. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1534. template->name);
  1535. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1536. template->driver_name);
  1537. }
  1538. alg->cra_module = THIS_MODULE;
  1539. alg->cra_ctxsize = sizeof(struct cc_hash_ctx);
  1540. alg->cra_priority = CC_CRA_PRIO;
  1541. alg->cra_blocksize = template->blocksize;
  1542. alg->cra_alignmask = 0;
  1543. alg->cra_exit = cc_cra_exit;
  1544. alg->cra_init = cc_cra_init;
  1545. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
  1546. t_crypto_alg->hash_mode = template->hash_mode;
  1547. t_crypto_alg->hw_mode = template->hw_mode;
  1548. t_crypto_alg->inter_digestsize = template->inter_digestsize;
  1549. return t_crypto_alg;
  1550. }
  1551. int cc_init_hash_sram(struct cc_drvdata *drvdata)
  1552. {
  1553. struct cc_hash_handle *hash_handle = drvdata->hash_handle;
  1554. cc_sram_addr_t sram_buff_ofs = hash_handle->digest_len_sram_addr;
  1555. unsigned int larval_seq_len = 0;
  1556. struct cc_hw_desc larval_seq[CC_DIGEST_SIZE_MAX / sizeof(u32)];
  1557. bool large_sha_supported = (drvdata->hw_rev >= CC_HW_REV_712);
  1558. int rc = 0;
  1559. /* Copy-to-sram digest-len */
  1560. cc_set_sram_desc(digest_len_init, sram_buff_ofs,
  1561. ARRAY_SIZE(digest_len_init), larval_seq,
  1562. &larval_seq_len);
  1563. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1564. if (rc)
  1565. goto init_digest_const_err;
  1566. sram_buff_ofs += sizeof(digest_len_init);
  1567. larval_seq_len = 0;
  1568. if (large_sha_supported) {
  1569. /* Copy-to-sram digest-len for sha384/512 */
  1570. cc_set_sram_desc(digest_len_sha512_init, sram_buff_ofs,
  1571. ARRAY_SIZE(digest_len_sha512_init),
  1572. larval_seq, &larval_seq_len);
  1573. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1574. if (rc)
  1575. goto init_digest_const_err;
  1576. sram_buff_ofs += sizeof(digest_len_sha512_init);
  1577. larval_seq_len = 0;
  1578. }
  1579. /* The initial digests offset */
  1580. hash_handle->larval_digest_sram_addr = sram_buff_ofs;
  1581. /* Copy-to-sram initial SHA* digests */
  1582. cc_set_sram_desc(md5_init, sram_buff_ofs, ARRAY_SIZE(md5_init),
  1583. larval_seq, &larval_seq_len);
  1584. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1585. if (rc)
  1586. goto init_digest_const_err;
  1587. sram_buff_ofs += sizeof(md5_init);
  1588. larval_seq_len = 0;
  1589. cc_set_sram_desc(sha1_init, sram_buff_ofs,
  1590. ARRAY_SIZE(sha1_init), larval_seq,
  1591. &larval_seq_len);
  1592. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1593. if (rc)
  1594. goto init_digest_const_err;
  1595. sram_buff_ofs += sizeof(sha1_init);
  1596. larval_seq_len = 0;
  1597. cc_set_sram_desc(sha224_init, sram_buff_ofs,
  1598. ARRAY_SIZE(sha224_init), larval_seq,
  1599. &larval_seq_len);
  1600. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1601. if (rc)
  1602. goto init_digest_const_err;
  1603. sram_buff_ofs += sizeof(sha224_init);
  1604. larval_seq_len = 0;
  1605. cc_set_sram_desc(sha256_init, sram_buff_ofs,
  1606. ARRAY_SIZE(sha256_init), larval_seq,
  1607. &larval_seq_len);
  1608. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1609. if (rc)
  1610. goto init_digest_const_err;
  1611. sram_buff_ofs += sizeof(sha256_init);
  1612. larval_seq_len = 0;
  1613. if (large_sha_supported) {
  1614. cc_set_sram_desc((u32 *)sha384_init, sram_buff_ofs,
  1615. (ARRAY_SIZE(sha384_init) * 2), larval_seq,
  1616. &larval_seq_len);
  1617. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1618. if (rc)
  1619. goto init_digest_const_err;
  1620. sram_buff_ofs += sizeof(sha384_init);
  1621. larval_seq_len = 0;
  1622. cc_set_sram_desc((u32 *)sha512_init, sram_buff_ofs,
  1623. (ARRAY_SIZE(sha512_init) * 2), larval_seq,
  1624. &larval_seq_len);
  1625. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1626. if (rc)
  1627. goto init_digest_const_err;
  1628. }
  1629. init_digest_const_err:
  1630. return rc;
  1631. }
  1632. static void __init cc_swap_dwords(u32 *buf, unsigned long size)
  1633. {
  1634. int i;
  1635. u32 tmp;
  1636. for (i = 0; i < size; i += 2) {
  1637. tmp = buf[i];
  1638. buf[i] = buf[i + 1];
  1639. buf[i + 1] = tmp;
  1640. }
  1641. }
  1642. /*
  1643. * Due to the way the HW works we need to swap every
  1644. * double word in the SHA384 and SHA512 larval hashes
  1645. */
  1646. void __init cc_hash_global_init(void)
  1647. {
  1648. cc_swap_dwords((u32 *)&sha384_init, (ARRAY_SIZE(sha384_init) * 2));
  1649. cc_swap_dwords((u32 *)&sha512_init, (ARRAY_SIZE(sha512_init) * 2));
  1650. }
  1651. int cc_hash_alloc(struct cc_drvdata *drvdata)
  1652. {
  1653. struct cc_hash_handle *hash_handle;
  1654. cc_sram_addr_t sram_buff;
  1655. u32 sram_size_to_alloc;
  1656. struct device *dev = drvdata_to_dev(drvdata);
  1657. int rc = 0;
  1658. int alg;
  1659. hash_handle = kzalloc(sizeof(*hash_handle), GFP_KERNEL);
  1660. if (!hash_handle)
  1661. return -ENOMEM;
  1662. INIT_LIST_HEAD(&hash_handle->hash_list);
  1663. drvdata->hash_handle = hash_handle;
  1664. sram_size_to_alloc = sizeof(digest_len_init) +
  1665. sizeof(md5_init) +
  1666. sizeof(sha1_init) +
  1667. sizeof(sha224_init) +
  1668. sizeof(sha256_init);
  1669. if (drvdata->hw_rev >= CC_HW_REV_712)
  1670. sram_size_to_alloc += sizeof(digest_len_sha512_init) +
  1671. sizeof(sha384_init) + sizeof(sha512_init);
  1672. sram_buff = cc_sram_alloc(drvdata, sram_size_to_alloc);
  1673. if (sram_buff == NULL_SRAM_ADDR) {
  1674. dev_err(dev, "SRAM pool exhausted\n");
  1675. rc = -ENOMEM;
  1676. goto fail;
  1677. }
  1678. /* The initial digest-len offset */
  1679. hash_handle->digest_len_sram_addr = sram_buff;
  1680. /*must be set before the alg registration as it is being used there*/
  1681. rc = cc_init_hash_sram(drvdata);
  1682. if (rc) {
  1683. dev_err(dev, "Init digest CONST failed (rc=%d)\n", rc);
  1684. goto fail;
  1685. }
  1686. /* ahash registration */
  1687. for (alg = 0; alg < ARRAY_SIZE(driver_hash); alg++) {
  1688. struct cc_hash_alg *t_alg;
  1689. int hw_mode = driver_hash[alg].hw_mode;
  1690. /* We either support both HASH and MAC or none */
  1691. if (driver_hash[alg].min_hw_rev > drvdata->hw_rev)
  1692. continue;
  1693. /* register hmac version */
  1694. t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, true);
  1695. if (IS_ERR(t_alg)) {
  1696. rc = PTR_ERR(t_alg);
  1697. dev_err(dev, "%s alg allocation failed\n",
  1698. driver_hash[alg].driver_name);
  1699. goto fail;
  1700. }
  1701. t_alg->drvdata = drvdata;
  1702. rc = crypto_register_ahash(&t_alg->ahash_alg);
  1703. if (rc) {
  1704. dev_err(dev, "%s alg registration failed\n",
  1705. driver_hash[alg].driver_name);
  1706. kfree(t_alg);
  1707. goto fail;
  1708. } else {
  1709. list_add_tail(&t_alg->entry, &hash_handle->hash_list);
  1710. }
  1711. if (hw_mode == DRV_CIPHER_XCBC_MAC ||
  1712. hw_mode == DRV_CIPHER_CMAC)
  1713. continue;
  1714. /* register hash version */
  1715. t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, false);
  1716. if (IS_ERR(t_alg)) {
  1717. rc = PTR_ERR(t_alg);
  1718. dev_err(dev, "%s alg allocation failed\n",
  1719. driver_hash[alg].driver_name);
  1720. goto fail;
  1721. }
  1722. t_alg->drvdata = drvdata;
  1723. rc = crypto_register_ahash(&t_alg->ahash_alg);
  1724. if (rc) {
  1725. dev_err(dev, "%s alg registration failed\n",
  1726. driver_hash[alg].driver_name);
  1727. kfree(t_alg);
  1728. goto fail;
  1729. } else {
  1730. list_add_tail(&t_alg->entry, &hash_handle->hash_list);
  1731. }
  1732. }
  1733. return 0;
  1734. fail:
  1735. kfree(drvdata->hash_handle);
  1736. drvdata->hash_handle = NULL;
  1737. return rc;
  1738. }
  1739. int cc_hash_free(struct cc_drvdata *drvdata)
  1740. {
  1741. struct cc_hash_alg *t_hash_alg, *hash_n;
  1742. struct cc_hash_handle *hash_handle = drvdata->hash_handle;
  1743. if (hash_handle) {
  1744. list_for_each_entry_safe(t_hash_alg, hash_n,
  1745. &hash_handle->hash_list, entry) {
  1746. crypto_unregister_ahash(&t_hash_alg->ahash_alg);
  1747. list_del(&t_hash_alg->entry);
  1748. kfree(t_hash_alg);
  1749. }
  1750. kfree(hash_handle);
  1751. drvdata->hash_handle = NULL;
  1752. }
  1753. return 0;
  1754. }
  1755. static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
  1756. unsigned int *seq_size)
  1757. {
  1758. unsigned int idx = *seq_size;
  1759. struct ahash_req_ctx *state = ahash_request_ctx(areq);
  1760. struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  1761. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1762. /* Setup XCBC MAC K1 */
  1763. hw_desc_init(&desc[idx]);
  1764. set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr +
  1765. XCBC_MAC_K1_OFFSET),
  1766. CC_AES_128_BIT_KEY_SIZE, NS_BIT);
  1767. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1768. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  1769. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1770. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  1771. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1772. idx++;
  1773. /* Setup XCBC MAC K2 */
  1774. hw_desc_init(&desc[idx]);
  1775. set_din_type(&desc[idx], DMA_DLLI,
  1776. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
  1777. CC_AES_128_BIT_KEY_SIZE, NS_BIT);
  1778. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  1779. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  1780. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1781. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  1782. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1783. idx++;
  1784. /* Setup XCBC MAC K3 */
  1785. hw_desc_init(&desc[idx]);
  1786. set_din_type(&desc[idx], DMA_DLLI,
  1787. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
  1788. CC_AES_128_BIT_KEY_SIZE, NS_BIT);
  1789. set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
  1790. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  1791. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1792. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  1793. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1794. idx++;
  1795. /* Loading MAC state */
  1796. hw_desc_init(&desc[idx]);
  1797. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  1798. CC_AES_BLOCK_SIZE, NS_BIT);
  1799. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  1800. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  1801. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1802. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  1803. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1804. idx++;
  1805. *seq_size = idx;
  1806. }
  1807. static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
  1808. unsigned int *seq_size)
  1809. {
  1810. unsigned int idx = *seq_size;
  1811. struct ahash_req_ctx *state = ahash_request_ctx(areq);
  1812. struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  1813. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1814. /* Setup CMAC Key */
  1815. hw_desc_init(&desc[idx]);
  1816. set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
  1817. ((ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
  1818. ctx->key_params.keylen), NS_BIT);
  1819. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1820. set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
  1821. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1822. set_key_size_aes(&desc[idx], ctx->key_params.keylen);
  1823. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1824. idx++;
  1825. /* Load MAC state */
  1826. hw_desc_init(&desc[idx]);
  1827. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  1828. CC_AES_BLOCK_SIZE, NS_BIT);
  1829. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  1830. set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
  1831. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1832. set_key_size_aes(&desc[idx], ctx->key_params.keylen);
  1833. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1834. idx++;
  1835. *seq_size = idx;
  1836. }
  1837. static void cc_set_desc(struct ahash_req_ctx *areq_ctx,
  1838. struct cc_hash_ctx *ctx, unsigned int flow_mode,
  1839. struct cc_hw_desc desc[], bool is_not_last_data,
  1840. unsigned int *seq_size)
  1841. {
  1842. unsigned int idx = *seq_size;
  1843. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1844. if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_DLLI) {
  1845. hw_desc_init(&desc[idx]);
  1846. set_din_type(&desc[idx], DMA_DLLI,
  1847. sg_dma_address(areq_ctx->curr_sg),
  1848. areq_ctx->curr_sg->length, NS_BIT);
  1849. set_flow_mode(&desc[idx], flow_mode);
  1850. idx++;
  1851. } else {
  1852. if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
  1853. dev_dbg(dev, " NULL mode\n");
  1854. /* nothing to build */
  1855. return;
  1856. }
  1857. /* bypass */
  1858. hw_desc_init(&desc[idx]);
  1859. set_din_type(&desc[idx], DMA_DLLI,
  1860. areq_ctx->mlli_params.mlli_dma_addr,
  1861. areq_ctx->mlli_params.mlli_len, NS_BIT);
  1862. set_dout_sram(&desc[idx], ctx->drvdata->mlli_sram_addr,
  1863. areq_ctx->mlli_params.mlli_len);
  1864. set_flow_mode(&desc[idx], BYPASS);
  1865. idx++;
  1866. /* process */
  1867. hw_desc_init(&desc[idx]);
  1868. set_din_type(&desc[idx], DMA_MLLI,
  1869. ctx->drvdata->mlli_sram_addr,
  1870. areq_ctx->mlli_nents, NS_BIT);
  1871. set_flow_mode(&desc[idx], flow_mode);
  1872. idx++;
  1873. }
  1874. if (is_not_last_data)
  1875. set_din_not_last_indication(&desc[(idx - 1)]);
  1876. /* return updated desc sequence size */
  1877. *seq_size = idx;
  1878. }
  1879. static const void *cc_larval_digest(struct device *dev, u32 mode)
  1880. {
  1881. switch (mode) {
  1882. case DRV_HASH_MD5:
  1883. return md5_init;
  1884. case DRV_HASH_SHA1:
  1885. return sha1_init;
  1886. case DRV_HASH_SHA224:
  1887. return sha224_init;
  1888. case DRV_HASH_SHA256:
  1889. return sha256_init;
  1890. case DRV_HASH_SHA384:
  1891. return sha384_init;
  1892. case DRV_HASH_SHA512:
  1893. return sha512_init;
  1894. default:
  1895. dev_err(dev, "Invalid hash mode (%d)\n", mode);
  1896. return md5_init;
  1897. }
  1898. }
  1899. /*!
  1900. * Gets the address of the initial digest in SRAM
  1901. * according to the given hash mode
  1902. *
  1903. * \param drvdata
  1904. * \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256
  1905. *
  1906. * \return u32 The address of the initial digest in SRAM
  1907. */
  1908. cc_sram_addr_t cc_larval_digest_addr(void *drvdata, u32 mode)
  1909. {
  1910. struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
  1911. struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
  1912. struct device *dev = drvdata_to_dev(_drvdata);
  1913. switch (mode) {
  1914. case DRV_HASH_NULL:
  1915. break; /*Ignore*/
  1916. case DRV_HASH_MD5:
  1917. return (hash_handle->larval_digest_sram_addr);
  1918. case DRV_HASH_SHA1:
  1919. return (hash_handle->larval_digest_sram_addr +
  1920. sizeof(md5_init));
  1921. case DRV_HASH_SHA224:
  1922. return (hash_handle->larval_digest_sram_addr +
  1923. sizeof(md5_init) +
  1924. sizeof(sha1_init));
  1925. case DRV_HASH_SHA256:
  1926. return (hash_handle->larval_digest_sram_addr +
  1927. sizeof(md5_init) +
  1928. sizeof(sha1_init) +
  1929. sizeof(sha224_init));
  1930. case DRV_HASH_SHA384:
  1931. return (hash_handle->larval_digest_sram_addr +
  1932. sizeof(md5_init) +
  1933. sizeof(sha1_init) +
  1934. sizeof(sha224_init) +
  1935. sizeof(sha256_init));
  1936. case DRV_HASH_SHA512:
  1937. return (hash_handle->larval_digest_sram_addr +
  1938. sizeof(md5_init) +
  1939. sizeof(sha1_init) +
  1940. sizeof(sha224_init) +
  1941. sizeof(sha256_init) +
  1942. sizeof(sha384_init));
  1943. default:
  1944. dev_err(dev, "Invalid hash mode (%d)\n", mode);
  1945. }
  1946. /*This is valid wrong value to avoid kernel crash*/
  1947. return hash_handle->larval_digest_sram_addr;
  1948. }
  1949. cc_sram_addr_t
  1950. cc_digest_len_addr(void *drvdata, u32 mode)
  1951. {
  1952. struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
  1953. struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
  1954. cc_sram_addr_t digest_len_addr = hash_handle->digest_len_sram_addr;
  1955. switch (mode) {
  1956. case DRV_HASH_SHA1:
  1957. case DRV_HASH_SHA224:
  1958. case DRV_HASH_SHA256:
  1959. case DRV_HASH_MD5:
  1960. return digest_len_addr;
  1961. #if (CC_DEV_SHA_MAX > 256)
  1962. case DRV_HASH_SHA384:
  1963. case DRV_HASH_SHA512:
  1964. return digest_len_addr + sizeof(digest_len_init);
  1965. #endif
  1966. default:
  1967. return digest_len_addr; /*to avoid kernel crash*/
  1968. }
  1969. }