nitrox_hal.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/delay.h>
  3. #include "nitrox_dev.h"
  4. #include "nitrox_csr.h"
  5. #define PLL_REF_CLK 50
  6. /**
  7. * emu_enable_cores - Enable EMU cluster cores.
  8. * @ndev: N5 device
  9. */
  10. static void emu_enable_cores(struct nitrox_device *ndev)
  11. {
  12. union emu_se_enable emu_se;
  13. union emu_ae_enable emu_ae;
  14. int i;
  15. /* AE cores 20 per cluster */
  16. emu_ae.value = 0;
  17. emu_ae.s.enable = 0xfffff;
  18. /* SE cores 16 per cluster */
  19. emu_se.value = 0;
  20. emu_se.s.enable = 0xffff;
  21. /* enable per cluster cores */
  22. for (i = 0; i < NR_CLUSTERS; i++) {
  23. nitrox_write_csr(ndev, EMU_AE_ENABLEX(i), emu_ae.value);
  24. nitrox_write_csr(ndev, EMU_SE_ENABLEX(i), emu_se.value);
  25. }
  26. }
  27. /**
  28. * nitrox_config_emu_unit - configure EMU unit.
  29. * @ndev: N5 device
  30. */
  31. void nitrox_config_emu_unit(struct nitrox_device *ndev)
  32. {
  33. union emu_wd_int_ena_w1s emu_wd_int;
  34. union emu_ge_int_ena_w1s emu_ge_int;
  35. u64 offset;
  36. int i;
  37. /* enable cores */
  38. emu_enable_cores(ndev);
  39. /* enable general error and watch dog interrupts */
  40. emu_ge_int.value = 0;
  41. emu_ge_int.s.se_ge = 0xffff;
  42. emu_ge_int.s.ae_ge = 0xfffff;
  43. emu_wd_int.value = 0;
  44. emu_wd_int.s.se_wd = 1;
  45. for (i = 0; i < NR_CLUSTERS; i++) {
  46. offset = EMU_WD_INT_ENA_W1SX(i);
  47. nitrox_write_csr(ndev, offset, emu_wd_int.value);
  48. offset = EMU_GE_INT_ENA_W1SX(i);
  49. nitrox_write_csr(ndev, offset, emu_ge_int.value);
  50. }
  51. }
  52. static void reset_pkt_input_ring(struct nitrox_device *ndev, int ring)
  53. {
  54. union nps_pkt_in_instr_ctl pkt_in_ctl;
  55. union nps_pkt_in_instr_baoff_dbell pkt_in_dbell;
  56. union nps_pkt_in_done_cnts pkt_in_cnts;
  57. u64 offset;
  58. offset = NPS_PKT_IN_INSTR_CTLX(ring);
  59. /* disable the ring */
  60. pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
  61. pkt_in_ctl.s.enb = 0;
  62. nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
  63. usleep_range(100, 150);
  64. /* wait to clear [ENB] */
  65. do {
  66. pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
  67. } while (pkt_in_ctl.s.enb);
  68. /* clear off door bell counts */
  69. offset = NPS_PKT_IN_INSTR_BAOFF_DBELLX(ring);
  70. pkt_in_dbell.value = 0;
  71. pkt_in_dbell.s.dbell = 0xffffffff;
  72. nitrox_write_csr(ndev, offset, pkt_in_dbell.value);
  73. /* clear done counts */
  74. offset = NPS_PKT_IN_DONE_CNTSX(ring);
  75. pkt_in_cnts.value = nitrox_read_csr(ndev, offset);
  76. nitrox_write_csr(ndev, offset, pkt_in_cnts.value);
  77. usleep_range(50, 100);
  78. }
  79. void enable_pkt_input_ring(struct nitrox_device *ndev, int ring)
  80. {
  81. union nps_pkt_in_instr_ctl pkt_in_ctl;
  82. u64 offset;
  83. /* 64-byte instruction size */
  84. offset = NPS_PKT_IN_INSTR_CTLX(ring);
  85. pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
  86. pkt_in_ctl.s.is64b = 1;
  87. pkt_in_ctl.s.enb = 1;
  88. nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
  89. /* wait for set [ENB] */
  90. do {
  91. pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
  92. } while (!pkt_in_ctl.s.enb);
  93. }
  94. /**
  95. * nitrox_config_pkt_input_rings - configure Packet Input Rings
  96. * @ndev: N5 device
  97. */
  98. void nitrox_config_pkt_input_rings(struct nitrox_device *ndev)
  99. {
  100. int i;
  101. for (i = 0; i < ndev->nr_queues; i++) {
  102. struct nitrox_cmdq *cmdq = &ndev->pkt_inq[i];
  103. union nps_pkt_in_instr_rsize pkt_in_rsize;
  104. u64 offset;
  105. reset_pkt_input_ring(ndev, i);
  106. /* configure ring base address 16-byte aligned,
  107. * size and interrupt threshold.
  108. */
  109. offset = NPS_PKT_IN_INSTR_BADDRX(i);
  110. nitrox_write_csr(ndev, offset, cmdq->dma);
  111. /* configure ring size */
  112. offset = NPS_PKT_IN_INSTR_RSIZEX(i);
  113. pkt_in_rsize.value = 0;
  114. pkt_in_rsize.s.rsize = ndev->qlen;
  115. nitrox_write_csr(ndev, offset, pkt_in_rsize.value);
  116. /* set high threshold for pkt input ring interrupts */
  117. offset = NPS_PKT_IN_INT_LEVELSX(i);
  118. nitrox_write_csr(ndev, offset, 0xffffffff);
  119. enable_pkt_input_ring(ndev, i);
  120. }
  121. }
  122. static void reset_pkt_solicit_port(struct nitrox_device *ndev, int port)
  123. {
  124. union nps_pkt_slc_ctl pkt_slc_ctl;
  125. union nps_pkt_slc_cnts pkt_slc_cnts;
  126. u64 offset;
  127. /* disable slc port */
  128. offset = NPS_PKT_SLC_CTLX(port);
  129. pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
  130. pkt_slc_ctl.s.enb = 0;
  131. nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
  132. usleep_range(100, 150);
  133. /* wait to clear [ENB] */
  134. do {
  135. pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
  136. } while (pkt_slc_ctl.s.enb);
  137. /* clear slc counters */
  138. offset = NPS_PKT_SLC_CNTSX(port);
  139. pkt_slc_cnts.value = nitrox_read_csr(ndev, offset);
  140. nitrox_write_csr(ndev, offset, pkt_slc_cnts.value);
  141. usleep_range(50, 100);
  142. }
  143. void enable_pkt_solicit_port(struct nitrox_device *ndev, int port)
  144. {
  145. union nps_pkt_slc_ctl pkt_slc_ctl;
  146. u64 offset;
  147. offset = NPS_PKT_SLC_CTLX(port);
  148. pkt_slc_ctl.value = 0;
  149. pkt_slc_ctl.s.enb = 1;
  150. /*
  151. * 8 trailing 0x00 bytes will be added
  152. * to the end of the outgoing packet.
  153. */
  154. pkt_slc_ctl.s.z = 1;
  155. /* enable response header */
  156. pkt_slc_ctl.s.rh = 1;
  157. nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
  158. /* wait to set [ENB] */
  159. do {
  160. pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
  161. } while (!pkt_slc_ctl.s.enb);
  162. }
  163. static void config_single_pkt_solicit_port(struct nitrox_device *ndev,
  164. int port)
  165. {
  166. union nps_pkt_slc_int_levels pkt_slc_int;
  167. u64 offset;
  168. reset_pkt_solicit_port(ndev, port);
  169. offset = NPS_PKT_SLC_INT_LEVELSX(port);
  170. pkt_slc_int.value = 0;
  171. /* time interrupt threshold */
  172. pkt_slc_int.s.timet = 0x3fffff;
  173. nitrox_write_csr(ndev, offset, pkt_slc_int.value);
  174. enable_pkt_solicit_port(ndev, port);
  175. }
  176. void nitrox_config_pkt_solicit_ports(struct nitrox_device *ndev)
  177. {
  178. int i;
  179. for (i = 0; i < ndev->nr_queues; i++)
  180. config_single_pkt_solicit_port(ndev, i);
  181. }
  182. /**
  183. * enable_nps_interrupts - enable NPS interrutps
  184. * @ndev: N5 device.
  185. *
  186. * This includes NPS core, packet in and slc interrupts.
  187. */
  188. static void enable_nps_interrupts(struct nitrox_device *ndev)
  189. {
  190. union nps_core_int_ena_w1s core_int;
  191. /* NPS core interrutps */
  192. core_int.value = 0;
  193. core_int.s.host_wr_err = 1;
  194. core_int.s.host_wr_timeout = 1;
  195. core_int.s.exec_wr_timeout = 1;
  196. core_int.s.npco_dma_malform = 1;
  197. core_int.s.host_nps_wr_err = 1;
  198. nitrox_write_csr(ndev, NPS_CORE_INT_ENA_W1S, core_int.value);
  199. /* NPS packet in ring interrupts */
  200. nitrox_write_csr(ndev, NPS_PKT_IN_RERR_LO_ENA_W1S, (~0ULL));
  201. nitrox_write_csr(ndev, NPS_PKT_IN_RERR_HI_ENA_W1S, (~0ULL));
  202. nitrox_write_csr(ndev, NPS_PKT_IN_ERR_TYPE_ENA_W1S, (~0ULL));
  203. /* NPS packet slc port interrupts */
  204. nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_HI_ENA_W1S, (~0ULL));
  205. nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_LO_ENA_W1S, (~0ULL));
  206. nitrox_write_csr(ndev, NPS_PKT_SLC_ERR_TYPE_ENA_W1S, (~0uLL));
  207. }
  208. void nitrox_config_nps_unit(struct nitrox_device *ndev)
  209. {
  210. union nps_core_gbl_vfcfg core_gbl_vfcfg;
  211. /* endian control information */
  212. nitrox_write_csr(ndev, NPS_CORE_CONTROL, 1ULL);
  213. /* disable ILK interface */
  214. core_gbl_vfcfg.value = 0;
  215. core_gbl_vfcfg.s.ilk_disable = 1;
  216. core_gbl_vfcfg.s.cfg = __NDEV_MODE_PF;
  217. nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, core_gbl_vfcfg.value);
  218. /* config input and solicit ports */
  219. nitrox_config_pkt_input_rings(ndev);
  220. nitrox_config_pkt_solicit_ports(ndev);
  221. /* enable interrupts */
  222. enable_nps_interrupts(ndev);
  223. }
  224. void nitrox_config_pom_unit(struct nitrox_device *ndev)
  225. {
  226. union pom_int_ena_w1s pom_int;
  227. int i;
  228. /* enable pom interrupts */
  229. pom_int.value = 0;
  230. pom_int.s.illegal_dport = 1;
  231. nitrox_write_csr(ndev, POM_INT_ENA_W1S, pom_int.value);
  232. /* enable perf counters */
  233. for (i = 0; i < ndev->hw.se_cores; i++)
  234. nitrox_write_csr(ndev, POM_PERF_CTL, BIT_ULL(i));
  235. }
  236. /**
  237. * nitrox_config_rand_unit - enable N5 random number unit
  238. * @ndev: N5 device
  239. */
  240. void nitrox_config_rand_unit(struct nitrox_device *ndev)
  241. {
  242. union efl_rnm_ctl_status efl_rnm_ctl;
  243. u64 offset;
  244. offset = EFL_RNM_CTL_STATUS;
  245. efl_rnm_ctl.value = nitrox_read_csr(ndev, offset);
  246. efl_rnm_ctl.s.ent_en = 1;
  247. efl_rnm_ctl.s.rng_en = 1;
  248. nitrox_write_csr(ndev, offset, efl_rnm_ctl.value);
  249. }
  250. void nitrox_config_efl_unit(struct nitrox_device *ndev)
  251. {
  252. int i;
  253. for (i = 0; i < NR_CLUSTERS; i++) {
  254. union efl_core_int_ena_w1s efl_core_int;
  255. u64 offset;
  256. /* EFL core interrupts */
  257. offset = EFL_CORE_INT_ENA_W1SX(i);
  258. efl_core_int.value = 0;
  259. efl_core_int.s.len_ovr = 1;
  260. efl_core_int.s.d_left = 1;
  261. efl_core_int.s.epci_decode_err = 1;
  262. nitrox_write_csr(ndev, offset, efl_core_int.value);
  263. offset = EFL_CORE_VF_ERR_INT0_ENA_W1SX(i);
  264. nitrox_write_csr(ndev, offset, (~0ULL));
  265. offset = EFL_CORE_VF_ERR_INT1_ENA_W1SX(i);
  266. nitrox_write_csr(ndev, offset, (~0ULL));
  267. }
  268. }
  269. void nitrox_config_bmi_unit(struct nitrox_device *ndev)
  270. {
  271. union bmi_ctl bmi_ctl;
  272. union bmi_int_ena_w1s bmi_int_ena;
  273. u64 offset;
  274. /* no threshold limits for PCIe */
  275. offset = BMI_CTL;
  276. bmi_ctl.value = nitrox_read_csr(ndev, offset);
  277. bmi_ctl.s.max_pkt_len = 0xff;
  278. bmi_ctl.s.nps_free_thrsh = 0xff;
  279. bmi_ctl.s.nps_hdrq_thrsh = 0x7a;
  280. nitrox_write_csr(ndev, offset, bmi_ctl.value);
  281. /* enable interrupts */
  282. offset = BMI_INT_ENA_W1S;
  283. bmi_int_ena.value = 0;
  284. bmi_int_ena.s.max_len_err_nps = 1;
  285. bmi_int_ena.s.pkt_rcv_err_nps = 1;
  286. bmi_int_ena.s.fpf_undrrn = 1;
  287. nitrox_write_csr(ndev, offset, bmi_int_ena.value);
  288. }
  289. void nitrox_config_bmo_unit(struct nitrox_device *ndev)
  290. {
  291. union bmo_ctl2 bmo_ctl2;
  292. u64 offset;
  293. /* no threshold limits for PCIe */
  294. offset = BMO_CTL2;
  295. bmo_ctl2.value = nitrox_read_csr(ndev, offset);
  296. bmo_ctl2.s.nps_slc_buf_thrsh = 0xff;
  297. nitrox_write_csr(ndev, offset, bmo_ctl2.value);
  298. }
  299. void invalidate_lbc(struct nitrox_device *ndev)
  300. {
  301. union lbc_inval_ctl lbc_ctl;
  302. union lbc_inval_status lbc_stat;
  303. u64 offset;
  304. /* invalidate LBC */
  305. offset = LBC_INVAL_CTL;
  306. lbc_ctl.value = nitrox_read_csr(ndev, offset);
  307. lbc_ctl.s.cam_inval_start = 1;
  308. nitrox_write_csr(ndev, offset, lbc_ctl.value);
  309. offset = LBC_INVAL_STATUS;
  310. do {
  311. lbc_stat.value = nitrox_read_csr(ndev, offset);
  312. } while (!lbc_stat.s.done);
  313. }
  314. void nitrox_config_lbc_unit(struct nitrox_device *ndev)
  315. {
  316. union lbc_int_ena_w1s lbc_int_ena;
  317. u64 offset;
  318. invalidate_lbc(ndev);
  319. /* enable interrupts */
  320. offset = LBC_INT_ENA_W1S;
  321. lbc_int_ena.value = 0;
  322. lbc_int_ena.s.dma_rd_err = 1;
  323. lbc_int_ena.s.over_fetch_err = 1;
  324. lbc_int_ena.s.cam_inval_abort = 1;
  325. lbc_int_ena.s.cam_hard_err = 1;
  326. nitrox_write_csr(ndev, offset, lbc_int_ena.value);
  327. offset = LBC_PLM_VF1_64_INT_ENA_W1S;
  328. nitrox_write_csr(ndev, offset, (~0ULL));
  329. offset = LBC_PLM_VF65_128_INT_ENA_W1S;
  330. nitrox_write_csr(ndev, offset, (~0ULL));
  331. offset = LBC_ELM_VF1_64_INT_ENA_W1S;
  332. nitrox_write_csr(ndev, offset, (~0ULL));
  333. offset = LBC_ELM_VF65_128_INT_ENA_W1S;
  334. nitrox_write_csr(ndev, offset, (~0ULL));
  335. }
  336. void config_nps_core_vfcfg_mode(struct nitrox_device *ndev, enum vf_mode mode)
  337. {
  338. union nps_core_gbl_vfcfg vfcfg;
  339. vfcfg.value = nitrox_read_csr(ndev, NPS_CORE_GBL_VFCFG);
  340. vfcfg.s.cfg = mode & 0x7;
  341. nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, vfcfg.value);
  342. }
  343. void nitrox_get_hwinfo(struct nitrox_device *ndev)
  344. {
  345. union emu_fuse_map emu_fuse;
  346. union rst_boot rst_boot;
  347. union fus_dat1 fus_dat1;
  348. unsigned char name[IFNAMSIZ * 2] = {};
  349. int i, dead_cores;
  350. u64 offset;
  351. /* get core frequency */
  352. offset = RST_BOOT;
  353. rst_boot.value = nitrox_read_csr(ndev, offset);
  354. ndev->hw.freq = (rst_boot.pnr_mul + 3) * PLL_REF_CLK;
  355. for (i = 0; i < NR_CLUSTERS; i++) {
  356. offset = EMU_FUSE_MAPX(i);
  357. emu_fuse.value = nitrox_read_csr(ndev, offset);
  358. if (emu_fuse.s.valid) {
  359. dead_cores = hweight32(emu_fuse.s.ae_fuse);
  360. ndev->hw.ae_cores += AE_CORES_PER_CLUSTER - dead_cores;
  361. dead_cores = hweight16(emu_fuse.s.se_fuse);
  362. ndev->hw.se_cores += SE_CORES_PER_CLUSTER - dead_cores;
  363. }
  364. }
  365. /* find zip hardware availability */
  366. offset = FUS_DAT1;
  367. fus_dat1.value = nitrox_read_csr(ndev, offset);
  368. if (!fus_dat1.nozip) {
  369. dead_cores = hweight8(fus_dat1.zip_info);
  370. ndev->hw.zip_cores = ZIP_MAX_CORES - dead_cores;
  371. }
  372. /* determine the partname CNN55<cores>-<freq><pincount>-<rev>*/
  373. if (ndev->hw.ae_cores == AE_MAX_CORES) {
  374. switch (ndev->hw.se_cores) {
  375. case SE_MAX_CORES:
  376. i = snprintf(name, sizeof(name), "CNN5560");
  377. break;
  378. case 40:
  379. i = snprintf(name, sizeof(name), "CNN5560s");
  380. break;
  381. }
  382. } else if (ndev->hw.ae_cores == (AE_MAX_CORES / 2)) {
  383. i = snprintf(name, sizeof(name), "CNN5530");
  384. } else {
  385. i = snprintf(name, sizeof(name), "CNN5560i");
  386. }
  387. snprintf(name + i, sizeof(name) - i, "-%3dBG676-1.%u",
  388. ndev->hw.freq, ndev->hw.revision_id);
  389. /* copy partname */
  390. strncpy(ndev->hw.partname, name, sizeof(ndev->hw.partname));
  391. }