caamalg_qi2.c 139 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165
  1. // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
  2. /*
  3. * Copyright 2015-2016 Freescale Semiconductor Inc.
  4. * Copyright 2017-2018 NXP
  5. */
  6. #include "compat.h"
  7. #include "regs.h"
  8. #include "caamalg_qi2.h"
  9. #include "dpseci_cmd.h"
  10. #include "desc_constr.h"
  11. #include "error.h"
  12. #include "sg_sw_sec4.h"
  13. #include "sg_sw_qm2.h"
  14. #include "key_gen.h"
  15. #include "caamalg_desc.h"
  16. #include "caamhash_desc.h"
  17. #include <linux/fsl/mc.h>
  18. #include <soc/fsl/dpaa2-io.h>
  19. #include <soc/fsl/dpaa2-fd.h>
  20. #define CAAM_CRA_PRIORITY 2000
  21. /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
  22. #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE + \
  23. SHA512_DIGEST_SIZE * 2)
  24. #if !IS_ENABLED(CONFIG_CRYPTO_DEV_FSL_CAAM)
  25. bool caam_little_end;
  26. EXPORT_SYMBOL(caam_little_end);
  27. bool caam_imx;
  28. EXPORT_SYMBOL(caam_imx);
  29. #endif
  30. /*
  31. * This is a a cache of buffers, from which the users of CAAM QI driver
  32. * can allocate short buffers. It's speedier than doing kmalloc on the hotpath.
  33. * NOTE: A more elegant solution would be to have some headroom in the frames
  34. * being processed. This can be added by the dpaa2-eth driver. This would
  35. * pose a problem for userspace application processing which cannot
  36. * know of this limitation. So for now, this will work.
  37. * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
  38. */
  39. static struct kmem_cache *qi_cache;
  40. struct caam_alg_entry {
  41. struct device *dev;
  42. int class1_alg_type;
  43. int class2_alg_type;
  44. bool rfc3686;
  45. bool geniv;
  46. };
  47. struct caam_aead_alg {
  48. struct aead_alg aead;
  49. struct caam_alg_entry caam;
  50. bool registered;
  51. };
  52. struct caam_skcipher_alg {
  53. struct skcipher_alg skcipher;
  54. struct caam_alg_entry caam;
  55. bool registered;
  56. };
  57. /**
  58. * caam_ctx - per-session context
  59. * @flc: Flow Contexts array
  60. * @key: [authentication key], encryption key
  61. * @flc_dma: I/O virtual addresses of the Flow Contexts
  62. * @key_dma: I/O virtual address of the key
  63. * @dir: DMA direction for mapping key and Flow Contexts
  64. * @dev: dpseci device
  65. * @adata: authentication algorithm details
  66. * @cdata: encryption algorithm details
  67. * @authsize: authentication tag (a.k.a. ICV / MAC) size
  68. */
  69. struct caam_ctx {
  70. struct caam_flc flc[NUM_OP];
  71. u8 key[CAAM_MAX_KEY_SIZE];
  72. dma_addr_t flc_dma[NUM_OP];
  73. dma_addr_t key_dma;
  74. enum dma_data_direction dir;
  75. struct device *dev;
  76. struct alginfo adata;
  77. struct alginfo cdata;
  78. unsigned int authsize;
  79. };
  80. static void *dpaa2_caam_iova_to_virt(struct dpaa2_caam_priv *priv,
  81. dma_addr_t iova_addr)
  82. {
  83. phys_addr_t phys_addr;
  84. phys_addr = priv->domain ? iommu_iova_to_phys(priv->domain, iova_addr) :
  85. iova_addr;
  86. return phys_to_virt(phys_addr);
  87. }
  88. /*
  89. * qi_cache_zalloc - Allocate buffers from CAAM-QI cache
  90. *
  91. * Allocate data on the hotpath. Instead of using kzalloc, one can use the
  92. * services of the CAAM QI memory cache (backed by kmem_cache). The buffers
  93. * will have a size of CAAM_QI_MEMCACHE_SIZE, which should be sufficient for
  94. * hosting 16 SG entries.
  95. *
  96. * @flags - flags that would be used for the equivalent kmalloc(..) call
  97. *
  98. * Returns a pointer to a retrieved buffer on success or NULL on failure.
  99. */
  100. static inline void *qi_cache_zalloc(gfp_t flags)
  101. {
  102. return kmem_cache_zalloc(qi_cache, flags);
  103. }
  104. /*
  105. * qi_cache_free - Frees buffers allocated from CAAM-QI cache
  106. *
  107. * @obj - buffer previously allocated by qi_cache_zalloc
  108. *
  109. * No checking is being done, the call is a passthrough call to
  110. * kmem_cache_free(...)
  111. */
  112. static inline void qi_cache_free(void *obj)
  113. {
  114. kmem_cache_free(qi_cache, obj);
  115. }
  116. static struct caam_request *to_caam_req(struct crypto_async_request *areq)
  117. {
  118. switch (crypto_tfm_alg_type(areq->tfm)) {
  119. case CRYPTO_ALG_TYPE_SKCIPHER:
  120. return skcipher_request_ctx(skcipher_request_cast(areq));
  121. case CRYPTO_ALG_TYPE_AEAD:
  122. return aead_request_ctx(container_of(areq, struct aead_request,
  123. base));
  124. case CRYPTO_ALG_TYPE_AHASH:
  125. return ahash_request_ctx(ahash_request_cast(areq));
  126. default:
  127. return ERR_PTR(-EINVAL);
  128. }
  129. }
  130. static void caam_unmap(struct device *dev, struct scatterlist *src,
  131. struct scatterlist *dst, int src_nents,
  132. int dst_nents, dma_addr_t iv_dma, int ivsize,
  133. dma_addr_t qm_sg_dma, int qm_sg_bytes)
  134. {
  135. if (dst != src) {
  136. if (src_nents)
  137. dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
  138. dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
  139. } else {
  140. dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
  141. }
  142. if (iv_dma)
  143. dma_unmap_single(dev, iv_dma, ivsize, DMA_TO_DEVICE);
  144. if (qm_sg_bytes)
  145. dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE);
  146. }
  147. static int aead_set_sh_desc(struct crypto_aead *aead)
  148. {
  149. struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
  150. typeof(*alg), aead);
  151. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  152. unsigned int ivsize = crypto_aead_ivsize(aead);
  153. struct device *dev = ctx->dev;
  154. struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
  155. struct caam_flc *flc;
  156. u32 *desc;
  157. u32 ctx1_iv_off = 0;
  158. u32 *nonce = NULL;
  159. unsigned int data_len[2];
  160. u32 inl_mask;
  161. const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
  162. OP_ALG_AAI_CTR_MOD128);
  163. const bool is_rfc3686 = alg->caam.rfc3686;
  164. if (!ctx->cdata.keylen || !ctx->authsize)
  165. return 0;
  166. /*
  167. * AES-CTR needs to load IV in CONTEXT1 reg
  168. * at an offset of 128bits (16bytes)
  169. * CONTEXT1[255:128] = IV
  170. */
  171. if (ctr_mode)
  172. ctx1_iv_off = 16;
  173. /*
  174. * RFC3686 specific:
  175. * CONTEXT1[255:128] = {NONCE, IV, COUNTER}
  176. */
  177. if (is_rfc3686) {
  178. ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
  179. nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
  180. ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
  181. }
  182. data_len[0] = ctx->adata.keylen_pad;
  183. data_len[1] = ctx->cdata.keylen;
  184. /* aead_encrypt shared descriptor */
  185. if (desc_inline_query((alg->caam.geniv ? DESC_QI_AEAD_GIVENC_LEN :
  186. DESC_QI_AEAD_ENC_LEN) +
  187. (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
  188. DESC_JOB_IO_LEN, data_len, &inl_mask,
  189. ARRAY_SIZE(data_len)) < 0)
  190. return -EINVAL;
  191. if (inl_mask & 1)
  192. ctx->adata.key_virt = ctx->key;
  193. else
  194. ctx->adata.key_dma = ctx->key_dma;
  195. if (inl_mask & 2)
  196. ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
  197. else
  198. ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
  199. ctx->adata.key_inline = !!(inl_mask & 1);
  200. ctx->cdata.key_inline = !!(inl_mask & 2);
  201. flc = &ctx->flc[ENCRYPT];
  202. desc = flc->sh_desc;
  203. if (alg->caam.geniv)
  204. cnstr_shdsc_aead_givencap(desc, &ctx->cdata, &ctx->adata,
  205. ivsize, ctx->authsize, is_rfc3686,
  206. nonce, ctx1_iv_off, true,
  207. priv->sec_attr.era);
  208. else
  209. cnstr_shdsc_aead_encap(desc, &ctx->cdata, &ctx->adata,
  210. ivsize, ctx->authsize, is_rfc3686, nonce,
  211. ctx1_iv_off, true, priv->sec_attr.era);
  212. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  213. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  214. sizeof(flc->flc) + desc_bytes(desc),
  215. ctx->dir);
  216. /* aead_decrypt shared descriptor */
  217. if (desc_inline_query(DESC_QI_AEAD_DEC_LEN +
  218. (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
  219. DESC_JOB_IO_LEN, data_len, &inl_mask,
  220. ARRAY_SIZE(data_len)) < 0)
  221. return -EINVAL;
  222. if (inl_mask & 1)
  223. ctx->adata.key_virt = ctx->key;
  224. else
  225. ctx->adata.key_dma = ctx->key_dma;
  226. if (inl_mask & 2)
  227. ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
  228. else
  229. ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
  230. ctx->adata.key_inline = !!(inl_mask & 1);
  231. ctx->cdata.key_inline = !!(inl_mask & 2);
  232. flc = &ctx->flc[DECRYPT];
  233. desc = flc->sh_desc;
  234. cnstr_shdsc_aead_decap(desc, &ctx->cdata, &ctx->adata,
  235. ivsize, ctx->authsize, alg->caam.geniv,
  236. is_rfc3686, nonce, ctx1_iv_off, true,
  237. priv->sec_attr.era);
  238. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  239. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  240. sizeof(flc->flc) + desc_bytes(desc),
  241. ctx->dir);
  242. return 0;
  243. }
  244. static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
  245. {
  246. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  247. ctx->authsize = authsize;
  248. aead_set_sh_desc(authenc);
  249. return 0;
  250. }
  251. static int aead_setkey(struct crypto_aead *aead, const u8 *key,
  252. unsigned int keylen)
  253. {
  254. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  255. struct device *dev = ctx->dev;
  256. struct crypto_authenc_keys keys;
  257. if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
  258. goto badkey;
  259. dev_dbg(dev, "keylen %d enckeylen %d authkeylen %d\n",
  260. keys.authkeylen + keys.enckeylen, keys.enckeylen,
  261. keys.authkeylen);
  262. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  263. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  264. ctx->adata.keylen = keys.authkeylen;
  265. ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
  266. OP_ALG_ALGSEL_MASK);
  267. if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
  268. goto badkey;
  269. memcpy(ctx->key, keys.authkey, keys.authkeylen);
  270. memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
  271. dma_sync_single_for_device(dev, ctx->key_dma, ctx->adata.keylen_pad +
  272. keys.enckeylen, ctx->dir);
  273. print_hex_dump_debug("ctx.key@" __stringify(__LINE__)": ",
  274. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  275. ctx->adata.keylen_pad + keys.enckeylen, 1);
  276. ctx->cdata.keylen = keys.enckeylen;
  277. memzero_explicit(&keys, sizeof(keys));
  278. return aead_set_sh_desc(aead);
  279. badkey:
  280. crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
  281. memzero_explicit(&keys, sizeof(keys));
  282. return -EINVAL;
  283. }
  284. static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
  285. bool encrypt)
  286. {
  287. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  288. struct caam_request *req_ctx = aead_request_ctx(req);
  289. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  290. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  291. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  292. struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
  293. typeof(*alg), aead);
  294. struct device *dev = ctx->dev;
  295. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  296. GFP_KERNEL : GFP_ATOMIC;
  297. int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
  298. struct aead_edesc *edesc;
  299. dma_addr_t qm_sg_dma, iv_dma = 0;
  300. int ivsize = 0;
  301. unsigned int authsize = ctx->authsize;
  302. int qm_sg_index = 0, qm_sg_nents = 0, qm_sg_bytes;
  303. int in_len, out_len;
  304. struct dpaa2_sg_entry *sg_table;
  305. /* allocate space for base edesc, link tables and IV */
  306. edesc = qi_cache_zalloc(GFP_DMA | flags);
  307. if (unlikely(!edesc)) {
  308. dev_err(dev, "could not allocate extended descriptor\n");
  309. return ERR_PTR(-ENOMEM);
  310. }
  311. if (unlikely(req->dst != req->src)) {
  312. src_nents = sg_nents_for_len(req->src, req->assoclen +
  313. req->cryptlen);
  314. if (unlikely(src_nents < 0)) {
  315. dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
  316. req->assoclen + req->cryptlen);
  317. qi_cache_free(edesc);
  318. return ERR_PTR(src_nents);
  319. }
  320. dst_nents = sg_nents_for_len(req->dst, req->assoclen +
  321. req->cryptlen +
  322. (encrypt ? authsize :
  323. (-authsize)));
  324. if (unlikely(dst_nents < 0)) {
  325. dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
  326. req->assoclen + req->cryptlen +
  327. (encrypt ? authsize : (-authsize)));
  328. qi_cache_free(edesc);
  329. return ERR_PTR(dst_nents);
  330. }
  331. if (src_nents) {
  332. mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
  333. DMA_TO_DEVICE);
  334. if (unlikely(!mapped_src_nents)) {
  335. dev_err(dev, "unable to map source\n");
  336. qi_cache_free(edesc);
  337. return ERR_PTR(-ENOMEM);
  338. }
  339. } else {
  340. mapped_src_nents = 0;
  341. }
  342. mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
  343. DMA_FROM_DEVICE);
  344. if (unlikely(!mapped_dst_nents)) {
  345. dev_err(dev, "unable to map destination\n");
  346. dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
  347. qi_cache_free(edesc);
  348. return ERR_PTR(-ENOMEM);
  349. }
  350. } else {
  351. src_nents = sg_nents_for_len(req->src, req->assoclen +
  352. req->cryptlen +
  353. (encrypt ? authsize : 0));
  354. if (unlikely(src_nents < 0)) {
  355. dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
  356. req->assoclen + req->cryptlen +
  357. (encrypt ? authsize : 0));
  358. qi_cache_free(edesc);
  359. return ERR_PTR(src_nents);
  360. }
  361. mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
  362. DMA_BIDIRECTIONAL);
  363. if (unlikely(!mapped_src_nents)) {
  364. dev_err(dev, "unable to map source\n");
  365. qi_cache_free(edesc);
  366. return ERR_PTR(-ENOMEM);
  367. }
  368. }
  369. if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv)
  370. ivsize = crypto_aead_ivsize(aead);
  371. /*
  372. * Create S/G table: req->assoclen, [IV,] req->src [, req->dst].
  373. * Input is not contiguous.
  374. */
  375. qm_sg_nents = 1 + !!ivsize + mapped_src_nents +
  376. (mapped_dst_nents > 1 ? mapped_dst_nents : 0);
  377. sg_table = &edesc->sgt[0];
  378. qm_sg_bytes = qm_sg_nents * sizeof(*sg_table);
  379. if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize >
  380. CAAM_QI_MEMCACHE_SIZE)) {
  381. dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
  382. qm_sg_nents, ivsize);
  383. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
  384. 0, 0, 0);
  385. qi_cache_free(edesc);
  386. return ERR_PTR(-ENOMEM);
  387. }
  388. if (ivsize) {
  389. u8 *iv = (u8 *)(sg_table + qm_sg_nents);
  390. /* Make sure IV is located in a DMAable area */
  391. memcpy(iv, req->iv, ivsize);
  392. iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE);
  393. if (dma_mapping_error(dev, iv_dma)) {
  394. dev_err(dev, "unable to map IV\n");
  395. caam_unmap(dev, req->src, req->dst, src_nents,
  396. dst_nents, 0, 0, 0, 0);
  397. qi_cache_free(edesc);
  398. return ERR_PTR(-ENOMEM);
  399. }
  400. }
  401. edesc->src_nents = src_nents;
  402. edesc->dst_nents = dst_nents;
  403. edesc->iv_dma = iv_dma;
  404. edesc->assoclen = cpu_to_caam32(req->assoclen);
  405. edesc->assoclen_dma = dma_map_single(dev, &edesc->assoclen, 4,
  406. DMA_TO_DEVICE);
  407. if (dma_mapping_error(dev, edesc->assoclen_dma)) {
  408. dev_err(dev, "unable to map assoclen\n");
  409. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
  410. iv_dma, ivsize, 0, 0);
  411. qi_cache_free(edesc);
  412. return ERR_PTR(-ENOMEM);
  413. }
  414. dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0);
  415. qm_sg_index++;
  416. if (ivsize) {
  417. dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0);
  418. qm_sg_index++;
  419. }
  420. sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table + qm_sg_index, 0);
  421. qm_sg_index += mapped_src_nents;
  422. if (mapped_dst_nents > 1)
  423. sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table +
  424. qm_sg_index, 0);
  425. qm_sg_dma = dma_map_single(dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
  426. if (dma_mapping_error(dev, qm_sg_dma)) {
  427. dev_err(dev, "unable to map S/G table\n");
  428. dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
  429. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
  430. iv_dma, ivsize, 0, 0);
  431. qi_cache_free(edesc);
  432. return ERR_PTR(-ENOMEM);
  433. }
  434. edesc->qm_sg_dma = qm_sg_dma;
  435. edesc->qm_sg_bytes = qm_sg_bytes;
  436. out_len = req->assoclen + req->cryptlen +
  437. (encrypt ? ctx->authsize : (-ctx->authsize));
  438. in_len = 4 + ivsize + req->assoclen + req->cryptlen;
  439. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  440. dpaa2_fl_set_final(in_fle, true);
  441. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  442. dpaa2_fl_set_addr(in_fle, qm_sg_dma);
  443. dpaa2_fl_set_len(in_fle, in_len);
  444. if (req->dst == req->src) {
  445. if (mapped_src_nents == 1) {
  446. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  447. dpaa2_fl_set_addr(out_fle, sg_dma_address(req->src));
  448. } else {
  449. dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
  450. dpaa2_fl_set_addr(out_fle, qm_sg_dma +
  451. (1 + !!ivsize) * sizeof(*sg_table));
  452. }
  453. } else if (mapped_dst_nents == 1) {
  454. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  455. dpaa2_fl_set_addr(out_fle, sg_dma_address(req->dst));
  456. } else {
  457. dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
  458. dpaa2_fl_set_addr(out_fle, qm_sg_dma + qm_sg_index *
  459. sizeof(*sg_table));
  460. }
  461. dpaa2_fl_set_len(out_fle, out_len);
  462. return edesc;
  463. }
  464. static int gcm_set_sh_desc(struct crypto_aead *aead)
  465. {
  466. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  467. struct device *dev = ctx->dev;
  468. unsigned int ivsize = crypto_aead_ivsize(aead);
  469. struct caam_flc *flc;
  470. u32 *desc;
  471. int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
  472. ctx->cdata.keylen;
  473. if (!ctx->cdata.keylen || !ctx->authsize)
  474. return 0;
  475. /*
  476. * AES GCM encrypt shared descriptor
  477. * Job Descriptor and Shared Descriptor
  478. * must fit into the 64-word Descriptor h/w Buffer
  479. */
  480. if (rem_bytes >= DESC_QI_GCM_ENC_LEN) {
  481. ctx->cdata.key_inline = true;
  482. ctx->cdata.key_virt = ctx->key;
  483. } else {
  484. ctx->cdata.key_inline = false;
  485. ctx->cdata.key_dma = ctx->key_dma;
  486. }
  487. flc = &ctx->flc[ENCRYPT];
  488. desc = flc->sh_desc;
  489. cnstr_shdsc_gcm_encap(desc, &ctx->cdata, ivsize, ctx->authsize, true);
  490. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  491. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  492. sizeof(flc->flc) + desc_bytes(desc),
  493. ctx->dir);
  494. /*
  495. * Job Descriptor and Shared Descriptors
  496. * must all fit into the 64-word Descriptor h/w Buffer
  497. */
  498. if (rem_bytes >= DESC_QI_GCM_DEC_LEN) {
  499. ctx->cdata.key_inline = true;
  500. ctx->cdata.key_virt = ctx->key;
  501. } else {
  502. ctx->cdata.key_inline = false;
  503. ctx->cdata.key_dma = ctx->key_dma;
  504. }
  505. flc = &ctx->flc[DECRYPT];
  506. desc = flc->sh_desc;
  507. cnstr_shdsc_gcm_decap(desc, &ctx->cdata, ivsize, ctx->authsize, true);
  508. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  509. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  510. sizeof(flc->flc) + desc_bytes(desc),
  511. ctx->dir);
  512. return 0;
  513. }
  514. static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
  515. {
  516. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  517. ctx->authsize = authsize;
  518. gcm_set_sh_desc(authenc);
  519. return 0;
  520. }
  521. static int gcm_setkey(struct crypto_aead *aead,
  522. const u8 *key, unsigned int keylen)
  523. {
  524. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  525. struct device *dev = ctx->dev;
  526. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  527. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  528. memcpy(ctx->key, key, keylen);
  529. dma_sync_single_for_device(dev, ctx->key_dma, keylen, ctx->dir);
  530. ctx->cdata.keylen = keylen;
  531. return gcm_set_sh_desc(aead);
  532. }
  533. static int rfc4106_set_sh_desc(struct crypto_aead *aead)
  534. {
  535. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  536. struct device *dev = ctx->dev;
  537. unsigned int ivsize = crypto_aead_ivsize(aead);
  538. struct caam_flc *flc;
  539. u32 *desc;
  540. int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
  541. ctx->cdata.keylen;
  542. if (!ctx->cdata.keylen || !ctx->authsize)
  543. return 0;
  544. ctx->cdata.key_virt = ctx->key;
  545. /*
  546. * RFC4106 encrypt shared descriptor
  547. * Job Descriptor and Shared Descriptor
  548. * must fit into the 64-word Descriptor h/w Buffer
  549. */
  550. if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) {
  551. ctx->cdata.key_inline = true;
  552. } else {
  553. ctx->cdata.key_inline = false;
  554. ctx->cdata.key_dma = ctx->key_dma;
  555. }
  556. flc = &ctx->flc[ENCRYPT];
  557. desc = flc->sh_desc;
  558. cnstr_shdsc_rfc4106_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
  559. true);
  560. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  561. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  562. sizeof(flc->flc) + desc_bytes(desc),
  563. ctx->dir);
  564. /*
  565. * Job Descriptor and Shared Descriptors
  566. * must all fit into the 64-word Descriptor h/w Buffer
  567. */
  568. if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) {
  569. ctx->cdata.key_inline = true;
  570. } else {
  571. ctx->cdata.key_inline = false;
  572. ctx->cdata.key_dma = ctx->key_dma;
  573. }
  574. flc = &ctx->flc[DECRYPT];
  575. desc = flc->sh_desc;
  576. cnstr_shdsc_rfc4106_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
  577. true);
  578. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  579. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  580. sizeof(flc->flc) + desc_bytes(desc),
  581. ctx->dir);
  582. return 0;
  583. }
  584. static int rfc4106_setauthsize(struct crypto_aead *authenc,
  585. unsigned int authsize)
  586. {
  587. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  588. ctx->authsize = authsize;
  589. rfc4106_set_sh_desc(authenc);
  590. return 0;
  591. }
  592. static int rfc4106_setkey(struct crypto_aead *aead,
  593. const u8 *key, unsigned int keylen)
  594. {
  595. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  596. struct device *dev = ctx->dev;
  597. if (keylen < 4)
  598. return -EINVAL;
  599. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  600. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  601. memcpy(ctx->key, key, keylen);
  602. /*
  603. * The last four bytes of the key material are used as the salt value
  604. * in the nonce. Update the AES key length.
  605. */
  606. ctx->cdata.keylen = keylen - 4;
  607. dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen,
  608. ctx->dir);
  609. return rfc4106_set_sh_desc(aead);
  610. }
  611. static int rfc4543_set_sh_desc(struct crypto_aead *aead)
  612. {
  613. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  614. struct device *dev = ctx->dev;
  615. unsigned int ivsize = crypto_aead_ivsize(aead);
  616. struct caam_flc *flc;
  617. u32 *desc;
  618. int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
  619. ctx->cdata.keylen;
  620. if (!ctx->cdata.keylen || !ctx->authsize)
  621. return 0;
  622. ctx->cdata.key_virt = ctx->key;
  623. /*
  624. * RFC4543 encrypt shared descriptor
  625. * Job Descriptor and Shared Descriptor
  626. * must fit into the 64-word Descriptor h/w Buffer
  627. */
  628. if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) {
  629. ctx->cdata.key_inline = true;
  630. } else {
  631. ctx->cdata.key_inline = false;
  632. ctx->cdata.key_dma = ctx->key_dma;
  633. }
  634. flc = &ctx->flc[ENCRYPT];
  635. desc = flc->sh_desc;
  636. cnstr_shdsc_rfc4543_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
  637. true);
  638. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  639. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  640. sizeof(flc->flc) + desc_bytes(desc),
  641. ctx->dir);
  642. /*
  643. * Job Descriptor and Shared Descriptors
  644. * must all fit into the 64-word Descriptor h/w Buffer
  645. */
  646. if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) {
  647. ctx->cdata.key_inline = true;
  648. } else {
  649. ctx->cdata.key_inline = false;
  650. ctx->cdata.key_dma = ctx->key_dma;
  651. }
  652. flc = &ctx->flc[DECRYPT];
  653. desc = flc->sh_desc;
  654. cnstr_shdsc_rfc4543_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
  655. true);
  656. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  657. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  658. sizeof(flc->flc) + desc_bytes(desc),
  659. ctx->dir);
  660. return 0;
  661. }
  662. static int rfc4543_setauthsize(struct crypto_aead *authenc,
  663. unsigned int authsize)
  664. {
  665. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  666. ctx->authsize = authsize;
  667. rfc4543_set_sh_desc(authenc);
  668. return 0;
  669. }
  670. static int rfc4543_setkey(struct crypto_aead *aead,
  671. const u8 *key, unsigned int keylen)
  672. {
  673. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  674. struct device *dev = ctx->dev;
  675. if (keylen < 4)
  676. return -EINVAL;
  677. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  678. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  679. memcpy(ctx->key, key, keylen);
  680. /*
  681. * The last four bytes of the key material are used as the salt value
  682. * in the nonce. Update the AES key length.
  683. */
  684. ctx->cdata.keylen = keylen - 4;
  685. dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen,
  686. ctx->dir);
  687. return rfc4543_set_sh_desc(aead);
  688. }
  689. static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
  690. unsigned int keylen)
  691. {
  692. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  693. struct caam_skcipher_alg *alg =
  694. container_of(crypto_skcipher_alg(skcipher),
  695. struct caam_skcipher_alg, skcipher);
  696. struct device *dev = ctx->dev;
  697. struct caam_flc *flc;
  698. unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
  699. u32 *desc;
  700. u32 ctx1_iv_off = 0;
  701. const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
  702. OP_ALG_AAI_CTR_MOD128);
  703. const bool is_rfc3686 = alg->caam.rfc3686;
  704. print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
  705. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  706. /*
  707. * AES-CTR needs to load IV in CONTEXT1 reg
  708. * at an offset of 128bits (16bytes)
  709. * CONTEXT1[255:128] = IV
  710. */
  711. if (ctr_mode)
  712. ctx1_iv_off = 16;
  713. /*
  714. * RFC3686 specific:
  715. * | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
  716. * | *key = {KEY, NONCE}
  717. */
  718. if (is_rfc3686) {
  719. ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
  720. keylen -= CTR_RFC3686_NONCE_SIZE;
  721. }
  722. ctx->cdata.keylen = keylen;
  723. ctx->cdata.key_virt = key;
  724. ctx->cdata.key_inline = true;
  725. /* skcipher_encrypt shared descriptor */
  726. flc = &ctx->flc[ENCRYPT];
  727. desc = flc->sh_desc;
  728. cnstr_shdsc_skcipher_encap(desc, &ctx->cdata, ivsize, is_rfc3686,
  729. ctx1_iv_off);
  730. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  731. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  732. sizeof(flc->flc) + desc_bytes(desc),
  733. ctx->dir);
  734. /* skcipher_decrypt shared descriptor */
  735. flc = &ctx->flc[DECRYPT];
  736. desc = flc->sh_desc;
  737. cnstr_shdsc_skcipher_decap(desc, &ctx->cdata, ivsize, is_rfc3686,
  738. ctx1_iv_off);
  739. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  740. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  741. sizeof(flc->flc) + desc_bytes(desc),
  742. ctx->dir);
  743. return 0;
  744. }
  745. static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
  746. unsigned int keylen)
  747. {
  748. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  749. struct device *dev = ctx->dev;
  750. struct caam_flc *flc;
  751. u32 *desc;
  752. if (keylen != 2 * AES_MIN_KEY_SIZE && keylen != 2 * AES_MAX_KEY_SIZE) {
  753. dev_err(dev, "key size mismatch\n");
  754. crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  755. return -EINVAL;
  756. }
  757. ctx->cdata.keylen = keylen;
  758. ctx->cdata.key_virt = key;
  759. ctx->cdata.key_inline = true;
  760. /* xts_skcipher_encrypt shared descriptor */
  761. flc = &ctx->flc[ENCRYPT];
  762. desc = flc->sh_desc;
  763. cnstr_shdsc_xts_skcipher_encap(desc, &ctx->cdata);
  764. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  765. dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
  766. sizeof(flc->flc) + desc_bytes(desc),
  767. ctx->dir);
  768. /* xts_skcipher_decrypt shared descriptor */
  769. flc = &ctx->flc[DECRYPT];
  770. desc = flc->sh_desc;
  771. cnstr_shdsc_xts_skcipher_decap(desc, &ctx->cdata);
  772. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  773. dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
  774. sizeof(flc->flc) + desc_bytes(desc),
  775. ctx->dir);
  776. return 0;
  777. }
  778. static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req)
  779. {
  780. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  781. struct caam_request *req_ctx = skcipher_request_ctx(req);
  782. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  783. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  784. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  785. struct device *dev = ctx->dev;
  786. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  787. GFP_KERNEL : GFP_ATOMIC;
  788. int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
  789. struct skcipher_edesc *edesc;
  790. dma_addr_t iv_dma;
  791. u8 *iv;
  792. int ivsize = crypto_skcipher_ivsize(skcipher);
  793. int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
  794. struct dpaa2_sg_entry *sg_table;
  795. src_nents = sg_nents_for_len(req->src, req->cryptlen);
  796. if (unlikely(src_nents < 0)) {
  797. dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
  798. req->cryptlen);
  799. return ERR_PTR(src_nents);
  800. }
  801. if (unlikely(req->dst != req->src)) {
  802. dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
  803. if (unlikely(dst_nents < 0)) {
  804. dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
  805. req->cryptlen);
  806. return ERR_PTR(dst_nents);
  807. }
  808. mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
  809. DMA_TO_DEVICE);
  810. if (unlikely(!mapped_src_nents)) {
  811. dev_err(dev, "unable to map source\n");
  812. return ERR_PTR(-ENOMEM);
  813. }
  814. mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
  815. DMA_FROM_DEVICE);
  816. if (unlikely(!mapped_dst_nents)) {
  817. dev_err(dev, "unable to map destination\n");
  818. dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
  819. return ERR_PTR(-ENOMEM);
  820. }
  821. } else {
  822. mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
  823. DMA_BIDIRECTIONAL);
  824. if (unlikely(!mapped_src_nents)) {
  825. dev_err(dev, "unable to map source\n");
  826. return ERR_PTR(-ENOMEM);
  827. }
  828. }
  829. qm_sg_ents = 1 + mapped_src_nents;
  830. dst_sg_idx = qm_sg_ents;
  831. qm_sg_ents += mapped_dst_nents > 1 ? mapped_dst_nents : 0;
  832. qm_sg_bytes = qm_sg_ents * sizeof(struct dpaa2_sg_entry);
  833. if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes +
  834. ivsize > CAAM_QI_MEMCACHE_SIZE)) {
  835. dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
  836. qm_sg_ents, ivsize);
  837. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
  838. 0, 0, 0);
  839. return ERR_PTR(-ENOMEM);
  840. }
  841. /* allocate space for base edesc, link tables and IV */
  842. edesc = qi_cache_zalloc(GFP_DMA | flags);
  843. if (unlikely(!edesc)) {
  844. dev_err(dev, "could not allocate extended descriptor\n");
  845. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
  846. 0, 0, 0);
  847. return ERR_PTR(-ENOMEM);
  848. }
  849. /* Make sure IV is located in a DMAable area */
  850. sg_table = &edesc->sgt[0];
  851. iv = (u8 *)(sg_table + qm_sg_ents);
  852. memcpy(iv, req->iv, ivsize);
  853. iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE);
  854. if (dma_mapping_error(dev, iv_dma)) {
  855. dev_err(dev, "unable to map IV\n");
  856. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
  857. 0, 0, 0);
  858. qi_cache_free(edesc);
  859. return ERR_PTR(-ENOMEM);
  860. }
  861. edesc->src_nents = src_nents;
  862. edesc->dst_nents = dst_nents;
  863. edesc->iv_dma = iv_dma;
  864. edesc->qm_sg_bytes = qm_sg_bytes;
  865. dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
  866. sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table + 1, 0);
  867. if (mapped_dst_nents > 1)
  868. sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table +
  869. dst_sg_idx, 0);
  870. edesc->qm_sg_dma = dma_map_single(dev, sg_table, edesc->qm_sg_bytes,
  871. DMA_TO_DEVICE);
  872. if (dma_mapping_error(dev, edesc->qm_sg_dma)) {
  873. dev_err(dev, "unable to map S/G table\n");
  874. caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
  875. iv_dma, ivsize, 0, 0);
  876. qi_cache_free(edesc);
  877. return ERR_PTR(-ENOMEM);
  878. }
  879. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  880. dpaa2_fl_set_final(in_fle, true);
  881. dpaa2_fl_set_len(in_fle, req->cryptlen + ivsize);
  882. dpaa2_fl_set_len(out_fle, req->cryptlen);
  883. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  884. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  885. if (req->src == req->dst) {
  886. dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
  887. dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma +
  888. sizeof(*sg_table));
  889. } else if (mapped_dst_nents > 1) {
  890. dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
  891. dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma + dst_sg_idx *
  892. sizeof(*sg_table));
  893. } else {
  894. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  895. dpaa2_fl_set_addr(out_fle, sg_dma_address(req->dst));
  896. }
  897. return edesc;
  898. }
  899. static void aead_unmap(struct device *dev, struct aead_edesc *edesc,
  900. struct aead_request *req)
  901. {
  902. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  903. int ivsize = crypto_aead_ivsize(aead);
  904. caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
  905. edesc->iv_dma, ivsize, edesc->qm_sg_dma, edesc->qm_sg_bytes);
  906. dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
  907. }
  908. static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc,
  909. struct skcipher_request *req)
  910. {
  911. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  912. int ivsize = crypto_skcipher_ivsize(skcipher);
  913. caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
  914. edesc->iv_dma, ivsize, edesc->qm_sg_dma, edesc->qm_sg_bytes);
  915. }
  916. static void aead_encrypt_done(void *cbk_ctx, u32 status)
  917. {
  918. struct crypto_async_request *areq = cbk_ctx;
  919. struct aead_request *req = container_of(areq, struct aead_request,
  920. base);
  921. struct caam_request *req_ctx = to_caam_req(areq);
  922. struct aead_edesc *edesc = req_ctx->edesc;
  923. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  924. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  925. int ecode = 0;
  926. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  927. if (unlikely(status)) {
  928. caam_qi2_strstatus(ctx->dev, status);
  929. ecode = -EIO;
  930. }
  931. aead_unmap(ctx->dev, edesc, req);
  932. qi_cache_free(edesc);
  933. aead_request_complete(req, ecode);
  934. }
  935. static void aead_decrypt_done(void *cbk_ctx, u32 status)
  936. {
  937. struct crypto_async_request *areq = cbk_ctx;
  938. struct aead_request *req = container_of(areq, struct aead_request,
  939. base);
  940. struct caam_request *req_ctx = to_caam_req(areq);
  941. struct aead_edesc *edesc = req_ctx->edesc;
  942. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  943. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  944. int ecode = 0;
  945. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  946. if (unlikely(status)) {
  947. caam_qi2_strstatus(ctx->dev, status);
  948. /*
  949. * verify hw auth check passed else return -EBADMSG
  950. */
  951. if ((status & JRSTA_CCBERR_ERRID_MASK) ==
  952. JRSTA_CCBERR_ERRID_ICVCHK)
  953. ecode = -EBADMSG;
  954. else
  955. ecode = -EIO;
  956. }
  957. aead_unmap(ctx->dev, edesc, req);
  958. qi_cache_free(edesc);
  959. aead_request_complete(req, ecode);
  960. }
  961. static int aead_encrypt(struct aead_request *req)
  962. {
  963. struct aead_edesc *edesc;
  964. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  965. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  966. struct caam_request *caam_req = aead_request_ctx(req);
  967. int ret;
  968. /* allocate extended descriptor */
  969. edesc = aead_edesc_alloc(req, true);
  970. if (IS_ERR(edesc))
  971. return PTR_ERR(edesc);
  972. caam_req->flc = &ctx->flc[ENCRYPT];
  973. caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
  974. caam_req->cbk = aead_encrypt_done;
  975. caam_req->ctx = &req->base;
  976. caam_req->edesc = edesc;
  977. ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
  978. if (ret != -EINPROGRESS &&
  979. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
  980. aead_unmap(ctx->dev, edesc, req);
  981. qi_cache_free(edesc);
  982. }
  983. return ret;
  984. }
  985. static int aead_decrypt(struct aead_request *req)
  986. {
  987. struct aead_edesc *edesc;
  988. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  989. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  990. struct caam_request *caam_req = aead_request_ctx(req);
  991. int ret;
  992. /* allocate extended descriptor */
  993. edesc = aead_edesc_alloc(req, false);
  994. if (IS_ERR(edesc))
  995. return PTR_ERR(edesc);
  996. caam_req->flc = &ctx->flc[DECRYPT];
  997. caam_req->flc_dma = ctx->flc_dma[DECRYPT];
  998. caam_req->cbk = aead_decrypt_done;
  999. caam_req->ctx = &req->base;
  1000. caam_req->edesc = edesc;
  1001. ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
  1002. if (ret != -EINPROGRESS &&
  1003. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
  1004. aead_unmap(ctx->dev, edesc, req);
  1005. qi_cache_free(edesc);
  1006. }
  1007. return ret;
  1008. }
  1009. static int ipsec_gcm_encrypt(struct aead_request *req)
  1010. {
  1011. if (req->assoclen < 8)
  1012. return -EINVAL;
  1013. return aead_encrypt(req);
  1014. }
  1015. static int ipsec_gcm_decrypt(struct aead_request *req)
  1016. {
  1017. if (req->assoclen < 8)
  1018. return -EINVAL;
  1019. return aead_decrypt(req);
  1020. }
  1021. static void skcipher_encrypt_done(void *cbk_ctx, u32 status)
  1022. {
  1023. struct crypto_async_request *areq = cbk_ctx;
  1024. struct skcipher_request *req = skcipher_request_cast(areq);
  1025. struct caam_request *req_ctx = to_caam_req(areq);
  1026. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1027. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  1028. struct skcipher_edesc *edesc = req_ctx->edesc;
  1029. int ecode = 0;
  1030. int ivsize = crypto_skcipher_ivsize(skcipher);
  1031. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  1032. if (unlikely(status)) {
  1033. caam_qi2_strstatus(ctx->dev, status);
  1034. ecode = -EIO;
  1035. }
  1036. print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
  1037. DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
  1038. edesc->src_nents > 1 ? 100 : ivsize, 1);
  1039. caam_dump_sg(KERN_DEBUG, "dst @" __stringify(__LINE__)": ",
  1040. DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
  1041. edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
  1042. skcipher_unmap(ctx->dev, edesc, req);
  1043. /*
  1044. * The crypto API expects us to set the IV (req->iv) to the last
  1045. * ciphertext block. This is used e.g. by the CTS mode.
  1046. */
  1047. scatterwalk_map_and_copy(req->iv, req->dst, req->cryptlen - ivsize,
  1048. ivsize, 0);
  1049. qi_cache_free(edesc);
  1050. skcipher_request_complete(req, ecode);
  1051. }
  1052. static void skcipher_decrypt_done(void *cbk_ctx, u32 status)
  1053. {
  1054. struct crypto_async_request *areq = cbk_ctx;
  1055. struct skcipher_request *req = skcipher_request_cast(areq);
  1056. struct caam_request *req_ctx = to_caam_req(areq);
  1057. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1058. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  1059. struct skcipher_edesc *edesc = req_ctx->edesc;
  1060. int ecode = 0;
  1061. int ivsize = crypto_skcipher_ivsize(skcipher);
  1062. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  1063. if (unlikely(status)) {
  1064. caam_qi2_strstatus(ctx->dev, status);
  1065. ecode = -EIO;
  1066. }
  1067. print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
  1068. DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
  1069. edesc->src_nents > 1 ? 100 : ivsize, 1);
  1070. caam_dump_sg(KERN_DEBUG, "dst @" __stringify(__LINE__)": ",
  1071. DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
  1072. edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
  1073. skcipher_unmap(ctx->dev, edesc, req);
  1074. qi_cache_free(edesc);
  1075. skcipher_request_complete(req, ecode);
  1076. }
  1077. static int skcipher_encrypt(struct skcipher_request *req)
  1078. {
  1079. struct skcipher_edesc *edesc;
  1080. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1081. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  1082. struct caam_request *caam_req = skcipher_request_ctx(req);
  1083. int ret;
  1084. /* allocate extended descriptor */
  1085. edesc = skcipher_edesc_alloc(req);
  1086. if (IS_ERR(edesc))
  1087. return PTR_ERR(edesc);
  1088. caam_req->flc = &ctx->flc[ENCRYPT];
  1089. caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
  1090. caam_req->cbk = skcipher_encrypt_done;
  1091. caam_req->ctx = &req->base;
  1092. caam_req->edesc = edesc;
  1093. ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
  1094. if (ret != -EINPROGRESS &&
  1095. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
  1096. skcipher_unmap(ctx->dev, edesc, req);
  1097. qi_cache_free(edesc);
  1098. }
  1099. return ret;
  1100. }
  1101. static int skcipher_decrypt(struct skcipher_request *req)
  1102. {
  1103. struct skcipher_edesc *edesc;
  1104. struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
  1105. struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
  1106. struct caam_request *caam_req = skcipher_request_ctx(req);
  1107. int ivsize = crypto_skcipher_ivsize(skcipher);
  1108. int ret;
  1109. /* allocate extended descriptor */
  1110. edesc = skcipher_edesc_alloc(req);
  1111. if (IS_ERR(edesc))
  1112. return PTR_ERR(edesc);
  1113. /*
  1114. * The crypto API expects us to set the IV (req->iv) to the last
  1115. * ciphertext block.
  1116. */
  1117. scatterwalk_map_and_copy(req->iv, req->src, req->cryptlen - ivsize,
  1118. ivsize, 0);
  1119. caam_req->flc = &ctx->flc[DECRYPT];
  1120. caam_req->flc_dma = ctx->flc_dma[DECRYPT];
  1121. caam_req->cbk = skcipher_decrypt_done;
  1122. caam_req->ctx = &req->base;
  1123. caam_req->edesc = edesc;
  1124. ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
  1125. if (ret != -EINPROGRESS &&
  1126. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
  1127. skcipher_unmap(ctx->dev, edesc, req);
  1128. qi_cache_free(edesc);
  1129. }
  1130. return ret;
  1131. }
  1132. static int caam_cra_init(struct caam_ctx *ctx, struct caam_alg_entry *caam,
  1133. bool uses_dkp)
  1134. {
  1135. dma_addr_t dma_addr;
  1136. int i;
  1137. /* copy descriptor header template value */
  1138. ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
  1139. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
  1140. ctx->dev = caam->dev;
  1141. ctx->dir = uses_dkp ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
  1142. dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc,
  1143. offsetof(struct caam_ctx, flc_dma),
  1144. ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
  1145. if (dma_mapping_error(ctx->dev, dma_addr)) {
  1146. dev_err(ctx->dev, "unable to map key, shared descriptors\n");
  1147. return -ENOMEM;
  1148. }
  1149. for (i = 0; i < NUM_OP; i++)
  1150. ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]);
  1151. ctx->key_dma = dma_addr + NUM_OP * sizeof(ctx->flc[0]);
  1152. return 0;
  1153. }
  1154. static int caam_cra_init_skcipher(struct crypto_skcipher *tfm)
  1155. {
  1156. struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
  1157. struct caam_skcipher_alg *caam_alg =
  1158. container_of(alg, typeof(*caam_alg), skcipher);
  1159. crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_request));
  1160. return caam_cra_init(crypto_skcipher_ctx(tfm), &caam_alg->caam, false);
  1161. }
  1162. static int caam_cra_init_aead(struct crypto_aead *tfm)
  1163. {
  1164. struct aead_alg *alg = crypto_aead_alg(tfm);
  1165. struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg),
  1166. aead);
  1167. crypto_aead_set_reqsize(tfm, sizeof(struct caam_request));
  1168. return caam_cra_init(crypto_aead_ctx(tfm), &caam_alg->caam,
  1169. alg->setkey == aead_setkey);
  1170. }
  1171. static void caam_exit_common(struct caam_ctx *ctx)
  1172. {
  1173. dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0],
  1174. offsetof(struct caam_ctx, flc_dma), ctx->dir,
  1175. DMA_ATTR_SKIP_CPU_SYNC);
  1176. }
  1177. static void caam_cra_exit(struct crypto_skcipher *tfm)
  1178. {
  1179. caam_exit_common(crypto_skcipher_ctx(tfm));
  1180. }
  1181. static void caam_cra_exit_aead(struct crypto_aead *tfm)
  1182. {
  1183. caam_exit_common(crypto_aead_ctx(tfm));
  1184. }
  1185. static struct caam_skcipher_alg driver_algs[] = {
  1186. {
  1187. .skcipher = {
  1188. .base = {
  1189. .cra_name = "cbc(aes)",
  1190. .cra_driver_name = "cbc-aes-caam-qi2",
  1191. .cra_blocksize = AES_BLOCK_SIZE,
  1192. },
  1193. .setkey = skcipher_setkey,
  1194. .encrypt = skcipher_encrypt,
  1195. .decrypt = skcipher_decrypt,
  1196. .min_keysize = AES_MIN_KEY_SIZE,
  1197. .max_keysize = AES_MAX_KEY_SIZE,
  1198. .ivsize = AES_BLOCK_SIZE,
  1199. },
  1200. .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1201. },
  1202. {
  1203. .skcipher = {
  1204. .base = {
  1205. .cra_name = "cbc(des3_ede)",
  1206. .cra_driver_name = "cbc-3des-caam-qi2",
  1207. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1208. },
  1209. .setkey = skcipher_setkey,
  1210. .encrypt = skcipher_encrypt,
  1211. .decrypt = skcipher_decrypt,
  1212. .min_keysize = DES3_EDE_KEY_SIZE,
  1213. .max_keysize = DES3_EDE_KEY_SIZE,
  1214. .ivsize = DES3_EDE_BLOCK_SIZE,
  1215. },
  1216. .caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1217. },
  1218. {
  1219. .skcipher = {
  1220. .base = {
  1221. .cra_name = "cbc(des)",
  1222. .cra_driver_name = "cbc-des-caam-qi2",
  1223. .cra_blocksize = DES_BLOCK_SIZE,
  1224. },
  1225. .setkey = skcipher_setkey,
  1226. .encrypt = skcipher_encrypt,
  1227. .decrypt = skcipher_decrypt,
  1228. .min_keysize = DES_KEY_SIZE,
  1229. .max_keysize = DES_KEY_SIZE,
  1230. .ivsize = DES_BLOCK_SIZE,
  1231. },
  1232. .caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1233. },
  1234. {
  1235. .skcipher = {
  1236. .base = {
  1237. .cra_name = "ctr(aes)",
  1238. .cra_driver_name = "ctr-aes-caam-qi2",
  1239. .cra_blocksize = 1,
  1240. },
  1241. .setkey = skcipher_setkey,
  1242. .encrypt = skcipher_encrypt,
  1243. .decrypt = skcipher_decrypt,
  1244. .min_keysize = AES_MIN_KEY_SIZE,
  1245. .max_keysize = AES_MAX_KEY_SIZE,
  1246. .ivsize = AES_BLOCK_SIZE,
  1247. .chunksize = AES_BLOCK_SIZE,
  1248. },
  1249. .caam.class1_alg_type = OP_ALG_ALGSEL_AES |
  1250. OP_ALG_AAI_CTR_MOD128,
  1251. },
  1252. {
  1253. .skcipher = {
  1254. .base = {
  1255. .cra_name = "rfc3686(ctr(aes))",
  1256. .cra_driver_name = "rfc3686-ctr-aes-caam-qi2",
  1257. .cra_blocksize = 1,
  1258. },
  1259. .setkey = skcipher_setkey,
  1260. .encrypt = skcipher_encrypt,
  1261. .decrypt = skcipher_decrypt,
  1262. .min_keysize = AES_MIN_KEY_SIZE +
  1263. CTR_RFC3686_NONCE_SIZE,
  1264. .max_keysize = AES_MAX_KEY_SIZE +
  1265. CTR_RFC3686_NONCE_SIZE,
  1266. .ivsize = CTR_RFC3686_IV_SIZE,
  1267. .chunksize = AES_BLOCK_SIZE,
  1268. },
  1269. .caam = {
  1270. .class1_alg_type = OP_ALG_ALGSEL_AES |
  1271. OP_ALG_AAI_CTR_MOD128,
  1272. .rfc3686 = true,
  1273. },
  1274. },
  1275. {
  1276. .skcipher = {
  1277. .base = {
  1278. .cra_name = "xts(aes)",
  1279. .cra_driver_name = "xts-aes-caam-qi2",
  1280. .cra_blocksize = AES_BLOCK_SIZE,
  1281. },
  1282. .setkey = xts_skcipher_setkey,
  1283. .encrypt = skcipher_encrypt,
  1284. .decrypt = skcipher_decrypt,
  1285. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  1286. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  1287. .ivsize = AES_BLOCK_SIZE,
  1288. },
  1289. .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
  1290. }
  1291. };
  1292. static struct caam_aead_alg driver_aeads[] = {
  1293. {
  1294. .aead = {
  1295. .base = {
  1296. .cra_name = "rfc4106(gcm(aes))",
  1297. .cra_driver_name = "rfc4106-gcm-aes-caam-qi2",
  1298. .cra_blocksize = 1,
  1299. },
  1300. .setkey = rfc4106_setkey,
  1301. .setauthsize = rfc4106_setauthsize,
  1302. .encrypt = ipsec_gcm_encrypt,
  1303. .decrypt = ipsec_gcm_decrypt,
  1304. .ivsize = 8,
  1305. .maxauthsize = AES_BLOCK_SIZE,
  1306. },
  1307. .caam = {
  1308. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
  1309. },
  1310. },
  1311. {
  1312. .aead = {
  1313. .base = {
  1314. .cra_name = "rfc4543(gcm(aes))",
  1315. .cra_driver_name = "rfc4543-gcm-aes-caam-qi2",
  1316. .cra_blocksize = 1,
  1317. },
  1318. .setkey = rfc4543_setkey,
  1319. .setauthsize = rfc4543_setauthsize,
  1320. .encrypt = ipsec_gcm_encrypt,
  1321. .decrypt = ipsec_gcm_decrypt,
  1322. .ivsize = 8,
  1323. .maxauthsize = AES_BLOCK_SIZE,
  1324. },
  1325. .caam = {
  1326. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
  1327. },
  1328. },
  1329. /* Galois Counter Mode */
  1330. {
  1331. .aead = {
  1332. .base = {
  1333. .cra_name = "gcm(aes)",
  1334. .cra_driver_name = "gcm-aes-caam-qi2",
  1335. .cra_blocksize = 1,
  1336. },
  1337. .setkey = gcm_setkey,
  1338. .setauthsize = gcm_setauthsize,
  1339. .encrypt = aead_encrypt,
  1340. .decrypt = aead_decrypt,
  1341. .ivsize = 12,
  1342. .maxauthsize = AES_BLOCK_SIZE,
  1343. },
  1344. .caam = {
  1345. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
  1346. }
  1347. },
  1348. /* single-pass ipsec_esp descriptor */
  1349. {
  1350. .aead = {
  1351. .base = {
  1352. .cra_name = "authenc(hmac(md5),cbc(aes))",
  1353. .cra_driver_name = "authenc-hmac-md5-"
  1354. "cbc-aes-caam-qi2",
  1355. .cra_blocksize = AES_BLOCK_SIZE,
  1356. },
  1357. .setkey = aead_setkey,
  1358. .setauthsize = aead_setauthsize,
  1359. .encrypt = aead_encrypt,
  1360. .decrypt = aead_decrypt,
  1361. .ivsize = AES_BLOCK_SIZE,
  1362. .maxauthsize = MD5_DIGEST_SIZE,
  1363. },
  1364. .caam = {
  1365. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1366. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1367. OP_ALG_AAI_HMAC_PRECOMP,
  1368. }
  1369. },
  1370. {
  1371. .aead = {
  1372. .base = {
  1373. .cra_name = "echainiv(authenc(hmac(md5),"
  1374. "cbc(aes)))",
  1375. .cra_driver_name = "echainiv-authenc-hmac-md5-"
  1376. "cbc-aes-caam-qi2",
  1377. .cra_blocksize = AES_BLOCK_SIZE,
  1378. },
  1379. .setkey = aead_setkey,
  1380. .setauthsize = aead_setauthsize,
  1381. .encrypt = aead_encrypt,
  1382. .decrypt = aead_decrypt,
  1383. .ivsize = AES_BLOCK_SIZE,
  1384. .maxauthsize = MD5_DIGEST_SIZE,
  1385. },
  1386. .caam = {
  1387. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1388. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1389. OP_ALG_AAI_HMAC_PRECOMP,
  1390. .geniv = true,
  1391. }
  1392. },
  1393. {
  1394. .aead = {
  1395. .base = {
  1396. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  1397. .cra_driver_name = "authenc-hmac-sha1-"
  1398. "cbc-aes-caam-qi2",
  1399. .cra_blocksize = AES_BLOCK_SIZE,
  1400. },
  1401. .setkey = aead_setkey,
  1402. .setauthsize = aead_setauthsize,
  1403. .encrypt = aead_encrypt,
  1404. .decrypt = aead_decrypt,
  1405. .ivsize = AES_BLOCK_SIZE,
  1406. .maxauthsize = SHA1_DIGEST_SIZE,
  1407. },
  1408. .caam = {
  1409. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1410. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1411. OP_ALG_AAI_HMAC_PRECOMP,
  1412. }
  1413. },
  1414. {
  1415. .aead = {
  1416. .base = {
  1417. .cra_name = "echainiv(authenc(hmac(sha1),"
  1418. "cbc(aes)))",
  1419. .cra_driver_name = "echainiv-authenc-"
  1420. "hmac-sha1-cbc-aes-caam-qi2",
  1421. .cra_blocksize = AES_BLOCK_SIZE,
  1422. },
  1423. .setkey = aead_setkey,
  1424. .setauthsize = aead_setauthsize,
  1425. .encrypt = aead_encrypt,
  1426. .decrypt = aead_decrypt,
  1427. .ivsize = AES_BLOCK_SIZE,
  1428. .maxauthsize = SHA1_DIGEST_SIZE,
  1429. },
  1430. .caam = {
  1431. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1432. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1433. OP_ALG_AAI_HMAC_PRECOMP,
  1434. .geniv = true,
  1435. },
  1436. },
  1437. {
  1438. .aead = {
  1439. .base = {
  1440. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  1441. .cra_driver_name = "authenc-hmac-sha224-"
  1442. "cbc-aes-caam-qi2",
  1443. .cra_blocksize = AES_BLOCK_SIZE,
  1444. },
  1445. .setkey = aead_setkey,
  1446. .setauthsize = aead_setauthsize,
  1447. .encrypt = aead_encrypt,
  1448. .decrypt = aead_decrypt,
  1449. .ivsize = AES_BLOCK_SIZE,
  1450. .maxauthsize = SHA224_DIGEST_SIZE,
  1451. },
  1452. .caam = {
  1453. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1454. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1455. OP_ALG_AAI_HMAC_PRECOMP,
  1456. }
  1457. },
  1458. {
  1459. .aead = {
  1460. .base = {
  1461. .cra_name = "echainiv(authenc(hmac(sha224),"
  1462. "cbc(aes)))",
  1463. .cra_driver_name = "echainiv-authenc-"
  1464. "hmac-sha224-cbc-aes-caam-qi2",
  1465. .cra_blocksize = AES_BLOCK_SIZE,
  1466. },
  1467. .setkey = aead_setkey,
  1468. .setauthsize = aead_setauthsize,
  1469. .encrypt = aead_encrypt,
  1470. .decrypt = aead_decrypt,
  1471. .ivsize = AES_BLOCK_SIZE,
  1472. .maxauthsize = SHA224_DIGEST_SIZE,
  1473. },
  1474. .caam = {
  1475. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1476. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1477. OP_ALG_AAI_HMAC_PRECOMP,
  1478. .geniv = true,
  1479. }
  1480. },
  1481. {
  1482. .aead = {
  1483. .base = {
  1484. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  1485. .cra_driver_name = "authenc-hmac-sha256-"
  1486. "cbc-aes-caam-qi2",
  1487. .cra_blocksize = AES_BLOCK_SIZE,
  1488. },
  1489. .setkey = aead_setkey,
  1490. .setauthsize = aead_setauthsize,
  1491. .encrypt = aead_encrypt,
  1492. .decrypt = aead_decrypt,
  1493. .ivsize = AES_BLOCK_SIZE,
  1494. .maxauthsize = SHA256_DIGEST_SIZE,
  1495. },
  1496. .caam = {
  1497. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1498. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1499. OP_ALG_AAI_HMAC_PRECOMP,
  1500. }
  1501. },
  1502. {
  1503. .aead = {
  1504. .base = {
  1505. .cra_name = "echainiv(authenc(hmac(sha256),"
  1506. "cbc(aes)))",
  1507. .cra_driver_name = "echainiv-authenc-"
  1508. "hmac-sha256-cbc-aes-"
  1509. "caam-qi2",
  1510. .cra_blocksize = AES_BLOCK_SIZE,
  1511. },
  1512. .setkey = aead_setkey,
  1513. .setauthsize = aead_setauthsize,
  1514. .encrypt = aead_encrypt,
  1515. .decrypt = aead_decrypt,
  1516. .ivsize = AES_BLOCK_SIZE,
  1517. .maxauthsize = SHA256_DIGEST_SIZE,
  1518. },
  1519. .caam = {
  1520. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1521. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1522. OP_ALG_AAI_HMAC_PRECOMP,
  1523. .geniv = true,
  1524. }
  1525. },
  1526. {
  1527. .aead = {
  1528. .base = {
  1529. .cra_name = "authenc(hmac(sha384),cbc(aes))",
  1530. .cra_driver_name = "authenc-hmac-sha384-"
  1531. "cbc-aes-caam-qi2",
  1532. .cra_blocksize = AES_BLOCK_SIZE,
  1533. },
  1534. .setkey = aead_setkey,
  1535. .setauthsize = aead_setauthsize,
  1536. .encrypt = aead_encrypt,
  1537. .decrypt = aead_decrypt,
  1538. .ivsize = AES_BLOCK_SIZE,
  1539. .maxauthsize = SHA384_DIGEST_SIZE,
  1540. },
  1541. .caam = {
  1542. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1543. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1544. OP_ALG_AAI_HMAC_PRECOMP,
  1545. }
  1546. },
  1547. {
  1548. .aead = {
  1549. .base = {
  1550. .cra_name = "echainiv(authenc(hmac(sha384),"
  1551. "cbc(aes)))",
  1552. .cra_driver_name = "echainiv-authenc-"
  1553. "hmac-sha384-cbc-aes-"
  1554. "caam-qi2",
  1555. .cra_blocksize = AES_BLOCK_SIZE,
  1556. },
  1557. .setkey = aead_setkey,
  1558. .setauthsize = aead_setauthsize,
  1559. .encrypt = aead_encrypt,
  1560. .decrypt = aead_decrypt,
  1561. .ivsize = AES_BLOCK_SIZE,
  1562. .maxauthsize = SHA384_DIGEST_SIZE,
  1563. },
  1564. .caam = {
  1565. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1566. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1567. OP_ALG_AAI_HMAC_PRECOMP,
  1568. .geniv = true,
  1569. }
  1570. },
  1571. {
  1572. .aead = {
  1573. .base = {
  1574. .cra_name = "authenc(hmac(sha512),cbc(aes))",
  1575. .cra_driver_name = "authenc-hmac-sha512-"
  1576. "cbc-aes-caam-qi2",
  1577. .cra_blocksize = AES_BLOCK_SIZE,
  1578. },
  1579. .setkey = aead_setkey,
  1580. .setauthsize = aead_setauthsize,
  1581. .encrypt = aead_encrypt,
  1582. .decrypt = aead_decrypt,
  1583. .ivsize = AES_BLOCK_SIZE,
  1584. .maxauthsize = SHA512_DIGEST_SIZE,
  1585. },
  1586. .caam = {
  1587. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1588. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1589. OP_ALG_AAI_HMAC_PRECOMP,
  1590. }
  1591. },
  1592. {
  1593. .aead = {
  1594. .base = {
  1595. .cra_name = "echainiv(authenc(hmac(sha512),"
  1596. "cbc(aes)))",
  1597. .cra_driver_name = "echainiv-authenc-"
  1598. "hmac-sha512-cbc-aes-"
  1599. "caam-qi2",
  1600. .cra_blocksize = AES_BLOCK_SIZE,
  1601. },
  1602. .setkey = aead_setkey,
  1603. .setauthsize = aead_setauthsize,
  1604. .encrypt = aead_encrypt,
  1605. .decrypt = aead_decrypt,
  1606. .ivsize = AES_BLOCK_SIZE,
  1607. .maxauthsize = SHA512_DIGEST_SIZE,
  1608. },
  1609. .caam = {
  1610. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  1611. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1612. OP_ALG_AAI_HMAC_PRECOMP,
  1613. .geniv = true,
  1614. }
  1615. },
  1616. {
  1617. .aead = {
  1618. .base = {
  1619. .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
  1620. .cra_driver_name = "authenc-hmac-md5-"
  1621. "cbc-des3_ede-caam-qi2",
  1622. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1623. },
  1624. .setkey = aead_setkey,
  1625. .setauthsize = aead_setauthsize,
  1626. .encrypt = aead_encrypt,
  1627. .decrypt = aead_decrypt,
  1628. .ivsize = DES3_EDE_BLOCK_SIZE,
  1629. .maxauthsize = MD5_DIGEST_SIZE,
  1630. },
  1631. .caam = {
  1632. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1633. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1634. OP_ALG_AAI_HMAC_PRECOMP,
  1635. }
  1636. },
  1637. {
  1638. .aead = {
  1639. .base = {
  1640. .cra_name = "echainiv(authenc(hmac(md5),"
  1641. "cbc(des3_ede)))",
  1642. .cra_driver_name = "echainiv-authenc-hmac-md5-"
  1643. "cbc-des3_ede-caam-qi2",
  1644. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1645. },
  1646. .setkey = aead_setkey,
  1647. .setauthsize = aead_setauthsize,
  1648. .encrypt = aead_encrypt,
  1649. .decrypt = aead_decrypt,
  1650. .ivsize = DES3_EDE_BLOCK_SIZE,
  1651. .maxauthsize = MD5_DIGEST_SIZE,
  1652. },
  1653. .caam = {
  1654. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1655. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1656. OP_ALG_AAI_HMAC_PRECOMP,
  1657. .geniv = true,
  1658. }
  1659. },
  1660. {
  1661. .aead = {
  1662. .base = {
  1663. .cra_name = "authenc(hmac(sha1),"
  1664. "cbc(des3_ede))",
  1665. .cra_driver_name = "authenc-hmac-sha1-"
  1666. "cbc-des3_ede-caam-qi2",
  1667. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1668. },
  1669. .setkey = aead_setkey,
  1670. .setauthsize = aead_setauthsize,
  1671. .encrypt = aead_encrypt,
  1672. .decrypt = aead_decrypt,
  1673. .ivsize = DES3_EDE_BLOCK_SIZE,
  1674. .maxauthsize = SHA1_DIGEST_SIZE,
  1675. },
  1676. .caam = {
  1677. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1678. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1679. OP_ALG_AAI_HMAC_PRECOMP,
  1680. },
  1681. },
  1682. {
  1683. .aead = {
  1684. .base = {
  1685. .cra_name = "echainiv(authenc(hmac(sha1),"
  1686. "cbc(des3_ede)))",
  1687. .cra_driver_name = "echainiv-authenc-"
  1688. "hmac-sha1-"
  1689. "cbc-des3_ede-caam-qi2",
  1690. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1691. },
  1692. .setkey = aead_setkey,
  1693. .setauthsize = aead_setauthsize,
  1694. .encrypt = aead_encrypt,
  1695. .decrypt = aead_decrypt,
  1696. .ivsize = DES3_EDE_BLOCK_SIZE,
  1697. .maxauthsize = SHA1_DIGEST_SIZE,
  1698. },
  1699. .caam = {
  1700. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1701. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1702. OP_ALG_AAI_HMAC_PRECOMP,
  1703. .geniv = true,
  1704. }
  1705. },
  1706. {
  1707. .aead = {
  1708. .base = {
  1709. .cra_name = "authenc(hmac(sha224),"
  1710. "cbc(des3_ede))",
  1711. .cra_driver_name = "authenc-hmac-sha224-"
  1712. "cbc-des3_ede-caam-qi2",
  1713. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1714. },
  1715. .setkey = aead_setkey,
  1716. .setauthsize = aead_setauthsize,
  1717. .encrypt = aead_encrypt,
  1718. .decrypt = aead_decrypt,
  1719. .ivsize = DES3_EDE_BLOCK_SIZE,
  1720. .maxauthsize = SHA224_DIGEST_SIZE,
  1721. },
  1722. .caam = {
  1723. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1724. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1725. OP_ALG_AAI_HMAC_PRECOMP,
  1726. },
  1727. },
  1728. {
  1729. .aead = {
  1730. .base = {
  1731. .cra_name = "echainiv(authenc(hmac(sha224),"
  1732. "cbc(des3_ede)))",
  1733. .cra_driver_name = "echainiv-authenc-"
  1734. "hmac-sha224-"
  1735. "cbc-des3_ede-caam-qi2",
  1736. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1737. },
  1738. .setkey = aead_setkey,
  1739. .setauthsize = aead_setauthsize,
  1740. .encrypt = aead_encrypt,
  1741. .decrypt = aead_decrypt,
  1742. .ivsize = DES3_EDE_BLOCK_SIZE,
  1743. .maxauthsize = SHA224_DIGEST_SIZE,
  1744. },
  1745. .caam = {
  1746. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1747. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1748. OP_ALG_AAI_HMAC_PRECOMP,
  1749. .geniv = true,
  1750. }
  1751. },
  1752. {
  1753. .aead = {
  1754. .base = {
  1755. .cra_name = "authenc(hmac(sha256),"
  1756. "cbc(des3_ede))",
  1757. .cra_driver_name = "authenc-hmac-sha256-"
  1758. "cbc-des3_ede-caam-qi2",
  1759. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1760. },
  1761. .setkey = aead_setkey,
  1762. .setauthsize = aead_setauthsize,
  1763. .encrypt = aead_encrypt,
  1764. .decrypt = aead_decrypt,
  1765. .ivsize = DES3_EDE_BLOCK_SIZE,
  1766. .maxauthsize = SHA256_DIGEST_SIZE,
  1767. },
  1768. .caam = {
  1769. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1770. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1771. OP_ALG_AAI_HMAC_PRECOMP,
  1772. },
  1773. },
  1774. {
  1775. .aead = {
  1776. .base = {
  1777. .cra_name = "echainiv(authenc(hmac(sha256),"
  1778. "cbc(des3_ede)))",
  1779. .cra_driver_name = "echainiv-authenc-"
  1780. "hmac-sha256-"
  1781. "cbc-des3_ede-caam-qi2",
  1782. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1783. },
  1784. .setkey = aead_setkey,
  1785. .setauthsize = aead_setauthsize,
  1786. .encrypt = aead_encrypt,
  1787. .decrypt = aead_decrypt,
  1788. .ivsize = DES3_EDE_BLOCK_SIZE,
  1789. .maxauthsize = SHA256_DIGEST_SIZE,
  1790. },
  1791. .caam = {
  1792. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1793. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  1794. OP_ALG_AAI_HMAC_PRECOMP,
  1795. .geniv = true,
  1796. }
  1797. },
  1798. {
  1799. .aead = {
  1800. .base = {
  1801. .cra_name = "authenc(hmac(sha384),"
  1802. "cbc(des3_ede))",
  1803. .cra_driver_name = "authenc-hmac-sha384-"
  1804. "cbc-des3_ede-caam-qi2",
  1805. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1806. },
  1807. .setkey = aead_setkey,
  1808. .setauthsize = aead_setauthsize,
  1809. .encrypt = aead_encrypt,
  1810. .decrypt = aead_decrypt,
  1811. .ivsize = DES3_EDE_BLOCK_SIZE,
  1812. .maxauthsize = SHA384_DIGEST_SIZE,
  1813. },
  1814. .caam = {
  1815. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1816. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1817. OP_ALG_AAI_HMAC_PRECOMP,
  1818. },
  1819. },
  1820. {
  1821. .aead = {
  1822. .base = {
  1823. .cra_name = "echainiv(authenc(hmac(sha384),"
  1824. "cbc(des3_ede)))",
  1825. .cra_driver_name = "echainiv-authenc-"
  1826. "hmac-sha384-"
  1827. "cbc-des3_ede-caam-qi2",
  1828. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1829. },
  1830. .setkey = aead_setkey,
  1831. .setauthsize = aead_setauthsize,
  1832. .encrypt = aead_encrypt,
  1833. .decrypt = aead_decrypt,
  1834. .ivsize = DES3_EDE_BLOCK_SIZE,
  1835. .maxauthsize = SHA384_DIGEST_SIZE,
  1836. },
  1837. .caam = {
  1838. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1839. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  1840. OP_ALG_AAI_HMAC_PRECOMP,
  1841. .geniv = true,
  1842. }
  1843. },
  1844. {
  1845. .aead = {
  1846. .base = {
  1847. .cra_name = "authenc(hmac(sha512),"
  1848. "cbc(des3_ede))",
  1849. .cra_driver_name = "authenc-hmac-sha512-"
  1850. "cbc-des3_ede-caam-qi2",
  1851. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1852. },
  1853. .setkey = aead_setkey,
  1854. .setauthsize = aead_setauthsize,
  1855. .encrypt = aead_encrypt,
  1856. .decrypt = aead_decrypt,
  1857. .ivsize = DES3_EDE_BLOCK_SIZE,
  1858. .maxauthsize = SHA512_DIGEST_SIZE,
  1859. },
  1860. .caam = {
  1861. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1862. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1863. OP_ALG_AAI_HMAC_PRECOMP,
  1864. },
  1865. },
  1866. {
  1867. .aead = {
  1868. .base = {
  1869. .cra_name = "echainiv(authenc(hmac(sha512),"
  1870. "cbc(des3_ede)))",
  1871. .cra_driver_name = "echainiv-authenc-"
  1872. "hmac-sha512-"
  1873. "cbc-des3_ede-caam-qi2",
  1874. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  1875. },
  1876. .setkey = aead_setkey,
  1877. .setauthsize = aead_setauthsize,
  1878. .encrypt = aead_encrypt,
  1879. .decrypt = aead_decrypt,
  1880. .ivsize = DES3_EDE_BLOCK_SIZE,
  1881. .maxauthsize = SHA512_DIGEST_SIZE,
  1882. },
  1883. .caam = {
  1884. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  1885. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  1886. OP_ALG_AAI_HMAC_PRECOMP,
  1887. .geniv = true,
  1888. }
  1889. },
  1890. {
  1891. .aead = {
  1892. .base = {
  1893. .cra_name = "authenc(hmac(md5),cbc(des))",
  1894. .cra_driver_name = "authenc-hmac-md5-"
  1895. "cbc-des-caam-qi2",
  1896. .cra_blocksize = DES_BLOCK_SIZE,
  1897. },
  1898. .setkey = aead_setkey,
  1899. .setauthsize = aead_setauthsize,
  1900. .encrypt = aead_encrypt,
  1901. .decrypt = aead_decrypt,
  1902. .ivsize = DES_BLOCK_SIZE,
  1903. .maxauthsize = MD5_DIGEST_SIZE,
  1904. },
  1905. .caam = {
  1906. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1907. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1908. OP_ALG_AAI_HMAC_PRECOMP,
  1909. },
  1910. },
  1911. {
  1912. .aead = {
  1913. .base = {
  1914. .cra_name = "echainiv(authenc(hmac(md5),"
  1915. "cbc(des)))",
  1916. .cra_driver_name = "echainiv-authenc-hmac-md5-"
  1917. "cbc-des-caam-qi2",
  1918. .cra_blocksize = DES_BLOCK_SIZE,
  1919. },
  1920. .setkey = aead_setkey,
  1921. .setauthsize = aead_setauthsize,
  1922. .encrypt = aead_encrypt,
  1923. .decrypt = aead_decrypt,
  1924. .ivsize = DES_BLOCK_SIZE,
  1925. .maxauthsize = MD5_DIGEST_SIZE,
  1926. },
  1927. .caam = {
  1928. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1929. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  1930. OP_ALG_AAI_HMAC_PRECOMP,
  1931. .geniv = true,
  1932. }
  1933. },
  1934. {
  1935. .aead = {
  1936. .base = {
  1937. .cra_name = "authenc(hmac(sha1),cbc(des))",
  1938. .cra_driver_name = "authenc-hmac-sha1-"
  1939. "cbc-des-caam-qi2",
  1940. .cra_blocksize = DES_BLOCK_SIZE,
  1941. },
  1942. .setkey = aead_setkey,
  1943. .setauthsize = aead_setauthsize,
  1944. .encrypt = aead_encrypt,
  1945. .decrypt = aead_decrypt,
  1946. .ivsize = DES_BLOCK_SIZE,
  1947. .maxauthsize = SHA1_DIGEST_SIZE,
  1948. },
  1949. .caam = {
  1950. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1951. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1952. OP_ALG_AAI_HMAC_PRECOMP,
  1953. },
  1954. },
  1955. {
  1956. .aead = {
  1957. .base = {
  1958. .cra_name = "echainiv(authenc(hmac(sha1),"
  1959. "cbc(des)))",
  1960. .cra_driver_name = "echainiv-authenc-"
  1961. "hmac-sha1-cbc-des-caam-qi2",
  1962. .cra_blocksize = DES_BLOCK_SIZE,
  1963. },
  1964. .setkey = aead_setkey,
  1965. .setauthsize = aead_setauthsize,
  1966. .encrypt = aead_encrypt,
  1967. .decrypt = aead_decrypt,
  1968. .ivsize = DES_BLOCK_SIZE,
  1969. .maxauthsize = SHA1_DIGEST_SIZE,
  1970. },
  1971. .caam = {
  1972. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1973. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  1974. OP_ALG_AAI_HMAC_PRECOMP,
  1975. .geniv = true,
  1976. }
  1977. },
  1978. {
  1979. .aead = {
  1980. .base = {
  1981. .cra_name = "authenc(hmac(sha224),cbc(des))",
  1982. .cra_driver_name = "authenc-hmac-sha224-"
  1983. "cbc-des-caam-qi2",
  1984. .cra_blocksize = DES_BLOCK_SIZE,
  1985. },
  1986. .setkey = aead_setkey,
  1987. .setauthsize = aead_setauthsize,
  1988. .encrypt = aead_encrypt,
  1989. .decrypt = aead_decrypt,
  1990. .ivsize = DES_BLOCK_SIZE,
  1991. .maxauthsize = SHA224_DIGEST_SIZE,
  1992. },
  1993. .caam = {
  1994. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  1995. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  1996. OP_ALG_AAI_HMAC_PRECOMP,
  1997. },
  1998. },
  1999. {
  2000. .aead = {
  2001. .base = {
  2002. .cra_name = "echainiv(authenc(hmac(sha224),"
  2003. "cbc(des)))",
  2004. .cra_driver_name = "echainiv-authenc-"
  2005. "hmac-sha224-cbc-des-"
  2006. "caam-qi2",
  2007. .cra_blocksize = DES_BLOCK_SIZE,
  2008. },
  2009. .setkey = aead_setkey,
  2010. .setauthsize = aead_setauthsize,
  2011. .encrypt = aead_encrypt,
  2012. .decrypt = aead_decrypt,
  2013. .ivsize = DES_BLOCK_SIZE,
  2014. .maxauthsize = SHA224_DIGEST_SIZE,
  2015. },
  2016. .caam = {
  2017. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2018. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  2019. OP_ALG_AAI_HMAC_PRECOMP,
  2020. .geniv = true,
  2021. }
  2022. },
  2023. {
  2024. .aead = {
  2025. .base = {
  2026. .cra_name = "authenc(hmac(sha256),cbc(des))",
  2027. .cra_driver_name = "authenc-hmac-sha256-"
  2028. "cbc-des-caam-qi2",
  2029. .cra_blocksize = DES_BLOCK_SIZE,
  2030. },
  2031. .setkey = aead_setkey,
  2032. .setauthsize = aead_setauthsize,
  2033. .encrypt = aead_encrypt,
  2034. .decrypt = aead_decrypt,
  2035. .ivsize = DES_BLOCK_SIZE,
  2036. .maxauthsize = SHA256_DIGEST_SIZE,
  2037. },
  2038. .caam = {
  2039. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2040. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2041. OP_ALG_AAI_HMAC_PRECOMP,
  2042. },
  2043. },
  2044. {
  2045. .aead = {
  2046. .base = {
  2047. .cra_name = "echainiv(authenc(hmac(sha256),"
  2048. "cbc(des)))",
  2049. .cra_driver_name = "echainiv-authenc-"
  2050. "hmac-sha256-cbc-desi-"
  2051. "caam-qi2",
  2052. .cra_blocksize = DES_BLOCK_SIZE,
  2053. },
  2054. .setkey = aead_setkey,
  2055. .setauthsize = aead_setauthsize,
  2056. .encrypt = aead_encrypt,
  2057. .decrypt = aead_decrypt,
  2058. .ivsize = DES_BLOCK_SIZE,
  2059. .maxauthsize = SHA256_DIGEST_SIZE,
  2060. },
  2061. .caam = {
  2062. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2063. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2064. OP_ALG_AAI_HMAC_PRECOMP,
  2065. .geniv = true,
  2066. },
  2067. },
  2068. {
  2069. .aead = {
  2070. .base = {
  2071. .cra_name = "authenc(hmac(sha384),cbc(des))",
  2072. .cra_driver_name = "authenc-hmac-sha384-"
  2073. "cbc-des-caam-qi2",
  2074. .cra_blocksize = DES_BLOCK_SIZE,
  2075. },
  2076. .setkey = aead_setkey,
  2077. .setauthsize = aead_setauthsize,
  2078. .encrypt = aead_encrypt,
  2079. .decrypt = aead_decrypt,
  2080. .ivsize = DES_BLOCK_SIZE,
  2081. .maxauthsize = SHA384_DIGEST_SIZE,
  2082. },
  2083. .caam = {
  2084. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2085. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2086. OP_ALG_AAI_HMAC_PRECOMP,
  2087. },
  2088. },
  2089. {
  2090. .aead = {
  2091. .base = {
  2092. .cra_name = "echainiv(authenc(hmac(sha384),"
  2093. "cbc(des)))",
  2094. .cra_driver_name = "echainiv-authenc-"
  2095. "hmac-sha384-cbc-des-"
  2096. "caam-qi2",
  2097. .cra_blocksize = DES_BLOCK_SIZE,
  2098. },
  2099. .setkey = aead_setkey,
  2100. .setauthsize = aead_setauthsize,
  2101. .encrypt = aead_encrypt,
  2102. .decrypt = aead_decrypt,
  2103. .ivsize = DES_BLOCK_SIZE,
  2104. .maxauthsize = SHA384_DIGEST_SIZE,
  2105. },
  2106. .caam = {
  2107. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2108. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2109. OP_ALG_AAI_HMAC_PRECOMP,
  2110. .geniv = true,
  2111. }
  2112. },
  2113. {
  2114. .aead = {
  2115. .base = {
  2116. .cra_name = "authenc(hmac(sha512),cbc(des))",
  2117. .cra_driver_name = "authenc-hmac-sha512-"
  2118. "cbc-des-caam-qi2",
  2119. .cra_blocksize = DES_BLOCK_SIZE,
  2120. },
  2121. .setkey = aead_setkey,
  2122. .setauthsize = aead_setauthsize,
  2123. .encrypt = aead_encrypt,
  2124. .decrypt = aead_decrypt,
  2125. .ivsize = DES_BLOCK_SIZE,
  2126. .maxauthsize = SHA512_DIGEST_SIZE,
  2127. },
  2128. .caam = {
  2129. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2130. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2131. OP_ALG_AAI_HMAC_PRECOMP,
  2132. }
  2133. },
  2134. {
  2135. .aead = {
  2136. .base = {
  2137. .cra_name = "echainiv(authenc(hmac(sha512),"
  2138. "cbc(des)))",
  2139. .cra_driver_name = "echainiv-authenc-"
  2140. "hmac-sha512-cbc-des-"
  2141. "caam-qi2",
  2142. .cra_blocksize = DES_BLOCK_SIZE,
  2143. },
  2144. .setkey = aead_setkey,
  2145. .setauthsize = aead_setauthsize,
  2146. .encrypt = aead_encrypt,
  2147. .decrypt = aead_decrypt,
  2148. .ivsize = DES_BLOCK_SIZE,
  2149. .maxauthsize = SHA512_DIGEST_SIZE,
  2150. },
  2151. .caam = {
  2152. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  2153. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2154. OP_ALG_AAI_HMAC_PRECOMP,
  2155. .geniv = true,
  2156. }
  2157. },
  2158. {
  2159. .aead = {
  2160. .base = {
  2161. .cra_name = "authenc(hmac(md5),"
  2162. "rfc3686(ctr(aes)))",
  2163. .cra_driver_name = "authenc-hmac-md5-"
  2164. "rfc3686-ctr-aes-caam-qi2",
  2165. .cra_blocksize = 1,
  2166. },
  2167. .setkey = aead_setkey,
  2168. .setauthsize = aead_setauthsize,
  2169. .encrypt = aead_encrypt,
  2170. .decrypt = aead_decrypt,
  2171. .ivsize = CTR_RFC3686_IV_SIZE,
  2172. .maxauthsize = MD5_DIGEST_SIZE,
  2173. },
  2174. .caam = {
  2175. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2176. OP_ALG_AAI_CTR_MOD128,
  2177. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  2178. OP_ALG_AAI_HMAC_PRECOMP,
  2179. .rfc3686 = true,
  2180. },
  2181. },
  2182. {
  2183. .aead = {
  2184. .base = {
  2185. .cra_name = "seqiv(authenc("
  2186. "hmac(md5),rfc3686(ctr(aes))))",
  2187. .cra_driver_name = "seqiv-authenc-hmac-md5-"
  2188. "rfc3686-ctr-aes-caam-qi2",
  2189. .cra_blocksize = 1,
  2190. },
  2191. .setkey = aead_setkey,
  2192. .setauthsize = aead_setauthsize,
  2193. .encrypt = aead_encrypt,
  2194. .decrypt = aead_decrypt,
  2195. .ivsize = CTR_RFC3686_IV_SIZE,
  2196. .maxauthsize = MD5_DIGEST_SIZE,
  2197. },
  2198. .caam = {
  2199. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2200. OP_ALG_AAI_CTR_MOD128,
  2201. .class2_alg_type = OP_ALG_ALGSEL_MD5 |
  2202. OP_ALG_AAI_HMAC_PRECOMP,
  2203. .rfc3686 = true,
  2204. .geniv = true,
  2205. },
  2206. },
  2207. {
  2208. .aead = {
  2209. .base = {
  2210. .cra_name = "authenc(hmac(sha1),"
  2211. "rfc3686(ctr(aes)))",
  2212. .cra_driver_name = "authenc-hmac-sha1-"
  2213. "rfc3686-ctr-aes-caam-qi2",
  2214. .cra_blocksize = 1,
  2215. },
  2216. .setkey = aead_setkey,
  2217. .setauthsize = aead_setauthsize,
  2218. .encrypt = aead_encrypt,
  2219. .decrypt = aead_decrypt,
  2220. .ivsize = CTR_RFC3686_IV_SIZE,
  2221. .maxauthsize = SHA1_DIGEST_SIZE,
  2222. },
  2223. .caam = {
  2224. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2225. OP_ALG_AAI_CTR_MOD128,
  2226. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  2227. OP_ALG_AAI_HMAC_PRECOMP,
  2228. .rfc3686 = true,
  2229. },
  2230. },
  2231. {
  2232. .aead = {
  2233. .base = {
  2234. .cra_name = "seqiv(authenc("
  2235. "hmac(sha1),rfc3686(ctr(aes))))",
  2236. .cra_driver_name = "seqiv-authenc-hmac-sha1-"
  2237. "rfc3686-ctr-aes-caam-qi2",
  2238. .cra_blocksize = 1,
  2239. },
  2240. .setkey = aead_setkey,
  2241. .setauthsize = aead_setauthsize,
  2242. .encrypt = aead_encrypt,
  2243. .decrypt = aead_decrypt,
  2244. .ivsize = CTR_RFC3686_IV_SIZE,
  2245. .maxauthsize = SHA1_DIGEST_SIZE,
  2246. },
  2247. .caam = {
  2248. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2249. OP_ALG_AAI_CTR_MOD128,
  2250. .class2_alg_type = OP_ALG_ALGSEL_SHA1 |
  2251. OP_ALG_AAI_HMAC_PRECOMP,
  2252. .rfc3686 = true,
  2253. .geniv = true,
  2254. },
  2255. },
  2256. {
  2257. .aead = {
  2258. .base = {
  2259. .cra_name = "authenc(hmac(sha224),"
  2260. "rfc3686(ctr(aes)))",
  2261. .cra_driver_name = "authenc-hmac-sha224-"
  2262. "rfc3686-ctr-aes-caam-qi2",
  2263. .cra_blocksize = 1,
  2264. },
  2265. .setkey = aead_setkey,
  2266. .setauthsize = aead_setauthsize,
  2267. .encrypt = aead_encrypt,
  2268. .decrypt = aead_decrypt,
  2269. .ivsize = CTR_RFC3686_IV_SIZE,
  2270. .maxauthsize = SHA224_DIGEST_SIZE,
  2271. },
  2272. .caam = {
  2273. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2274. OP_ALG_AAI_CTR_MOD128,
  2275. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  2276. OP_ALG_AAI_HMAC_PRECOMP,
  2277. .rfc3686 = true,
  2278. },
  2279. },
  2280. {
  2281. .aead = {
  2282. .base = {
  2283. .cra_name = "seqiv(authenc("
  2284. "hmac(sha224),rfc3686(ctr(aes))))",
  2285. .cra_driver_name = "seqiv-authenc-hmac-sha224-"
  2286. "rfc3686-ctr-aes-caam-qi2",
  2287. .cra_blocksize = 1,
  2288. },
  2289. .setkey = aead_setkey,
  2290. .setauthsize = aead_setauthsize,
  2291. .encrypt = aead_encrypt,
  2292. .decrypt = aead_decrypt,
  2293. .ivsize = CTR_RFC3686_IV_SIZE,
  2294. .maxauthsize = SHA224_DIGEST_SIZE,
  2295. },
  2296. .caam = {
  2297. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2298. OP_ALG_AAI_CTR_MOD128,
  2299. .class2_alg_type = OP_ALG_ALGSEL_SHA224 |
  2300. OP_ALG_AAI_HMAC_PRECOMP,
  2301. .rfc3686 = true,
  2302. .geniv = true,
  2303. },
  2304. },
  2305. {
  2306. .aead = {
  2307. .base = {
  2308. .cra_name = "authenc(hmac(sha256),"
  2309. "rfc3686(ctr(aes)))",
  2310. .cra_driver_name = "authenc-hmac-sha256-"
  2311. "rfc3686-ctr-aes-caam-qi2",
  2312. .cra_blocksize = 1,
  2313. },
  2314. .setkey = aead_setkey,
  2315. .setauthsize = aead_setauthsize,
  2316. .encrypt = aead_encrypt,
  2317. .decrypt = aead_decrypt,
  2318. .ivsize = CTR_RFC3686_IV_SIZE,
  2319. .maxauthsize = SHA256_DIGEST_SIZE,
  2320. },
  2321. .caam = {
  2322. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2323. OP_ALG_AAI_CTR_MOD128,
  2324. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2325. OP_ALG_AAI_HMAC_PRECOMP,
  2326. .rfc3686 = true,
  2327. },
  2328. },
  2329. {
  2330. .aead = {
  2331. .base = {
  2332. .cra_name = "seqiv(authenc(hmac(sha256),"
  2333. "rfc3686(ctr(aes))))",
  2334. .cra_driver_name = "seqiv-authenc-hmac-sha256-"
  2335. "rfc3686-ctr-aes-caam-qi2",
  2336. .cra_blocksize = 1,
  2337. },
  2338. .setkey = aead_setkey,
  2339. .setauthsize = aead_setauthsize,
  2340. .encrypt = aead_encrypt,
  2341. .decrypt = aead_decrypt,
  2342. .ivsize = CTR_RFC3686_IV_SIZE,
  2343. .maxauthsize = SHA256_DIGEST_SIZE,
  2344. },
  2345. .caam = {
  2346. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2347. OP_ALG_AAI_CTR_MOD128,
  2348. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  2349. OP_ALG_AAI_HMAC_PRECOMP,
  2350. .rfc3686 = true,
  2351. .geniv = true,
  2352. },
  2353. },
  2354. {
  2355. .aead = {
  2356. .base = {
  2357. .cra_name = "authenc(hmac(sha384),"
  2358. "rfc3686(ctr(aes)))",
  2359. .cra_driver_name = "authenc-hmac-sha384-"
  2360. "rfc3686-ctr-aes-caam-qi2",
  2361. .cra_blocksize = 1,
  2362. },
  2363. .setkey = aead_setkey,
  2364. .setauthsize = aead_setauthsize,
  2365. .encrypt = aead_encrypt,
  2366. .decrypt = aead_decrypt,
  2367. .ivsize = CTR_RFC3686_IV_SIZE,
  2368. .maxauthsize = SHA384_DIGEST_SIZE,
  2369. },
  2370. .caam = {
  2371. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2372. OP_ALG_AAI_CTR_MOD128,
  2373. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2374. OP_ALG_AAI_HMAC_PRECOMP,
  2375. .rfc3686 = true,
  2376. },
  2377. },
  2378. {
  2379. .aead = {
  2380. .base = {
  2381. .cra_name = "seqiv(authenc(hmac(sha384),"
  2382. "rfc3686(ctr(aes))))",
  2383. .cra_driver_name = "seqiv-authenc-hmac-sha384-"
  2384. "rfc3686-ctr-aes-caam-qi2",
  2385. .cra_blocksize = 1,
  2386. },
  2387. .setkey = aead_setkey,
  2388. .setauthsize = aead_setauthsize,
  2389. .encrypt = aead_encrypt,
  2390. .decrypt = aead_decrypt,
  2391. .ivsize = CTR_RFC3686_IV_SIZE,
  2392. .maxauthsize = SHA384_DIGEST_SIZE,
  2393. },
  2394. .caam = {
  2395. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2396. OP_ALG_AAI_CTR_MOD128,
  2397. .class2_alg_type = OP_ALG_ALGSEL_SHA384 |
  2398. OP_ALG_AAI_HMAC_PRECOMP,
  2399. .rfc3686 = true,
  2400. .geniv = true,
  2401. },
  2402. },
  2403. {
  2404. .aead = {
  2405. .base = {
  2406. .cra_name = "authenc(hmac(sha512),"
  2407. "rfc3686(ctr(aes)))",
  2408. .cra_driver_name = "authenc-hmac-sha512-"
  2409. "rfc3686-ctr-aes-caam-qi2",
  2410. .cra_blocksize = 1,
  2411. },
  2412. .setkey = aead_setkey,
  2413. .setauthsize = aead_setauthsize,
  2414. .encrypt = aead_encrypt,
  2415. .decrypt = aead_decrypt,
  2416. .ivsize = CTR_RFC3686_IV_SIZE,
  2417. .maxauthsize = SHA512_DIGEST_SIZE,
  2418. },
  2419. .caam = {
  2420. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2421. OP_ALG_AAI_CTR_MOD128,
  2422. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2423. OP_ALG_AAI_HMAC_PRECOMP,
  2424. .rfc3686 = true,
  2425. },
  2426. },
  2427. {
  2428. .aead = {
  2429. .base = {
  2430. .cra_name = "seqiv(authenc(hmac(sha512),"
  2431. "rfc3686(ctr(aes))))",
  2432. .cra_driver_name = "seqiv-authenc-hmac-sha512-"
  2433. "rfc3686-ctr-aes-caam-qi2",
  2434. .cra_blocksize = 1,
  2435. },
  2436. .setkey = aead_setkey,
  2437. .setauthsize = aead_setauthsize,
  2438. .encrypt = aead_encrypt,
  2439. .decrypt = aead_decrypt,
  2440. .ivsize = CTR_RFC3686_IV_SIZE,
  2441. .maxauthsize = SHA512_DIGEST_SIZE,
  2442. },
  2443. .caam = {
  2444. .class1_alg_type = OP_ALG_ALGSEL_AES |
  2445. OP_ALG_AAI_CTR_MOD128,
  2446. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  2447. OP_ALG_AAI_HMAC_PRECOMP,
  2448. .rfc3686 = true,
  2449. .geniv = true,
  2450. },
  2451. },
  2452. };
  2453. static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg)
  2454. {
  2455. struct skcipher_alg *alg = &t_alg->skcipher;
  2456. alg->base.cra_module = THIS_MODULE;
  2457. alg->base.cra_priority = CAAM_CRA_PRIORITY;
  2458. alg->base.cra_ctxsize = sizeof(struct caam_ctx);
  2459. alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
  2460. alg->init = caam_cra_init_skcipher;
  2461. alg->exit = caam_cra_exit;
  2462. }
  2463. static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
  2464. {
  2465. struct aead_alg *alg = &t_alg->aead;
  2466. alg->base.cra_module = THIS_MODULE;
  2467. alg->base.cra_priority = CAAM_CRA_PRIORITY;
  2468. alg->base.cra_ctxsize = sizeof(struct caam_ctx);
  2469. alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
  2470. alg->init = caam_cra_init_aead;
  2471. alg->exit = caam_cra_exit_aead;
  2472. }
  2473. /* max hash key is max split key size */
  2474. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  2475. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  2476. /* caam context sizes for hashes: running digest + 8 */
  2477. #define HASH_MSG_LEN 8
  2478. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  2479. enum hash_optype {
  2480. UPDATE = 0,
  2481. UPDATE_FIRST,
  2482. FINALIZE,
  2483. DIGEST,
  2484. HASH_NUM_OP
  2485. };
  2486. /**
  2487. * caam_hash_ctx - ahash per-session context
  2488. * @flc: Flow Contexts array
  2489. * @flc_dma: I/O virtual addresses of the Flow Contexts
  2490. * @dev: dpseci device
  2491. * @ctx_len: size of Context Register
  2492. * @adata: hashing algorithm details
  2493. */
  2494. struct caam_hash_ctx {
  2495. struct caam_flc flc[HASH_NUM_OP];
  2496. dma_addr_t flc_dma[HASH_NUM_OP];
  2497. struct device *dev;
  2498. int ctx_len;
  2499. struct alginfo adata;
  2500. };
  2501. /* ahash state */
  2502. struct caam_hash_state {
  2503. struct caam_request caam_req;
  2504. dma_addr_t buf_dma;
  2505. dma_addr_t ctx_dma;
  2506. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  2507. int buflen_0;
  2508. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  2509. int buflen_1;
  2510. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  2511. int (*update)(struct ahash_request *req);
  2512. int (*final)(struct ahash_request *req);
  2513. int (*finup)(struct ahash_request *req);
  2514. int current_buf;
  2515. };
  2516. struct caam_export_state {
  2517. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  2518. u8 caam_ctx[MAX_CTX_LEN];
  2519. int buflen;
  2520. int (*update)(struct ahash_request *req);
  2521. int (*final)(struct ahash_request *req);
  2522. int (*finup)(struct ahash_request *req);
  2523. };
  2524. static inline void switch_buf(struct caam_hash_state *state)
  2525. {
  2526. state->current_buf ^= 1;
  2527. }
  2528. static inline u8 *current_buf(struct caam_hash_state *state)
  2529. {
  2530. return state->current_buf ? state->buf_1 : state->buf_0;
  2531. }
  2532. static inline u8 *alt_buf(struct caam_hash_state *state)
  2533. {
  2534. return state->current_buf ? state->buf_0 : state->buf_1;
  2535. }
  2536. static inline int *current_buflen(struct caam_hash_state *state)
  2537. {
  2538. return state->current_buf ? &state->buflen_1 : &state->buflen_0;
  2539. }
  2540. static inline int *alt_buflen(struct caam_hash_state *state)
  2541. {
  2542. return state->current_buf ? &state->buflen_0 : &state->buflen_1;
  2543. }
  2544. /* Map current buffer in state (if length > 0) and put it in link table */
  2545. static inline int buf_map_to_qm_sg(struct device *dev,
  2546. struct dpaa2_sg_entry *qm_sg,
  2547. struct caam_hash_state *state)
  2548. {
  2549. int buflen = *current_buflen(state);
  2550. if (!buflen)
  2551. return 0;
  2552. state->buf_dma = dma_map_single(dev, current_buf(state), buflen,
  2553. DMA_TO_DEVICE);
  2554. if (dma_mapping_error(dev, state->buf_dma)) {
  2555. dev_err(dev, "unable to map buf\n");
  2556. state->buf_dma = 0;
  2557. return -ENOMEM;
  2558. }
  2559. dma_to_qm_sg_one(qm_sg, state->buf_dma, buflen, 0);
  2560. return 0;
  2561. }
  2562. /* Map state->caam_ctx, and add it to link table */
  2563. static inline int ctx_map_to_qm_sg(struct device *dev,
  2564. struct caam_hash_state *state, int ctx_len,
  2565. struct dpaa2_sg_entry *qm_sg, u32 flag)
  2566. {
  2567. state->ctx_dma = dma_map_single(dev, state->caam_ctx, ctx_len, flag);
  2568. if (dma_mapping_error(dev, state->ctx_dma)) {
  2569. dev_err(dev, "unable to map ctx\n");
  2570. state->ctx_dma = 0;
  2571. return -ENOMEM;
  2572. }
  2573. dma_to_qm_sg_one(qm_sg, state->ctx_dma, ctx_len, 0);
  2574. return 0;
  2575. }
  2576. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  2577. {
  2578. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2579. int digestsize = crypto_ahash_digestsize(ahash);
  2580. struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev);
  2581. struct caam_flc *flc;
  2582. u32 *desc;
  2583. /* ahash_update shared descriptor */
  2584. flc = &ctx->flc[UPDATE];
  2585. desc = flc->sh_desc;
  2586. cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len,
  2587. ctx->ctx_len, true, priv->sec_attr.era);
  2588. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2589. dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE],
  2590. desc_bytes(desc), DMA_BIDIRECTIONAL);
  2591. print_hex_dump_debug("ahash update shdesc@" __stringify(__LINE__)": ",
  2592. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2593. 1);
  2594. /* ahash_update_first shared descriptor */
  2595. flc = &ctx->flc[UPDATE_FIRST];
  2596. desc = flc->sh_desc;
  2597. cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len,
  2598. ctx->ctx_len, false, priv->sec_attr.era);
  2599. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2600. dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE_FIRST],
  2601. desc_bytes(desc), DMA_BIDIRECTIONAL);
  2602. print_hex_dump_debug("ahash update first shdesc@" __stringify(__LINE__)": ",
  2603. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2604. 1);
  2605. /* ahash_final shared descriptor */
  2606. flc = &ctx->flc[FINALIZE];
  2607. desc = flc->sh_desc;
  2608. cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize,
  2609. ctx->ctx_len, true, priv->sec_attr.era);
  2610. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2611. dma_sync_single_for_device(ctx->dev, ctx->flc_dma[FINALIZE],
  2612. desc_bytes(desc), DMA_BIDIRECTIONAL);
  2613. print_hex_dump_debug("ahash final shdesc@" __stringify(__LINE__)": ",
  2614. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2615. 1);
  2616. /* ahash_digest shared descriptor */
  2617. flc = &ctx->flc[DIGEST];
  2618. desc = flc->sh_desc;
  2619. cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize,
  2620. ctx->ctx_len, false, priv->sec_attr.era);
  2621. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2622. dma_sync_single_for_device(ctx->dev, ctx->flc_dma[DIGEST],
  2623. desc_bytes(desc), DMA_BIDIRECTIONAL);
  2624. print_hex_dump_debug("ahash digest shdesc@" __stringify(__LINE__)": ",
  2625. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2626. 1);
  2627. return 0;
  2628. }
  2629. struct split_key_sh_result {
  2630. struct completion completion;
  2631. int err;
  2632. struct device *dev;
  2633. };
  2634. static void split_key_sh_done(void *cbk_ctx, u32 err)
  2635. {
  2636. struct split_key_sh_result *res = cbk_ctx;
  2637. dev_dbg(res->dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  2638. if (err)
  2639. caam_qi2_strstatus(res->dev, err);
  2640. res->err = err;
  2641. complete(&res->completion);
  2642. }
  2643. /* Digest hash size if it is too large */
  2644. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  2645. u32 *keylen, u8 *key_out, u32 digestsize)
  2646. {
  2647. struct caam_request *req_ctx;
  2648. u32 *desc;
  2649. struct split_key_sh_result result;
  2650. dma_addr_t src_dma, dst_dma;
  2651. struct caam_flc *flc;
  2652. dma_addr_t flc_dma;
  2653. int ret = -ENOMEM;
  2654. struct dpaa2_fl_entry *in_fle, *out_fle;
  2655. req_ctx = kzalloc(sizeof(*req_ctx), GFP_KERNEL | GFP_DMA);
  2656. if (!req_ctx)
  2657. return -ENOMEM;
  2658. in_fle = &req_ctx->fd_flt[1];
  2659. out_fle = &req_ctx->fd_flt[0];
  2660. flc = kzalloc(sizeof(*flc), GFP_KERNEL | GFP_DMA);
  2661. if (!flc)
  2662. goto err_flc;
  2663. src_dma = dma_map_single(ctx->dev, (void *)key_in, *keylen,
  2664. DMA_TO_DEVICE);
  2665. if (dma_mapping_error(ctx->dev, src_dma)) {
  2666. dev_err(ctx->dev, "unable to map key input memory\n");
  2667. goto err_src_dma;
  2668. }
  2669. dst_dma = dma_map_single(ctx->dev, (void *)key_out, digestsize,
  2670. DMA_FROM_DEVICE);
  2671. if (dma_mapping_error(ctx->dev, dst_dma)) {
  2672. dev_err(ctx->dev, "unable to map key output memory\n");
  2673. goto err_dst_dma;
  2674. }
  2675. desc = flc->sh_desc;
  2676. init_sh_desc(desc, 0);
  2677. /* descriptor to perform unkeyed hash on key_in */
  2678. append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
  2679. OP_ALG_AS_INITFINAL);
  2680. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  2681. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  2682. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  2683. LDST_SRCDST_BYTE_CONTEXT);
  2684. flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
  2685. flc_dma = dma_map_single(ctx->dev, flc, sizeof(flc->flc) +
  2686. desc_bytes(desc), DMA_TO_DEVICE);
  2687. if (dma_mapping_error(ctx->dev, flc_dma)) {
  2688. dev_err(ctx->dev, "unable to map shared descriptor\n");
  2689. goto err_flc_dma;
  2690. }
  2691. dpaa2_fl_set_final(in_fle, true);
  2692. dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
  2693. dpaa2_fl_set_addr(in_fle, src_dma);
  2694. dpaa2_fl_set_len(in_fle, *keylen);
  2695. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  2696. dpaa2_fl_set_addr(out_fle, dst_dma);
  2697. dpaa2_fl_set_len(out_fle, digestsize);
  2698. print_hex_dump_debug("key_in@" __stringify(__LINE__)": ",
  2699. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  2700. print_hex_dump_debug("shdesc@" __stringify(__LINE__)": ",
  2701. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
  2702. 1);
  2703. result.err = 0;
  2704. init_completion(&result.completion);
  2705. result.dev = ctx->dev;
  2706. req_ctx->flc = flc;
  2707. req_ctx->flc_dma = flc_dma;
  2708. req_ctx->cbk = split_key_sh_done;
  2709. req_ctx->ctx = &result;
  2710. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  2711. if (ret == -EINPROGRESS) {
  2712. /* in progress */
  2713. wait_for_completion(&result.completion);
  2714. ret = result.err;
  2715. print_hex_dump_debug("digested key@" __stringify(__LINE__)": ",
  2716. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  2717. digestsize, 1);
  2718. }
  2719. dma_unmap_single(ctx->dev, flc_dma, sizeof(flc->flc) + desc_bytes(desc),
  2720. DMA_TO_DEVICE);
  2721. err_flc_dma:
  2722. dma_unmap_single(ctx->dev, dst_dma, digestsize, DMA_FROM_DEVICE);
  2723. err_dst_dma:
  2724. dma_unmap_single(ctx->dev, src_dma, *keylen, DMA_TO_DEVICE);
  2725. err_src_dma:
  2726. kfree(flc);
  2727. err_flc:
  2728. kfree(req_ctx);
  2729. *keylen = digestsize;
  2730. return ret;
  2731. }
  2732. static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
  2733. unsigned int keylen)
  2734. {
  2735. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2736. unsigned int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  2737. unsigned int digestsize = crypto_ahash_digestsize(ahash);
  2738. int ret;
  2739. u8 *hashed_key = NULL;
  2740. dev_dbg(ctx->dev, "keylen %d blocksize %d\n", keylen, blocksize);
  2741. if (keylen > blocksize) {
  2742. hashed_key = kmalloc_array(digestsize, sizeof(*hashed_key),
  2743. GFP_KERNEL | GFP_DMA);
  2744. if (!hashed_key)
  2745. return -ENOMEM;
  2746. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  2747. digestsize);
  2748. if (ret)
  2749. goto bad_free_key;
  2750. key = hashed_key;
  2751. }
  2752. ctx->adata.keylen = keylen;
  2753. ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
  2754. OP_ALG_ALGSEL_MASK);
  2755. if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE)
  2756. goto bad_free_key;
  2757. ctx->adata.key_virt = key;
  2758. ctx->adata.key_inline = true;
  2759. ret = ahash_set_sh_desc(ahash);
  2760. kfree(hashed_key);
  2761. return ret;
  2762. bad_free_key:
  2763. kfree(hashed_key);
  2764. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  2765. return -EINVAL;
  2766. }
  2767. static inline void ahash_unmap(struct device *dev, struct ahash_edesc *edesc,
  2768. struct ahash_request *req, int dst_len)
  2769. {
  2770. struct caam_hash_state *state = ahash_request_ctx(req);
  2771. if (edesc->src_nents)
  2772. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  2773. if (edesc->dst_dma)
  2774. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  2775. if (edesc->qm_sg_bytes)
  2776. dma_unmap_single(dev, edesc->qm_sg_dma, edesc->qm_sg_bytes,
  2777. DMA_TO_DEVICE);
  2778. if (state->buf_dma) {
  2779. dma_unmap_single(dev, state->buf_dma, *current_buflen(state),
  2780. DMA_TO_DEVICE);
  2781. state->buf_dma = 0;
  2782. }
  2783. }
  2784. static inline void ahash_unmap_ctx(struct device *dev,
  2785. struct ahash_edesc *edesc,
  2786. struct ahash_request *req, int dst_len,
  2787. u32 flag)
  2788. {
  2789. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  2790. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2791. struct caam_hash_state *state = ahash_request_ctx(req);
  2792. if (state->ctx_dma) {
  2793. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  2794. state->ctx_dma = 0;
  2795. }
  2796. ahash_unmap(dev, edesc, req, dst_len);
  2797. }
  2798. static void ahash_done(void *cbk_ctx, u32 status)
  2799. {
  2800. struct crypto_async_request *areq = cbk_ctx;
  2801. struct ahash_request *req = ahash_request_cast(areq);
  2802. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  2803. struct caam_hash_state *state = ahash_request_ctx(req);
  2804. struct ahash_edesc *edesc = state->caam_req.edesc;
  2805. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2806. int digestsize = crypto_ahash_digestsize(ahash);
  2807. int ecode = 0;
  2808. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  2809. if (unlikely(status)) {
  2810. caam_qi2_strstatus(ctx->dev, status);
  2811. ecode = -EIO;
  2812. }
  2813. ahash_unmap(ctx->dev, edesc, req, digestsize);
  2814. qi_cache_free(edesc);
  2815. print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
  2816. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  2817. ctx->ctx_len, 1);
  2818. if (req->result)
  2819. print_hex_dump_debug("result@" __stringify(__LINE__)": ",
  2820. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  2821. digestsize, 1);
  2822. req->base.complete(&req->base, ecode);
  2823. }
  2824. static void ahash_done_bi(void *cbk_ctx, u32 status)
  2825. {
  2826. struct crypto_async_request *areq = cbk_ctx;
  2827. struct ahash_request *req = ahash_request_cast(areq);
  2828. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  2829. struct caam_hash_state *state = ahash_request_ctx(req);
  2830. struct ahash_edesc *edesc = state->caam_req.edesc;
  2831. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2832. int ecode = 0;
  2833. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  2834. if (unlikely(status)) {
  2835. caam_qi2_strstatus(ctx->dev, status);
  2836. ecode = -EIO;
  2837. }
  2838. ahash_unmap_ctx(ctx->dev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  2839. switch_buf(state);
  2840. qi_cache_free(edesc);
  2841. print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
  2842. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  2843. ctx->ctx_len, 1);
  2844. if (req->result)
  2845. print_hex_dump_debug("result@" __stringify(__LINE__)": ",
  2846. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  2847. crypto_ahash_digestsize(ahash), 1);
  2848. req->base.complete(&req->base, ecode);
  2849. }
  2850. static void ahash_done_ctx_src(void *cbk_ctx, u32 status)
  2851. {
  2852. struct crypto_async_request *areq = cbk_ctx;
  2853. struct ahash_request *req = ahash_request_cast(areq);
  2854. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  2855. struct caam_hash_state *state = ahash_request_ctx(req);
  2856. struct ahash_edesc *edesc = state->caam_req.edesc;
  2857. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2858. int digestsize = crypto_ahash_digestsize(ahash);
  2859. int ecode = 0;
  2860. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  2861. if (unlikely(status)) {
  2862. caam_qi2_strstatus(ctx->dev, status);
  2863. ecode = -EIO;
  2864. }
  2865. ahash_unmap_ctx(ctx->dev, edesc, req, digestsize, DMA_TO_DEVICE);
  2866. qi_cache_free(edesc);
  2867. print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
  2868. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  2869. ctx->ctx_len, 1);
  2870. if (req->result)
  2871. print_hex_dump_debug("result@" __stringify(__LINE__)": ",
  2872. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  2873. digestsize, 1);
  2874. req->base.complete(&req->base, ecode);
  2875. }
  2876. static void ahash_done_ctx_dst(void *cbk_ctx, u32 status)
  2877. {
  2878. struct crypto_async_request *areq = cbk_ctx;
  2879. struct ahash_request *req = ahash_request_cast(areq);
  2880. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  2881. struct caam_hash_state *state = ahash_request_ctx(req);
  2882. struct ahash_edesc *edesc = state->caam_req.edesc;
  2883. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2884. int ecode = 0;
  2885. dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
  2886. if (unlikely(status)) {
  2887. caam_qi2_strstatus(ctx->dev, status);
  2888. ecode = -EIO;
  2889. }
  2890. ahash_unmap_ctx(ctx->dev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  2891. switch_buf(state);
  2892. qi_cache_free(edesc);
  2893. print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
  2894. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  2895. ctx->ctx_len, 1);
  2896. if (req->result)
  2897. print_hex_dump_debug("result@" __stringify(__LINE__)": ",
  2898. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  2899. crypto_ahash_digestsize(ahash), 1);
  2900. req->base.complete(&req->base, ecode);
  2901. }
  2902. static int ahash_update_ctx(struct ahash_request *req)
  2903. {
  2904. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  2905. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  2906. struct caam_hash_state *state = ahash_request_ctx(req);
  2907. struct caam_request *req_ctx = &state->caam_req;
  2908. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  2909. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  2910. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  2911. GFP_KERNEL : GFP_ATOMIC;
  2912. u8 *buf = current_buf(state);
  2913. int *buflen = current_buflen(state);
  2914. u8 *next_buf = alt_buf(state);
  2915. int *next_buflen = alt_buflen(state), last_buflen;
  2916. int in_len = *buflen + req->nbytes, to_hash;
  2917. int src_nents, mapped_nents, qm_sg_bytes, qm_sg_src_index;
  2918. struct ahash_edesc *edesc;
  2919. int ret = 0;
  2920. last_buflen = *next_buflen;
  2921. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  2922. to_hash = in_len - *next_buflen;
  2923. if (to_hash) {
  2924. struct dpaa2_sg_entry *sg_table;
  2925. src_nents = sg_nents_for_len(req->src,
  2926. req->nbytes - (*next_buflen));
  2927. if (src_nents < 0) {
  2928. dev_err(ctx->dev, "Invalid number of src SG.\n");
  2929. return src_nents;
  2930. }
  2931. if (src_nents) {
  2932. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  2933. DMA_TO_DEVICE);
  2934. if (!mapped_nents) {
  2935. dev_err(ctx->dev, "unable to DMA map source\n");
  2936. return -ENOMEM;
  2937. }
  2938. } else {
  2939. mapped_nents = 0;
  2940. }
  2941. /* allocate space for base edesc and link tables */
  2942. edesc = qi_cache_zalloc(GFP_DMA | flags);
  2943. if (!edesc) {
  2944. dma_unmap_sg(ctx->dev, req->src, src_nents,
  2945. DMA_TO_DEVICE);
  2946. return -ENOMEM;
  2947. }
  2948. edesc->src_nents = src_nents;
  2949. qm_sg_src_index = 1 + (*buflen ? 1 : 0);
  2950. qm_sg_bytes = (qm_sg_src_index + mapped_nents) *
  2951. sizeof(*sg_table);
  2952. sg_table = &edesc->sgt[0];
  2953. ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
  2954. DMA_BIDIRECTIONAL);
  2955. if (ret)
  2956. goto unmap_ctx;
  2957. ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
  2958. if (ret)
  2959. goto unmap_ctx;
  2960. if (mapped_nents) {
  2961. sg_to_qm_sg_last(req->src, mapped_nents,
  2962. sg_table + qm_sg_src_index, 0);
  2963. if (*next_buflen)
  2964. scatterwalk_map_and_copy(next_buf, req->src,
  2965. to_hash - *buflen,
  2966. *next_buflen, 0);
  2967. } else {
  2968. dpaa2_sg_set_final(sg_table + qm_sg_src_index - 1,
  2969. true);
  2970. }
  2971. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
  2972. qm_sg_bytes, DMA_TO_DEVICE);
  2973. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  2974. dev_err(ctx->dev, "unable to map S/G table\n");
  2975. ret = -ENOMEM;
  2976. goto unmap_ctx;
  2977. }
  2978. edesc->qm_sg_bytes = qm_sg_bytes;
  2979. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  2980. dpaa2_fl_set_final(in_fle, true);
  2981. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  2982. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  2983. dpaa2_fl_set_len(in_fle, ctx->ctx_len + to_hash);
  2984. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  2985. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  2986. dpaa2_fl_set_len(out_fle, ctx->ctx_len);
  2987. req_ctx->flc = &ctx->flc[UPDATE];
  2988. req_ctx->flc_dma = ctx->flc_dma[UPDATE];
  2989. req_ctx->cbk = ahash_done_bi;
  2990. req_ctx->ctx = &req->base;
  2991. req_ctx->edesc = edesc;
  2992. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  2993. if (ret != -EINPROGRESS &&
  2994. !(ret == -EBUSY &&
  2995. req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  2996. goto unmap_ctx;
  2997. } else if (*next_buflen) {
  2998. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  2999. req->nbytes, 0);
  3000. *buflen = *next_buflen;
  3001. *next_buflen = last_buflen;
  3002. }
  3003. print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
  3004. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  3005. print_hex_dump_debug("next buf@" __stringify(__LINE__)": ",
  3006. DUMP_PREFIX_ADDRESS, 16, 4, next_buf, *next_buflen,
  3007. 1);
  3008. return ret;
  3009. unmap_ctx:
  3010. ahash_unmap_ctx(ctx->dev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  3011. qi_cache_free(edesc);
  3012. return ret;
  3013. }
  3014. static int ahash_final_ctx(struct ahash_request *req)
  3015. {
  3016. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3017. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3018. struct caam_hash_state *state = ahash_request_ctx(req);
  3019. struct caam_request *req_ctx = &state->caam_req;
  3020. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3021. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3022. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3023. GFP_KERNEL : GFP_ATOMIC;
  3024. int buflen = *current_buflen(state);
  3025. int qm_sg_bytes, qm_sg_src_index;
  3026. int digestsize = crypto_ahash_digestsize(ahash);
  3027. struct ahash_edesc *edesc;
  3028. struct dpaa2_sg_entry *sg_table;
  3029. int ret;
  3030. /* allocate space for base edesc and link tables */
  3031. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3032. if (!edesc)
  3033. return -ENOMEM;
  3034. qm_sg_src_index = 1 + (buflen ? 1 : 0);
  3035. qm_sg_bytes = qm_sg_src_index * sizeof(*sg_table);
  3036. sg_table = &edesc->sgt[0];
  3037. ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
  3038. DMA_TO_DEVICE);
  3039. if (ret)
  3040. goto unmap_ctx;
  3041. ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
  3042. if (ret)
  3043. goto unmap_ctx;
  3044. dpaa2_sg_set_final(sg_table + qm_sg_src_index - 1, true);
  3045. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
  3046. DMA_TO_DEVICE);
  3047. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3048. dev_err(ctx->dev, "unable to map S/G table\n");
  3049. ret = -ENOMEM;
  3050. goto unmap_ctx;
  3051. }
  3052. edesc->qm_sg_bytes = qm_sg_bytes;
  3053. edesc->dst_dma = dma_map_single(ctx->dev, req->result, digestsize,
  3054. DMA_FROM_DEVICE);
  3055. if (dma_mapping_error(ctx->dev, edesc->dst_dma)) {
  3056. dev_err(ctx->dev, "unable to map dst\n");
  3057. edesc->dst_dma = 0;
  3058. ret = -ENOMEM;
  3059. goto unmap_ctx;
  3060. }
  3061. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3062. dpaa2_fl_set_final(in_fle, true);
  3063. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3064. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3065. dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen);
  3066. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3067. dpaa2_fl_set_addr(out_fle, edesc->dst_dma);
  3068. dpaa2_fl_set_len(out_fle, digestsize);
  3069. req_ctx->flc = &ctx->flc[FINALIZE];
  3070. req_ctx->flc_dma = ctx->flc_dma[FINALIZE];
  3071. req_ctx->cbk = ahash_done_ctx_src;
  3072. req_ctx->ctx = &req->base;
  3073. req_ctx->edesc = edesc;
  3074. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3075. if (ret == -EINPROGRESS ||
  3076. (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3077. return ret;
  3078. unmap_ctx:
  3079. ahash_unmap_ctx(ctx->dev, edesc, req, digestsize, DMA_FROM_DEVICE);
  3080. qi_cache_free(edesc);
  3081. return ret;
  3082. }
  3083. static int ahash_finup_ctx(struct ahash_request *req)
  3084. {
  3085. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3086. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3087. struct caam_hash_state *state = ahash_request_ctx(req);
  3088. struct caam_request *req_ctx = &state->caam_req;
  3089. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3090. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3091. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3092. GFP_KERNEL : GFP_ATOMIC;
  3093. int buflen = *current_buflen(state);
  3094. int qm_sg_bytes, qm_sg_src_index;
  3095. int src_nents, mapped_nents;
  3096. int digestsize = crypto_ahash_digestsize(ahash);
  3097. struct ahash_edesc *edesc;
  3098. struct dpaa2_sg_entry *sg_table;
  3099. int ret;
  3100. src_nents = sg_nents_for_len(req->src, req->nbytes);
  3101. if (src_nents < 0) {
  3102. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3103. return src_nents;
  3104. }
  3105. if (src_nents) {
  3106. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3107. DMA_TO_DEVICE);
  3108. if (!mapped_nents) {
  3109. dev_err(ctx->dev, "unable to DMA map source\n");
  3110. return -ENOMEM;
  3111. }
  3112. } else {
  3113. mapped_nents = 0;
  3114. }
  3115. /* allocate space for base edesc and link tables */
  3116. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3117. if (!edesc) {
  3118. dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
  3119. return -ENOMEM;
  3120. }
  3121. edesc->src_nents = src_nents;
  3122. qm_sg_src_index = 1 + (buflen ? 1 : 0);
  3123. qm_sg_bytes = (qm_sg_src_index + mapped_nents) * sizeof(*sg_table);
  3124. sg_table = &edesc->sgt[0];
  3125. ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
  3126. DMA_TO_DEVICE);
  3127. if (ret)
  3128. goto unmap_ctx;
  3129. ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
  3130. if (ret)
  3131. goto unmap_ctx;
  3132. sg_to_qm_sg_last(req->src, mapped_nents, sg_table + qm_sg_src_index, 0);
  3133. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
  3134. DMA_TO_DEVICE);
  3135. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3136. dev_err(ctx->dev, "unable to map S/G table\n");
  3137. ret = -ENOMEM;
  3138. goto unmap_ctx;
  3139. }
  3140. edesc->qm_sg_bytes = qm_sg_bytes;
  3141. edesc->dst_dma = dma_map_single(ctx->dev, req->result, digestsize,
  3142. DMA_FROM_DEVICE);
  3143. if (dma_mapping_error(ctx->dev, edesc->dst_dma)) {
  3144. dev_err(ctx->dev, "unable to map dst\n");
  3145. edesc->dst_dma = 0;
  3146. ret = -ENOMEM;
  3147. goto unmap_ctx;
  3148. }
  3149. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3150. dpaa2_fl_set_final(in_fle, true);
  3151. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3152. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3153. dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen + req->nbytes);
  3154. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3155. dpaa2_fl_set_addr(out_fle, edesc->dst_dma);
  3156. dpaa2_fl_set_len(out_fle, digestsize);
  3157. req_ctx->flc = &ctx->flc[FINALIZE];
  3158. req_ctx->flc_dma = ctx->flc_dma[FINALIZE];
  3159. req_ctx->cbk = ahash_done_ctx_src;
  3160. req_ctx->ctx = &req->base;
  3161. req_ctx->edesc = edesc;
  3162. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3163. if (ret == -EINPROGRESS ||
  3164. (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3165. return ret;
  3166. unmap_ctx:
  3167. ahash_unmap_ctx(ctx->dev, edesc, req, digestsize, DMA_FROM_DEVICE);
  3168. qi_cache_free(edesc);
  3169. return ret;
  3170. }
  3171. static int ahash_digest(struct ahash_request *req)
  3172. {
  3173. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3174. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3175. struct caam_hash_state *state = ahash_request_ctx(req);
  3176. struct caam_request *req_ctx = &state->caam_req;
  3177. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3178. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3179. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3180. GFP_KERNEL : GFP_ATOMIC;
  3181. int digestsize = crypto_ahash_digestsize(ahash);
  3182. int src_nents, mapped_nents;
  3183. struct ahash_edesc *edesc;
  3184. int ret = -ENOMEM;
  3185. state->buf_dma = 0;
  3186. src_nents = sg_nents_for_len(req->src, req->nbytes);
  3187. if (src_nents < 0) {
  3188. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3189. return src_nents;
  3190. }
  3191. if (src_nents) {
  3192. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3193. DMA_TO_DEVICE);
  3194. if (!mapped_nents) {
  3195. dev_err(ctx->dev, "unable to map source for DMA\n");
  3196. return ret;
  3197. }
  3198. } else {
  3199. mapped_nents = 0;
  3200. }
  3201. /* allocate space for base edesc and link tables */
  3202. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3203. if (!edesc) {
  3204. dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
  3205. return ret;
  3206. }
  3207. edesc->src_nents = src_nents;
  3208. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3209. if (mapped_nents > 1) {
  3210. int qm_sg_bytes;
  3211. struct dpaa2_sg_entry *sg_table = &edesc->sgt[0];
  3212. qm_sg_bytes = mapped_nents * sizeof(*sg_table);
  3213. sg_to_qm_sg_last(req->src, mapped_nents, sg_table, 0);
  3214. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
  3215. qm_sg_bytes, DMA_TO_DEVICE);
  3216. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3217. dev_err(ctx->dev, "unable to map S/G table\n");
  3218. goto unmap;
  3219. }
  3220. edesc->qm_sg_bytes = qm_sg_bytes;
  3221. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3222. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3223. } else {
  3224. dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
  3225. dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src));
  3226. }
  3227. edesc->dst_dma = dma_map_single(ctx->dev, req->result, digestsize,
  3228. DMA_FROM_DEVICE);
  3229. if (dma_mapping_error(ctx->dev, edesc->dst_dma)) {
  3230. dev_err(ctx->dev, "unable to map dst\n");
  3231. edesc->dst_dma = 0;
  3232. goto unmap;
  3233. }
  3234. dpaa2_fl_set_final(in_fle, true);
  3235. dpaa2_fl_set_len(in_fle, req->nbytes);
  3236. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3237. dpaa2_fl_set_addr(out_fle, edesc->dst_dma);
  3238. dpaa2_fl_set_len(out_fle, digestsize);
  3239. req_ctx->flc = &ctx->flc[DIGEST];
  3240. req_ctx->flc_dma = ctx->flc_dma[DIGEST];
  3241. req_ctx->cbk = ahash_done;
  3242. req_ctx->ctx = &req->base;
  3243. req_ctx->edesc = edesc;
  3244. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3245. if (ret == -EINPROGRESS ||
  3246. (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3247. return ret;
  3248. unmap:
  3249. ahash_unmap(ctx->dev, edesc, req, digestsize);
  3250. qi_cache_free(edesc);
  3251. return ret;
  3252. }
  3253. static int ahash_final_no_ctx(struct ahash_request *req)
  3254. {
  3255. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3256. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3257. struct caam_hash_state *state = ahash_request_ctx(req);
  3258. struct caam_request *req_ctx = &state->caam_req;
  3259. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3260. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3261. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3262. GFP_KERNEL : GFP_ATOMIC;
  3263. u8 *buf = current_buf(state);
  3264. int buflen = *current_buflen(state);
  3265. int digestsize = crypto_ahash_digestsize(ahash);
  3266. struct ahash_edesc *edesc;
  3267. int ret = -ENOMEM;
  3268. /* allocate space for base edesc and link tables */
  3269. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3270. if (!edesc)
  3271. return ret;
  3272. state->buf_dma = dma_map_single(ctx->dev, buf, buflen, DMA_TO_DEVICE);
  3273. if (dma_mapping_error(ctx->dev, state->buf_dma)) {
  3274. dev_err(ctx->dev, "unable to map src\n");
  3275. goto unmap;
  3276. }
  3277. edesc->dst_dma = dma_map_single(ctx->dev, req->result, digestsize,
  3278. DMA_FROM_DEVICE);
  3279. if (dma_mapping_error(ctx->dev, edesc->dst_dma)) {
  3280. dev_err(ctx->dev, "unable to map dst\n");
  3281. edesc->dst_dma = 0;
  3282. goto unmap;
  3283. }
  3284. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3285. dpaa2_fl_set_final(in_fle, true);
  3286. dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
  3287. dpaa2_fl_set_addr(in_fle, state->buf_dma);
  3288. dpaa2_fl_set_len(in_fle, buflen);
  3289. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3290. dpaa2_fl_set_addr(out_fle, edesc->dst_dma);
  3291. dpaa2_fl_set_len(out_fle, digestsize);
  3292. req_ctx->flc = &ctx->flc[DIGEST];
  3293. req_ctx->flc_dma = ctx->flc_dma[DIGEST];
  3294. req_ctx->cbk = ahash_done;
  3295. req_ctx->ctx = &req->base;
  3296. req_ctx->edesc = edesc;
  3297. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3298. if (ret == -EINPROGRESS ||
  3299. (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3300. return ret;
  3301. unmap:
  3302. ahash_unmap(ctx->dev, edesc, req, digestsize);
  3303. qi_cache_free(edesc);
  3304. return ret;
  3305. }
  3306. static int ahash_update_no_ctx(struct ahash_request *req)
  3307. {
  3308. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3309. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3310. struct caam_hash_state *state = ahash_request_ctx(req);
  3311. struct caam_request *req_ctx = &state->caam_req;
  3312. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3313. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3314. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3315. GFP_KERNEL : GFP_ATOMIC;
  3316. u8 *buf = current_buf(state);
  3317. int *buflen = current_buflen(state);
  3318. u8 *next_buf = alt_buf(state);
  3319. int *next_buflen = alt_buflen(state);
  3320. int in_len = *buflen + req->nbytes, to_hash;
  3321. int qm_sg_bytes, src_nents, mapped_nents;
  3322. struct ahash_edesc *edesc;
  3323. int ret = 0;
  3324. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  3325. to_hash = in_len - *next_buflen;
  3326. if (to_hash) {
  3327. struct dpaa2_sg_entry *sg_table;
  3328. src_nents = sg_nents_for_len(req->src,
  3329. req->nbytes - *next_buflen);
  3330. if (src_nents < 0) {
  3331. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3332. return src_nents;
  3333. }
  3334. if (src_nents) {
  3335. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3336. DMA_TO_DEVICE);
  3337. if (!mapped_nents) {
  3338. dev_err(ctx->dev, "unable to DMA map source\n");
  3339. return -ENOMEM;
  3340. }
  3341. } else {
  3342. mapped_nents = 0;
  3343. }
  3344. /* allocate space for base edesc and link tables */
  3345. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3346. if (!edesc) {
  3347. dma_unmap_sg(ctx->dev, req->src, src_nents,
  3348. DMA_TO_DEVICE);
  3349. return -ENOMEM;
  3350. }
  3351. edesc->src_nents = src_nents;
  3352. qm_sg_bytes = (1 + mapped_nents) * sizeof(*sg_table);
  3353. sg_table = &edesc->sgt[0];
  3354. ret = buf_map_to_qm_sg(ctx->dev, sg_table, state);
  3355. if (ret)
  3356. goto unmap_ctx;
  3357. sg_to_qm_sg_last(req->src, mapped_nents, sg_table + 1, 0);
  3358. if (*next_buflen)
  3359. scatterwalk_map_and_copy(next_buf, req->src,
  3360. to_hash - *buflen,
  3361. *next_buflen, 0);
  3362. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
  3363. qm_sg_bytes, DMA_TO_DEVICE);
  3364. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3365. dev_err(ctx->dev, "unable to map S/G table\n");
  3366. ret = -ENOMEM;
  3367. goto unmap_ctx;
  3368. }
  3369. edesc->qm_sg_bytes = qm_sg_bytes;
  3370. state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx,
  3371. ctx->ctx_len, DMA_FROM_DEVICE);
  3372. if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
  3373. dev_err(ctx->dev, "unable to map ctx\n");
  3374. state->ctx_dma = 0;
  3375. ret = -ENOMEM;
  3376. goto unmap_ctx;
  3377. }
  3378. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3379. dpaa2_fl_set_final(in_fle, true);
  3380. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3381. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3382. dpaa2_fl_set_len(in_fle, to_hash);
  3383. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3384. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3385. dpaa2_fl_set_len(out_fle, ctx->ctx_len);
  3386. req_ctx->flc = &ctx->flc[UPDATE_FIRST];
  3387. req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST];
  3388. req_ctx->cbk = ahash_done_ctx_dst;
  3389. req_ctx->ctx = &req->base;
  3390. req_ctx->edesc = edesc;
  3391. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3392. if (ret != -EINPROGRESS &&
  3393. !(ret == -EBUSY &&
  3394. req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3395. goto unmap_ctx;
  3396. state->update = ahash_update_ctx;
  3397. state->finup = ahash_finup_ctx;
  3398. state->final = ahash_final_ctx;
  3399. } else if (*next_buflen) {
  3400. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  3401. req->nbytes, 0);
  3402. *buflen = *next_buflen;
  3403. *next_buflen = 0;
  3404. }
  3405. print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
  3406. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  3407. print_hex_dump_debug("next buf@" __stringify(__LINE__)": ",
  3408. DUMP_PREFIX_ADDRESS, 16, 4, next_buf, *next_buflen,
  3409. 1);
  3410. return ret;
  3411. unmap_ctx:
  3412. ahash_unmap_ctx(ctx->dev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  3413. qi_cache_free(edesc);
  3414. return ret;
  3415. }
  3416. static int ahash_finup_no_ctx(struct ahash_request *req)
  3417. {
  3418. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3419. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3420. struct caam_hash_state *state = ahash_request_ctx(req);
  3421. struct caam_request *req_ctx = &state->caam_req;
  3422. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3423. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3424. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3425. GFP_KERNEL : GFP_ATOMIC;
  3426. int buflen = *current_buflen(state);
  3427. int qm_sg_bytes, src_nents, mapped_nents;
  3428. int digestsize = crypto_ahash_digestsize(ahash);
  3429. struct ahash_edesc *edesc;
  3430. struct dpaa2_sg_entry *sg_table;
  3431. int ret;
  3432. src_nents = sg_nents_for_len(req->src, req->nbytes);
  3433. if (src_nents < 0) {
  3434. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3435. return src_nents;
  3436. }
  3437. if (src_nents) {
  3438. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3439. DMA_TO_DEVICE);
  3440. if (!mapped_nents) {
  3441. dev_err(ctx->dev, "unable to DMA map source\n");
  3442. return -ENOMEM;
  3443. }
  3444. } else {
  3445. mapped_nents = 0;
  3446. }
  3447. /* allocate space for base edesc and link tables */
  3448. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3449. if (!edesc) {
  3450. dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
  3451. return -ENOMEM;
  3452. }
  3453. edesc->src_nents = src_nents;
  3454. qm_sg_bytes = (2 + mapped_nents) * sizeof(*sg_table);
  3455. sg_table = &edesc->sgt[0];
  3456. ret = buf_map_to_qm_sg(ctx->dev, sg_table, state);
  3457. if (ret)
  3458. goto unmap;
  3459. sg_to_qm_sg_last(req->src, mapped_nents, sg_table + 1, 0);
  3460. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
  3461. DMA_TO_DEVICE);
  3462. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3463. dev_err(ctx->dev, "unable to map S/G table\n");
  3464. ret = -ENOMEM;
  3465. goto unmap;
  3466. }
  3467. edesc->qm_sg_bytes = qm_sg_bytes;
  3468. edesc->dst_dma = dma_map_single(ctx->dev, req->result, digestsize,
  3469. DMA_FROM_DEVICE);
  3470. if (dma_mapping_error(ctx->dev, edesc->dst_dma)) {
  3471. dev_err(ctx->dev, "unable to map dst\n");
  3472. edesc->dst_dma = 0;
  3473. ret = -ENOMEM;
  3474. goto unmap;
  3475. }
  3476. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3477. dpaa2_fl_set_final(in_fle, true);
  3478. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3479. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3480. dpaa2_fl_set_len(in_fle, buflen + req->nbytes);
  3481. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3482. dpaa2_fl_set_addr(out_fle, edesc->dst_dma);
  3483. dpaa2_fl_set_len(out_fle, digestsize);
  3484. req_ctx->flc = &ctx->flc[DIGEST];
  3485. req_ctx->flc_dma = ctx->flc_dma[DIGEST];
  3486. req_ctx->cbk = ahash_done;
  3487. req_ctx->ctx = &req->base;
  3488. req_ctx->edesc = edesc;
  3489. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3490. if (ret != -EINPROGRESS &&
  3491. !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
  3492. goto unmap;
  3493. return ret;
  3494. unmap:
  3495. ahash_unmap(ctx->dev, edesc, req, digestsize);
  3496. qi_cache_free(edesc);
  3497. return -ENOMEM;
  3498. }
  3499. static int ahash_update_first(struct ahash_request *req)
  3500. {
  3501. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  3502. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  3503. struct caam_hash_state *state = ahash_request_ctx(req);
  3504. struct caam_request *req_ctx = &state->caam_req;
  3505. struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
  3506. struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
  3507. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  3508. GFP_KERNEL : GFP_ATOMIC;
  3509. u8 *next_buf = alt_buf(state);
  3510. int *next_buflen = alt_buflen(state);
  3511. int to_hash;
  3512. int src_nents, mapped_nents;
  3513. struct ahash_edesc *edesc;
  3514. int ret = 0;
  3515. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  3516. 1);
  3517. to_hash = req->nbytes - *next_buflen;
  3518. if (to_hash) {
  3519. struct dpaa2_sg_entry *sg_table;
  3520. src_nents = sg_nents_for_len(req->src,
  3521. req->nbytes - (*next_buflen));
  3522. if (src_nents < 0) {
  3523. dev_err(ctx->dev, "Invalid number of src SG.\n");
  3524. return src_nents;
  3525. }
  3526. if (src_nents) {
  3527. mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
  3528. DMA_TO_DEVICE);
  3529. if (!mapped_nents) {
  3530. dev_err(ctx->dev, "unable to map source for DMA\n");
  3531. return -ENOMEM;
  3532. }
  3533. } else {
  3534. mapped_nents = 0;
  3535. }
  3536. /* allocate space for base edesc and link tables */
  3537. edesc = qi_cache_zalloc(GFP_DMA | flags);
  3538. if (!edesc) {
  3539. dma_unmap_sg(ctx->dev, req->src, src_nents,
  3540. DMA_TO_DEVICE);
  3541. return -ENOMEM;
  3542. }
  3543. edesc->src_nents = src_nents;
  3544. sg_table = &edesc->sgt[0];
  3545. memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
  3546. dpaa2_fl_set_final(in_fle, true);
  3547. dpaa2_fl_set_len(in_fle, to_hash);
  3548. if (mapped_nents > 1) {
  3549. int qm_sg_bytes;
  3550. sg_to_qm_sg_last(req->src, mapped_nents, sg_table, 0);
  3551. qm_sg_bytes = mapped_nents * sizeof(*sg_table);
  3552. edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
  3553. qm_sg_bytes,
  3554. DMA_TO_DEVICE);
  3555. if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
  3556. dev_err(ctx->dev, "unable to map S/G table\n");
  3557. ret = -ENOMEM;
  3558. goto unmap_ctx;
  3559. }
  3560. edesc->qm_sg_bytes = qm_sg_bytes;
  3561. dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
  3562. dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
  3563. } else {
  3564. dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
  3565. dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src));
  3566. }
  3567. if (*next_buflen)
  3568. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  3569. *next_buflen, 0);
  3570. state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx,
  3571. ctx->ctx_len, DMA_FROM_DEVICE);
  3572. if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
  3573. dev_err(ctx->dev, "unable to map ctx\n");
  3574. state->ctx_dma = 0;
  3575. ret = -ENOMEM;
  3576. goto unmap_ctx;
  3577. }
  3578. dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
  3579. dpaa2_fl_set_addr(out_fle, state->ctx_dma);
  3580. dpaa2_fl_set_len(out_fle, ctx->ctx_len);
  3581. req_ctx->flc = &ctx->flc[UPDATE_FIRST];
  3582. req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST];
  3583. req_ctx->cbk = ahash_done_ctx_dst;
  3584. req_ctx->ctx = &req->base;
  3585. req_ctx->edesc = edesc;
  3586. ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
  3587. if (ret != -EINPROGRESS &&
  3588. !(ret == -EBUSY && req->base.flags &
  3589. CRYPTO_TFM_REQ_MAY_BACKLOG))
  3590. goto unmap_ctx;
  3591. state->update = ahash_update_ctx;
  3592. state->finup = ahash_finup_ctx;
  3593. state->final = ahash_final_ctx;
  3594. } else if (*next_buflen) {
  3595. state->update = ahash_update_no_ctx;
  3596. state->finup = ahash_finup_no_ctx;
  3597. state->final = ahash_final_no_ctx;
  3598. scatterwalk_map_and_copy(next_buf, req->src, 0,
  3599. req->nbytes, 0);
  3600. switch_buf(state);
  3601. }
  3602. print_hex_dump_debug("next buf@" __stringify(__LINE__)": ",
  3603. DUMP_PREFIX_ADDRESS, 16, 4, next_buf, *next_buflen,
  3604. 1);
  3605. return ret;
  3606. unmap_ctx:
  3607. ahash_unmap_ctx(ctx->dev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  3608. qi_cache_free(edesc);
  3609. return ret;
  3610. }
  3611. static int ahash_finup_first(struct ahash_request *req)
  3612. {
  3613. return ahash_digest(req);
  3614. }
  3615. static int ahash_init(struct ahash_request *req)
  3616. {
  3617. struct caam_hash_state *state = ahash_request_ctx(req);
  3618. state->update = ahash_update_first;
  3619. state->finup = ahash_finup_first;
  3620. state->final = ahash_final_no_ctx;
  3621. state->ctx_dma = 0;
  3622. state->current_buf = 0;
  3623. state->buf_dma = 0;
  3624. state->buflen_0 = 0;
  3625. state->buflen_1 = 0;
  3626. return 0;
  3627. }
  3628. static int ahash_update(struct ahash_request *req)
  3629. {
  3630. struct caam_hash_state *state = ahash_request_ctx(req);
  3631. return state->update(req);
  3632. }
  3633. static int ahash_finup(struct ahash_request *req)
  3634. {
  3635. struct caam_hash_state *state = ahash_request_ctx(req);
  3636. return state->finup(req);
  3637. }
  3638. static int ahash_final(struct ahash_request *req)
  3639. {
  3640. struct caam_hash_state *state = ahash_request_ctx(req);
  3641. return state->final(req);
  3642. }
  3643. static int ahash_export(struct ahash_request *req, void *out)
  3644. {
  3645. struct caam_hash_state *state = ahash_request_ctx(req);
  3646. struct caam_export_state *export = out;
  3647. int len;
  3648. u8 *buf;
  3649. if (state->current_buf) {
  3650. buf = state->buf_1;
  3651. len = state->buflen_1;
  3652. } else {
  3653. buf = state->buf_0;
  3654. len = state->buflen_0;
  3655. }
  3656. memcpy(export->buf, buf, len);
  3657. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  3658. export->buflen = len;
  3659. export->update = state->update;
  3660. export->final = state->final;
  3661. export->finup = state->finup;
  3662. return 0;
  3663. }
  3664. static int ahash_import(struct ahash_request *req, const void *in)
  3665. {
  3666. struct caam_hash_state *state = ahash_request_ctx(req);
  3667. const struct caam_export_state *export = in;
  3668. memset(state, 0, sizeof(*state));
  3669. memcpy(state->buf_0, export->buf, export->buflen);
  3670. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  3671. state->buflen_0 = export->buflen;
  3672. state->update = export->update;
  3673. state->final = export->final;
  3674. state->finup = export->finup;
  3675. return 0;
  3676. }
  3677. struct caam_hash_template {
  3678. char name[CRYPTO_MAX_ALG_NAME];
  3679. char driver_name[CRYPTO_MAX_ALG_NAME];
  3680. char hmac_name[CRYPTO_MAX_ALG_NAME];
  3681. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  3682. unsigned int blocksize;
  3683. struct ahash_alg template_ahash;
  3684. u32 alg_type;
  3685. };
  3686. /* ahash descriptors */
  3687. static struct caam_hash_template driver_hash[] = {
  3688. {
  3689. .name = "sha1",
  3690. .driver_name = "sha1-caam-qi2",
  3691. .hmac_name = "hmac(sha1)",
  3692. .hmac_driver_name = "hmac-sha1-caam-qi2",
  3693. .blocksize = SHA1_BLOCK_SIZE,
  3694. .template_ahash = {
  3695. .init = ahash_init,
  3696. .update = ahash_update,
  3697. .final = ahash_final,
  3698. .finup = ahash_finup,
  3699. .digest = ahash_digest,
  3700. .export = ahash_export,
  3701. .import = ahash_import,
  3702. .setkey = ahash_setkey,
  3703. .halg = {
  3704. .digestsize = SHA1_DIGEST_SIZE,
  3705. .statesize = sizeof(struct caam_export_state),
  3706. },
  3707. },
  3708. .alg_type = OP_ALG_ALGSEL_SHA1,
  3709. }, {
  3710. .name = "sha224",
  3711. .driver_name = "sha224-caam-qi2",
  3712. .hmac_name = "hmac(sha224)",
  3713. .hmac_driver_name = "hmac-sha224-caam-qi2",
  3714. .blocksize = SHA224_BLOCK_SIZE,
  3715. .template_ahash = {
  3716. .init = ahash_init,
  3717. .update = ahash_update,
  3718. .final = ahash_final,
  3719. .finup = ahash_finup,
  3720. .digest = ahash_digest,
  3721. .export = ahash_export,
  3722. .import = ahash_import,
  3723. .setkey = ahash_setkey,
  3724. .halg = {
  3725. .digestsize = SHA224_DIGEST_SIZE,
  3726. .statesize = sizeof(struct caam_export_state),
  3727. },
  3728. },
  3729. .alg_type = OP_ALG_ALGSEL_SHA224,
  3730. }, {
  3731. .name = "sha256",
  3732. .driver_name = "sha256-caam-qi2",
  3733. .hmac_name = "hmac(sha256)",
  3734. .hmac_driver_name = "hmac-sha256-caam-qi2",
  3735. .blocksize = SHA256_BLOCK_SIZE,
  3736. .template_ahash = {
  3737. .init = ahash_init,
  3738. .update = ahash_update,
  3739. .final = ahash_final,
  3740. .finup = ahash_finup,
  3741. .digest = ahash_digest,
  3742. .export = ahash_export,
  3743. .import = ahash_import,
  3744. .setkey = ahash_setkey,
  3745. .halg = {
  3746. .digestsize = SHA256_DIGEST_SIZE,
  3747. .statesize = sizeof(struct caam_export_state),
  3748. },
  3749. },
  3750. .alg_type = OP_ALG_ALGSEL_SHA256,
  3751. }, {
  3752. .name = "sha384",
  3753. .driver_name = "sha384-caam-qi2",
  3754. .hmac_name = "hmac(sha384)",
  3755. .hmac_driver_name = "hmac-sha384-caam-qi2",
  3756. .blocksize = SHA384_BLOCK_SIZE,
  3757. .template_ahash = {
  3758. .init = ahash_init,
  3759. .update = ahash_update,
  3760. .final = ahash_final,
  3761. .finup = ahash_finup,
  3762. .digest = ahash_digest,
  3763. .export = ahash_export,
  3764. .import = ahash_import,
  3765. .setkey = ahash_setkey,
  3766. .halg = {
  3767. .digestsize = SHA384_DIGEST_SIZE,
  3768. .statesize = sizeof(struct caam_export_state),
  3769. },
  3770. },
  3771. .alg_type = OP_ALG_ALGSEL_SHA384,
  3772. }, {
  3773. .name = "sha512",
  3774. .driver_name = "sha512-caam-qi2",
  3775. .hmac_name = "hmac(sha512)",
  3776. .hmac_driver_name = "hmac-sha512-caam-qi2",
  3777. .blocksize = SHA512_BLOCK_SIZE,
  3778. .template_ahash = {
  3779. .init = ahash_init,
  3780. .update = ahash_update,
  3781. .final = ahash_final,
  3782. .finup = ahash_finup,
  3783. .digest = ahash_digest,
  3784. .export = ahash_export,
  3785. .import = ahash_import,
  3786. .setkey = ahash_setkey,
  3787. .halg = {
  3788. .digestsize = SHA512_DIGEST_SIZE,
  3789. .statesize = sizeof(struct caam_export_state),
  3790. },
  3791. },
  3792. .alg_type = OP_ALG_ALGSEL_SHA512,
  3793. }, {
  3794. .name = "md5",
  3795. .driver_name = "md5-caam-qi2",
  3796. .hmac_name = "hmac(md5)",
  3797. .hmac_driver_name = "hmac-md5-caam-qi2",
  3798. .blocksize = MD5_BLOCK_WORDS * 4,
  3799. .template_ahash = {
  3800. .init = ahash_init,
  3801. .update = ahash_update,
  3802. .final = ahash_final,
  3803. .finup = ahash_finup,
  3804. .digest = ahash_digest,
  3805. .export = ahash_export,
  3806. .import = ahash_import,
  3807. .setkey = ahash_setkey,
  3808. .halg = {
  3809. .digestsize = MD5_DIGEST_SIZE,
  3810. .statesize = sizeof(struct caam_export_state),
  3811. },
  3812. },
  3813. .alg_type = OP_ALG_ALGSEL_MD5,
  3814. }
  3815. };
  3816. struct caam_hash_alg {
  3817. struct list_head entry;
  3818. struct device *dev;
  3819. int alg_type;
  3820. struct ahash_alg ahash_alg;
  3821. };
  3822. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  3823. {
  3824. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  3825. struct crypto_alg *base = tfm->__crt_alg;
  3826. struct hash_alg_common *halg =
  3827. container_of(base, struct hash_alg_common, base);
  3828. struct ahash_alg *alg =
  3829. container_of(halg, struct ahash_alg, halg);
  3830. struct caam_hash_alg *caam_hash =
  3831. container_of(alg, struct caam_hash_alg, ahash_alg);
  3832. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  3833. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  3834. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  3835. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  3836. HASH_MSG_LEN + 32,
  3837. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  3838. HASH_MSG_LEN + 64,
  3839. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  3840. dma_addr_t dma_addr;
  3841. int i;
  3842. ctx->dev = caam_hash->dev;
  3843. dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc, sizeof(ctx->flc),
  3844. DMA_BIDIRECTIONAL,
  3845. DMA_ATTR_SKIP_CPU_SYNC);
  3846. if (dma_mapping_error(ctx->dev, dma_addr)) {
  3847. dev_err(ctx->dev, "unable to map shared descriptors\n");
  3848. return -ENOMEM;
  3849. }
  3850. for (i = 0; i < HASH_NUM_OP; i++)
  3851. ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]);
  3852. /* copy descriptor header template value */
  3853. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  3854. ctx->ctx_len = runninglen[(ctx->adata.algtype &
  3855. OP_ALG_ALGSEL_SUBMASK) >>
  3856. OP_ALG_ALGSEL_SHIFT];
  3857. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  3858. sizeof(struct caam_hash_state));
  3859. return ahash_set_sh_desc(ahash);
  3860. }
  3861. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  3862. {
  3863. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  3864. dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0], sizeof(ctx->flc),
  3865. DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
  3866. }
  3867. static struct caam_hash_alg *caam_hash_alloc(struct device *dev,
  3868. struct caam_hash_template *template, bool keyed)
  3869. {
  3870. struct caam_hash_alg *t_alg;
  3871. struct ahash_alg *halg;
  3872. struct crypto_alg *alg;
  3873. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  3874. if (!t_alg)
  3875. return ERR_PTR(-ENOMEM);
  3876. t_alg->ahash_alg = template->template_ahash;
  3877. halg = &t_alg->ahash_alg;
  3878. alg = &halg->halg.base;
  3879. if (keyed) {
  3880. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  3881. template->hmac_name);
  3882. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  3883. template->hmac_driver_name);
  3884. } else {
  3885. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  3886. template->name);
  3887. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  3888. template->driver_name);
  3889. t_alg->ahash_alg.setkey = NULL;
  3890. }
  3891. alg->cra_module = THIS_MODULE;
  3892. alg->cra_init = caam_hash_cra_init;
  3893. alg->cra_exit = caam_hash_cra_exit;
  3894. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  3895. alg->cra_priority = CAAM_CRA_PRIORITY;
  3896. alg->cra_blocksize = template->blocksize;
  3897. alg->cra_alignmask = 0;
  3898. alg->cra_flags = CRYPTO_ALG_ASYNC;
  3899. t_alg->alg_type = template->alg_type;
  3900. t_alg->dev = dev;
  3901. return t_alg;
  3902. }
  3903. static void dpaa2_caam_fqdan_cb(struct dpaa2_io_notification_ctx *nctx)
  3904. {
  3905. struct dpaa2_caam_priv_per_cpu *ppriv;
  3906. ppriv = container_of(nctx, struct dpaa2_caam_priv_per_cpu, nctx);
  3907. napi_schedule_irqoff(&ppriv->napi);
  3908. }
  3909. static int __cold dpaa2_dpseci_dpio_setup(struct dpaa2_caam_priv *priv)
  3910. {
  3911. struct device *dev = priv->dev;
  3912. struct dpaa2_io_notification_ctx *nctx;
  3913. struct dpaa2_caam_priv_per_cpu *ppriv;
  3914. int err, i = 0, cpu;
  3915. for_each_online_cpu(cpu) {
  3916. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  3917. ppriv->priv = priv;
  3918. nctx = &ppriv->nctx;
  3919. nctx->is_cdan = 0;
  3920. nctx->id = ppriv->rsp_fqid;
  3921. nctx->desired_cpu = cpu;
  3922. nctx->cb = dpaa2_caam_fqdan_cb;
  3923. /* Register notification callbacks */
  3924. err = dpaa2_io_service_register(NULL, nctx);
  3925. if (unlikely(err)) {
  3926. dev_dbg(dev, "No affine DPIO for cpu %d\n", cpu);
  3927. nctx->cb = NULL;
  3928. /*
  3929. * If no affine DPIO for this core, there's probably
  3930. * none available for next cores either. Signal we want
  3931. * to retry later, in case the DPIO devices weren't
  3932. * probed yet.
  3933. */
  3934. err = -EPROBE_DEFER;
  3935. goto err;
  3936. }
  3937. ppriv->store = dpaa2_io_store_create(DPAA2_CAAM_STORE_SIZE,
  3938. dev);
  3939. if (unlikely(!ppriv->store)) {
  3940. dev_err(dev, "dpaa2_io_store_create() failed\n");
  3941. err = -ENOMEM;
  3942. goto err;
  3943. }
  3944. if (++i == priv->num_pairs)
  3945. break;
  3946. }
  3947. return 0;
  3948. err:
  3949. for_each_online_cpu(cpu) {
  3950. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  3951. if (!ppriv->nctx.cb)
  3952. break;
  3953. dpaa2_io_service_deregister(NULL, &ppriv->nctx);
  3954. }
  3955. for_each_online_cpu(cpu) {
  3956. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  3957. if (!ppriv->store)
  3958. break;
  3959. dpaa2_io_store_destroy(ppriv->store);
  3960. }
  3961. return err;
  3962. }
  3963. static void __cold dpaa2_dpseci_dpio_free(struct dpaa2_caam_priv *priv)
  3964. {
  3965. struct dpaa2_caam_priv_per_cpu *ppriv;
  3966. int i = 0, cpu;
  3967. for_each_online_cpu(cpu) {
  3968. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  3969. dpaa2_io_service_deregister(NULL, &ppriv->nctx);
  3970. dpaa2_io_store_destroy(ppriv->store);
  3971. if (++i == priv->num_pairs)
  3972. return;
  3973. }
  3974. }
  3975. static int dpaa2_dpseci_bind(struct dpaa2_caam_priv *priv)
  3976. {
  3977. struct dpseci_rx_queue_cfg rx_queue_cfg;
  3978. struct device *dev = priv->dev;
  3979. struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
  3980. struct dpaa2_caam_priv_per_cpu *ppriv;
  3981. int err = 0, i = 0, cpu;
  3982. /* Configure Rx queues */
  3983. for_each_online_cpu(cpu) {
  3984. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  3985. rx_queue_cfg.options = DPSECI_QUEUE_OPT_DEST |
  3986. DPSECI_QUEUE_OPT_USER_CTX;
  3987. rx_queue_cfg.order_preservation_en = 0;
  3988. rx_queue_cfg.dest_cfg.dest_type = DPSECI_DEST_DPIO;
  3989. rx_queue_cfg.dest_cfg.dest_id = ppriv->nctx.dpio_id;
  3990. /*
  3991. * Rx priority (WQ) doesn't really matter, since we use
  3992. * pull mode, i.e. volatile dequeues from specific FQs
  3993. */
  3994. rx_queue_cfg.dest_cfg.priority = 0;
  3995. rx_queue_cfg.user_ctx = ppriv->nctx.qman64;
  3996. err = dpseci_set_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
  3997. &rx_queue_cfg);
  3998. if (err) {
  3999. dev_err(dev, "dpseci_set_rx_queue() failed with err %d\n",
  4000. err);
  4001. return err;
  4002. }
  4003. if (++i == priv->num_pairs)
  4004. break;
  4005. }
  4006. return err;
  4007. }
  4008. static void dpaa2_dpseci_congestion_free(struct dpaa2_caam_priv *priv)
  4009. {
  4010. struct device *dev = priv->dev;
  4011. if (!priv->cscn_mem)
  4012. return;
  4013. dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
  4014. kfree(priv->cscn_mem);
  4015. }
  4016. static void dpaa2_dpseci_free(struct dpaa2_caam_priv *priv)
  4017. {
  4018. struct device *dev = priv->dev;
  4019. struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
  4020. dpaa2_dpseci_congestion_free(priv);
  4021. dpseci_close(priv->mc_io, 0, ls_dev->mc_handle);
  4022. }
  4023. static void dpaa2_caam_process_fd(struct dpaa2_caam_priv *priv,
  4024. const struct dpaa2_fd *fd)
  4025. {
  4026. struct caam_request *req;
  4027. u32 fd_err;
  4028. if (dpaa2_fd_get_format(fd) != dpaa2_fd_list) {
  4029. dev_err(priv->dev, "Only Frame List FD format is supported!\n");
  4030. return;
  4031. }
  4032. fd_err = dpaa2_fd_get_ctrl(fd) & FD_CTRL_ERR_MASK;
  4033. if (unlikely(fd_err))
  4034. dev_err(priv->dev, "FD error: %08x\n", fd_err);
  4035. /*
  4036. * FD[ADDR] is guaranteed to be valid, irrespective of errors reported
  4037. * in FD[ERR] or FD[FRC].
  4038. */
  4039. req = dpaa2_caam_iova_to_virt(priv, dpaa2_fd_get_addr(fd));
  4040. dma_unmap_single(priv->dev, req->fd_flt_dma, sizeof(req->fd_flt),
  4041. DMA_BIDIRECTIONAL);
  4042. req->cbk(req->ctx, dpaa2_fd_get_frc(fd));
  4043. }
  4044. static int dpaa2_caam_pull_fq(struct dpaa2_caam_priv_per_cpu *ppriv)
  4045. {
  4046. int err;
  4047. /* Retry while portal is busy */
  4048. do {
  4049. err = dpaa2_io_service_pull_fq(NULL, ppriv->rsp_fqid,
  4050. ppriv->store);
  4051. } while (err == -EBUSY);
  4052. if (unlikely(err))
  4053. dev_err(ppriv->priv->dev, "dpaa2_io_service_pull err %d", err);
  4054. return err;
  4055. }
  4056. static int dpaa2_caam_store_consume(struct dpaa2_caam_priv_per_cpu *ppriv)
  4057. {
  4058. struct dpaa2_dq *dq;
  4059. int cleaned = 0, is_last;
  4060. do {
  4061. dq = dpaa2_io_store_next(ppriv->store, &is_last);
  4062. if (unlikely(!dq)) {
  4063. if (unlikely(!is_last)) {
  4064. dev_dbg(ppriv->priv->dev,
  4065. "FQ %d returned no valid frames\n",
  4066. ppriv->rsp_fqid);
  4067. /*
  4068. * MUST retry until we get some sort of
  4069. * valid response token (be it "empty dequeue"
  4070. * or a valid frame).
  4071. */
  4072. continue;
  4073. }
  4074. break;
  4075. }
  4076. /* Process FD */
  4077. dpaa2_caam_process_fd(ppriv->priv, dpaa2_dq_fd(dq));
  4078. cleaned++;
  4079. } while (!is_last);
  4080. return cleaned;
  4081. }
  4082. static int dpaa2_dpseci_poll(struct napi_struct *napi, int budget)
  4083. {
  4084. struct dpaa2_caam_priv_per_cpu *ppriv;
  4085. struct dpaa2_caam_priv *priv;
  4086. int err, cleaned = 0, store_cleaned;
  4087. ppriv = container_of(napi, struct dpaa2_caam_priv_per_cpu, napi);
  4088. priv = ppriv->priv;
  4089. if (unlikely(dpaa2_caam_pull_fq(ppriv)))
  4090. return 0;
  4091. do {
  4092. store_cleaned = dpaa2_caam_store_consume(ppriv);
  4093. cleaned += store_cleaned;
  4094. if (store_cleaned == 0 ||
  4095. cleaned > budget - DPAA2_CAAM_STORE_SIZE)
  4096. break;
  4097. /* Try to dequeue some more */
  4098. err = dpaa2_caam_pull_fq(ppriv);
  4099. if (unlikely(err))
  4100. break;
  4101. } while (1);
  4102. if (cleaned < budget) {
  4103. napi_complete_done(napi, cleaned);
  4104. err = dpaa2_io_service_rearm(NULL, &ppriv->nctx);
  4105. if (unlikely(err))
  4106. dev_err(priv->dev, "Notification rearm failed: %d\n",
  4107. err);
  4108. }
  4109. return cleaned;
  4110. }
  4111. static int dpaa2_dpseci_congestion_setup(struct dpaa2_caam_priv *priv,
  4112. u16 token)
  4113. {
  4114. struct dpseci_congestion_notification_cfg cong_notif_cfg = { 0 };
  4115. struct device *dev = priv->dev;
  4116. int err;
  4117. /*
  4118. * Congestion group feature supported starting with DPSECI API v5.1
  4119. * and only when object has been created with this capability.
  4120. */
  4121. if ((DPSECI_VER(priv->major_ver, priv->minor_ver) < DPSECI_VER(5, 1)) ||
  4122. !(priv->dpseci_attr.options & DPSECI_OPT_HAS_CG))
  4123. return 0;
  4124. priv->cscn_mem = kzalloc(DPAA2_CSCN_SIZE + DPAA2_CSCN_ALIGN,
  4125. GFP_KERNEL | GFP_DMA);
  4126. if (!priv->cscn_mem)
  4127. return -ENOMEM;
  4128. priv->cscn_mem_aligned = PTR_ALIGN(priv->cscn_mem, DPAA2_CSCN_ALIGN);
  4129. priv->cscn_dma = dma_map_single(dev, priv->cscn_mem_aligned,
  4130. DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
  4131. if (dma_mapping_error(dev, priv->cscn_dma)) {
  4132. dev_err(dev, "Error mapping CSCN memory area\n");
  4133. err = -ENOMEM;
  4134. goto err_dma_map;
  4135. }
  4136. cong_notif_cfg.units = DPSECI_CONGESTION_UNIT_BYTES;
  4137. cong_notif_cfg.threshold_entry = DPAA2_SEC_CONG_ENTRY_THRESH;
  4138. cong_notif_cfg.threshold_exit = DPAA2_SEC_CONG_EXIT_THRESH;
  4139. cong_notif_cfg.message_ctx = (uintptr_t)priv;
  4140. cong_notif_cfg.message_iova = priv->cscn_dma;
  4141. cong_notif_cfg.notification_mode = DPSECI_CGN_MODE_WRITE_MEM_ON_ENTER |
  4142. DPSECI_CGN_MODE_WRITE_MEM_ON_EXIT |
  4143. DPSECI_CGN_MODE_COHERENT_WRITE;
  4144. err = dpseci_set_congestion_notification(priv->mc_io, 0, token,
  4145. &cong_notif_cfg);
  4146. if (err) {
  4147. dev_err(dev, "dpseci_set_congestion_notification failed\n");
  4148. goto err_set_cong;
  4149. }
  4150. return 0;
  4151. err_set_cong:
  4152. dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
  4153. err_dma_map:
  4154. kfree(priv->cscn_mem);
  4155. return err;
  4156. }
  4157. static int __cold dpaa2_dpseci_setup(struct fsl_mc_device *ls_dev)
  4158. {
  4159. struct device *dev = &ls_dev->dev;
  4160. struct dpaa2_caam_priv *priv;
  4161. struct dpaa2_caam_priv_per_cpu *ppriv;
  4162. int err, cpu;
  4163. u8 i;
  4164. priv = dev_get_drvdata(dev);
  4165. priv->dev = dev;
  4166. priv->dpsec_id = ls_dev->obj_desc.id;
  4167. /* Get a handle for the DPSECI this interface is associate with */
  4168. err = dpseci_open(priv->mc_io, 0, priv->dpsec_id, &ls_dev->mc_handle);
  4169. if (err) {
  4170. dev_err(dev, "dpseci_open() failed: %d\n", err);
  4171. goto err_open;
  4172. }
  4173. err = dpseci_get_api_version(priv->mc_io, 0, &priv->major_ver,
  4174. &priv->minor_ver);
  4175. if (err) {
  4176. dev_err(dev, "dpseci_get_api_version() failed\n");
  4177. goto err_get_vers;
  4178. }
  4179. dev_info(dev, "dpseci v%d.%d\n", priv->major_ver, priv->minor_ver);
  4180. err = dpseci_get_attributes(priv->mc_io, 0, ls_dev->mc_handle,
  4181. &priv->dpseci_attr);
  4182. if (err) {
  4183. dev_err(dev, "dpseci_get_attributes() failed\n");
  4184. goto err_get_vers;
  4185. }
  4186. err = dpseci_get_sec_attr(priv->mc_io, 0, ls_dev->mc_handle,
  4187. &priv->sec_attr);
  4188. if (err) {
  4189. dev_err(dev, "dpseci_get_sec_attr() failed\n");
  4190. goto err_get_vers;
  4191. }
  4192. err = dpaa2_dpseci_congestion_setup(priv, ls_dev->mc_handle);
  4193. if (err) {
  4194. dev_err(dev, "setup_congestion() failed\n");
  4195. goto err_get_vers;
  4196. }
  4197. priv->num_pairs = min(priv->dpseci_attr.num_rx_queues,
  4198. priv->dpseci_attr.num_tx_queues);
  4199. if (priv->num_pairs > num_online_cpus()) {
  4200. dev_warn(dev, "%d queues won't be used\n",
  4201. priv->num_pairs - num_online_cpus());
  4202. priv->num_pairs = num_online_cpus();
  4203. }
  4204. for (i = 0; i < priv->dpseci_attr.num_rx_queues; i++) {
  4205. err = dpseci_get_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
  4206. &priv->rx_queue_attr[i]);
  4207. if (err) {
  4208. dev_err(dev, "dpseci_get_rx_queue() failed\n");
  4209. goto err_get_rx_queue;
  4210. }
  4211. }
  4212. for (i = 0; i < priv->dpseci_attr.num_tx_queues; i++) {
  4213. err = dpseci_get_tx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
  4214. &priv->tx_queue_attr[i]);
  4215. if (err) {
  4216. dev_err(dev, "dpseci_get_tx_queue() failed\n");
  4217. goto err_get_rx_queue;
  4218. }
  4219. }
  4220. i = 0;
  4221. for_each_online_cpu(cpu) {
  4222. dev_dbg(dev, "pair %d: rx queue %d, tx queue %d\n", i,
  4223. priv->rx_queue_attr[i].fqid,
  4224. priv->tx_queue_attr[i].fqid);
  4225. ppriv = per_cpu_ptr(priv->ppriv, cpu);
  4226. ppriv->req_fqid = priv->tx_queue_attr[i].fqid;
  4227. ppriv->rsp_fqid = priv->rx_queue_attr[i].fqid;
  4228. ppriv->prio = i;
  4229. ppriv->net_dev.dev = *dev;
  4230. INIT_LIST_HEAD(&ppriv->net_dev.napi_list);
  4231. netif_napi_add(&ppriv->net_dev, &ppriv->napi, dpaa2_dpseci_poll,
  4232. DPAA2_CAAM_NAPI_WEIGHT);
  4233. if (++i == priv->num_pairs)
  4234. break;
  4235. }
  4236. return 0;
  4237. err_get_rx_queue:
  4238. dpaa2_dpseci_congestion_free(priv);
  4239. err_get_vers:
  4240. dpseci_close(priv->mc_io, 0, ls_dev->mc_handle);
  4241. err_open:
  4242. return err;
  4243. }
  4244. static int dpaa2_dpseci_enable(struct dpaa2_caam_priv *priv)
  4245. {
  4246. struct device *dev = priv->dev;
  4247. struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
  4248. struct dpaa2_caam_priv_per_cpu *ppriv;
  4249. int i;
  4250. for (i = 0; i < priv->num_pairs; i++) {
  4251. ppriv = per_cpu_ptr(priv->ppriv, i);
  4252. napi_enable(&ppriv->napi);
  4253. }
  4254. return dpseci_enable(priv->mc_io, 0, ls_dev->mc_handle);
  4255. }
  4256. static int __cold dpaa2_dpseci_disable(struct dpaa2_caam_priv *priv)
  4257. {
  4258. struct device *dev = priv->dev;
  4259. struct dpaa2_caam_priv_per_cpu *ppriv;
  4260. struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
  4261. int i, err = 0, enabled;
  4262. err = dpseci_disable(priv->mc_io, 0, ls_dev->mc_handle);
  4263. if (err) {
  4264. dev_err(dev, "dpseci_disable() failed\n");
  4265. return err;
  4266. }
  4267. err = dpseci_is_enabled(priv->mc_io, 0, ls_dev->mc_handle, &enabled);
  4268. if (err) {
  4269. dev_err(dev, "dpseci_is_enabled() failed\n");
  4270. return err;
  4271. }
  4272. dev_dbg(dev, "disable: %s\n", enabled ? "false" : "true");
  4273. for (i = 0; i < priv->num_pairs; i++) {
  4274. ppriv = per_cpu_ptr(priv->ppriv, i);
  4275. napi_disable(&ppriv->napi);
  4276. netif_napi_del(&ppriv->napi);
  4277. }
  4278. return 0;
  4279. }
  4280. static struct list_head hash_list;
  4281. static int dpaa2_caam_probe(struct fsl_mc_device *dpseci_dev)
  4282. {
  4283. struct device *dev;
  4284. struct dpaa2_caam_priv *priv;
  4285. int i, err = 0;
  4286. bool registered = false;
  4287. /*
  4288. * There is no way to get CAAM endianness - there is no direct register
  4289. * space access and MC f/w does not provide this attribute.
  4290. * All DPAA2-based SoCs have little endian CAAM, thus hard-code this
  4291. * property.
  4292. */
  4293. caam_little_end = true;
  4294. caam_imx = false;
  4295. dev = &dpseci_dev->dev;
  4296. priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
  4297. if (!priv)
  4298. return -ENOMEM;
  4299. dev_set_drvdata(dev, priv);
  4300. priv->domain = iommu_get_domain_for_dev(dev);
  4301. qi_cache = kmem_cache_create("dpaa2_caamqicache", CAAM_QI_MEMCACHE_SIZE,
  4302. 0, SLAB_CACHE_DMA, NULL);
  4303. if (!qi_cache) {
  4304. dev_err(dev, "Can't allocate SEC cache\n");
  4305. return -ENOMEM;
  4306. }
  4307. err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(49));
  4308. if (err) {
  4309. dev_err(dev, "dma_set_mask_and_coherent() failed\n");
  4310. goto err_dma_mask;
  4311. }
  4312. /* Obtain a MC portal */
  4313. err = fsl_mc_portal_allocate(dpseci_dev, 0, &priv->mc_io);
  4314. if (err) {
  4315. if (err == -ENXIO)
  4316. err = -EPROBE_DEFER;
  4317. else
  4318. dev_err(dev, "MC portal allocation failed\n");
  4319. goto err_dma_mask;
  4320. }
  4321. priv->ppriv = alloc_percpu(*priv->ppriv);
  4322. if (!priv->ppriv) {
  4323. dev_err(dev, "alloc_percpu() failed\n");
  4324. err = -ENOMEM;
  4325. goto err_alloc_ppriv;
  4326. }
  4327. /* DPSECI initialization */
  4328. err = dpaa2_dpseci_setup(dpseci_dev);
  4329. if (err) {
  4330. dev_err(dev, "dpaa2_dpseci_setup() failed\n");
  4331. goto err_dpseci_setup;
  4332. }
  4333. /* DPIO */
  4334. err = dpaa2_dpseci_dpio_setup(priv);
  4335. if (err) {
  4336. if (err != -EPROBE_DEFER)
  4337. dev_err(dev, "dpaa2_dpseci_dpio_setup() failed\n");
  4338. goto err_dpio_setup;
  4339. }
  4340. /* DPSECI binding to DPIO */
  4341. err = dpaa2_dpseci_bind(priv);
  4342. if (err) {
  4343. dev_err(dev, "dpaa2_dpseci_bind() failed\n");
  4344. goto err_bind;
  4345. }
  4346. /* DPSECI enable */
  4347. err = dpaa2_dpseci_enable(priv);
  4348. if (err) {
  4349. dev_err(dev, "dpaa2_dpseci_enable() failed\n");
  4350. goto err_bind;
  4351. }
  4352. /* register crypto algorithms the device supports */
  4353. for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
  4354. struct caam_skcipher_alg *t_alg = driver_algs + i;
  4355. u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK;
  4356. /* Skip DES algorithms if not supported by device */
  4357. if (!priv->sec_attr.des_acc_num &&
  4358. (alg_sel == OP_ALG_ALGSEL_3DES ||
  4359. alg_sel == OP_ALG_ALGSEL_DES))
  4360. continue;
  4361. /* Skip AES algorithms if not supported by device */
  4362. if (!priv->sec_attr.aes_acc_num &&
  4363. alg_sel == OP_ALG_ALGSEL_AES)
  4364. continue;
  4365. t_alg->caam.dev = dev;
  4366. caam_skcipher_alg_init(t_alg);
  4367. err = crypto_register_skcipher(&t_alg->skcipher);
  4368. if (err) {
  4369. dev_warn(dev, "%s alg registration failed: %d\n",
  4370. t_alg->skcipher.base.cra_driver_name, err);
  4371. continue;
  4372. }
  4373. t_alg->registered = true;
  4374. registered = true;
  4375. }
  4376. for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
  4377. struct caam_aead_alg *t_alg = driver_aeads + i;
  4378. u32 c1_alg_sel = t_alg->caam.class1_alg_type &
  4379. OP_ALG_ALGSEL_MASK;
  4380. u32 c2_alg_sel = t_alg->caam.class2_alg_type &
  4381. OP_ALG_ALGSEL_MASK;
  4382. /* Skip DES algorithms if not supported by device */
  4383. if (!priv->sec_attr.des_acc_num &&
  4384. (c1_alg_sel == OP_ALG_ALGSEL_3DES ||
  4385. c1_alg_sel == OP_ALG_ALGSEL_DES))
  4386. continue;
  4387. /* Skip AES algorithms if not supported by device */
  4388. if (!priv->sec_attr.aes_acc_num &&
  4389. c1_alg_sel == OP_ALG_ALGSEL_AES)
  4390. continue;
  4391. /*
  4392. * Skip algorithms requiring message digests
  4393. * if MD not supported by device.
  4394. */
  4395. if (!priv->sec_attr.md_acc_num && c2_alg_sel)
  4396. continue;
  4397. t_alg->caam.dev = dev;
  4398. caam_aead_alg_init(t_alg);
  4399. err = crypto_register_aead(&t_alg->aead);
  4400. if (err) {
  4401. dev_warn(dev, "%s alg registration failed: %d\n",
  4402. t_alg->aead.base.cra_driver_name, err);
  4403. continue;
  4404. }
  4405. t_alg->registered = true;
  4406. registered = true;
  4407. }
  4408. if (registered)
  4409. dev_info(dev, "algorithms registered in /proc/crypto\n");
  4410. /* register hash algorithms the device supports */
  4411. INIT_LIST_HEAD(&hash_list);
  4412. /*
  4413. * Skip registration of any hashing algorithms if MD block
  4414. * is not present.
  4415. */
  4416. if (!priv->sec_attr.md_acc_num)
  4417. return 0;
  4418. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  4419. struct caam_hash_alg *t_alg;
  4420. struct caam_hash_template *alg = driver_hash + i;
  4421. /* register hmac version */
  4422. t_alg = caam_hash_alloc(dev, alg, true);
  4423. if (IS_ERR(t_alg)) {
  4424. err = PTR_ERR(t_alg);
  4425. dev_warn(dev, "%s hash alg allocation failed: %d\n",
  4426. alg->driver_name, err);
  4427. continue;
  4428. }
  4429. err = crypto_register_ahash(&t_alg->ahash_alg);
  4430. if (err) {
  4431. dev_warn(dev, "%s alg registration failed: %d\n",
  4432. t_alg->ahash_alg.halg.base.cra_driver_name,
  4433. err);
  4434. kfree(t_alg);
  4435. } else {
  4436. list_add_tail(&t_alg->entry, &hash_list);
  4437. }
  4438. /* register unkeyed version */
  4439. t_alg = caam_hash_alloc(dev, alg, false);
  4440. if (IS_ERR(t_alg)) {
  4441. err = PTR_ERR(t_alg);
  4442. dev_warn(dev, "%s alg allocation failed: %d\n",
  4443. alg->driver_name, err);
  4444. continue;
  4445. }
  4446. err = crypto_register_ahash(&t_alg->ahash_alg);
  4447. if (err) {
  4448. dev_warn(dev, "%s alg registration failed: %d\n",
  4449. t_alg->ahash_alg.halg.base.cra_driver_name,
  4450. err);
  4451. kfree(t_alg);
  4452. } else {
  4453. list_add_tail(&t_alg->entry, &hash_list);
  4454. }
  4455. }
  4456. if (!list_empty(&hash_list))
  4457. dev_info(dev, "hash algorithms registered in /proc/crypto\n");
  4458. return err;
  4459. err_bind:
  4460. dpaa2_dpseci_dpio_free(priv);
  4461. err_dpio_setup:
  4462. dpaa2_dpseci_free(priv);
  4463. err_dpseci_setup:
  4464. free_percpu(priv->ppriv);
  4465. err_alloc_ppriv:
  4466. fsl_mc_portal_free(priv->mc_io);
  4467. err_dma_mask:
  4468. kmem_cache_destroy(qi_cache);
  4469. return err;
  4470. }
  4471. static int __cold dpaa2_caam_remove(struct fsl_mc_device *ls_dev)
  4472. {
  4473. struct device *dev;
  4474. struct dpaa2_caam_priv *priv;
  4475. int i;
  4476. dev = &ls_dev->dev;
  4477. priv = dev_get_drvdata(dev);
  4478. for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
  4479. struct caam_aead_alg *t_alg = driver_aeads + i;
  4480. if (t_alg->registered)
  4481. crypto_unregister_aead(&t_alg->aead);
  4482. }
  4483. for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
  4484. struct caam_skcipher_alg *t_alg = driver_algs + i;
  4485. if (t_alg->registered)
  4486. crypto_unregister_skcipher(&t_alg->skcipher);
  4487. }
  4488. if (hash_list.next) {
  4489. struct caam_hash_alg *t_hash_alg, *p;
  4490. list_for_each_entry_safe(t_hash_alg, p, &hash_list, entry) {
  4491. crypto_unregister_ahash(&t_hash_alg->ahash_alg);
  4492. list_del(&t_hash_alg->entry);
  4493. kfree(t_hash_alg);
  4494. }
  4495. }
  4496. dpaa2_dpseci_disable(priv);
  4497. dpaa2_dpseci_dpio_free(priv);
  4498. dpaa2_dpseci_free(priv);
  4499. free_percpu(priv->ppriv);
  4500. fsl_mc_portal_free(priv->mc_io);
  4501. kmem_cache_destroy(qi_cache);
  4502. return 0;
  4503. }
  4504. int dpaa2_caam_enqueue(struct device *dev, struct caam_request *req)
  4505. {
  4506. struct dpaa2_fd fd;
  4507. struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
  4508. int err = 0, i, id;
  4509. if (IS_ERR(req))
  4510. return PTR_ERR(req);
  4511. if (priv->cscn_mem) {
  4512. dma_sync_single_for_cpu(priv->dev, priv->cscn_dma,
  4513. DPAA2_CSCN_SIZE,
  4514. DMA_FROM_DEVICE);
  4515. if (unlikely(dpaa2_cscn_state_congested(priv->cscn_mem_aligned))) {
  4516. dev_dbg_ratelimited(dev, "Dropping request\n");
  4517. return -EBUSY;
  4518. }
  4519. }
  4520. dpaa2_fl_set_flc(&req->fd_flt[1], req->flc_dma);
  4521. req->fd_flt_dma = dma_map_single(dev, req->fd_flt, sizeof(req->fd_flt),
  4522. DMA_BIDIRECTIONAL);
  4523. if (dma_mapping_error(dev, req->fd_flt_dma)) {
  4524. dev_err(dev, "DMA mapping error for QI enqueue request\n");
  4525. goto err_out;
  4526. }
  4527. memset(&fd, 0, sizeof(fd));
  4528. dpaa2_fd_set_format(&fd, dpaa2_fd_list);
  4529. dpaa2_fd_set_addr(&fd, req->fd_flt_dma);
  4530. dpaa2_fd_set_len(&fd, dpaa2_fl_get_len(&req->fd_flt[1]));
  4531. dpaa2_fd_set_flc(&fd, req->flc_dma);
  4532. /*
  4533. * There is no guarantee that preemption is disabled here,
  4534. * thus take action.
  4535. */
  4536. preempt_disable();
  4537. id = smp_processor_id() % priv->dpseci_attr.num_tx_queues;
  4538. for (i = 0; i < (priv->dpseci_attr.num_tx_queues << 1); i++) {
  4539. err = dpaa2_io_service_enqueue_fq(NULL,
  4540. priv->tx_queue_attr[id].fqid,
  4541. &fd);
  4542. if (err != -EBUSY)
  4543. break;
  4544. }
  4545. preempt_enable();
  4546. if (unlikely(err)) {
  4547. dev_err(dev, "Error enqueuing frame: %d\n", err);
  4548. goto err_out;
  4549. }
  4550. return -EINPROGRESS;
  4551. err_out:
  4552. dma_unmap_single(dev, req->fd_flt_dma, sizeof(req->fd_flt),
  4553. DMA_BIDIRECTIONAL);
  4554. return -EIO;
  4555. }
  4556. EXPORT_SYMBOL(dpaa2_caam_enqueue);
  4557. static const struct fsl_mc_device_id dpaa2_caam_match_id_table[] = {
  4558. {
  4559. .vendor = FSL_MC_VENDOR_FREESCALE,
  4560. .obj_type = "dpseci",
  4561. },
  4562. { .vendor = 0x0 }
  4563. };
  4564. static struct fsl_mc_driver dpaa2_caam_driver = {
  4565. .driver = {
  4566. .name = KBUILD_MODNAME,
  4567. .owner = THIS_MODULE,
  4568. },
  4569. .probe = dpaa2_caam_probe,
  4570. .remove = dpaa2_caam_remove,
  4571. .match_id_table = dpaa2_caam_match_id_table
  4572. };
  4573. MODULE_LICENSE("Dual BSD/GPL");
  4574. MODULE_AUTHOR("Freescale Semiconductor, Inc");
  4575. MODULE_DESCRIPTION("Freescale DPAA2 CAAM Driver");
  4576. module_fsl_mc_driver(dpaa2_caam_driver);