atmel-sha.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Cryptographic API.
  4. *
  5. * Support for ATMEL SHA1/SHA256 HW acceleration.
  6. *
  7. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  8. * Author: Nicolas Royer <nicolas@eukrea.com>
  9. *
  10. * Some ideas are from omap-sham.c drivers.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/io.h>
  18. #include <linux/hw_random.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/device.h>
  21. #include <linux/init.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/irq.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/of_device.h>
  28. #include <linux/delay.h>
  29. #include <linux/crypto.h>
  30. #include <linux/cryptohash.h>
  31. #include <crypto/scatterwalk.h>
  32. #include <crypto/algapi.h>
  33. #include <crypto/sha.h>
  34. #include <crypto/hash.h>
  35. #include <crypto/internal/hash.h>
  36. #include <linux/platform_data/crypto-atmel.h>
  37. #include "atmel-sha-regs.h"
  38. #include "atmel-authenc.h"
  39. /* SHA flags */
  40. #define SHA_FLAGS_BUSY BIT(0)
  41. #define SHA_FLAGS_FINAL BIT(1)
  42. #define SHA_FLAGS_DMA_ACTIVE BIT(2)
  43. #define SHA_FLAGS_OUTPUT_READY BIT(3)
  44. #define SHA_FLAGS_INIT BIT(4)
  45. #define SHA_FLAGS_CPU BIT(5)
  46. #define SHA_FLAGS_DMA_READY BIT(6)
  47. #define SHA_FLAGS_DUMP_REG BIT(7)
  48. /* bits[11:8] are reserved. */
  49. #define SHA_FLAGS_FINUP BIT(16)
  50. #define SHA_FLAGS_SG BIT(17)
  51. #define SHA_FLAGS_ERROR BIT(23)
  52. #define SHA_FLAGS_PAD BIT(24)
  53. #define SHA_FLAGS_RESTORE BIT(25)
  54. #define SHA_FLAGS_IDATAR0 BIT(26)
  55. #define SHA_FLAGS_WAIT_DATARDY BIT(27)
  56. #define SHA_OP_INIT 0
  57. #define SHA_OP_UPDATE 1
  58. #define SHA_OP_FINAL 2
  59. #define SHA_OP_DIGEST 3
  60. #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
  61. #define ATMEL_SHA_DMA_THRESHOLD 56
  62. struct atmel_sha_caps {
  63. bool has_dma;
  64. bool has_dualbuff;
  65. bool has_sha224;
  66. bool has_sha_384_512;
  67. bool has_uihv;
  68. bool has_hmac;
  69. };
  70. struct atmel_sha_dev;
  71. /*
  72. * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  73. * tested by the ahash_prepare_alg() function.
  74. */
  75. struct atmel_sha_reqctx {
  76. struct atmel_sha_dev *dd;
  77. unsigned long flags;
  78. unsigned long op;
  79. u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  80. u64 digcnt[2];
  81. size_t bufcnt;
  82. size_t buflen;
  83. dma_addr_t dma_addr;
  84. /* walk state */
  85. struct scatterlist *sg;
  86. unsigned int offset; /* offset in current sg */
  87. unsigned int total; /* total request */
  88. size_t block_size;
  89. size_t hash_size;
  90. u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
  91. };
  92. typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
  93. struct atmel_sha_ctx {
  94. struct atmel_sha_dev *dd;
  95. atmel_sha_fn_t start;
  96. unsigned long flags;
  97. };
  98. #define ATMEL_SHA_QUEUE_LENGTH 50
  99. struct atmel_sha_dma {
  100. struct dma_chan *chan;
  101. struct dma_slave_config dma_conf;
  102. struct scatterlist *sg;
  103. int nents;
  104. unsigned int last_sg_length;
  105. };
  106. struct atmel_sha_dev {
  107. struct list_head list;
  108. unsigned long phys_base;
  109. struct device *dev;
  110. struct clk *iclk;
  111. int irq;
  112. void __iomem *io_base;
  113. spinlock_t lock;
  114. int err;
  115. struct tasklet_struct done_task;
  116. struct tasklet_struct queue_task;
  117. unsigned long flags;
  118. struct crypto_queue queue;
  119. struct ahash_request *req;
  120. bool is_async;
  121. bool force_complete;
  122. atmel_sha_fn_t resume;
  123. atmel_sha_fn_t cpu_transfer_complete;
  124. struct atmel_sha_dma dma_lch_in;
  125. struct atmel_sha_caps caps;
  126. struct scatterlist tmp;
  127. u32 hw_version;
  128. };
  129. struct atmel_sha_drv {
  130. struct list_head dev_list;
  131. spinlock_t lock;
  132. };
  133. static struct atmel_sha_drv atmel_sha = {
  134. .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
  135. .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
  136. };
  137. #ifdef VERBOSE_DEBUG
  138. static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
  139. {
  140. switch (offset) {
  141. case SHA_CR:
  142. return "CR";
  143. case SHA_MR:
  144. return "MR";
  145. case SHA_IER:
  146. return "IER";
  147. case SHA_IDR:
  148. return "IDR";
  149. case SHA_IMR:
  150. return "IMR";
  151. case SHA_ISR:
  152. return "ISR";
  153. case SHA_MSR:
  154. return "MSR";
  155. case SHA_BCR:
  156. return "BCR";
  157. case SHA_REG_DIN(0):
  158. case SHA_REG_DIN(1):
  159. case SHA_REG_DIN(2):
  160. case SHA_REG_DIN(3):
  161. case SHA_REG_DIN(4):
  162. case SHA_REG_DIN(5):
  163. case SHA_REG_DIN(6):
  164. case SHA_REG_DIN(7):
  165. case SHA_REG_DIN(8):
  166. case SHA_REG_DIN(9):
  167. case SHA_REG_DIN(10):
  168. case SHA_REG_DIN(11):
  169. case SHA_REG_DIN(12):
  170. case SHA_REG_DIN(13):
  171. case SHA_REG_DIN(14):
  172. case SHA_REG_DIN(15):
  173. snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
  174. break;
  175. case SHA_REG_DIGEST(0):
  176. case SHA_REG_DIGEST(1):
  177. case SHA_REG_DIGEST(2):
  178. case SHA_REG_DIGEST(3):
  179. case SHA_REG_DIGEST(4):
  180. case SHA_REG_DIGEST(5):
  181. case SHA_REG_DIGEST(6):
  182. case SHA_REG_DIGEST(7):
  183. case SHA_REG_DIGEST(8):
  184. case SHA_REG_DIGEST(9):
  185. case SHA_REG_DIGEST(10):
  186. case SHA_REG_DIGEST(11):
  187. case SHA_REG_DIGEST(12):
  188. case SHA_REG_DIGEST(13):
  189. case SHA_REG_DIGEST(14):
  190. case SHA_REG_DIGEST(15):
  191. if (wr)
  192. snprintf(tmp, sz, "IDATAR[%u]",
  193. 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
  194. else
  195. snprintf(tmp, sz, "ODATAR[%u]",
  196. (offset - SHA_REG_DIGEST(0)) >> 2);
  197. break;
  198. case SHA_HW_VERSION:
  199. return "HWVER";
  200. default:
  201. snprintf(tmp, sz, "0x%02x", offset);
  202. break;
  203. }
  204. return tmp;
  205. }
  206. #endif /* VERBOSE_DEBUG */
  207. static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
  208. {
  209. u32 value = readl_relaxed(dd->io_base + offset);
  210. #ifdef VERBOSE_DEBUG
  211. if (dd->flags & SHA_FLAGS_DUMP_REG) {
  212. char tmp[16];
  213. dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
  214. atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
  215. }
  216. #endif /* VERBOSE_DEBUG */
  217. return value;
  218. }
  219. static inline void atmel_sha_write(struct atmel_sha_dev *dd,
  220. u32 offset, u32 value)
  221. {
  222. #ifdef VERBOSE_DEBUG
  223. if (dd->flags & SHA_FLAGS_DUMP_REG) {
  224. char tmp[16];
  225. dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
  226. atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
  227. }
  228. #endif /* VERBOSE_DEBUG */
  229. writel_relaxed(value, dd->io_base + offset);
  230. }
  231. static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
  232. {
  233. struct ahash_request *req = dd->req;
  234. dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
  235. SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
  236. SHA_FLAGS_DUMP_REG);
  237. clk_disable(dd->iclk);
  238. if ((dd->is_async || dd->force_complete) && req->base.complete)
  239. req->base.complete(&req->base, err);
  240. /* handle new request */
  241. tasklet_schedule(&dd->queue_task);
  242. return err;
  243. }
  244. static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
  245. {
  246. size_t count;
  247. while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
  248. count = min(ctx->sg->length - ctx->offset, ctx->total);
  249. count = min(count, ctx->buflen - ctx->bufcnt);
  250. if (count <= 0) {
  251. /*
  252. * Check if count <= 0 because the buffer is full or
  253. * because the sg length is 0. In the latest case,
  254. * check if there is another sg in the list, a 0 length
  255. * sg doesn't necessarily mean the end of the sg list.
  256. */
  257. if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
  258. ctx->sg = sg_next(ctx->sg);
  259. continue;
  260. } else {
  261. break;
  262. }
  263. }
  264. scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
  265. ctx->offset, count, 0);
  266. ctx->bufcnt += count;
  267. ctx->offset += count;
  268. ctx->total -= count;
  269. if (ctx->offset == ctx->sg->length) {
  270. ctx->sg = sg_next(ctx->sg);
  271. if (ctx->sg)
  272. ctx->offset = 0;
  273. else
  274. ctx->total = 0;
  275. }
  276. }
  277. return 0;
  278. }
  279. /*
  280. * The purpose of this padding is to ensure that the padded message is a
  281. * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
  282. * The bit "1" is appended at the end of the message followed by
  283. * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
  284. * 128 bits block (SHA384/SHA512) equals to the message length in bits
  285. * is appended.
  286. *
  287. * For SHA1/SHA224/SHA256, padlen is calculated as followed:
  288. * - if message length < 56 bytes then padlen = 56 - message length
  289. * - else padlen = 64 + 56 - message length
  290. *
  291. * For SHA384/SHA512, padlen is calculated as followed:
  292. * - if message length < 112 bytes then padlen = 112 - message length
  293. * - else padlen = 128 + 112 - message length
  294. */
  295. static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
  296. {
  297. unsigned int index, padlen;
  298. u64 bits[2];
  299. u64 size[2];
  300. size[0] = ctx->digcnt[0];
  301. size[1] = ctx->digcnt[1];
  302. size[0] += ctx->bufcnt;
  303. if (size[0] < ctx->bufcnt)
  304. size[1]++;
  305. size[0] += length;
  306. if (size[0] < length)
  307. size[1]++;
  308. bits[1] = cpu_to_be64(size[0] << 3);
  309. bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
  310. switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
  311. case SHA_FLAGS_SHA384:
  312. case SHA_FLAGS_SHA512:
  313. index = ctx->bufcnt & 0x7f;
  314. padlen = (index < 112) ? (112 - index) : ((128+112) - index);
  315. *(ctx->buffer + ctx->bufcnt) = 0x80;
  316. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  317. memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
  318. ctx->bufcnt += padlen + 16;
  319. ctx->flags |= SHA_FLAGS_PAD;
  320. break;
  321. default:
  322. index = ctx->bufcnt & 0x3f;
  323. padlen = (index < 56) ? (56 - index) : ((64+56) - index);
  324. *(ctx->buffer + ctx->bufcnt) = 0x80;
  325. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  326. memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
  327. ctx->bufcnt += padlen + 8;
  328. ctx->flags |= SHA_FLAGS_PAD;
  329. break;
  330. }
  331. }
  332. static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
  333. {
  334. struct atmel_sha_dev *dd = NULL;
  335. struct atmel_sha_dev *tmp;
  336. spin_lock_bh(&atmel_sha.lock);
  337. if (!tctx->dd) {
  338. list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
  339. dd = tmp;
  340. break;
  341. }
  342. tctx->dd = dd;
  343. } else {
  344. dd = tctx->dd;
  345. }
  346. spin_unlock_bh(&atmel_sha.lock);
  347. return dd;
  348. }
  349. static int atmel_sha_init(struct ahash_request *req)
  350. {
  351. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  352. struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  353. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  354. struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
  355. ctx->dd = dd;
  356. ctx->flags = 0;
  357. dev_dbg(dd->dev, "init: digest size: %d\n",
  358. crypto_ahash_digestsize(tfm));
  359. switch (crypto_ahash_digestsize(tfm)) {
  360. case SHA1_DIGEST_SIZE:
  361. ctx->flags |= SHA_FLAGS_SHA1;
  362. ctx->block_size = SHA1_BLOCK_SIZE;
  363. break;
  364. case SHA224_DIGEST_SIZE:
  365. ctx->flags |= SHA_FLAGS_SHA224;
  366. ctx->block_size = SHA224_BLOCK_SIZE;
  367. break;
  368. case SHA256_DIGEST_SIZE:
  369. ctx->flags |= SHA_FLAGS_SHA256;
  370. ctx->block_size = SHA256_BLOCK_SIZE;
  371. break;
  372. case SHA384_DIGEST_SIZE:
  373. ctx->flags |= SHA_FLAGS_SHA384;
  374. ctx->block_size = SHA384_BLOCK_SIZE;
  375. break;
  376. case SHA512_DIGEST_SIZE:
  377. ctx->flags |= SHA_FLAGS_SHA512;
  378. ctx->block_size = SHA512_BLOCK_SIZE;
  379. break;
  380. default:
  381. return -EINVAL;
  382. break;
  383. }
  384. ctx->bufcnt = 0;
  385. ctx->digcnt[0] = 0;
  386. ctx->digcnt[1] = 0;
  387. ctx->buflen = SHA_BUFFER_LEN;
  388. return 0;
  389. }
  390. static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
  391. {
  392. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  393. u32 valmr = SHA_MR_MODE_AUTO;
  394. unsigned int i, hashsize = 0;
  395. if (likely(dma)) {
  396. if (!dd->caps.has_dma)
  397. atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
  398. valmr = SHA_MR_MODE_PDC;
  399. if (dd->caps.has_dualbuff)
  400. valmr |= SHA_MR_DUALBUFF;
  401. } else {
  402. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  403. }
  404. switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
  405. case SHA_FLAGS_SHA1:
  406. valmr |= SHA_MR_ALGO_SHA1;
  407. hashsize = SHA1_DIGEST_SIZE;
  408. break;
  409. case SHA_FLAGS_SHA224:
  410. valmr |= SHA_MR_ALGO_SHA224;
  411. hashsize = SHA256_DIGEST_SIZE;
  412. break;
  413. case SHA_FLAGS_SHA256:
  414. valmr |= SHA_MR_ALGO_SHA256;
  415. hashsize = SHA256_DIGEST_SIZE;
  416. break;
  417. case SHA_FLAGS_SHA384:
  418. valmr |= SHA_MR_ALGO_SHA384;
  419. hashsize = SHA512_DIGEST_SIZE;
  420. break;
  421. case SHA_FLAGS_SHA512:
  422. valmr |= SHA_MR_ALGO_SHA512;
  423. hashsize = SHA512_DIGEST_SIZE;
  424. break;
  425. default:
  426. break;
  427. }
  428. /* Setting CR_FIRST only for the first iteration */
  429. if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
  430. atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
  431. } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
  432. const u32 *hash = (const u32 *)ctx->digest;
  433. /*
  434. * Restore the hardware context: update the User Initialize
  435. * Hash Value (UIHV) with the value saved when the latest
  436. * 'update' operation completed on this very same crypto
  437. * request.
  438. */
  439. ctx->flags &= ~SHA_FLAGS_RESTORE;
  440. atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
  441. for (i = 0; i < hashsize / sizeof(u32); ++i)
  442. atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
  443. atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
  444. valmr |= SHA_MR_UIHV;
  445. }
  446. /*
  447. * WARNING: If the UIHV feature is not available, the hardware CANNOT
  448. * process concurrent requests: the internal registers used to store
  449. * the hash/digest are still set to the partial digest output values
  450. * computed during the latest round.
  451. */
  452. atmel_sha_write(dd, SHA_MR, valmr);
  453. }
  454. static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
  455. atmel_sha_fn_t resume)
  456. {
  457. u32 isr = atmel_sha_read(dd, SHA_ISR);
  458. if (unlikely(isr & SHA_INT_DATARDY))
  459. return resume(dd);
  460. dd->resume = resume;
  461. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  462. return -EINPROGRESS;
  463. }
  464. static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
  465. size_t length, int final)
  466. {
  467. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  468. int count, len32;
  469. const u32 *buffer = (const u32 *)buf;
  470. dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
  471. ctx->digcnt[1], ctx->digcnt[0], length, final);
  472. atmel_sha_write_ctrl(dd, 0);
  473. /* should be non-zero before next lines to disable clocks later */
  474. ctx->digcnt[0] += length;
  475. if (ctx->digcnt[0] < length)
  476. ctx->digcnt[1]++;
  477. if (final)
  478. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  479. len32 = DIV_ROUND_UP(length, sizeof(u32));
  480. dd->flags |= SHA_FLAGS_CPU;
  481. for (count = 0; count < len32; count++)
  482. atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
  483. return -EINPROGRESS;
  484. }
  485. static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  486. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  487. {
  488. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  489. int len32;
  490. dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
  491. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  492. len32 = DIV_ROUND_UP(length1, sizeof(u32));
  493. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
  494. atmel_sha_write(dd, SHA_TPR, dma_addr1);
  495. atmel_sha_write(dd, SHA_TCR, len32);
  496. len32 = DIV_ROUND_UP(length2, sizeof(u32));
  497. atmel_sha_write(dd, SHA_TNPR, dma_addr2);
  498. atmel_sha_write(dd, SHA_TNCR, len32);
  499. atmel_sha_write_ctrl(dd, 1);
  500. /* should be non-zero before next lines to disable clocks later */
  501. ctx->digcnt[0] += length1;
  502. if (ctx->digcnt[0] < length1)
  503. ctx->digcnt[1]++;
  504. if (final)
  505. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  506. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  507. /* Start DMA transfer */
  508. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
  509. return -EINPROGRESS;
  510. }
  511. static void atmel_sha_dma_callback(void *data)
  512. {
  513. struct atmel_sha_dev *dd = data;
  514. dd->is_async = true;
  515. /* dma_lch_in - completed - wait DATRDY */
  516. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  517. }
  518. static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  519. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  520. {
  521. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  522. struct dma_async_tx_descriptor *in_desc;
  523. struct scatterlist sg[2];
  524. dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
  525. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  526. dd->dma_lch_in.dma_conf.src_maxburst = 16;
  527. dd->dma_lch_in.dma_conf.dst_maxburst = 16;
  528. dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
  529. if (length2) {
  530. sg_init_table(sg, 2);
  531. sg_dma_address(&sg[0]) = dma_addr1;
  532. sg_dma_len(&sg[0]) = length1;
  533. sg_dma_address(&sg[1]) = dma_addr2;
  534. sg_dma_len(&sg[1]) = length2;
  535. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
  536. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  537. } else {
  538. sg_init_table(sg, 1);
  539. sg_dma_address(&sg[0]) = dma_addr1;
  540. sg_dma_len(&sg[0]) = length1;
  541. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
  542. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  543. }
  544. if (!in_desc)
  545. return atmel_sha_complete(dd, -EINVAL);
  546. in_desc->callback = atmel_sha_dma_callback;
  547. in_desc->callback_param = dd;
  548. atmel_sha_write_ctrl(dd, 1);
  549. /* should be non-zero before next lines to disable clocks later */
  550. ctx->digcnt[0] += length1;
  551. if (ctx->digcnt[0] < length1)
  552. ctx->digcnt[1]++;
  553. if (final)
  554. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  555. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  556. /* Start DMA transfer */
  557. dmaengine_submit(in_desc);
  558. dma_async_issue_pending(dd->dma_lch_in.chan);
  559. return -EINPROGRESS;
  560. }
  561. static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  562. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  563. {
  564. if (dd->caps.has_dma)
  565. return atmel_sha_xmit_dma(dd, dma_addr1, length1,
  566. dma_addr2, length2, final);
  567. else
  568. return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
  569. dma_addr2, length2, final);
  570. }
  571. static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
  572. {
  573. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  574. int bufcnt;
  575. atmel_sha_append_sg(ctx);
  576. atmel_sha_fill_padding(ctx, 0);
  577. bufcnt = ctx->bufcnt;
  578. ctx->bufcnt = 0;
  579. return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
  580. }
  581. static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
  582. struct atmel_sha_reqctx *ctx,
  583. size_t length, int final)
  584. {
  585. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  586. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  587. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  588. dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
  589. ctx->block_size);
  590. return atmel_sha_complete(dd, -EINVAL);
  591. }
  592. ctx->flags &= ~SHA_FLAGS_SG;
  593. /* next call does not fail... so no unmap in the case of error */
  594. return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
  595. }
  596. static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
  597. {
  598. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  599. unsigned int final;
  600. size_t count;
  601. atmel_sha_append_sg(ctx);
  602. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  603. dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
  604. ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
  605. if (final)
  606. atmel_sha_fill_padding(ctx, 0);
  607. if (final || (ctx->bufcnt == ctx->buflen)) {
  608. count = ctx->bufcnt;
  609. ctx->bufcnt = 0;
  610. return atmel_sha_xmit_dma_map(dd, ctx, count, final);
  611. }
  612. return 0;
  613. }
  614. static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
  615. {
  616. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  617. unsigned int length, final, tail;
  618. struct scatterlist *sg;
  619. unsigned int count;
  620. if (!ctx->total)
  621. return 0;
  622. if (ctx->bufcnt || ctx->offset)
  623. return atmel_sha_update_dma_slow(dd);
  624. dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
  625. ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
  626. sg = ctx->sg;
  627. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  628. return atmel_sha_update_dma_slow(dd);
  629. if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
  630. /* size is not ctx->block_size aligned */
  631. return atmel_sha_update_dma_slow(dd);
  632. length = min(ctx->total, sg->length);
  633. if (sg_is_last(sg)) {
  634. if (!(ctx->flags & SHA_FLAGS_FINUP)) {
  635. /* not last sg must be ctx->block_size aligned */
  636. tail = length & (ctx->block_size - 1);
  637. length -= tail;
  638. }
  639. }
  640. ctx->total -= length;
  641. ctx->offset = length; /* offset where to start slow */
  642. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  643. /* Add padding */
  644. if (final) {
  645. tail = length & (ctx->block_size - 1);
  646. length -= tail;
  647. ctx->total += tail;
  648. ctx->offset = length; /* offset where to start slow */
  649. sg = ctx->sg;
  650. atmel_sha_append_sg(ctx);
  651. atmel_sha_fill_padding(ctx, length);
  652. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  653. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  654. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  655. dev_err(dd->dev, "dma %zu bytes error\n",
  656. ctx->buflen + ctx->block_size);
  657. return atmel_sha_complete(dd, -EINVAL);
  658. }
  659. if (length == 0) {
  660. ctx->flags &= ~SHA_FLAGS_SG;
  661. count = ctx->bufcnt;
  662. ctx->bufcnt = 0;
  663. return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
  664. 0, final);
  665. } else {
  666. ctx->sg = sg;
  667. if (!dma_map_sg(dd->dev, ctx->sg, 1,
  668. DMA_TO_DEVICE)) {
  669. dev_err(dd->dev, "dma_map_sg error\n");
  670. return atmel_sha_complete(dd, -EINVAL);
  671. }
  672. ctx->flags |= SHA_FLAGS_SG;
  673. count = ctx->bufcnt;
  674. ctx->bufcnt = 0;
  675. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
  676. length, ctx->dma_addr, count, final);
  677. }
  678. }
  679. if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  680. dev_err(dd->dev, "dma_map_sg error\n");
  681. return atmel_sha_complete(dd, -EINVAL);
  682. }
  683. ctx->flags |= SHA_FLAGS_SG;
  684. /* next call does not fail... so no unmap in the case of error */
  685. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
  686. 0, final);
  687. }
  688. static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
  689. {
  690. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  691. if (ctx->flags & SHA_FLAGS_SG) {
  692. dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
  693. if (ctx->sg->length == ctx->offset) {
  694. ctx->sg = sg_next(ctx->sg);
  695. if (ctx->sg)
  696. ctx->offset = 0;
  697. }
  698. if (ctx->flags & SHA_FLAGS_PAD) {
  699. dma_unmap_single(dd->dev, ctx->dma_addr,
  700. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  701. }
  702. } else {
  703. dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
  704. ctx->block_size, DMA_TO_DEVICE);
  705. }
  706. return 0;
  707. }
  708. static int atmel_sha_update_req(struct atmel_sha_dev *dd)
  709. {
  710. struct ahash_request *req = dd->req;
  711. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  712. int err;
  713. dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
  714. ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
  715. if (ctx->flags & SHA_FLAGS_CPU)
  716. err = atmel_sha_update_cpu(dd);
  717. else
  718. err = atmel_sha_update_dma_start(dd);
  719. /* wait for dma completion before can take more data */
  720. dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
  721. err, ctx->digcnt[1], ctx->digcnt[0]);
  722. return err;
  723. }
  724. static int atmel_sha_final_req(struct atmel_sha_dev *dd)
  725. {
  726. struct ahash_request *req = dd->req;
  727. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  728. int err = 0;
  729. int count;
  730. if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
  731. atmel_sha_fill_padding(ctx, 0);
  732. count = ctx->bufcnt;
  733. ctx->bufcnt = 0;
  734. err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
  735. }
  736. /* faster to handle last block with cpu */
  737. else {
  738. atmel_sha_fill_padding(ctx, 0);
  739. count = ctx->bufcnt;
  740. ctx->bufcnt = 0;
  741. err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
  742. }
  743. dev_dbg(dd->dev, "final_req: err: %d\n", err);
  744. return err;
  745. }
  746. static void atmel_sha_copy_hash(struct ahash_request *req)
  747. {
  748. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  749. u32 *hash = (u32 *)ctx->digest;
  750. unsigned int i, hashsize;
  751. switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
  752. case SHA_FLAGS_SHA1:
  753. hashsize = SHA1_DIGEST_SIZE;
  754. break;
  755. case SHA_FLAGS_SHA224:
  756. case SHA_FLAGS_SHA256:
  757. hashsize = SHA256_DIGEST_SIZE;
  758. break;
  759. case SHA_FLAGS_SHA384:
  760. case SHA_FLAGS_SHA512:
  761. hashsize = SHA512_DIGEST_SIZE;
  762. break;
  763. default:
  764. /* Should not happen... */
  765. return;
  766. }
  767. for (i = 0; i < hashsize / sizeof(u32); ++i)
  768. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  769. ctx->flags |= SHA_FLAGS_RESTORE;
  770. }
  771. static void atmel_sha_copy_ready_hash(struct ahash_request *req)
  772. {
  773. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  774. if (!req->result)
  775. return;
  776. switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
  777. default:
  778. case SHA_FLAGS_SHA1:
  779. memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
  780. break;
  781. case SHA_FLAGS_SHA224:
  782. memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
  783. break;
  784. case SHA_FLAGS_SHA256:
  785. memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
  786. break;
  787. case SHA_FLAGS_SHA384:
  788. memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
  789. break;
  790. case SHA_FLAGS_SHA512:
  791. memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
  792. break;
  793. }
  794. }
  795. static int atmel_sha_finish(struct ahash_request *req)
  796. {
  797. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  798. struct atmel_sha_dev *dd = ctx->dd;
  799. if (ctx->digcnt[0] || ctx->digcnt[1])
  800. atmel_sha_copy_ready_hash(req);
  801. dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
  802. ctx->digcnt[0], ctx->bufcnt);
  803. return 0;
  804. }
  805. static void atmel_sha_finish_req(struct ahash_request *req, int err)
  806. {
  807. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  808. struct atmel_sha_dev *dd = ctx->dd;
  809. if (!err) {
  810. atmel_sha_copy_hash(req);
  811. if (SHA_FLAGS_FINAL & dd->flags)
  812. err = atmel_sha_finish(req);
  813. } else {
  814. ctx->flags |= SHA_FLAGS_ERROR;
  815. }
  816. /* atomic operation is not needed here */
  817. (void)atmel_sha_complete(dd, err);
  818. }
  819. static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
  820. {
  821. int err;
  822. err = clk_enable(dd->iclk);
  823. if (err)
  824. return err;
  825. if (!(SHA_FLAGS_INIT & dd->flags)) {
  826. atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
  827. dd->flags |= SHA_FLAGS_INIT;
  828. dd->err = 0;
  829. }
  830. return 0;
  831. }
  832. static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
  833. {
  834. return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
  835. }
  836. static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
  837. {
  838. atmel_sha_hw_init(dd);
  839. dd->hw_version = atmel_sha_get_version(dd);
  840. dev_info(dd->dev,
  841. "version: 0x%x\n", dd->hw_version);
  842. clk_disable(dd->iclk);
  843. }
  844. static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
  845. struct ahash_request *req)
  846. {
  847. struct crypto_async_request *async_req, *backlog;
  848. struct atmel_sha_ctx *ctx;
  849. unsigned long flags;
  850. bool start_async;
  851. int err = 0, ret = 0;
  852. spin_lock_irqsave(&dd->lock, flags);
  853. if (req)
  854. ret = ahash_enqueue_request(&dd->queue, req);
  855. if (SHA_FLAGS_BUSY & dd->flags) {
  856. spin_unlock_irqrestore(&dd->lock, flags);
  857. return ret;
  858. }
  859. backlog = crypto_get_backlog(&dd->queue);
  860. async_req = crypto_dequeue_request(&dd->queue);
  861. if (async_req)
  862. dd->flags |= SHA_FLAGS_BUSY;
  863. spin_unlock_irqrestore(&dd->lock, flags);
  864. if (!async_req)
  865. return ret;
  866. if (backlog)
  867. backlog->complete(backlog, -EINPROGRESS);
  868. ctx = crypto_tfm_ctx(async_req->tfm);
  869. dd->req = ahash_request_cast(async_req);
  870. start_async = (dd->req != req);
  871. dd->is_async = start_async;
  872. dd->force_complete = false;
  873. /* WARNING: ctx->start() MAY change dd->is_async. */
  874. err = ctx->start(dd);
  875. return (start_async) ? ret : err;
  876. }
  877. static int atmel_sha_done(struct atmel_sha_dev *dd);
  878. static int atmel_sha_start(struct atmel_sha_dev *dd)
  879. {
  880. struct ahash_request *req = dd->req;
  881. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  882. int err;
  883. dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
  884. ctx->op, req->nbytes);
  885. err = atmel_sha_hw_init(dd);
  886. if (err)
  887. return atmel_sha_complete(dd, err);
  888. /*
  889. * atmel_sha_update_req() and atmel_sha_final_req() can return either:
  890. * -EINPROGRESS: the hardware is busy and the SHA driver will resume
  891. * its job later in the done_task.
  892. * This is the main path.
  893. *
  894. * 0: the SHA driver can continue its job then release the hardware
  895. * later, if needed, with atmel_sha_finish_req().
  896. * This is the alternate path.
  897. *
  898. * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
  899. * been called, hence the hardware has been released.
  900. * The SHA driver must stop its job without calling
  901. * atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
  902. * called a second time.
  903. *
  904. * Please note that currently, atmel_sha_final_req() never returns 0.
  905. */
  906. dd->resume = atmel_sha_done;
  907. if (ctx->op == SHA_OP_UPDATE) {
  908. err = atmel_sha_update_req(dd);
  909. if (!err && (ctx->flags & SHA_FLAGS_FINUP))
  910. /* no final() after finup() */
  911. err = atmel_sha_final_req(dd);
  912. } else if (ctx->op == SHA_OP_FINAL) {
  913. err = atmel_sha_final_req(dd);
  914. }
  915. if (!err)
  916. /* done_task will not finish it, so do it here */
  917. atmel_sha_finish_req(req, err);
  918. dev_dbg(dd->dev, "exit, err: %d\n", err);
  919. return err;
  920. }
  921. static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
  922. {
  923. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  924. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  925. struct atmel_sha_dev *dd = tctx->dd;
  926. ctx->op = op;
  927. return atmel_sha_handle_queue(dd, req);
  928. }
  929. static int atmel_sha_update(struct ahash_request *req)
  930. {
  931. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  932. if (!req->nbytes)
  933. return 0;
  934. ctx->total = req->nbytes;
  935. ctx->sg = req->src;
  936. ctx->offset = 0;
  937. if (ctx->flags & SHA_FLAGS_FINUP) {
  938. if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
  939. /* faster to use CPU for short transfers */
  940. ctx->flags |= SHA_FLAGS_CPU;
  941. } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
  942. atmel_sha_append_sg(ctx);
  943. return 0;
  944. }
  945. return atmel_sha_enqueue(req, SHA_OP_UPDATE);
  946. }
  947. static int atmel_sha_final(struct ahash_request *req)
  948. {
  949. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  950. ctx->flags |= SHA_FLAGS_FINUP;
  951. if (ctx->flags & SHA_FLAGS_ERROR)
  952. return 0; /* uncompleted hash is not needed */
  953. if (ctx->flags & SHA_FLAGS_PAD)
  954. /* copy ready hash (+ finalize hmac) */
  955. return atmel_sha_finish(req);
  956. return atmel_sha_enqueue(req, SHA_OP_FINAL);
  957. }
  958. static int atmel_sha_finup(struct ahash_request *req)
  959. {
  960. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  961. int err1, err2;
  962. ctx->flags |= SHA_FLAGS_FINUP;
  963. err1 = atmel_sha_update(req);
  964. if (err1 == -EINPROGRESS ||
  965. (err1 == -EBUSY && (ahash_request_flags(req) &
  966. CRYPTO_TFM_REQ_MAY_BACKLOG)))
  967. return err1;
  968. /*
  969. * final() has to be always called to cleanup resources
  970. * even if udpate() failed, except EINPROGRESS
  971. */
  972. err2 = atmel_sha_final(req);
  973. return err1 ?: err2;
  974. }
  975. static int atmel_sha_digest(struct ahash_request *req)
  976. {
  977. return atmel_sha_init(req) ?: atmel_sha_finup(req);
  978. }
  979. static int atmel_sha_export(struct ahash_request *req, void *out)
  980. {
  981. const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  982. memcpy(out, ctx, sizeof(*ctx));
  983. return 0;
  984. }
  985. static int atmel_sha_import(struct ahash_request *req, const void *in)
  986. {
  987. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  988. memcpy(ctx, in, sizeof(*ctx));
  989. return 0;
  990. }
  991. static int atmel_sha_cra_init(struct crypto_tfm *tfm)
  992. {
  993. struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
  994. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  995. sizeof(struct atmel_sha_reqctx));
  996. ctx->start = atmel_sha_start;
  997. return 0;
  998. }
  999. static struct ahash_alg sha_1_256_algs[] = {
  1000. {
  1001. .init = atmel_sha_init,
  1002. .update = atmel_sha_update,
  1003. .final = atmel_sha_final,
  1004. .finup = atmel_sha_finup,
  1005. .digest = atmel_sha_digest,
  1006. .export = atmel_sha_export,
  1007. .import = atmel_sha_import,
  1008. .halg = {
  1009. .digestsize = SHA1_DIGEST_SIZE,
  1010. .statesize = sizeof(struct atmel_sha_reqctx),
  1011. .base = {
  1012. .cra_name = "sha1",
  1013. .cra_driver_name = "atmel-sha1",
  1014. .cra_priority = 100,
  1015. .cra_flags = CRYPTO_ALG_ASYNC,
  1016. .cra_blocksize = SHA1_BLOCK_SIZE,
  1017. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  1018. .cra_alignmask = 0,
  1019. .cra_module = THIS_MODULE,
  1020. .cra_init = atmel_sha_cra_init,
  1021. }
  1022. }
  1023. },
  1024. {
  1025. .init = atmel_sha_init,
  1026. .update = atmel_sha_update,
  1027. .final = atmel_sha_final,
  1028. .finup = atmel_sha_finup,
  1029. .digest = atmel_sha_digest,
  1030. .export = atmel_sha_export,
  1031. .import = atmel_sha_import,
  1032. .halg = {
  1033. .digestsize = SHA256_DIGEST_SIZE,
  1034. .statesize = sizeof(struct atmel_sha_reqctx),
  1035. .base = {
  1036. .cra_name = "sha256",
  1037. .cra_driver_name = "atmel-sha256",
  1038. .cra_priority = 100,
  1039. .cra_flags = CRYPTO_ALG_ASYNC,
  1040. .cra_blocksize = SHA256_BLOCK_SIZE,
  1041. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  1042. .cra_alignmask = 0,
  1043. .cra_module = THIS_MODULE,
  1044. .cra_init = atmel_sha_cra_init,
  1045. }
  1046. }
  1047. },
  1048. };
  1049. static struct ahash_alg sha_224_alg = {
  1050. .init = atmel_sha_init,
  1051. .update = atmel_sha_update,
  1052. .final = atmel_sha_final,
  1053. .finup = atmel_sha_finup,
  1054. .digest = atmel_sha_digest,
  1055. .export = atmel_sha_export,
  1056. .import = atmel_sha_import,
  1057. .halg = {
  1058. .digestsize = SHA224_DIGEST_SIZE,
  1059. .statesize = sizeof(struct atmel_sha_reqctx),
  1060. .base = {
  1061. .cra_name = "sha224",
  1062. .cra_driver_name = "atmel-sha224",
  1063. .cra_priority = 100,
  1064. .cra_flags = CRYPTO_ALG_ASYNC,
  1065. .cra_blocksize = SHA224_BLOCK_SIZE,
  1066. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  1067. .cra_alignmask = 0,
  1068. .cra_module = THIS_MODULE,
  1069. .cra_init = atmel_sha_cra_init,
  1070. }
  1071. }
  1072. };
  1073. static struct ahash_alg sha_384_512_algs[] = {
  1074. {
  1075. .init = atmel_sha_init,
  1076. .update = atmel_sha_update,
  1077. .final = atmel_sha_final,
  1078. .finup = atmel_sha_finup,
  1079. .digest = atmel_sha_digest,
  1080. .export = atmel_sha_export,
  1081. .import = atmel_sha_import,
  1082. .halg = {
  1083. .digestsize = SHA384_DIGEST_SIZE,
  1084. .statesize = sizeof(struct atmel_sha_reqctx),
  1085. .base = {
  1086. .cra_name = "sha384",
  1087. .cra_driver_name = "atmel-sha384",
  1088. .cra_priority = 100,
  1089. .cra_flags = CRYPTO_ALG_ASYNC,
  1090. .cra_blocksize = SHA384_BLOCK_SIZE,
  1091. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  1092. .cra_alignmask = 0x3,
  1093. .cra_module = THIS_MODULE,
  1094. .cra_init = atmel_sha_cra_init,
  1095. }
  1096. }
  1097. },
  1098. {
  1099. .init = atmel_sha_init,
  1100. .update = atmel_sha_update,
  1101. .final = atmel_sha_final,
  1102. .finup = atmel_sha_finup,
  1103. .digest = atmel_sha_digest,
  1104. .export = atmel_sha_export,
  1105. .import = atmel_sha_import,
  1106. .halg = {
  1107. .digestsize = SHA512_DIGEST_SIZE,
  1108. .statesize = sizeof(struct atmel_sha_reqctx),
  1109. .base = {
  1110. .cra_name = "sha512",
  1111. .cra_driver_name = "atmel-sha512",
  1112. .cra_priority = 100,
  1113. .cra_flags = CRYPTO_ALG_ASYNC,
  1114. .cra_blocksize = SHA512_BLOCK_SIZE,
  1115. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  1116. .cra_alignmask = 0x3,
  1117. .cra_module = THIS_MODULE,
  1118. .cra_init = atmel_sha_cra_init,
  1119. }
  1120. }
  1121. },
  1122. };
  1123. static void atmel_sha_queue_task(unsigned long data)
  1124. {
  1125. struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
  1126. atmel_sha_handle_queue(dd, NULL);
  1127. }
  1128. static int atmel_sha_done(struct atmel_sha_dev *dd)
  1129. {
  1130. int err = 0;
  1131. if (SHA_FLAGS_CPU & dd->flags) {
  1132. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  1133. dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
  1134. goto finish;
  1135. }
  1136. } else if (SHA_FLAGS_DMA_READY & dd->flags) {
  1137. if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
  1138. dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
  1139. atmel_sha_update_dma_stop(dd);
  1140. if (dd->err) {
  1141. err = dd->err;
  1142. goto finish;
  1143. }
  1144. }
  1145. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  1146. /* hash or semi-hash ready */
  1147. dd->flags &= ~(SHA_FLAGS_DMA_READY |
  1148. SHA_FLAGS_OUTPUT_READY);
  1149. err = atmel_sha_update_dma_start(dd);
  1150. if (err != -EINPROGRESS)
  1151. goto finish;
  1152. }
  1153. }
  1154. return err;
  1155. finish:
  1156. /* finish curent request */
  1157. atmel_sha_finish_req(dd->req, err);
  1158. return err;
  1159. }
  1160. static void atmel_sha_done_task(unsigned long data)
  1161. {
  1162. struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
  1163. dd->is_async = true;
  1164. (void)dd->resume(dd);
  1165. }
  1166. static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
  1167. {
  1168. struct atmel_sha_dev *sha_dd = dev_id;
  1169. u32 reg;
  1170. reg = atmel_sha_read(sha_dd, SHA_ISR);
  1171. if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
  1172. atmel_sha_write(sha_dd, SHA_IDR, reg);
  1173. if (SHA_FLAGS_BUSY & sha_dd->flags) {
  1174. sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
  1175. if (!(SHA_FLAGS_CPU & sha_dd->flags))
  1176. sha_dd->flags |= SHA_FLAGS_DMA_READY;
  1177. tasklet_schedule(&sha_dd->done_task);
  1178. } else {
  1179. dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
  1180. }
  1181. return IRQ_HANDLED;
  1182. }
  1183. return IRQ_NONE;
  1184. }
  1185. /* DMA transfer functions */
  1186. static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
  1187. struct scatterlist *sg,
  1188. size_t len)
  1189. {
  1190. struct atmel_sha_dma *dma = &dd->dma_lch_in;
  1191. struct ahash_request *req = dd->req;
  1192. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1193. size_t bs = ctx->block_size;
  1194. int nents;
  1195. for (nents = 0; sg; sg = sg_next(sg), ++nents) {
  1196. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  1197. return false;
  1198. /*
  1199. * This is the last sg, the only one that is allowed to
  1200. * have an unaligned length.
  1201. */
  1202. if (len <= sg->length) {
  1203. dma->nents = nents + 1;
  1204. dma->last_sg_length = sg->length;
  1205. sg->length = ALIGN(len, sizeof(u32));
  1206. return true;
  1207. }
  1208. /* All other sg lengths MUST be aligned to the block size. */
  1209. if (!IS_ALIGNED(sg->length, bs))
  1210. return false;
  1211. len -= sg->length;
  1212. }
  1213. return false;
  1214. }
  1215. static void atmel_sha_dma_callback2(void *data)
  1216. {
  1217. struct atmel_sha_dev *dd = data;
  1218. struct atmel_sha_dma *dma = &dd->dma_lch_in;
  1219. struct scatterlist *sg;
  1220. int nents;
  1221. dmaengine_terminate_all(dma->chan);
  1222. dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
  1223. sg = dma->sg;
  1224. for (nents = 0; nents < dma->nents - 1; ++nents)
  1225. sg = sg_next(sg);
  1226. sg->length = dma->last_sg_length;
  1227. dd->is_async = true;
  1228. (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
  1229. }
  1230. static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
  1231. struct scatterlist *src,
  1232. size_t len,
  1233. atmel_sha_fn_t resume)
  1234. {
  1235. struct atmel_sha_dma *dma = &dd->dma_lch_in;
  1236. struct dma_slave_config *config = &dma->dma_conf;
  1237. struct dma_chan *chan = dma->chan;
  1238. struct dma_async_tx_descriptor *desc;
  1239. dma_cookie_t cookie;
  1240. unsigned int sg_len;
  1241. int err;
  1242. dd->resume = resume;
  1243. /*
  1244. * dma->nents has already been initialized by
  1245. * atmel_sha_dma_check_aligned().
  1246. */
  1247. dma->sg = src;
  1248. sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
  1249. if (!sg_len) {
  1250. err = -ENOMEM;
  1251. goto exit;
  1252. }
  1253. config->src_maxburst = 16;
  1254. config->dst_maxburst = 16;
  1255. err = dmaengine_slave_config(chan, config);
  1256. if (err)
  1257. goto unmap_sg;
  1258. desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
  1259. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1260. if (!desc) {
  1261. err = -ENOMEM;
  1262. goto unmap_sg;
  1263. }
  1264. desc->callback = atmel_sha_dma_callback2;
  1265. desc->callback_param = dd;
  1266. cookie = dmaengine_submit(desc);
  1267. err = dma_submit_error(cookie);
  1268. if (err)
  1269. goto unmap_sg;
  1270. dma_async_issue_pending(chan);
  1271. return -EINPROGRESS;
  1272. unmap_sg:
  1273. dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
  1274. exit:
  1275. return atmel_sha_complete(dd, err);
  1276. }
  1277. /* CPU transfer functions */
  1278. static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
  1279. {
  1280. struct ahash_request *req = dd->req;
  1281. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1282. const u32 *words = (const u32 *)ctx->buffer;
  1283. size_t i, num_words;
  1284. u32 isr, din, din_inc;
  1285. din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
  1286. for (;;) {
  1287. /* Write data into the Input Data Registers. */
  1288. num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
  1289. for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
  1290. atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
  1291. ctx->offset += ctx->bufcnt;
  1292. ctx->total -= ctx->bufcnt;
  1293. if (!ctx->total)
  1294. break;
  1295. /*
  1296. * Prepare next block:
  1297. * Fill ctx->buffer now with the next data to be written into
  1298. * IDATARx: it gives time for the SHA hardware to process
  1299. * the current data so the SHA_INT_DATARDY flag might be set
  1300. * in SHA_ISR when polling this register at the beginning of
  1301. * the next loop.
  1302. */
  1303. ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
  1304. scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
  1305. ctx->offset, ctx->bufcnt, 0);
  1306. /* Wait for hardware to be ready again. */
  1307. isr = atmel_sha_read(dd, SHA_ISR);
  1308. if (!(isr & SHA_INT_DATARDY)) {
  1309. /* Not ready yet. */
  1310. dd->resume = atmel_sha_cpu_transfer;
  1311. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  1312. return -EINPROGRESS;
  1313. }
  1314. }
  1315. if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
  1316. return dd->cpu_transfer_complete(dd);
  1317. return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
  1318. }
  1319. static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
  1320. struct scatterlist *sg,
  1321. unsigned int len,
  1322. bool idatar0_only,
  1323. bool wait_data_ready,
  1324. atmel_sha_fn_t resume)
  1325. {
  1326. struct ahash_request *req = dd->req;
  1327. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1328. if (!len)
  1329. return resume(dd);
  1330. ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
  1331. if (idatar0_only)
  1332. ctx->flags |= SHA_FLAGS_IDATAR0;
  1333. if (wait_data_ready)
  1334. ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
  1335. ctx->sg = sg;
  1336. ctx->total = len;
  1337. ctx->offset = 0;
  1338. /* Prepare the first block to be written. */
  1339. ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
  1340. scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
  1341. ctx->offset, ctx->bufcnt, 0);
  1342. dd->cpu_transfer_complete = resume;
  1343. return atmel_sha_cpu_transfer(dd);
  1344. }
  1345. static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
  1346. const void *data, unsigned int datalen,
  1347. bool auto_padding,
  1348. atmel_sha_fn_t resume)
  1349. {
  1350. struct ahash_request *req = dd->req;
  1351. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1352. u32 msglen = (auto_padding) ? datalen : 0;
  1353. u32 mr = SHA_MR_MODE_AUTO;
  1354. if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
  1355. return atmel_sha_complete(dd, -EINVAL);
  1356. mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
  1357. atmel_sha_write(dd, SHA_MR, mr);
  1358. atmel_sha_write(dd, SHA_MSR, msglen);
  1359. atmel_sha_write(dd, SHA_BCR, msglen);
  1360. atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
  1361. sg_init_one(&dd->tmp, data, datalen);
  1362. return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
  1363. }
  1364. /* hmac functions */
  1365. struct atmel_sha_hmac_key {
  1366. bool valid;
  1367. unsigned int keylen;
  1368. u8 buffer[SHA512_BLOCK_SIZE];
  1369. u8 *keydup;
  1370. };
  1371. static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
  1372. {
  1373. memset(hkey, 0, sizeof(*hkey));
  1374. }
  1375. static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
  1376. {
  1377. kfree(hkey->keydup);
  1378. memset(hkey, 0, sizeof(*hkey));
  1379. }
  1380. static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
  1381. const u8 *key,
  1382. unsigned int keylen)
  1383. {
  1384. atmel_sha_hmac_key_release(hkey);
  1385. if (keylen > sizeof(hkey->buffer)) {
  1386. hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
  1387. if (!hkey->keydup)
  1388. return -ENOMEM;
  1389. } else {
  1390. memcpy(hkey->buffer, key, keylen);
  1391. }
  1392. hkey->valid = true;
  1393. hkey->keylen = keylen;
  1394. return 0;
  1395. }
  1396. static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
  1397. const u8 **key,
  1398. unsigned int *keylen)
  1399. {
  1400. if (!hkey->valid)
  1401. return false;
  1402. *keylen = hkey->keylen;
  1403. *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
  1404. return true;
  1405. }
  1406. struct atmel_sha_hmac_ctx {
  1407. struct atmel_sha_ctx base;
  1408. struct atmel_sha_hmac_key hkey;
  1409. u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
  1410. u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
  1411. atmel_sha_fn_t resume;
  1412. };
  1413. static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
  1414. atmel_sha_fn_t resume);
  1415. static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
  1416. const u8 *key, unsigned int keylen);
  1417. static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
  1418. static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
  1419. static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
  1420. static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
  1421. static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
  1422. static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
  1423. static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
  1424. static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
  1425. static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
  1426. atmel_sha_fn_t resume)
  1427. {
  1428. struct ahash_request *req = dd->req;
  1429. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1430. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1431. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1432. unsigned int keylen;
  1433. const u8 *key;
  1434. size_t bs;
  1435. hmac->resume = resume;
  1436. switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
  1437. case SHA_FLAGS_SHA1:
  1438. ctx->block_size = SHA1_BLOCK_SIZE;
  1439. ctx->hash_size = SHA1_DIGEST_SIZE;
  1440. break;
  1441. case SHA_FLAGS_SHA224:
  1442. ctx->block_size = SHA224_BLOCK_SIZE;
  1443. ctx->hash_size = SHA256_DIGEST_SIZE;
  1444. break;
  1445. case SHA_FLAGS_SHA256:
  1446. ctx->block_size = SHA256_BLOCK_SIZE;
  1447. ctx->hash_size = SHA256_DIGEST_SIZE;
  1448. break;
  1449. case SHA_FLAGS_SHA384:
  1450. ctx->block_size = SHA384_BLOCK_SIZE;
  1451. ctx->hash_size = SHA512_DIGEST_SIZE;
  1452. break;
  1453. case SHA_FLAGS_SHA512:
  1454. ctx->block_size = SHA512_BLOCK_SIZE;
  1455. ctx->hash_size = SHA512_DIGEST_SIZE;
  1456. break;
  1457. default:
  1458. return atmel_sha_complete(dd, -EINVAL);
  1459. }
  1460. bs = ctx->block_size;
  1461. if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
  1462. return resume(dd);
  1463. /* Compute K' from K. */
  1464. if (unlikely(keylen > bs))
  1465. return atmel_sha_hmac_prehash_key(dd, key, keylen);
  1466. /* Prepare ipad. */
  1467. memcpy((u8 *)hmac->ipad, key, keylen);
  1468. memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
  1469. return atmel_sha_hmac_compute_ipad_hash(dd);
  1470. }
  1471. static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
  1472. const u8 *key, unsigned int keylen)
  1473. {
  1474. return atmel_sha_cpu_hash(dd, key, keylen, true,
  1475. atmel_sha_hmac_prehash_key_done);
  1476. }
  1477. static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
  1478. {
  1479. struct ahash_request *req = dd->req;
  1480. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1481. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1482. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1483. size_t ds = crypto_ahash_digestsize(tfm);
  1484. size_t bs = ctx->block_size;
  1485. size_t i, num_words = ds / sizeof(u32);
  1486. /* Prepare ipad. */
  1487. for (i = 0; i < num_words; ++i)
  1488. hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
  1489. memset((u8 *)hmac->ipad + ds, 0, bs - ds);
  1490. return atmel_sha_hmac_compute_ipad_hash(dd);
  1491. }
  1492. static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
  1493. {
  1494. struct ahash_request *req = dd->req;
  1495. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1496. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1497. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1498. size_t bs = ctx->block_size;
  1499. size_t i, num_words = bs / sizeof(u32);
  1500. memcpy(hmac->opad, hmac->ipad, bs);
  1501. for (i = 0; i < num_words; ++i) {
  1502. hmac->ipad[i] ^= 0x36363636;
  1503. hmac->opad[i] ^= 0x5c5c5c5c;
  1504. }
  1505. return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
  1506. atmel_sha_hmac_compute_opad_hash);
  1507. }
  1508. static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
  1509. {
  1510. struct ahash_request *req = dd->req;
  1511. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1512. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1513. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1514. size_t bs = ctx->block_size;
  1515. size_t hs = ctx->hash_size;
  1516. size_t i, num_words = hs / sizeof(u32);
  1517. for (i = 0; i < num_words; ++i)
  1518. hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
  1519. return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
  1520. atmel_sha_hmac_setup_done);
  1521. }
  1522. static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
  1523. {
  1524. struct ahash_request *req = dd->req;
  1525. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1526. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1527. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1528. size_t hs = ctx->hash_size;
  1529. size_t i, num_words = hs / sizeof(u32);
  1530. for (i = 0; i < num_words; ++i)
  1531. hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
  1532. atmel_sha_hmac_key_release(&hmac->hkey);
  1533. return hmac->resume(dd);
  1534. }
  1535. static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
  1536. {
  1537. struct ahash_request *req = dd->req;
  1538. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1539. int err;
  1540. err = atmel_sha_hw_init(dd);
  1541. if (err)
  1542. return atmel_sha_complete(dd, err);
  1543. switch (ctx->op) {
  1544. case SHA_OP_INIT:
  1545. err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
  1546. break;
  1547. case SHA_OP_UPDATE:
  1548. dd->resume = atmel_sha_done;
  1549. err = atmel_sha_update_req(dd);
  1550. break;
  1551. case SHA_OP_FINAL:
  1552. dd->resume = atmel_sha_hmac_final;
  1553. err = atmel_sha_final_req(dd);
  1554. break;
  1555. case SHA_OP_DIGEST:
  1556. err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
  1557. break;
  1558. default:
  1559. return atmel_sha_complete(dd, -EINVAL);
  1560. }
  1561. return err;
  1562. }
  1563. static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
  1564. unsigned int keylen)
  1565. {
  1566. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1567. if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
  1568. crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1569. return -EINVAL;
  1570. }
  1571. return 0;
  1572. }
  1573. static int atmel_sha_hmac_init(struct ahash_request *req)
  1574. {
  1575. int err;
  1576. err = atmel_sha_init(req);
  1577. if (err)
  1578. return err;
  1579. return atmel_sha_enqueue(req, SHA_OP_INIT);
  1580. }
  1581. static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
  1582. {
  1583. struct ahash_request *req = dd->req;
  1584. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1585. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1586. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1587. size_t bs = ctx->block_size;
  1588. size_t hs = ctx->hash_size;
  1589. ctx->bufcnt = 0;
  1590. ctx->digcnt[0] = bs;
  1591. ctx->digcnt[1] = 0;
  1592. ctx->flags |= SHA_FLAGS_RESTORE;
  1593. memcpy(ctx->digest, hmac->ipad, hs);
  1594. return atmel_sha_complete(dd, 0);
  1595. }
  1596. static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
  1597. {
  1598. struct ahash_request *req = dd->req;
  1599. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1600. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1601. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1602. u32 *digest = (u32 *)ctx->digest;
  1603. size_t ds = crypto_ahash_digestsize(tfm);
  1604. size_t bs = ctx->block_size;
  1605. size_t hs = ctx->hash_size;
  1606. size_t i, num_words;
  1607. u32 mr;
  1608. /* Save d = SHA((K' + ipad) | msg). */
  1609. num_words = ds / sizeof(u32);
  1610. for (i = 0; i < num_words; ++i)
  1611. digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
  1612. /* Restore context to finish computing SHA((K' + opad) | d). */
  1613. atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
  1614. num_words = hs / sizeof(u32);
  1615. for (i = 0; i < num_words; ++i)
  1616. atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
  1617. mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
  1618. mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
  1619. atmel_sha_write(dd, SHA_MR, mr);
  1620. atmel_sha_write(dd, SHA_MSR, bs + ds);
  1621. atmel_sha_write(dd, SHA_BCR, ds);
  1622. atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
  1623. sg_init_one(&dd->tmp, digest, ds);
  1624. return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
  1625. atmel_sha_hmac_final_done);
  1626. }
  1627. static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
  1628. {
  1629. /*
  1630. * req->result might not be sizeof(u32) aligned, so copy the
  1631. * digest into ctx->digest[] before memcpy() the data into
  1632. * req->result.
  1633. */
  1634. atmel_sha_copy_hash(dd->req);
  1635. atmel_sha_copy_ready_hash(dd->req);
  1636. return atmel_sha_complete(dd, 0);
  1637. }
  1638. static int atmel_sha_hmac_digest(struct ahash_request *req)
  1639. {
  1640. int err;
  1641. err = atmel_sha_init(req);
  1642. if (err)
  1643. return err;
  1644. return atmel_sha_enqueue(req, SHA_OP_DIGEST);
  1645. }
  1646. static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
  1647. {
  1648. struct ahash_request *req = dd->req;
  1649. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  1650. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1651. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1652. size_t hs = ctx->hash_size;
  1653. size_t i, num_words = hs / sizeof(u32);
  1654. bool use_dma = false;
  1655. u32 mr;
  1656. /* Special case for empty message. */
  1657. if (!req->nbytes)
  1658. return atmel_sha_complete(dd, -EINVAL); // TODO:
  1659. /* Check DMA threshold and alignment. */
  1660. if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
  1661. atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
  1662. use_dma = true;
  1663. /* Write both initial hash values to compute a HMAC. */
  1664. atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
  1665. for (i = 0; i < num_words; ++i)
  1666. atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
  1667. atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
  1668. for (i = 0; i < num_words; ++i)
  1669. atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
  1670. /* Write the Mode, Message Size, Bytes Count then Control Registers. */
  1671. mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
  1672. mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
  1673. if (use_dma)
  1674. mr |= SHA_MR_MODE_IDATAR0;
  1675. else
  1676. mr |= SHA_MR_MODE_AUTO;
  1677. atmel_sha_write(dd, SHA_MR, mr);
  1678. atmel_sha_write(dd, SHA_MSR, req->nbytes);
  1679. atmel_sha_write(dd, SHA_BCR, req->nbytes);
  1680. atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
  1681. /* Process data. */
  1682. if (use_dma)
  1683. return atmel_sha_dma_start(dd, req->src, req->nbytes,
  1684. atmel_sha_hmac_final_done);
  1685. return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
  1686. atmel_sha_hmac_final_done);
  1687. }
  1688. static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
  1689. {
  1690. struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
  1691. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1692. sizeof(struct atmel_sha_reqctx));
  1693. hmac->base.start = atmel_sha_hmac_start;
  1694. atmel_sha_hmac_key_init(&hmac->hkey);
  1695. return 0;
  1696. }
  1697. static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
  1698. {
  1699. struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
  1700. atmel_sha_hmac_key_release(&hmac->hkey);
  1701. }
  1702. static struct ahash_alg sha_hmac_algs[] = {
  1703. {
  1704. .init = atmel_sha_hmac_init,
  1705. .update = atmel_sha_update,
  1706. .final = atmel_sha_final,
  1707. .digest = atmel_sha_hmac_digest,
  1708. .setkey = atmel_sha_hmac_setkey,
  1709. .export = atmel_sha_export,
  1710. .import = atmel_sha_import,
  1711. .halg = {
  1712. .digestsize = SHA1_DIGEST_SIZE,
  1713. .statesize = sizeof(struct atmel_sha_reqctx),
  1714. .base = {
  1715. .cra_name = "hmac(sha1)",
  1716. .cra_driver_name = "atmel-hmac-sha1",
  1717. .cra_priority = 100,
  1718. .cra_flags = CRYPTO_ALG_ASYNC,
  1719. .cra_blocksize = SHA1_BLOCK_SIZE,
  1720. .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
  1721. .cra_alignmask = 0,
  1722. .cra_module = THIS_MODULE,
  1723. .cra_init = atmel_sha_hmac_cra_init,
  1724. .cra_exit = atmel_sha_hmac_cra_exit,
  1725. }
  1726. }
  1727. },
  1728. {
  1729. .init = atmel_sha_hmac_init,
  1730. .update = atmel_sha_update,
  1731. .final = atmel_sha_final,
  1732. .digest = atmel_sha_hmac_digest,
  1733. .setkey = atmel_sha_hmac_setkey,
  1734. .export = atmel_sha_export,
  1735. .import = atmel_sha_import,
  1736. .halg = {
  1737. .digestsize = SHA224_DIGEST_SIZE,
  1738. .statesize = sizeof(struct atmel_sha_reqctx),
  1739. .base = {
  1740. .cra_name = "hmac(sha224)",
  1741. .cra_driver_name = "atmel-hmac-sha224",
  1742. .cra_priority = 100,
  1743. .cra_flags = CRYPTO_ALG_ASYNC,
  1744. .cra_blocksize = SHA224_BLOCK_SIZE,
  1745. .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
  1746. .cra_alignmask = 0,
  1747. .cra_module = THIS_MODULE,
  1748. .cra_init = atmel_sha_hmac_cra_init,
  1749. .cra_exit = atmel_sha_hmac_cra_exit,
  1750. }
  1751. }
  1752. },
  1753. {
  1754. .init = atmel_sha_hmac_init,
  1755. .update = atmel_sha_update,
  1756. .final = atmel_sha_final,
  1757. .digest = atmel_sha_hmac_digest,
  1758. .setkey = atmel_sha_hmac_setkey,
  1759. .export = atmel_sha_export,
  1760. .import = atmel_sha_import,
  1761. .halg = {
  1762. .digestsize = SHA256_DIGEST_SIZE,
  1763. .statesize = sizeof(struct atmel_sha_reqctx),
  1764. .base = {
  1765. .cra_name = "hmac(sha256)",
  1766. .cra_driver_name = "atmel-hmac-sha256",
  1767. .cra_priority = 100,
  1768. .cra_flags = CRYPTO_ALG_ASYNC,
  1769. .cra_blocksize = SHA256_BLOCK_SIZE,
  1770. .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
  1771. .cra_alignmask = 0,
  1772. .cra_module = THIS_MODULE,
  1773. .cra_init = atmel_sha_hmac_cra_init,
  1774. .cra_exit = atmel_sha_hmac_cra_exit,
  1775. }
  1776. }
  1777. },
  1778. {
  1779. .init = atmel_sha_hmac_init,
  1780. .update = atmel_sha_update,
  1781. .final = atmel_sha_final,
  1782. .digest = atmel_sha_hmac_digest,
  1783. .setkey = atmel_sha_hmac_setkey,
  1784. .export = atmel_sha_export,
  1785. .import = atmel_sha_import,
  1786. .halg = {
  1787. .digestsize = SHA384_DIGEST_SIZE,
  1788. .statesize = sizeof(struct atmel_sha_reqctx),
  1789. .base = {
  1790. .cra_name = "hmac(sha384)",
  1791. .cra_driver_name = "atmel-hmac-sha384",
  1792. .cra_priority = 100,
  1793. .cra_flags = CRYPTO_ALG_ASYNC,
  1794. .cra_blocksize = SHA384_BLOCK_SIZE,
  1795. .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
  1796. .cra_alignmask = 0,
  1797. .cra_module = THIS_MODULE,
  1798. .cra_init = atmel_sha_hmac_cra_init,
  1799. .cra_exit = atmel_sha_hmac_cra_exit,
  1800. }
  1801. }
  1802. },
  1803. {
  1804. .init = atmel_sha_hmac_init,
  1805. .update = atmel_sha_update,
  1806. .final = atmel_sha_final,
  1807. .digest = atmel_sha_hmac_digest,
  1808. .setkey = atmel_sha_hmac_setkey,
  1809. .export = atmel_sha_export,
  1810. .import = atmel_sha_import,
  1811. .halg = {
  1812. .digestsize = SHA512_DIGEST_SIZE,
  1813. .statesize = sizeof(struct atmel_sha_reqctx),
  1814. .base = {
  1815. .cra_name = "hmac(sha512)",
  1816. .cra_driver_name = "atmel-hmac-sha512",
  1817. .cra_priority = 100,
  1818. .cra_flags = CRYPTO_ALG_ASYNC,
  1819. .cra_blocksize = SHA512_BLOCK_SIZE,
  1820. .cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx),
  1821. .cra_alignmask = 0,
  1822. .cra_module = THIS_MODULE,
  1823. .cra_init = atmel_sha_hmac_cra_init,
  1824. .cra_exit = atmel_sha_hmac_cra_exit,
  1825. }
  1826. }
  1827. },
  1828. };
  1829. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  1830. /* authenc functions */
  1831. static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
  1832. static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
  1833. static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
  1834. struct atmel_sha_authenc_ctx {
  1835. struct crypto_ahash *tfm;
  1836. };
  1837. struct atmel_sha_authenc_reqctx {
  1838. struct atmel_sha_reqctx base;
  1839. atmel_aes_authenc_fn_t cb;
  1840. struct atmel_aes_dev *aes_dev;
  1841. /* _init() parameters. */
  1842. struct scatterlist *assoc;
  1843. u32 assoclen;
  1844. u32 textlen;
  1845. /* _final() parameters. */
  1846. u32 *digest;
  1847. unsigned int digestlen;
  1848. };
  1849. static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
  1850. int err)
  1851. {
  1852. struct ahash_request *req = areq->data;
  1853. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  1854. authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
  1855. }
  1856. static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
  1857. {
  1858. struct ahash_request *req = dd->req;
  1859. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  1860. int err;
  1861. /*
  1862. * Force atmel_sha_complete() to call req->base.complete(), ie
  1863. * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
  1864. */
  1865. dd->force_complete = true;
  1866. err = atmel_sha_hw_init(dd);
  1867. return authctx->cb(authctx->aes_dev, err, dd->is_async);
  1868. }
  1869. bool atmel_sha_authenc_is_ready(void)
  1870. {
  1871. struct atmel_sha_ctx dummy;
  1872. dummy.dd = NULL;
  1873. return (atmel_sha_find_dev(&dummy) != NULL);
  1874. }
  1875. EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
  1876. unsigned int atmel_sha_authenc_get_reqsize(void)
  1877. {
  1878. return sizeof(struct atmel_sha_authenc_reqctx);
  1879. }
  1880. EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
  1881. struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
  1882. {
  1883. struct atmel_sha_authenc_ctx *auth;
  1884. struct crypto_ahash *tfm;
  1885. struct atmel_sha_ctx *tctx;
  1886. const char *name;
  1887. int err = -EINVAL;
  1888. switch (mode & SHA_FLAGS_MODE_MASK) {
  1889. case SHA_FLAGS_HMAC_SHA1:
  1890. name = "atmel-hmac-sha1";
  1891. break;
  1892. case SHA_FLAGS_HMAC_SHA224:
  1893. name = "atmel-hmac-sha224";
  1894. break;
  1895. case SHA_FLAGS_HMAC_SHA256:
  1896. name = "atmel-hmac-sha256";
  1897. break;
  1898. case SHA_FLAGS_HMAC_SHA384:
  1899. name = "atmel-hmac-sha384";
  1900. break;
  1901. case SHA_FLAGS_HMAC_SHA512:
  1902. name = "atmel-hmac-sha512";
  1903. break;
  1904. default:
  1905. goto error;
  1906. }
  1907. tfm = crypto_alloc_ahash(name, 0, 0);
  1908. if (IS_ERR(tfm)) {
  1909. err = PTR_ERR(tfm);
  1910. goto error;
  1911. }
  1912. tctx = crypto_ahash_ctx(tfm);
  1913. tctx->start = atmel_sha_authenc_start;
  1914. tctx->flags = mode;
  1915. auth = kzalloc(sizeof(*auth), GFP_KERNEL);
  1916. if (!auth) {
  1917. err = -ENOMEM;
  1918. goto err_free_ahash;
  1919. }
  1920. auth->tfm = tfm;
  1921. return auth;
  1922. err_free_ahash:
  1923. crypto_free_ahash(tfm);
  1924. error:
  1925. return ERR_PTR(err);
  1926. }
  1927. EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
  1928. void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
  1929. {
  1930. if (auth)
  1931. crypto_free_ahash(auth->tfm);
  1932. kfree(auth);
  1933. }
  1934. EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
  1935. int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
  1936. const u8 *key, unsigned int keylen,
  1937. u32 *flags)
  1938. {
  1939. struct crypto_ahash *tfm = auth->tfm;
  1940. int err;
  1941. crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
  1942. crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
  1943. err = crypto_ahash_setkey(tfm, key, keylen);
  1944. *flags = crypto_ahash_get_flags(tfm);
  1945. return err;
  1946. }
  1947. EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
  1948. int atmel_sha_authenc_schedule(struct ahash_request *req,
  1949. struct atmel_sha_authenc_ctx *auth,
  1950. atmel_aes_authenc_fn_t cb,
  1951. struct atmel_aes_dev *aes_dev)
  1952. {
  1953. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  1954. struct atmel_sha_reqctx *ctx = &authctx->base;
  1955. struct crypto_ahash *tfm = auth->tfm;
  1956. struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  1957. struct atmel_sha_dev *dd;
  1958. /* Reset request context (MUST be done first). */
  1959. memset(authctx, 0, sizeof(*authctx));
  1960. /* Get SHA device. */
  1961. dd = atmel_sha_find_dev(tctx);
  1962. if (!dd)
  1963. return cb(aes_dev, -ENODEV, false);
  1964. /* Init request context. */
  1965. ctx->dd = dd;
  1966. ctx->buflen = SHA_BUFFER_LEN;
  1967. authctx->cb = cb;
  1968. authctx->aes_dev = aes_dev;
  1969. ahash_request_set_tfm(req, tfm);
  1970. ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
  1971. return atmel_sha_handle_queue(dd, req);
  1972. }
  1973. EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
  1974. int atmel_sha_authenc_init(struct ahash_request *req,
  1975. struct scatterlist *assoc, unsigned int assoclen,
  1976. unsigned int textlen,
  1977. atmel_aes_authenc_fn_t cb,
  1978. struct atmel_aes_dev *aes_dev)
  1979. {
  1980. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  1981. struct atmel_sha_reqctx *ctx = &authctx->base;
  1982. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1983. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  1984. struct atmel_sha_dev *dd = ctx->dd;
  1985. if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
  1986. return atmel_sha_complete(dd, -EINVAL);
  1987. authctx->cb = cb;
  1988. authctx->aes_dev = aes_dev;
  1989. authctx->assoc = assoc;
  1990. authctx->assoclen = assoclen;
  1991. authctx->textlen = textlen;
  1992. ctx->flags = hmac->base.flags;
  1993. return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
  1994. }
  1995. EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
  1996. static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
  1997. {
  1998. struct ahash_request *req = dd->req;
  1999. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  2000. struct atmel_sha_reqctx *ctx = &authctx->base;
  2001. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  2002. struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
  2003. size_t hs = ctx->hash_size;
  2004. size_t i, num_words = hs / sizeof(u32);
  2005. u32 mr, msg_size;
  2006. atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
  2007. for (i = 0; i < num_words; ++i)
  2008. atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
  2009. atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
  2010. for (i = 0; i < num_words; ++i)
  2011. atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
  2012. mr = (SHA_MR_MODE_IDATAR0 |
  2013. SHA_MR_HMAC |
  2014. SHA_MR_DUALBUFF);
  2015. mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
  2016. atmel_sha_write(dd, SHA_MR, mr);
  2017. msg_size = authctx->assoclen + authctx->textlen;
  2018. atmel_sha_write(dd, SHA_MSR, msg_size);
  2019. atmel_sha_write(dd, SHA_BCR, msg_size);
  2020. atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
  2021. /* Process assoc data. */
  2022. return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
  2023. true, false,
  2024. atmel_sha_authenc_init_done);
  2025. }
  2026. static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
  2027. {
  2028. struct ahash_request *req = dd->req;
  2029. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  2030. return authctx->cb(authctx->aes_dev, 0, dd->is_async);
  2031. }
  2032. int atmel_sha_authenc_final(struct ahash_request *req,
  2033. u32 *digest, unsigned int digestlen,
  2034. atmel_aes_authenc_fn_t cb,
  2035. struct atmel_aes_dev *aes_dev)
  2036. {
  2037. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  2038. struct atmel_sha_reqctx *ctx = &authctx->base;
  2039. struct atmel_sha_dev *dd = ctx->dd;
  2040. switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
  2041. case SHA_FLAGS_SHA1:
  2042. authctx->digestlen = SHA1_DIGEST_SIZE;
  2043. break;
  2044. case SHA_FLAGS_SHA224:
  2045. authctx->digestlen = SHA224_DIGEST_SIZE;
  2046. break;
  2047. case SHA_FLAGS_SHA256:
  2048. authctx->digestlen = SHA256_DIGEST_SIZE;
  2049. break;
  2050. case SHA_FLAGS_SHA384:
  2051. authctx->digestlen = SHA384_DIGEST_SIZE;
  2052. break;
  2053. case SHA_FLAGS_SHA512:
  2054. authctx->digestlen = SHA512_DIGEST_SIZE;
  2055. break;
  2056. default:
  2057. return atmel_sha_complete(dd, -EINVAL);
  2058. }
  2059. if (authctx->digestlen > digestlen)
  2060. authctx->digestlen = digestlen;
  2061. authctx->cb = cb;
  2062. authctx->aes_dev = aes_dev;
  2063. authctx->digest = digest;
  2064. return atmel_sha_wait_for_data_ready(dd,
  2065. atmel_sha_authenc_final_done);
  2066. }
  2067. EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
  2068. static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
  2069. {
  2070. struct ahash_request *req = dd->req;
  2071. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  2072. size_t i, num_words = authctx->digestlen / sizeof(u32);
  2073. for (i = 0; i < num_words; ++i)
  2074. authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
  2075. return atmel_sha_complete(dd, 0);
  2076. }
  2077. void atmel_sha_authenc_abort(struct ahash_request *req)
  2078. {
  2079. struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
  2080. struct atmel_sha_reqctx *ctx = &authctx->base;
  2081. struct atmel_sha_dev *dd = ctx->dd;
  2082. /* Prevent atmel_sha_complete() from calling req->base.complete(). */
  2083. dd->is_async = false;
  2084. dd->force_complete = false;
  2085. (void)atmel_sha_complete(dd, 0);
  2086. }
  2087. EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
  2088. #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
  2089. static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
  2090. {
  2091. int i;
  2092. if (dd->caps.has_hmac)
  2093. for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
  2094. crypto_unregister_ahash(&sha_hmac_algs[i]);
  2095. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
  2096. crypto_unregister_ahash(&sha_1_256_algs[i]);
  2097. if (dd->caps.has_sha224)
  2098. crypto_unregister_ahash(&sha_224_alg);
  2099. if (dd->caps.has_sha_384_512) {
  2100. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
  2101. crypto_unregister_ahash(&sha_384_512_algs[i]);
  2102. }
  2103. }
  2104. static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
  2105. {
  2106. int err, i, j;
  2107. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
  2108. err = crypto_register_ahash(&sha_1_256_algs[i]);
  2109. if (err)
  2110. goto err_sha_1_256_algs;
  2111. }
  2112. if (dd->caps.has_sha224) {
  2113. err = crypto_register_ahash(&sha_224_alg);
  2114. if (err)
  2115. goto err_sha_224_algs;
  2116. }
  2117. if (dd->caps.has_sha_384_512) {
  2118. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
  2119. err = crypto_register_ahash(&sha_384_512_algs[i]);
  2120. if (err)
  2121. goto err_sha_384_512_algs;
  2122. }
  2123. }
  2124. if (dd->caps.has_hmac) {
  2125. for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
  2126. err = crypto_register_ahash(&sha_hmac_algs[i]);
  2127. if (err)
  2128. goto err_sha_hmac_algs;
  2129. }
  2130. }
  2131. return 0;
  2132. /*i = ARRAY_SIZE(sha_hmac_algs);*/
  2133. err_sha_hmac_algs:
  2134. for (j = 0; j < i; j++)
  2135. crypto_unregister_ahash(&sha_hmac_algs[j]);
  2136. i = ARRAY_SIZE(sha_384_512_algs);
  2137. err_sha_384_512_algs:
  2138. for (j = 0; j < i; j++)
  2139. crypto_unregister_ahash(&sha_384_512_algs[j]);
  2140. crypto_unregister_ahash(&sha_224_alg);
  2141. err_sha_224_algs:
  2142. i = ARRAY_SIZE(sha_1_256_algs);
  2143. err_sha_1_256_algs:
  2144. for (j = 0; j < i; j++)
  2145. crypto_unregister_ahash(&sha_1_256_algs[j]);
  2146. return err;
  2147. }
  2148. static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
  2149. {
  2150. struct at_dma_slave *sl = slave;
  2151. if (sl && sl->dma_dev == chan->device->dev) {
  2152. chan->private = sl;
  2153. return true;
  2154. } else {
  2155. return false;
  2156. }
  2157. }
  2158. static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
  2159. struct crypto_platform_data *pdata)
  2160. {
  2161. dma_cap_mask_t mask_in;
  2162. /* Try to grab DMA channel */
  2163. dma_cap_zero(mask_in);
  2164. dma_cap_set(DMA_SLAVE, mask_in);
  2165. dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
  2166. atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
  2167. if (!dd->dma_lch_in.chan) {
  2168. dev_warn(dd->dev, "no DMA channel available\n");
  2169. return -ENODEV;
  2170. }
  2171. dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
  2172. dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
  2173. SHA_REG_DIN(0);
  2174. dd->dma_lch_in.dma_conf.src_maxburst = 1;
  2175. dd->dma_lch_in.dma_conf.src_addr_width =
  2176. DMA_SLAVE_BUSWIDTH_4_BYTES;
  2177. dd->dma_lch_in.dma_conf.dst_maxburst = 1;
  2178. dd->dma_lch_in.dma_conf.dst_addr_width =
  2179. DMA_SLAVE_BUSWIDTH_4_BYTES;
  2180. dd->dma_lch_in.dma_conf.device_fc = false;
  2181. return 0;
  2182. }
  2183. static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
  2184. {
  2185. dma_release_channel(dd->dma_lch_in.chan);
  2186. }
  2187. static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
  2188. {
  2189. dd->caps.has_dma = 0;
  2190. dd->caps.has_dualbuff = 0;
  2191. dd->caps.has_sha224 = 0;
  2192. dd->caps.has_sha_384_512 = 0;
  2193. dd->caps.has_uihv = 0;
  2194. dd->caps.has_hmac = 0;
  2195. /* keep only major version number */
  2196. switch (dd->hw_version & 0xff0) {
  2197. case 0x510:
  2198. dd->caps.has_dma = 1;
  2199. dd->caps.has_dualbuff = 1;
  2200. dd->caps.has_sha224 = 1;
  2201. dd->caps.has_sha_384_512 = 1;
  2202. dd->caps.has_uihv = 1;
  2203. dd->caps.has_hmac = 1;
  2204. break;
  2205. case 0x420:
  2206. dd->caps.has_dma = 1;
  2207. dd->caps.has_dualbuff = 1;
  2208. dd->caps.has_sha224 = 1;
  2209. dd->caps.has_sha_384_512 = 1;
  2210. dd->caps.has_uihv = 1;
  2211. break;
  2212. case 0x410:
  2213. dd->caps.has_dma = 1;
  2214. dd->caps.has_dualbuff = 1;
  2215. dd->caps.has_sha224 = 1;
  2216. dd->caps.has_sha_384_512 = 1;
  2217. break;
  2218. case 0x400:
  2219. dd->caps.has_dma = 1;
  2220. dd->caps.has_dualbuff = 1;
  2221. dd->caps.has_sha224 = 1;
  2222. break;
  2223. case 0x320:
  2224. break;
  2225. default:
  2226. dev_warn(dd->dev,
  2227. "Unmanaged sha version, set minimum capabilities\n");
  2228. break;
  2229. }
  2230. }
  2231. #if defined(CONFIG_OF)
  2232. static const struct of_device_id atmel_sha_dt_ids[] = {
  2233. { .compatible = "atmel,at91sam9g46-sha" },
  2234. { /* sentinel */ }
  2235. };
  2236. MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
  2237. static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
  2238. {
  2239. struct device_node *np = pdev->dev.of_node;
  2240. struct crypto_platform_data *pdata;
  2241. if (!np) {
  2242. dev_err(&pdev->dev, "device node not found\n");
  2243. return ERR_PTR(-EINVAL);
  2244. }
  2245. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  2246. if (!pdata)
  2247. return ERR_PTR(-ENOMEM);
  2248. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  2249. sizeof(*(pdata->dma_slave)),
  2250. GFP_KERNEL);
  2251. if (!pdata->dma_slave)
  2252. return ERR_PTR(-ENOMEM);
  2253. return pdata;
  2254. }
  2255. #else /* CONFIG_OF */
  2256. static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
  2257. {
  2258. return ERR_PTR(-EINVAL);
  2259. }
  2260. #endif
  2261. static int atmel_sha_probe(struct platform_device *pdev)
  2262. {
  2263. struct atmel_sha_dev *sha_dd;
  2264. struct crypto_platform_data *pdata;
  2265. struct device *dev = &pdev->dev;
  2266. struct resource *sha_res;
  2267. int err;
  2268. sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
  2269. if (sha_dd == NULL) {
  2270. err = -ENOMEM;
  2271. goto sha_dd_err;
  2272. }
  2273. sha_dd->dev = dev;
  2274. platform_set_drvdata(pdev, sha_dd);
  2275. INIT_LIST_HEAD(&sha_dd->list);
  2276. spin_lock_init(&sha_dd->lock);
  2277. tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
  2278. (unsigned long)sha_dd);
  2279. tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
  2280. (unsigned long)sha_dd);
  2281. crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
  2282. /* Get the base address */
  2283. sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2284. if (!sha_res) {
  2285. dev_err(dev, "no MEM resource info\n");
  2286. err = -ENODEV;
  2287. goto res_err;
  2288. }
  2289. sha_dd->phys_base = sha_res->start;
  2290. /* Get the IRQ */
  2291. sha_dd->irq = platform_get_irq(pdev, 0);
  2292. if (sha_dd->irq < 0) {
  2293. dev_err(dev, "no IRQ resource info\n");
  2294. err = sha_dd->irq;
  2295. goto res_err;
  2296. }
  2297. err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
  2298. IRQF_SHARED, "atmel-sha", sha_dd);
  2299. if (err) {
  2300. dev_err(dev, "unable to request sha irq.\n");
  2301. goto res_err;
  2302. }
  2303. /* Initializing the clock */
  2304. sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
  2305. if (IS_ERR(sha_dd->iclk)) {
  2306. dev_err(dev, "clock initialization failed.\n");
  2307. err = PTR_ERR(sha_dd->iclk);
  2308. goto res_err;
  2309. }
  2310. sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
  2311. if (IS_ERR(sha_dd->io_base)) {
  2312. dev_err(dev, "can't ioremap\n");
  2313. err = PTR_ERR(sha_dd->io_base);
  2314. goto res_err;
  2315. }
  2316. err = clk_prepare(sha_dd->iclk);
  2317. if (err)
  2318. goto res_err;
  2319. atmel_sha_hw_version_init(sha_dd);
  2320. atmel_sha_get_cap(sha_dd);
  2321. if (sha_dd->caps.has_dma) {
  2322. pdata = pdev->dev.platform_data;
  2323. if (!pdata) {
  2324. pdata = atmel_sha_of_init(pdev);
  2325. if (IS_ERR(pdata)) {
  2326. dev_err(&pdev->dev, "platform data not available\n");
  2327. err = PTR_ERR(pdata);
  2328. goto iclk_unprepare;
  2329. }
  2330. }
  2331. if (!pdata->dma_slave) {
  2332. err = -ENXIO;
  2333. goto iclk_unprepare;
  2334. }
  2335. err = atmel_sha_dma_init(sha_dd, pdata);
  2336. if (err)
  2337. goto err_sha_dma;
  2338. dev_info(dev, "using %s for DMA transfers\n",
  2339. dma_chan_name(sha_dd->dma_lch_in.chan));
  2340. }
  2341. spin_lock(&atmel_sha.lock);
  2342. list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
  2343. spin_unlock(&atmel_sha.lock);
  2344. err = atmel_sha_register_algs(sha_dd);
  2345. if (err)
  2346. goto err_algs;
  2347. dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
  2348. sha_dd->caps.has_sha224 ? "/SHA224" : "",
  2349. sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
  2350. return 0;
  2351. err_algs:
  2352. spin_lock(&atmel_sha.lock);
  2353. list_del(&sha_dd->list);
  2354. spin_unlock(&atmel_sha.lock);
  2355. if (sha_dd->caps.has_dma)
  2356. atmel_sha_dma_cleanup(sha_dd);
  2357. err_sha_dma:
  2358. iclk_unprepare:
  2359. clk_unprepare(sha_dd->iclk);
  2360. res_err:
  2361. tasklet_kill(&sha_dd->queue_task);
  2362. tasklet_kill(&sha_dd->done_task);
  2363. sha_dd_err:
  2364. dev_err(dev, "initialization failed.\n");
  2365. return err;
  2366. }
  2367. static int atmel_sha_remove(struct platform_device *pdev)
  2368. {
  2369. struct atmel_sha_dev *sha_dd;
  2370. sha_dd = platform_get_drvdata(pdev);
  2371. if (!sha_dd)
  2372. return -ENODEV;
  2373. spin_lock(&atmel_sha.lock);
  2374. list_del(&sha_dd->list);
  2375. spin_unlock(&atmel_sha.lock);
  2376. atmel_sha_unregister_algs(sha_dd);
  2377. tasklet_kill(&sha_dd->queue_task);
  2378. tasklet_kill(&sha_dd->done_task);
  2379. if (sha_dd->caps.has_dma)
  2380. atmel_sha_dma_cleanup(sha_dd);
  2381. clk_unprepare(sha_dd->iclk);
  2382. return 0;
  2383. }
  2384. static struct platform_driver atmel_sha_driver = {
  2385. .probe = atmel_sha_probe,
  2386. .remove = atmel_sha_remove,
  2387. .driver = {
  2388. .name = "atmel_sha",
  2389. .of_match_table = of_match_ptr(atmel_sha_dt_ids),
  2390. },
  2391. };
  2392. module_platform_driver(atmel_sha_driver);
  2393. MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
  2394. MODULE_LICENSE("GPL v2");
  2395. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");