atmel-aes.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Cryptographic API.
  4. *
  5. * Support for ATMEL AES HW acceleration.
  6. *
  7. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  8. * Author: Nicolas Royer <nicolas@eukrea.com>
  9. *
  10. * Some ideas are from omap-aes.c driver.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/io.h>
  18. #include <linux/hw_random.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/device.h>
  21. #include <linux/init.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/irq.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/of_device.h>
  28. #include <linux/delay.h>
  29. #include <linux/crypto.h>
  30. #include <crypto/scatterwalk.h>
  31. #include <crypto/algapi.h>
  32. #include <crypto/aes.h>
  33. #include <crypto/gcm.h>
  34. #include <crypto/xts.h>
  35. #include <crypto/internal/aead.h>
  36. #include <linux/platform_data/crypto-atmel.h>
  37. #include <dt-bindings/dma/at91.h>
  38. #include "atmel-aes-regs.h"
  39. #include "atmel-authenc.h"
  40. #define ATMEL_AES_PRIORITY 300
  41. #define ATMEL_AES_BUFFER_ORDER 2
  42. #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  43. #define CFB8_BLOCK_SIZE 1
  44. #define CFB16_BLOCK_SIZE 2
  45. #define CFB32_BLOCK_SIZE 4
  46. #define CFB64_BLOCK_SIZE 8
  47. #define SIZE_IN_WORDS(x) ((x) >> 2)
  48. /* AES flags */
  49. /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  50. #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
  51. #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
  52. #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  53. #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
  54. #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
  55. #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
  56. #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  57. #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  58. #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  59. #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  60. #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  61. #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
  62. #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
  63. #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
  64. #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
  65. AES_FLAGS_ENCRYPT | \
  66. AES_FLAGS_GTAGEN)
  67. #define AES_FLAGS_BUSY BIT(3)
  68. #define AES_FLAGS_DUMP_REG BIT(4)
  69. #define AES_FLAGS_OWN_SHA BIT(5)
  70. #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
  71. #define ATMEL_AES_QUEUE_LENGTH 50
  72. #define ATMEL_AES_DMA_THRESHOLD 256
  73. struct atmel_aes_caps {
  74. bool has_dualbuff;
  75. bool has_cfb64;
  76. bool has_ctr32;
  77. bool has_gcm;
  78. bool has_xts;
  79. bool has_authenc;
  80. u32 max_burst_size;
  81. };
  82. struct atmel_aes_dev;
  83. typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  84. struct atmel_aes_base_ctx {
  85. struct atmel_aes_dev *dd;
  86. atmel_aes_fn_t start;
  87. int keylen;
  88. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  89. u16 block_size;
  90. bool is_aead;
  91. };
  92. struct atmel_aes_ctx {
  93. struct atmel_aes_base_ctx base;
  94. };
  95. struct atmel_aes_ctr_ctx {
  96. struct atmel_aes_base_ctx base;
  97. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  98. size_t offset;
  99. struct scatterlist src[2];
  100. struct scatterlist dst[2];
  101. };
  102. struct atmel_aes_gcm_ctx {
  103. struct atmel_aes_base_ctx base;
  104. struct scatterlist src[2];
  105. struct scatterlist dst[2];
  106. u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
  107. u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
  108. u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
  109. size_t textlen;
  110. const u32 *ghash_in;
  111. u32 *ghash_out;
  112. atmel_aes_fn_t ghash_resume;
  113. };
  114. struct atmel_aes_xts_ctx {
  115. struct atmel_aes_base_ctx base;
  116. u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
  117. };
  118. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  119. struct atmel_aes_authenc_ctx {
  120. struct atmel_aes_base_ctx base;
  121. struct atmel_sha_authenc_ctx *auth;
  122. };
  123. #endif
  124. struct atmel_aes_reqctx {
  125. unsigned long mode;
  126. u32 lastc[AES_BLOCK_SIZE / sizeof(u32)];
  127. };
  128. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  129. struct atmel_aes_authenc_reqctx {
  130. struct atmel_aes_reqctx base;
  131. struct scatterlist src[2];
  132. struct scatterlist dst[2];
  133. size_t textlen;
  134. u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
  135. /* auth_req MUST be place last. */
  136. struct ahash_request auth_req;
  137. };
  138. #endif
  139. struct atmel_aes_dma {
  140. struct dma_chan *chan;
  141. struct scatterlist *sg;
  142. int nents;
  143. unsigned int remainder;
  144. unsigned int sg_len;
  145. };
  146. struct atmel_aes_dev {
  147. struct list_head list;
  148. unsigned long phys_base;
  149. void __iomem *io_base;
  150. struct crypto_async_request *areq;
  151. struct atmel_aes_base_ctx *ctx;
  152. bool is_async;
  153. atmel_aes_fn_t resume;
  154. atmel_aes_fn_t cpu_transfer_complete;
  155. struct device *dev;
  156. struct clk *iclk;
  157. int irq;
  158. unsigned long flags;
  159. spinlock_t lock;
  160. struct crypto_queue queue;
  161. struct tasklet_struct done_task;
  162. struct tasklet_struct queue_task;
  163. size_t total;
  164. size_t datalen;
  165. u32 *data;
  166. struct atmel_aes_dma src;
  167. struct atmel_aes_dma dst;
  168. size_t buflen;
  169. void *buf;
  170. struct scatterlist aligned_sg;
  171. struct scatterlist *real_dst;
  172. struct atmel_aes_caps caps;
  173. u32 hw_version;
  174. };
  175. struct atmel_aes_drv {
  176. struct list_head dev_list;
  177. spinlock_t lock;
  178. };
  179. static struct atmel_aes_drv atmel_aes = {
  180. .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
  181. .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
  182. };
  183. #ifdef VERBOSE_DEBUG
  184. static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
  185. {
  186. switch (offset) {
  187. case AES_CR:
  188. return "CR";
  189. case AES_MR:
  190. return "MR";
  191. case AES_ISR:
  192. return "ISR";
  193. case AES_IMR:
  194. return "IMR";
  195. case AES_IER:
  196. return "IER";
  197. case AES_IDR:
  198. return "IDR";
  199. case AES_KEYWR(0):
  200. case AES_KEYWR(1):
  201. case AES_KEYWR(2):
  202. case AES_KEYWR(3):
  203. case AES_KEYWR(4):
  204. case AES_KEYWR(5):
  205. case AES_KEYWR(6):
  206. case AES_KEYWR(7):
  207. snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
  208. break;
  209. case AES_IDATAR(0):
  210. case AES_IDATAR(1):
  211. case AES_IDATAR(2):
  212. case AES_IDATAR(3):
  213. snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
  214. break;
  215. case AES_ODATAR(0):
  216. case AES_ODATAR(1):
  217. case AES_ODATAR(2):
  218. case AES_ODATAR(3):
  219. snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
  220. break;
  221. case AES_IVR(0):
  222. case AES_IVR(1):
  223. case AES_IVR(2):
  224. case AES_IVR(3):
  225. snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
  226. break;
  227. case AES_AADLENR:
  228. return "AADLENR";
  229. case AES_CLENR:
  230. return "CLENR";
  231. case AES_GHASHR(0):
  232. case AES_GHASHR(1):
  233. case AES_GHASHR(2):
  234. case AES_GHASHR(3):
  235. snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
  236. break;
  237. case AES_TAGR(0):
  238. case AES_TAGR(1):
  239. case AES_TAGR(2):
  240. case AES_TAGR(3):
  241. snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
  242. break;
  243. case AES_CTRR:
  244. return "CTRR";
  245. case AES_GCMHR(0):
  246. case AES_GCMHR(1):
  247. case AES_GCMHR(2):
  248. case AES_GCMHR(3):
  249. snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
  250. break;
  251. case AES_EMR:
  252. return "EMR";
  253. case AES_TWR(0):
  254. case AES_TWR(1):
  255. case AES_TWR(2):
  256. case AES_TWR(3):
  257. snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
  258. break;
  259. case AES_ALPHAR(0):
  260. case AES_ALPHAR(1):
  261. case AES_ALPHAR(2):
  262. case AES_ALPHAR(3):
  263. snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
  264. break;
  265. default:
  266. snprintf(tmp, sz, "0x%02x", offset);
  267. break;
  268. }
  269. return tmp;
  270. }
  271. #endif /* VERBOSE_DEBUG */
  272. /* Shared functions */
  273. static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
  274. {
  275. u32 value = readl_relaxed(dd->io_base + offset);
  276. #ifdef VERBOSE_DEBUG
  277. if (dd->flags & AES_FLAGS_DUMP_REG) {
  278. char tmp[16];
  279. dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
  280. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  281. }
  282. #endif /* VERBOSE_DEBUG */
  283. return value;
  284. }
  285. static inline void atmel_aes_write(struct atmel_aes_dev *dd,
  286. u32 offset, u32 value)
  287. {
  288. #ifdef VERBOSE_DEBUG
  289. if (dd->flags & AES_FLAGS_DUMP_REG) {
  290. char tmp[16];
  291. dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
  292. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  293. }
  294. #endif /* VERBOSE_DEBUG */
  295. writel_relaxed(value, dd->io_base + offset);
  296. }
  297. static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
  298. u32 *value, int count)
  299. {
  300. for (; count--; value++, offset += 4)
  301. *value = atmel_aes_read(dd, offset);
  302. }
  303. static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
  304. const u32 *value, int count)
  305. {
  306. for (; count--; value++, offset += 4)
  307. atmel_aes_write(dd, offset, *value);
  308. }
  309. static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
  310. u32 *value)
  311. {
  312. atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  313. }
  314. static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
  315. const u32 *value)
  316. {
  317. atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  318. }
  319. static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
  320. atmel_aes_fn_t resume)
  321. {
  322. u32 isr = atmel_aes_read(dd, AES_ISR);
  323. if (unlikely(isr & AES_INT_DATARDY))
  324. return resume(dd);
  325. dd->resume = resume;
  326. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  327. return -EINPROGRESS;
  328. }
  329. static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
  330. {
  331. len &= block_size - 1;
  332. return len ? block_size - len : 0;
  333. }
  334. static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
  335. {
  336. struct atmel_aes_dev *aes_dd = NULL;
  337. struct atmel_aes_dev *tmp;
  338. spin_lock_bh(&atmel_aes.lock);
  339. if (!ctx->dd) {
  340. list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
  341. aes_dd = tmp;
  342. break;
  343. }
  344. ctx->dd = aes_dd;
  345. } else {
  346. aes_dd = ctx->dd;
  347. }
  348. spin_unlock_bh(&atmel_aes.lock);
  349. return aes_dd;
  350. }
  351. static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
  352. {
  353. int err;
  354. err = clk_enable(dd->iclk);
  355. if (err)
  356. return err;
  357. atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
  358. atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
  359. return 0;
  360. }
  361. static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
  362. {
  363. return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
  364. }
  365. static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
  366. {
  367. int err;
  368. err = atmel_aes_hw_init(dd);
  369. if (err)
  370. return err;
  371. dd->hw_version = atmel_aes_get_version(dd);
  372. dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
  373. clk_disable(dd->iclk);
  374. return 0;
  375. }
  376. static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
  377. const struct atmel_aes_reqctx *rctx)
  378. {
  379. /* Clear all but persistent flags and set request flags. */
  380. dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
  381. }
  382. static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
  383. {
  384. return (dd->flags & AES_FLAGS_ENCRYPT);
  385. }
  386. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  387. static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
  388. #endif
  389. static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
  390. {
  391. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  392. if (dd->ctx->is_aead)
  393. atmel_aes_authenc_complete(dd, err);
  394. #endif
  395. clk_disable(dd->iclk);
  396. dd->flags &= ~AES_FLAGS_BUSY;
  397. if (!dd->ctx->is_aead) {
  398. struct ablkcipher_request *req =
  399. ablkcipher_request_cast(dd->areq);
  400. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  401. struct crypto_ablkcipher *ablkcipher =
  402. crypto_ablkcipher_reqtfm(req);
  403. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  404. if (rctx->mode & AES_FLAGS_ENCRYPT) {
  405. scatterwalk_map_and_copy(req->info, req->dst,
  406. req->nbytes - ivsize, ivsize, 0);
  407. } else {
  408. if (req->src == req->dst) {
  409. memcpy(req->info, rctx->lastc, ivsize);
  410. } else {
  411. scatterwalk_map_and_copy(req->info, req->src,
  412. req->nbytes - ivsize, ivsize, 0);
  413. }
  414. }
  415. }
  416. if (dd->is_async)
  417. dd->areq->complete(dd->areq, err);
  418. tasklet_schedule(&dd->queue_task);
  419. return err;
  420. }
  421. static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
  422. const u32 *iv, const u32 *key, int keylen)
  423. {
  424. u32 valmr = 0;
  425. /* MR register must be set before IV registers */
  426. if (keylen == AES_KEYSIZE_128)
  427. valmr |= AES_MR_KEYSIZE_128;
  428. else if (keylen == AES_KEYSIZE_192)
  429. valmr |= AES_MR_KEYSIZE_192;
  430. else
  431. valmr |= AES_MR_KEYSIZE_256;
  432. valmr |= dd->flags & AES_FLAGS_MODE_MASK;
  433. if (use_dma) {
  434. valmr |= AES_MR_SMOD_IDATAR0;
  435. if (dd->caps.has_dualbuff)
  436. valmr |= AES_MR_DUALBUFF;
  437. } else {
  438. valmr |= AES_MR_SMOD_AUTO;
  439. }
  440. atmel_aes_write(dd, AES_MR, valmr);
  441. atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
  442. if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
  443. atmel_aes_write_block(dd, AES_IVR(0), iv);
  444. }
  445. static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
  446. const u32 *iv)
  447. {
  448. atmel_aes_write_ctrl_key(dd, use_dma, iv,
  449. dd->ctx->key, dd->ctx->keylen);
  450. }
  451. /* CPU transfer */
  452. static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
  453. {
  454. int err = 0;
  455. u32 isr;
  456. for (;;) {
  457. atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
  458. dd->data += 4;
  459. dd->datalen -= AES_BLOCK_SIZE;
  460. if (dd->datalen < AES_BLOCK_SIZE)
  461. break;
  462. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  463. isr = atmel_aes_read(dd, AES_ISR);
  464. if (!(isr & AES_INT_DATARDY)) {
  465. dd->resume = atmel_aes_cpu_transfer;
  466. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  467. return -EINPROGRESS;
  468. }
  469. }
  470. if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  471. dd->buf, dd->total))
  472. err = -EINVAL;
  473. if (err)
  474. return atmel_aes_complete(dd, err);
  475. return dd->cpu_transfer_complete(dd);
  476. }
  477. static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
  478. struct scatterlist *src,
  479. struct scatterlist *dst,
  480. size_t len,
  481. atmel_aes_fn_t resume)
  482. {
  483. size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
  484. if (unlikely(len == 0))
  485. return -EINVAL;
  486. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  487. dd->total = len;
  488. dd->real_dst = dst;
  489. dd->cpu_transfer_complete = resume;
  490. dd->datalen = len + padlen;
  491. dd->data = (u32 *)dd->buf;
  492. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  493. return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
  494. }
  495. /* DMA transfer */
  496. static void atmel_aes_dma_callback(void *data);
  497. static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
  498. struct scatterlist *sg,
  499. size_t len,
  500. struct atmel_aes_dma *dma)
  501. {
  502. int nents;
  503. if (!IS_ALIGNED(len, dd->ctx->block_size))
  504. return false;
  505. for (nents = 0; sg; sg = sg_next(sg), ++nents) {
  506. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  507. return false;
  508. if (len <= sg->length) {
  509. if (!IS_ALIGNED(len, dd->ctx->block_size))
  510. return false;
  511. dma->nents = nents+1;
  512. dma->remainder = sg->length - len;
  513. sg->length = len;
  514. return true;
  515. }
  516. if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
  517. return false;
  518. len -= sg->length;
  519. }
  520. return false;
  521. }
  522. static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
  523. {
  524. struct scatterlist *sg = dma->sg;
  525. int nents = dma->nents;
  526. if (!dma->remainder)
  527. return;
  528. while (--nents > 0 && sg)
  529. sg = sg_next(sg);
  530. if (!sg)
  531. return;
  532. sg->length += dma->remainder;
  533. }
  534. static int atmel_aes_map(struct atmel_aes_dev *dd,
  535. struct scatterlist *src,
  536. struct scatterlist *dst,
  537. size_t len)
  538. {
  539. bool src_aligned, dst_aligned;
  540. size_t padlen;
  541. dd->total = len;
  542. dd->src.sg = src;
  543. dd->dst.sg = dst;
  544. dd->real_dst = dst;
  545. src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
  546. if (src == dst)
  547. dst_aligned = src_aligned;
  548. else
  549. dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
  550. if (!src_aligned || !dst_aligned) {
  551. padlen = atmel_aes_padlen(len, dd->ctx->block_size);
  552. if (dd->buflen < len + padlen)
  553. return -ENOMEM;
  554. if (!src_aligned) {
  555. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  556. dd->src.sg = &dd->aligned_sg;
  557. dd->src.nents = 1;
  558. dd->src.remainder = 0;
  559. }
  560. if (!dst_aligned) {
  561. dd->dst.sg = &dd->aligned_sg;
  562. dd->dst.nents = 1;
  563. dd->dst.remainder = 0;
  564. }
  565. sg_init_table(&dd->aligned_sg, 1);
  566. sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
  567. }
  568. if (dd->src.sg == dd->dst.sg) {
  569. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  570. DMA_BIDIRECTIONAL);
  571. dd->dst.sg_len = dd->src.sg_len;
  572. if (!dd->src.sg_len)
  573. return -EFAULT;
  574. } else {
  575. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  576. DMA_TO_DEVICE);
  577. if (!dd->src.sg_len)
  578. return -EFAULT;
  579. dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  580. DMA_FROM_DEVICE);
  581. if (!dd->dst.sg_len) {
  582. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  583. DMA_TO_DEVICE);
  584. return -EFAULT;
  585. }
  586. }
  587. return 0;
  588. }
  589. static void atmel_aes_unmap(struct atmel_aes_dev *dd)
  590. {
  591. if (dd->src.sg == dd->dst.sg) {
  592. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  593. DMA_BIDIRECTIONAL);
  594. if (dd->src.sg != &dd->aligned_sg)
  595. atmel_aes_restore_sg(&dd->src);
  596. } else {
  597. dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  598. DMA_FROM_DEVICE);
  599. if (dd->dst.sg != &dd->aligned_sg)
  600. atmel_aes_restore_sg(&dd->dst);
  601. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  602. DMA_TO_DEVICE);
  603. if (dd->src.sg != &dd->aligned_sg)
  604. atmel_aes_restore_sg(&dd->src);
  605. }
  606. if (dd->dst.sg == &dd->aligned_sg)
  607. sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  608. dd->buf, dd->total);
  609. }
  610. static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
  611. enum dma_slave_buswidth addr_width,
  612. enum dma_transfer_direction dir,
  613. u32 maxburst)
  614. {
  615. struct dma_async_tx_descriptor *desc;
  616. struct dma_slave_config config;
  617. dma_async_tx_callback callback;
  618. struct atmel_aes_dma *dma;
  619. int err;
  620. memset(&config, 0, sizeof(config));
  621. config.direction = dir;
  622. config.src_addr_width = addr_width;
  623. config.dst_addr_width = addr_width;
  624. config.src_maxburst = maxburst;
  625. config.dst_maxburst = maxburst;
  626. switch (dir) {
  627. case DMA_MEM_TO_DEV:
  628. dma = &dd->src;
  629. callback = NULL;
  630. config.dst_addr = dd->phys_base + AES_IDATAR(0);
  631. break;
  632. case DMA_DEV_TO_MEM:
  633. dma = &dd->dst;
  634. callback = atmel_aes_dma_callback;
  635. config.src_addr = dd->phys_base + AES_ODATAR(0);
  636. break;
  637. default:
  638. return -EINVAL;
  639. }
  640. err = dmaengine_slave_config(dma->chan, &config);
  641. if (err)
  642. return err;
  643. desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
  644. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  645. if (!desc)
  646. return -ENOMEM;
  647. desc->callback = callback;
  648. desc->callback_param = dd;
  649. dmaengine_submit(desc);
  650. dma_async_issue_pending(dma->chan);
  651. return 0;
  652. }
  653. static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
  654. enum dma_transfer_direction dir)
  655. {
  656. struct atmel_aes_dma *dma;
  657. switch (dir) {
  658. case DMA_MEM_TO_DEV:
  659. dma = &dd->src;
  660. break;
  661. case DMA_DEV_TO_MEM:
  662. dma = &dd->dst;
  663. break;
  664. default:
  665. return;
  666. }
  667. dmaengine_terminate_all(dma->chan);
  668. }
  669. static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
  670. struct scatterlist *src,
  671. struct scatterlist *dst,
  672. size_t len,
  673. atmel_aes_fn_t resume)
  674. {
  675. enum dma_slave_buswidth addr_width;
  676. u32 maxburst;
  677. int err;
  678. switch (dd->ctx->block_size) {
  679. case CFB8_BLOCK_SIZE:
  680. addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  681. maxburst = 1;
  682. break;
  683. case CFB16_BLOCK_SIZE:
  684. addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  685. maxburst = 1;
  686. break;
  687. case CFB32_BLOCK_SIZE:
  688. case CFB64_BLOCK_SIZE:
  689. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  690. maxburst = 1;
  691. break;
  692. case AES_BLOCK_SIZE:
  693. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  694. maxburst = dd->caps.max_burst_size;
  695. break;
  696. default:
  697. err = -EINVAL;
  698. goto exit;
  699. }
  700. err = atmel_aes_map(dd, src, dst, len);
  701. if (err)
  702. goto exit;
  703. dd->resume = resume;
  704. /* Set output DMA transfer first */
  705. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
  706. maxburst);
  707. if (err)
  708. goto unmap;
  709. /* Then set input DMA transfer */
  710. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
  711. maxburst);
  712. if (err)
  713. goto output_transfer_stop;
  714. return -EINPROGRESS;
  715. output_transfer_stop:
  716. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  717. unmap:
  718. atmel_aes_unmap(dd);
  719. exit:
  720. return atmel_aes_complete(dd, err);
  721. }
  722. static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
  723. {
  724. atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
  725. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  726. atmel_aes_unmap(dd);
  727. }
  728. static void atmel_aes_dma_callback(void *data)
  729. {
  730. struct atmel_aes_dev *dd = data;
  731. atmel_aes_dma_stop(dd);
  732. dd->is_async = true;
  733. (void)dd->resume(dd);
  734. }
  735. static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
  736. struct crypto_async_request *new_areq)
  737. {
  738. struct crypto_async_request *areq, *backlog;
  739. struct atmel_aes_base_ctx *ctx;
  740. unsigned long flags;
  741. bool start_async;
  742. int err, ret = 0;
  743. spin_lock_irqsave(&dd->lock, flags);
  744. if (new_areq)
  745. ret = crypto_enqueue_request(&dd->queue, new_areq);
  746. if (dd->flags & AES_FLAGS_BUSY) {
  747. spin_unlock_irqrestore(&dd->lock, flags);
  748. return ret;
  749. }
  750. backlog = crypto_get_backlog(&dd->queue);
  751. areq = crypto_dequeue_request(&dd->queue);
  752. if (areq)
  753. dd->flags |= AES_FLAGS_BUSY;
  754. spin_unlock_irqrestore(&dd->lock, flags);
  755. if (!areq)
  756. return ret;
  757. if (backlog)
  758. backlog->complete(backlog, -EINPROGRESS);
  759. ctx = crypto_tfm_ctx(areq->tfm);
  760. dd->areq = areq;
  761. dd->ctx = ctx;
  762. start_async = (areq != new_areq);
  763. dd->is_async = start_async;
  764. /* WARNING: ctx->start() MAY change dd->is_async. */
  765. err = ctx->start(dd);
  766. return (start_async) ? ret : err;
  767. }
  768. /* AES async block ciphers */
  769. static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
  770. {
  771. return atmel_aes_complete(dd, 0);
  772. }
  773. static int atmel_aes_start(struct atmel_aes_dev *dd)
  774. {
  775. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  776. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  777. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
  778. dd->ctx->block_size != AES_BLOCK_SIZE);
  779. int err;
  780. atmel_aes_set_mode(dd, rctx);
  781. err = atmel_aes_hw_init(dd);
  782. if (err)
  783. return atmel_aes_complete(dd, err);
  784. atmel_aes_write_ctrl(dd, use_dma, req->info);
  785. if (use_dma)
  786. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  787. atmel_aes_transfer_complete);
  788. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  789. atmel_aes_transfer_complete);
  790. }
  791. static inline struct atmel_aes_ctr_ctx *
  792. atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
  793. {
  794. return container_of(ctx, struct atmel_aes_ctr_ctx, base);
  795. }
  796. static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
  797. {
  798. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  799. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  800. struct scatterlist *src, *dst;
  801. u32 ctr, blocks;
  802. size_t datalen;
  803. bool use_dma, fragmented = false;
  804. /* Check for transfer completion. */
  805. ctx->offset += dd->total;
  806. if (ctx->offset >= req->nbytes)
  807. return atmel_aes_transfer_complete(dd);
  808. /* Compute data length. */
  809. datalen = req->nbytes - ctx->offset;
  810. blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
  811. ctr = be32_to_cpu(ctx->iv[3]);
  812. if (dd->caps.has_ctr32) {
  813. /* Check 32bit counter overflow. */
  814. u32 start = ctr;
  815. u32 end = start + blocks - 1;
  816. if (end < start) {
  817. ctr |= 0xffffffff;
  818. datalen = AES_BLOCK_SIZE * -start;
  819. fragmented = true;
  820. }
  821. } else {
  822. /* Check 16bit counter overflow. */
  823. u16 start = ctr & 0xffff;
  824. u16 end = start + (u16)blocks - 1;
  825. if (blocks >> 16 || end < start) {
  826. ctr |= 0xffff;
  827. datalen = AES_BLOCK_SIZE * (0x10000-start);
  828. fragmented = true;
  829. }
  830. }
  831. use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
  832. /* Jump to offset. */
  833. src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
  834. dst = ((req->src == req->dst) ? src :
  835. scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
  836. /* Configure hardware. */
  837. atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
  838. if (unlikely(fragmented)) {
  839. /*
  840. * Increment the counter manually to cope with the hardware
  841. * counter overflow.
  842. */
  843. ctx->iv[3] = cpu_to_be32(ctr);
  844. crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
  845. }
  846. if (use_dma)
  847. return atmel_aes_dma_start(dd, src, dst, datalen,
  848. atmel_aes_ctr_transfer);
  849. return atmel_aes_cpu_start(dd, src, dst, datalen,
  850. atmel_aes_ctr_transfer);
  851. }
  852. static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
  853. {
  854. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  855. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  856. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  857. int err;
  858. atmel_aes_set_mode(dd, rctx);
  859. err = atmel_aes_hw_init(dd);
  860. if (err)
  861. return atmel_aes_complete(dd, err);
  862. memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
  863. ctx->offset = 0;
  864. dd->total = 0;
  865. return atmel_aes_ctr_transfer(dd);
  866. }
  867. static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  868. {
  869. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  870. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
  871. struct atmel_aes_reqctx *rctx;
  872. struct atmel_aes_dev *dd;
  873. switch (mode & AES_FLAGS_OPMODE_MASK) {
  874. case AES_FLAGS_CFB8:
  875. ctx->block_size = CFB8_BLOCK_SIZE;
  876. break;
  877. case AES_FLAGS_CFB16:
  878. ctx->block_size = CFB16_BLOCK_SIZE;
  879. break;
  880. case AES_FLAGS_CFB32:
  881. ctx->block_size = CFB32_BLOCK_SIZE;
  882. break;
  883. case AES_FLAGS_CFB64:
  884. ctx->block_size = CFB64_BLOCK_SIZE;
  885. break;
  886. default:
  887. ctx->block_size = AES_BLOCK_SIZE;
  888. break;
  889. }
  890. ctx->is_aead = false;
  891. dd = atmel_aes_find_dev(ctx);
  892. if (!dd)
  893. return -ENODEV;
  894. rctx = ablkcipher_request_ctx(req);
  895. rctx->mode = mode;
  896. if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
  897. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  898. scatterwalk_map_and_copy(rctx->lastc, req->src,
  899. (req->nbytes - ivsize), ivsize, 0);
  900. }
  901. return atmel_aes_handle_queue(dd, &req->base);
  902. }
  903. static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  904. unsigned int keylen)
  905. {
  906. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  907. if (keylen != AES_KEYSIZE_128 &&
  908. keylen != AES_KEYSIZE_192 &&
  909. keylen != AES_KEYSIZE_256) {
  910. crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  911. return -EINVAL;
  912. }
  913. memcpy(ctx->key, key, keylen);
  914. ctx->keylen = keylen;
  915. return 0;
  916. }
  917. static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
  918. {
  919. return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  920. }
  921. static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
  922. {
  923. return atmel_aes_crypt(req, AES_FLAGS_ECB);
  924. }
  925. static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
  926. {
  927. return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  928. }
  929. static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
  930. {
  931. return atmel_aes_crypt(req, AES_FLAGS_CBC);
  932. }
  933. static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
  934. {
  935. return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
  936. }
  937. static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
  938. {
  939. return atmel_aes_crypt(req, AES_FLAGS_OFB);
  940. }
  941. static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
  942. {
  943. return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
  944. }
  945. static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
  946. {
  947. return atmel_aes_crypt(req, AES_FLAGS_CFB128);
  948. }
  949. static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
  950. {
  951. return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
  952. }
  953. static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
  954. {
  955. return atmel_aes_crypt(req, AES_FLAGS_CFB64);
  956. }
  957. static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
  958. {
  959. return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
  960. }
  961. static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
  962. {
  963. return atmel_aes_crypt(req, AES_FLAGS_CFB32);
  964. }
  965. static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
  966. {
  967. return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
  968. }
  969. static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
  970. {
  971. return atmel_aes_crypt(req, AES_FLAGS_CFB16);
  972. }
  973. static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
  974. {
  975. return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
  976. }
  977. static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
  978. {
  979. return atmel_aes_crypt(req, AES_FLAGS_CFB8);
  980. }
  981. static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
  982. {
  983. return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
  984. }
  985. static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
  986. {
  987. return atmel_aes_crypt(req, AES_FLAGS_CTR);
  988. }
  989. static int atmel_aes_cra_init(struct crypto_tfm *tfm)
  990. {
  991. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  992. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  993. ctx->base.start = atmel_aes_start;
  994. return 0;
  995. }
  996. static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
  997. {
  998. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  999. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  1000. ctx->base.start = atmel_aes_ctr_start;
  1001. return 0;
  1002. }
  1003. static struct crypto_alg aes_algs[] = {
  1004. {
  1005. .cra_name = "ecb(aes)",
  1006. .cra_driver_name = "atmel-ecb-aes",
  1007. .cra_priority = ATMEL_AES_PRIORITY,
  1008. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1009. .cra_blocksize = AES_BLOCK_SIZE,
  1010. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1011. .cra_alignmask = 0xf,
  1012. .cra_type = &crypto_ablkcipher_type,
  1013. .cra_module = THIS_MODULE,
  1014. .cra_init = atmel_aes_cra_init,
  1015. .cra_u.ablkcipher = {
  1016. .min_keysize = AES_MIN_KEY_SIZE,
  1017. .max_keysize = AES_MAX_KEY_SIZE,
  1018. .setkey = atmel_aes_setkey,
  1019. .encrypt = atmel_aes_ecb_encrypt,
  1020. .decrypt = atmel_aes_ecb_decrypt,
  1021. }
  1022. },
  1023. {
  1024. .cra_name = "cbc(aes)",
  1025. .cra_driver_name = "atmel-cbc-aes",
  1026. .cra_priority = ATMEL_AES_PRIORITY,
  1027. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1028. .cra_blocksize = AES_BLOCK_SIZE,
  1029. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1030. .cra_alignmask = 0xf,
  1031. .cra_type = &crypto_ablkcipher_type,
  1032. .cra_module = THIS_MODULE,
  1033. .cra_init = atmel_aes_cra_init,
  1034. .cra_u.ablkcipher = {
  1035. .min_keysize = AES_MIN_KEY_SIZE,
  1036. .max_keysize = AES_MAX_KEY_SIZE,
  1037. .ivsize = AES_BLOCK_SIZE,
  1038. .setkey = atmel_aes_setkey,
  1039. .encrypt = atmel_aes_cbc_encrypt,
  1040. .decrypt = atmel_aes_cbc_decrypt,
  1041. }
  1042. },
  1043. {
  1044. .cra_name = "ofb(aes)",
  1045. .cra_driver_name = "atmel-ofb-aes",
  1046. .cra_priority = ATMEL_AES_PRIORITY,
  1047. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1048. .cra_blocksize = AES_BLOCK_SIZE,
  1049. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1050. .cra_alignmask = 0xf,
  1051. .cra_type = &crypto_ablkcipher_type,
  1052. .cra_module = THIS_MODULE,
  1053. .cra_init = atmel_aes_cra_init,
  1054. .cra_u.ablkcipher = {
  1055. .min_keysize = AES_MIN_KEY_SIZE,
  1056. .max_keysize = AES_MAX_KEY_SIZE,
  1057. .ivsize = AES_BLOCK_SIZE,
  1058. .setkey = atmel_aes_setkey,
  1059. .encrypt = atmel_aes_ofb_encrypt,
  1060. .decrypt = atmel_aes_ofb_decrypt,
  1061. }
  1062. },
  1063. {
  1064. .cra_name = "cfb(aes)",
  1065. .cra_driver_name = "atmel-cfb-aes",
  1066. .cra_priority = ATMEL_AES_PRIORITY,
  1067. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1068. .cra_blocksize = AES_BLOCK_SIZE,
  1069. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1070. .cra_alignmask = 0xf,
  1071. .cra_type = &crypto_ablkcipher_type,
  1072. .cra_module = THIS_MODULE,
  1073. .cra_init = atmel_aes_cra_init,
  1074. .cra_u.ablkcipher = {
  1075. .min_keysize = AES_MIN_KEY_SIZE,
  1076. .max_keysize = AES_MAX_KEY_SIZE,
  1077. .ivsize = AES_BLOCK_SIZE,
  1078. .setkey = atmel_aes_setkey,
  1079. .encrypt = atmel_aes_cfb_encrypt,
  1080. .decrypt = atmel_aes_cfb_decrypt,
  1081. }
  1082. },
  1083. {
  1084. .cra_name = "cfb32(aes)",
  1085. .cra_driver_name = "atmel-cfb32-aes",
  1086. .cra_priority = ATMEL_AES_PRIORITY,
  1087. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1088. .cra_blocksize = CFB32_BLOCK_SIZE,
  1089. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1090. .cra_alignmask = 0x3,
  1091. .cra_type = &crypto_ablkcipher_type,
  1092. .cra_module = THIS_MODULE,
  1093. .cra_init = atmel_aes_cra_init,
  1094. .cra_u.ablkcipher = {
  1095. .min_keysize = AES_MIN_KEY_SIZE,
  1096. .max_keysize = AES_MAX_KEY_SIZE,
  1097. .ivsize = AES_BLOCK_SIZE,
  1098. .setkey = atmel_aes_setkey,
  1099. .encrypt = atmel_aes_cfb32_encrypt,
  1100. .decrypt = atmel_aes_cfb32_decrypt,
  1101. }
  1102. },
  1103. {
  1104. .cra_name = "cfb16(aes)",
  1105. .cra_driver_name = "atmel-cfb16-aes",
  1106. .cra_priority = ATMEL_AES_PRIORITY,
  1107. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1108. .cra_blocksize = CFB16_BLOCK_SIZE,
  1109. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1110. .cra_alignmask = 0x1,
  1111. .cra_type = &crypto_ablkcipher_type,
  1112. .cra_module = THIS_MODULE,
  1113. .cra_init = atmel_aes_cra_init,
  1114. .cra_u.ablkcipher = {
  1115. .min_keysize = AES_MIN_KEY_SIZE,
  1116. .max_keysize = AES_MAX_KEY_SIZE,
  1117. .ivsize = AES_BLOCK_SIZE,
  1118. .setkey = atmel_aes_setkey,
  1119. .encrypt = atmel_aes_cfb16_encrypt,
  1120. .decrypt = atmel_aes_cfb16_decrypt,
  1121. }
  1122. },
  1123. {
  1124. .cra_name = "cfb8(aes)",
  1125. .cra_driver_name = "atmel-cfb8-aes",
  1126. .cra_priority = ATMEL_AES_PRIORITY,
  1127. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1128. .cra_blocksize = CFB8_BLOCK_SIZE,
  1129. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1130. .cra_alignmask = 0x0,
  1131. .cra_type = &crypto_ablkcipher_type,
  1132. .cra_module = THIS_MODULE,
  1133. .cra_init = atmel_aes_cra_init,
  1134. .cra_u.ablkcipher = {
  1135. .min_keysize = AES_MIN_KEY_SIZE,
  1136. .max_keysize = AES_MAX_KEY_SIZE,
  1137. .ivsize = AES_BLOCK_SIZE,
  1138. .setkey = atmel_aes_setkey,
  1139. .encrypt = atmel_aes_cfb8_encrypt,
  1140. .decrypt = atmel_aes_cfb8_decrypt,
  1141. }
  1142. },
  1143. {
  1144. .cra_name = "ctr(aes)",
  1145. .cra_driver_name = "atmel-ctr-aes",
  1146. .cra_priority = ATMEL_AES_PRIORITY,
  1147. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1148. .cra_blocksize = 1,
  1149. .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
  1150. .cra_alignmask = 0xf,
  1151. .cra_type = &crypto_ablkcipher_type,
  1152. .cra_module = THIS_MODULE,
  1153. .cra_init = atmel_aes_ctr_cra_init,
  1154. .cra_u.ablkcipher = {
  1155. .min_keysize = AES_MIN_KEY_SIZE,
  1156. .max_keysize = AES_MAX_KEY_SIZE,
  1157. .ivsize = AES_BLOCK_SIZE,
  1158. .setkey = atmel_aes_setkey,
  1159. .encrypt = atmel_aes_ctr_encrypt,
  1160. .decrypt = atmel_aes_ctr_decrypt,
  1161. }
  1162. },
  1163. };
  1164. static struct crypto_alg aes_cfb64_alg = {
  1165. .cra_name = "cfb64(aes)",
  1166. .cra_driver_name = "atmel-cfb64-aes",
  1167. .cra_priority = ATMEL_AES_PRIORITY,
  1168. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1169. .cra_blocksize = CFB64_BLOCK_SIZE,
  1170. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1171. .cra_alignmask = 0x7,
  1172. .cra_type = &crypto_ablkcipher_type,
  1173. .cra_module = THIS_MODULE,
  1174. .cra_init = atmel_aes_cra_init,
  1175. .cra_u.ablkcipher = {
  1176. .min_keysize = AES_MIN_KEY_SIZE,
  1177. .max_keysize = AES_MAX_KEY_SIZE,
  1178. .ivsize = AES_BLOCK_SIZE,
  1179. .setkey = atmel_aes_setkey,
  1180. .encrypt = atmel_aes_cfb64_encrypt,
  1181. .decrypt = atmel_aes_cfb64_decrypt,
  1182. }
  1183. };
  1184. /* gcm aead functions */
  1185. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1186. const u32 *data, size_t datalen,
  1187. const u32 *ghash_in, u32 *ghash_out,
  1188. atmel_aes_fn_t resume);
  1189. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
  1190. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
  1191. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
  1192. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
  1193. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
  1194. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
  1195. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
  1196. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
  1197. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
  1198. static inline struct atmel_aes_gcm_ctx *
  1199. atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1200. {
  1201. return container_of(ctx, struct atmel_aes_gcm_ctx, base);
  1202. }
  1203. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1204. const u32 *data, size_t datalen,
  1205. const u32 *ghash_in, u32 *ghash_out,
  1206. atmel_aes_fn_t resume)
  1207. {
  1208. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1209. dd->data = (u32 *)data;
  1210. dd->datalen = datalen;
  1211. ctx->ghash_in = ghash_in;
  1212. ctx->ghash_out = ghash_out;
  1213. ctx->ghash_resume = resume;
  1214. atmel_aes_write_ctrl(dd, false, NULL);
  1215. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
  1216. }
  1217. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
  1218. {
  1219. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1220. /* Set the data length. */
  1221. atmel_aes_write(dd, AES_AADLENR, dd->total);
  1222. atmel_aes_write(dd, AES_CLENR, 0);
  1223. /* If needed, overwrite the GCM Intermediate Hash Word Registers */
  1224. if (ctx->ghash_in)
  1225. atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
  1226. return atmel_aes_gcm_ghash_finalize(dd);
  1227. }
  1228. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
  1229. {
  1230. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1231. u32 isr;
  1232. /* Write data into the Input Data Registers. */
  1233. while (dd->datalen > 0) {
  1234. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1235. dd->data += 4;
  1236. dd->datalen -= AES_BLOCK_SIZE;
  1237. isr = atmel_aes_read(dd, AES_ISR);
  1238. if (!(isr & AES_INT_DATARDY)) {
  1239. dd->resume = atmel_aes_gcm_ghash_finalize;
  1240. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1241. return -EINPROGRESS;
  1242. }
  1243. }
  1244. /* Read the computed hash from GHASHRx. */
  1245. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
  1246. return ctx->ghash_resume(dd);
  1247. }
  1248. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
  1249. {
  1250. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1251. struct aead_request *req = aead_request_cast(dd->areq);
  1252. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1253. struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
  1254. size_t ivsize = crypto_aead_ivsize(tfm);
  1255. size_t datalen, padlen;
  1256. const void *iv = req->iv;
  1257. u8 *data = dd->buf;
  1258. int err;
  1259. atmel_aes_set_mode(dd, rctx);
  1260. err = atmel_aes_hw_init(dd);
  1261. if (err)
  1262. return atmel_aes_complete(dd, err);
  1263. if (likely(ivsize == GCM_AES_IV_SIZE)) {
  1264. memcpy(ctx->j0, iv, ivsize);
  1265. ctx->j0[3] = cpu_to_be32(1);
  1266. return atmel_aes_gcm_process(dd);
  1267. }
  1268. padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
  1269. datalen = ivsize + padlen + AES_BLOCK_SIZE;
  1270. if (datalen > dd->buflen)
  1271. return atmel_aes_complete(dd, -EINVAL);
  1272. memcpy(data, iv, ivsize);
  1273. memset(data + ivsize, 0, padlen + sizeof(u64));
  1274. ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
  1275. return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
  1276. NULL, ctx->j0, atmel_aes_gcm_process);
  1277. }
  1278. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
  1279. {
  1280. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1281. struct aead_request *req = aead_request_cast(dd->areq);
  1282. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1283. bool enc = atmel_aes_is_encrypt(dd);
  1284. u32 authsize;
  1285. /* Compute text length. */
  1286. authsize = crypto_aead_authsize(tfm);
  1287. ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1288. /*
  1289. * According to tcrypt test suite, the GCM Automatic Tag Generation
  1290. * fails when both the message and its associated data are empty.
  1291. */
  1292. if (likely(req->assoclen != 0 || ctx->textlen != 0))
  1293. dd->flags |= AES_FLAGS_GTAGEN;
  1294. atmel_aes_write_ctrl(dd, false, NULL);
  1295. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
  1296. }
  1297. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
  1298. {
  1299. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1300. struct aead_request *req = aead_request_cast(dd->areq);
  1301. u32 j0_lsw, *j0 = ctx->j0;
  1302. size_t padlen;
  1303. /* Write incr32(J0) into IV. */
  1304. j0_lsw = j0[3];
  1305. j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
  1306. atmel_aes_write_block(dd, AES_IVR(0), j0);
  1307. j0[3] = j0_lsw;
  1308. /* Set aad and text lengths. */
  1309. atmel_aes_write(dd, AES_AADLENR, req->assoclen);
  1310. atmel_aes_write(dd, AES_CLENR, ctx->textlen);
  1311. /* Check whether AAD are present. */
  1312. if (unlikely(req->assoclen == 0)) {
  1313. dd->datalen = 0;
  1314. return atmel_aes_gcm_data(dd);
  1315. }
  1316. /* Copy assoc data and add padding. */
  1317. padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
  1318. if (unlikely(req->assoclen + padlen > dd->buflen))
  1319. return atmel_aes_complete(dd, -EINVAL);
  1320. sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
  1321. /* Write assoc data into the Input Data register. */
  1322. dd->data = (u32 *)dd->buf;
  1323. dd->datalen = req->assoclen + padlen;
  1324. return atmel_aes_gcm_data(dd);
  1325. }
  1326. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
  1327. {
  1328. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1329. struct aead_request *req = aead_request_cast(dd->areq);
  1330. bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
  1331. struct scatterlist *src, *dst;
  1332. u32 isr, mr;
  1333. /* Write AAD first. */
  1334. while (dd->datalen > 0) {
  1335. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1336. dd->data += 4;
  1337. dd->datalen -= AES_BLOCK_SIZE;
  1338. isr = atmel_aes_read(dd, AES_ISR);
  1339. if (!(isr & AES_INT_DATARDY)) {
  1340. dd->resume = atmel_aes_gcm_data;
  1341. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1342. return -EINPROGRESS;
  1343. }
  1344. }
  1345. /* GMAC only. */
  1346. if (unlikely(ctx->textlen == 0))
  1347. return atmel_aes_gcm_tag_init(dd);
  1348. /* Prepare src and dst scatter lists to transfer cipher/plain texts */
  1349. src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
  1350. dst = ((req->src == req->dst) ? src :
  1351. scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
  1352. if (use_dma) {
  1353. /* Update the Mode Register for DMA transfers. */
  1354. mr = atmel_aes_read(dd, AES_MR);
  1355. mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
  1356. mr |= AES_MR_SMOD_IDATAR0;
  1357. if (dd->caps.has_dualbuff)
  1358. mr |= AES_MR_DUALBUFF;
  1359. atmel_aes_write(dd, AES_MR, mr);
  1360. return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
  1361. atmel_aes_gcm_tag_init);
  1362. }
  1363. return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
  1364. atmel_aes_gcm_tag_init);
  1365. }
  1366. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
  1367. {
  1368. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1369. struct aead_request *req = aead_request_cast(dd->areq);
  1370. u64 *data = dd->buf;
  1371. if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
  1372. if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
  1373. dd->resume = atmel_aes_gcm_tag_init;
  1374. atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
  1375. return -EINPROGRESS;
  1376. }
  1377. return atmel_aes_gcm_finalize(dd);
  1378. }
  1379. /* Read the GCM Intermediate Hash Word Registers. */
  1380. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
  1381. data[0] = cpu_to_be64(req->assoclen * 8);
  1382. data[1] = cpu_to_be64(ctx->textlen * 8);
  1383. return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
  1384. ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
  1385. }
  1386. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
  1387. {
  1388. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1389. unsigned long flags;
  1390. /*
  1391. * Change mode to CTR to complete the tag generation.
  1392. * Use J0 as Initialization Vector.
  1393. */
  1394. flags = dd->flags;
  1395. dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
  1396. dd->flags |= AES_FLAGS_CTR;
  1397. atmel_aes_write_ctrl(dd, false, ctx->j0);
  1398. dd->flags = flags;
  1399. atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
  1400. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
  1401. }
  1402. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
  1403. {
  1404. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1405. struct aead_request *req = aead_request_cast(dd->areq);
  1406. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1407. bool enc = atmel_aes_is_encrypt(dd);
  1408. u32 offset, authsize, itag[4], *otag = ctx->tag;
  1409. int err;
  1410. /* Read the computed tag. */
  1411. if (likely(dd->flags & AES_FLAGS_GTAGEN))
  1412. atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
  1413. else
  1414. atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
  1415. offset = req->assoclen + ctx->textlen;
  1416. authsize = crypto_aead_authsize(tfm);
  1417. if (enc) {
  1418. scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
  1419. err = 0;
  1420. } else {
  1421. scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
  1422. err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
  1423. }
  1424. return atmel_aes_complete(dd, err);
  1425. }
  1426. static int atmel_aes_gcm_crypt(struct aead_request *req,
  1427. unsigned long mode)
  1428. {
  1429. struct atmel_aes_base_ctx *ctx;
  1430. struct atmel_aes_reqctx *rctx;
  1431. struct atmel_aes_dev *dd;
  1432. ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  1433. ctx->block_size = AES_BLOCK_SIZE;
  1434. ctx->is_aead = true;
  1435. dd = atmel_aes_find_dev(ctx);
  1436. if (!dd)
  1437. return -ENODEV;
  1438. rctx = aead_request_ctx(req);
  1439. rctx->mode = AES_FLAGS_GCM | mode;
  1440. return atmel_aes_handle_queue(dd, &req->base);
  1441. }
  1442. static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  1443. unsigned int keylen)
  1444. {
  1445. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1446. if (keylen != AES_KEYSIZE_256 &&
  1447. keylen != AES_KEYSIZE_192 &&
  1448. keylen != AES_KEYSIZE_128) {
  1449. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1450. return -EINVAL;
  1451. }
  1452. memcpy(ctx->key, key, keylen);
  1453. ctx->keylen = keylen;
  1454. return 0;
  1455. }
  1456. static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
  1457. unsigned int authsize)
  1458. {
  1459. /* Same as crypto_gcm_authsize() from crypto/gcm.c */
  1460. switch (authsize) {
  1461. case 4:
  1462. case 8:
  1463. case 12:
  1464. case 13:
  1465. case 14:
  1466. case 15:
  1467. case 16:
  1468. break;
  1469. default:
  1470. return -EINVAL;
  1471. }
  1472. return 0;
  1473. }
  1474. static int atmel_aes_gcm_encrypt(struct aead_request *req)
  1475. {
  1476. return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
  1477. }
  1478. static int atmel_aes_gcm_decrypt(struct aead_request *req)
  1479. {
  1480. return atmel_aes_gcm_crypt(req, 0);
  1481. }
  1482. static int atmel_aes_gcm_init(struct crypto_aead *tfm)
  1483. {
  1484. struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
  1485. crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
  1486. ctx->base.start = atmel_aes_gcm_start;
  1487. return 0;
  1488. }
  1489. static struct aead_alg aes_gcm_alg = {
  1490. .setkey = atmel_aes_gcm_setkey,
  1491. .setauthsize = atmel_aes_gcm_setauthsize,
  1492. .encrypt = atmel_aes_gcm_encrypt,
  1493. .decrypt = atmel_aes_gcm_decrypt,
  1494. .init = atmel_aes_gcm_init,
  1495. .ivsize = GCM_AES_IV_SIZE,
  1496. .maxauthsize = AES_BLOCK_SIZE,
  1497. .base = {
  1498. .cra_name = "gcm(aes)",
  1499. .cra_driver_name = "atmel-gcm-aes",
  1500. .cra_priority = ATMEL_AES_PRIORITY,
  1501. .cra_flags = CRYPTO_ALG_ASYNC,
  1502. .cra_blocksize = 1,
  1503. .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
  1504. .cra_alignmask = 0xf,
  1505. .cra_module = THIS_MODULE,
  1506. },
  1507. };
  1508. /* xts functions */
  1509. static inline struct atmel_aes_xts_ctx *
  1510. atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1511. {
  1512. return container_of(ctx, struct atmel_aes_xts_ctx, base);
  1513. }
  1514. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
  1515. static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
  1516. {
  1517. struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
  1518. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1519. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  1520. unsigned long flags;
  1521. int err;
  1522. atmel_aes_set_mode(dd, rctx);
  1523. err = atmel_aes_hw_init(dd);
  1524. if (err)
  1525. return atmel_aes_complete(dd, err);
  1526. /* Compute the tweak value from req->info with ecb(aes). */
  1527. flags = dd->flags;
  1528. dd->flags &= ~AES_FLAGS_MODE_MASK;
  1529. dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  1530. atmel_aes_write_ctrl_key(dd, false, NULL,
  1531. ctx->key2, ctx->base.keylen);
  1532. dd->flags = flags;
  1533. atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
  1534. return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
  1535. }
  1536. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
  1537. {
  1538. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1539. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
  1540. u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
  1541. static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
  1542. u8 *tweak_bytes = (u8 *)tweak;
  1543. int i;
  1544. /* Read the computed ciphered tweak value. */
  1545. atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
  1546. /*
  1547. * Hardware quirk:
  1548. * the order of the ciphered tweak bytes need to be reversed before
  1549. * writing them into the ODATARx registers.
  1550. */
  1551. for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
  1552. u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
  1553. tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
  1554. tweak_bytes[i] = tmp;
  1555. }
  1556. /* Process the data. */
  1557. atmel_aes_write_ctrl(dd, use_dma, NULL);
  1558. atmel_aes_write_block(dd, AES_TWR(0), tweak);
  1559. atmel_aes_write_block(dd, AES_ALPHAR(0), one);
  1560. if (use_dma)
  1561. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  1562. atmel_aes_transfer_complete);
  1563. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  1564. atmel_aes_transfer_complete);
  1565. }
  1566. static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  1567. unsigned int keylen)
  1568. {
  1569. struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  1570. int err;
  1571. err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
  1572. if (err)
  1573. return err;
  1574. memcpy(ctx->base.key, key, keylen/2);
  1575. memcpy(ctx->key2, key + keylen/2, keylen/2);
  1576. ctx->base.keylen = keylen/2;
  1577. return 0;
  1578. }
  1579. static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
  1580. {
  1581. return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
  1582. }
  1583. static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
  1584. {
  1585. return atmel_aes_crypt(req, AES_FLAGS_XTS);
  1586. }
  1587. static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
  1588. {
  1589. struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  1590. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  1591. ctx->base.start = atmel_aes_xts_start;
  1592. return 0;
  1593. }
  1594. static struct crypto_alg aes_xts_alg = {
  1595. .cra_name = "xts(aes)",
  1596. .cra_driver_name = "atmel-xts-aes",
  1597. .cra_priority = ATMEL_AES_PRIORITY,
  1598. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1599. .cra_blocksize = AES_BLOCK_SIZE,
  1600. .cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
  1601. .cra_alignmask = 0xf,
  1602. .cra_type = &crypto_ablkcipher_type,
  1603. .cra_module = THIS_MODULE,
  1604. .cra_init = atmel_aes_xts_cra_init,
  1605. .cra_u.ablkcipher = {
  1606. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  1607. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  1608. .ivsize = AES_BLOCK_SIZE,
  1609. .setkey = atmel_aes_xts_setkey,
  1610. .encrypt = atmel_aes_xts_encrypt,
  1611. .decrypt = atmel_aes_xts_decrypt,
  1612. }
  1613. };
  1614. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  1615. /* authenc aead functions */
  1616. static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
  1617. static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
  1618. bool is_async);
  1619. static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
  1620. bool is_async);
  1621. static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
  1622. static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
  1623. bool is_async);
  1624. static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
  1625. {
  1626. struct aead_request *req = aead_request_cast(dd->areq);
  1627. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1628. if (err && (dd->flags & AES_FLAGS_OWN_SHA))
  1629. atmel_sha_authenc_abort(&rctx->auth_req);
  1630. dd->flags &= ~AES_FLAGS_OWN_SHA;
  1631. }
  1632. static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
  1633. {
  1634. struct aead_request *req = aead_request_cast(dd->areq);
  1635. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1636. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1637. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1638. int err;
  1639. atmel_aes_set_mode(dd, &rctx->base);
  1640. err = atmel_aes_hw_init(dd);
  1641. if (err)
  1642. return atmel_aes_complete(dd, err);
  1643. return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
  1644. atmel_aes_authenc_init, dd);
  1645. }
  1646. static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
  1647. bool is_async)
  1648. {
  1649. struct aead_request *req = aead_request_cast(dd->areq);
  1650. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1651. if (is_async)
  1652. dd->is_async = true;
  1653. if (err)
  1654. return atmel_aes_complete(dd, err);
  1655. /* If here, we've got the ownership of the SHA device. */
  1656. dd->flags |= AES_FLAGS_OWN_SHA;
  1657. /* Configure the SHA device. */
  1658. return atmel_sha_authenc_init(&rctx->auth_req,
  1659. req->src, req->assoclen,
  1660. rctx->textlen,
  1661. atmel_aes_authenc_transfer, dd);
  1662. }
  1663. static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
  1664. bool is_async)
  1665. {
  1666. struct aead_request *req = aead_request_cast(dd->areq);
  1667. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1668. bool enc = atmel_aes_is_encrypt(dd);
  1669. struct scatterlist *src, *dst;
  1670. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  1671. u32 emr;
  1672. if (is_async)
  1673. dd->is_async = true;
  1674. if (err)
  1675. return atmel_aes_complete(dd, err);
  1676. /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
  1677. src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
  1678. dst = src;
  1679. if (req->src != req->dst)
  1680. dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
  1681. /* Configure the AES device. */
  1682. memcpy(iv, req->iv, sizeof(iv));
  1683. /*
  1684. * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
  1685. * 'true' even if the data transfer is actually performed by the CPU (so
  1686. * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
  1687. * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
  1688. * must be set to *_MR_SMOD_IDATAR0.
  1689. */
  1690. atmel_aes_write_ctrl(dd, true, iv);
  1691. emr = AES_EMR_PLIPEN;
  1692. if (!enc)
  1693. emr |= AES_EMR_PLIPD;
  1694. atmel_aes_write(dd, AES_EMR, emr);
  1695. /* Transfer data. */
  1696. return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
  1697. atmel_aes_authenc_digest);
  1698. }
  1699. static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
  1700. {
  1701. struct aead_request *req = aead_request_cast(dd->areq);
  1702. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1703. /* atmel_sha_authenc_final() releases the SHA device. */
  1704. dd->flags &= ~AES_FLAGS_OWN_SHA;
  1705. return atmel_sha_authenc_final(&rctx->auth_req,
  1706. rctx->digest, sizeof(rctx->digest),
  1707. atmel_aes_authenc_final, dd);
  1708. }
  1709. static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
  1710. bool is_async)
  1711. {
  1712. struct aead_request *req = aead_request_cast(dd->areq);
  1713. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1714. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1715. bool enc = atmel_aes_is_encrypt(dd);
  1716. u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
  1717. u32 offs, authsize;
  1718. if (is_async)
  1719. dd->is_async = true;
  1720. if (err)
  1721. goto complete;
  1722. offs = req->assoclen + rctx->textlen;
  1723. authsize = crypto_aead_authsize(tfm);
  1724. if (enc) {
  1725. scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
  1726. } else {
  1727. scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
  1728. if (crypto_memneq(idigest, odigest, authsize))
  1729. err = -EBADMSG;
  1730. }
  1731. complete:
  1732. return atmel_aes_complete(dd, err);
  1733. }
  1734. static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
  1735. unsigned int keylen)
  1736. {
  1737. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1738. struct crypto_authenc_keys keys;
  1739. u32 flags;
  1740. int err;
  1741. if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
  1742. goto badkey;
  1743. if (keys.enckeylen > sizeof(ctx->base.key))
  1744. goto badkey;
  1745. /* Save auth key. */
  1746. flags = crypto_aead_get_flags(tfm);
  1747. err = atmel_sha_authenc_setkey(ctx->auth,
  1748. keys.authkey, keys.authkeylen,
  1749. &flags);
  1750. crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
  1751. if (err) {
  1752. memzero_explicit(&keys, sizeof(keys));
  1753. return err;
  1754. }
  1755. /* Save enc key. */
  1756. ctx->base.keylen = keys.enckeylen;
  1757. memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
  1758. memzero_explicit(&keys, sizeof(keys));
  1759. return 0;
  1760. badkey:
  1761. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1762. memzero_explicit(&keys, sizeof(keys));
  1763. return -EINVAL;
  1764. }
  1765. static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
  1766. unsigned long auth_mode)
  1767. {
  1768. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1769. unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
  1770. ctx->auth = atmel_sha_authenc_spawn(auth_mode);
  1771. if (IS_ERR(ctx->auth))
  1772. return PTR_ERR(ctx->auth);
  1773. crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
  1774. auth_reqsize));
  1775. ctx->base.start = atmel_aes_authenc_start;
  1776. return 0;
  1777. }
  1778. static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
  1779. {
  1780. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
  1781. }
  1782. static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
  1783. {
  1784. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
  1785. }
  1786. static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
  1787. {
  1788. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
  1789. }
  1790. static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
  1791. {
  1792. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
  1793. }
  1794. static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
  1795. {
  1796. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
  1797. }
  1798. static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
  1799. {
  1800. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1801. atmel_sha_authenc_free(ctx->auth);
  1802. }
  1803. static int atmel_aes_authenc_crypt(struct aead_request *req,
  1804. unsigned long mode)
  1805. {
  1806. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1807. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1808. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1809. u32 authsize = crypto_aead_authsize(tfm);
  1810. bool enc = (mode & AES_FLAGS_ENCRYPT);
  1811. struct atmel_aes_dev *dd;
  1812. /* Compute text length. */
  1813. if (!enc && req->cryptlen < authsize)
  1814. return -EINVAL;
  1815. rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1816. /*
  1817. * Currently, empty messages are not supported yet:
  1818. * the SHA auto-padding can be used only on non-empty messages.
  1819. * Hence a special case needs to be implemented for empty message.
  1820. */
  1821. if (!rctx->textlen && !req->assoclen)
  1822. return -EINVAL;
  1823. rctx->base.mode = mode;
  1824. ctx->block_size = AES_BLOCK_SIZE;
  1825. ctx->is_aead = true;
  1826. dd = atmel_aes_find_dev(ctx);
  1827. if (!dd)
  1828. return -ENODEV;
  1829. return atmel_aes_handle_queue(dd, &req->base);
  1830. }
  1831. static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
  1832. {
  1833. return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  1834. }
  1835. static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
  1836. {
  1837. return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
  1838. }
  1839. static struct aead_alg aes_authenc_algs[] = {
  1840. {
  1841. .setkey = atmel_aes_authenc_setkey,
  1842. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1843. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1844. .init = atmel_aes_authenc_hmac_sha1_init_tfm,
  1845. .exit = atmel_aes_authenc_exit_tfm,
  1846. .ivsize = AES_BLOCK_SIZE,
  1847. .maxauthsize = SHA1_DIGEST_SIZE,
  1848. .base = {
  1849. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  1850. .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
  1851. .cra_priority = ATMEL_AES_PRIORITY,
  1852. .cra_flags = CRYPTO_ALG_ASYNC,
  1853. .cra_blocksize = AES_BLOCK_SIZE,
  1854. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1855. .cra_alignmask = 0xf,
  1856. .cra_module = THIS_MODULE,
  1857. },
  1858. },
  1859. {
  1860. .setkey = atmel_aes_authenc_setkey,
  1861. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1862. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1863. .init = atmel_aes_authenc_hmac_sha224_init_tfm,
  1864. .exit = atmel_aes_authenc_exit_tfm,
  1865. .ivsize = AES_BLOCK_SIZE,
  1866. .maxauthsize = SHA224_DIGEST_SIZE,
  1867. .base = {
  1868. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  1869. .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
  1870. .cra_priority = ATMEL_AES_PRIORITY,
  1871. .cra_flags = CRYPTO_ALG_ASYNC,
  1872. .cra_blocksize = AES_BLOCK_SIZE,
  1873. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1874. .cra_alignmask = 0xf,
  1875. .cra_module = THIS_MODULE,
  1876. },
  1877. },
  1878. {
  1879. .setkey = atmel_aes_authenc_setkey,
  1880. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1881. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1882. .init = atmel_aes_authenc_hmac_sha256_init_tfm,
  1883. .exit = atmel_aes_authenc_exit_tfm,
  1884. .ivsize = AES_BLOCK_SIZE,
  1885. .maxauthsize = SHA256_DIGEST_SIZE,
  1886. .base = {
  1887. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  1888. .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
  1889. .cra_priority = ATMEL_AES_PRIORITY,
  1890. .cra_flags = CRYPTO_ALG_ASYNC,
  1891. .cra_blocksize = AES_BLOCK_SIZE,
  1892. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1893. .cra_alignmask = 0xf,
  1894. .cra_module = THIS_MODULE,
  1895. },
  1896. },
  1897. {
  1898. .setkey = atmel_aes_authenc_setkey,
  1899. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1900. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1901. .init = atmel_aes_authenc_hmac_sha384_init_tfm,
  1902. .exit = atmel_aes_authenc_exit_tfm,
  1903. .ivsize = AES_BLOCK_SIZE,
  1904. .maxauthsize = SHA384_DIGEST_SIZE,
  1905. .base = {
  1906. .cra_name = "authenc(hmac(sha384),cbc(aes))",
  1907. .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
  1908. .cra_priority = ATMEL_AES_PRIORITY,
  1909. .cra_flags = CRYPTO_ALG_ASYNC,
  1910. .cra_blocksize = AES_BLOCK_SIZE,
  1911. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1912. .cra_alignmask = 0xf,
  1913. .cra_module = THIS_MODULE,
  1914. },
  1915. },
  1916. {
  1917. .setkey = atmel_aes_authenc_setkey,
  1918. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1919. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1920. .init = atmel_aes_authenc_hmac_sha512_init_tfm,
  1921. .exit = atmel_aes_authenc_exit_tfm,
  1922. .ivsize = AES_BLOCK_SIZE,
  1923. .maxauthsize = SHA512_DIGEST_SIZE,
  1924. .base = {
  1925. .cra_name = "authenc(hmac(sha512),cbc(aes))",
  1926. .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
  1927. .cra_priority = ATMEL_AES_PRIORITY,
  1928. .cra_flags = CRYPTO_ALG_ASYNC,
  1929. .cra_blocksize = AES_BLOCK_SIZE,
  1930. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1931. .cra_alignmask = 0xf,
  1932. .cra_module = THIS_MODULE,
  1933. },
  1934. },
  1935. };
  1936. #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
  1937. /* Probe functions */
  1938. static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
  1939. {
  1940. dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
  1941. dd->buflen = ATMEL_AES_BUFFER_SIZE;
  1942. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  1943. if (!dd->buf) {
  1944. dev_err(dd->dev, "unable to alloc pages.\n");
  1945. return -ENOMEM;
  1946. }
  1947. return 0;
  1948. }
  1949. static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
  1950. {
  1951. free_page((unsigned long)dd->buf);
  1952. }
  1953. static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
  1954. {
  1955. struct at_dma_slave *sl = slave;
  1956. if (sl && sl->dma_dev == chan->device->dev) {
  1957. chan->private = sl;
  1958. return true;
  1959. } else {
  1960. return false;
  1961. }
  1962. }
  1963. static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
  1964. struct crypto_platform_data *pdata)
  1965. {
  1966. struct at_dma_slave *slave;
  1967. dma_cap_mask_t mask;
  1968. dma_cap_zero(mask);
  1969. dma_cap_set(DMA_SLAVE, mask);
  1970. /* Try to grab 2 DMA channels */
  1971. slave = &pdata->dma_slave->rxdata;
  1972. dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1973. slave, dd->dev, "tx");
  1974. if (!dd->src.chan)
  1975. goto err_dma_in;
  1976. slave = &pdata->dma_slave->txdata;
  1977. dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1978. slave, dd->dev, "rx");
  1979. if (!dd->dst.chan)
  1980. goto err_dma_out;
  1981. return 0;
  1982. err_dma_out:
  1983. dma_release_channel(dd->src.chan);
  1984. err_dma_in:
  1985. dev_warn(dd->dev, "no DMA channel available\n");
  1986. return -ENODEV;
  1987. }
  1988. static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
  1989. {
  1990. dma_release_channel(dd->dst.chan);
  1991. dma_release_channel(dd->src.chan);
  1992. }
  1993. static void atmel_aes_queue_task(unsigned long data)
  1994. {
  1995. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  1996. atmel_aes_handle_queue(dd, NULL);
  1997. }
  1998. static void atmel_aes_done_task(unsigned long data)
  1999. {
  2000. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  2001. dd->is_async = true;
  2002. (void)dd->resume(dd);
  2003. }
  2004. static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
  2005. {
  2006. struct atmel_aes_dev *aes_dd = dev_id;
  2007. u32 reg;
  2008. reg = atmel_aes_read(aes_dd, AES_ISR);
  2009. if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
  2010. atmel_aes_write(aes_dd, AES_IDR, reg);
  2011. if (AES_FLAGS_BUSY & aes_dd->flags)
  2012. tasklet_schedule(&aes_dd->done_task);
  2013. else
  2014. dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
  2015. return IRQ_HANDLED;
  2016. }
  2017. return IRQ_NONE;
  2018. }
  2019. static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
  2020. {
  2021. int i;
  2022. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2023. if (dd->caps.has_authenc)
  2024. for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
  2025. crypto_unregister_aead(&aes_authenc_algs[i]);
  2026. #endif
  2027. if (dd->caps.has_xts)
  2028. crypto_unregister_alg(&aes_xts_alg);
  2029. if (dd->caps.has_gcm)
  2030. crypto_unregister_aead(&aes_gcm_alg);
  2031. if (dd->caps.has_cfb64)
  2032. crypto_unregister_alg(&aes_cfb64_alg);
  2033. for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
  2034. crypto_unregister_alg(&aes_algs[i]);
  2035. }
  2036. static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
  2037. {
  2038. int err, i, j;
  2039. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  2040. err = crypto_register_alg(&aes_algs[i]);
  2041. if (err)
  2042. goto err_aes_algs;
  2043. }
  2044. if (dd->caps.has_cfb64) {
  2045. err = crypto_register_alg(&aes_cfb64_alg);
  2046. if (err)
  2047. goto err_aes_cfb64_alg;
  2048. }
  2049. if (dd->caps.has_gcm) {
  2050. err = crypto_register_aead(&aes_gcm_alg);
  2051. if (err)
  2052. goto err_aes_gcm_alg;
  2053. }
  2054. if (dd->caps.has_xts) {
  2055. err = crypto_register_alg(&aes_xts_alg);
  2056. if (err)
  2057. goto err_aes_xts_alg;
  2058. }
  2059. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2060. if (dd->caps.has_authenc) {
  2061. for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
  2062. err = crypto_register_aead(&aes_authenc_algs[i]);
  2063. if (err)
  2064. goto err_aes_authenc_alg;
  2065. }
  2066. }
  2067. #endif
  2068. return 0;
  2069. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2070. /* i = ARRAY_SIZE(aes_authenc_algs); */
  2071. err_aes_authenc_alg:
  2072. for (j = 0; j < i; j++)
  2073. crypto_unregister_aead(&aes_authenc_algs[j]);
  2074. crypto_unregister_alg(&aes_xts_alg);
  2075. #endif
  2076. err_aes_xts_alg:
  2077. crypto_unregister_aead(&aes_gcm_alg);
  2078. err_aes_gcm_alg:
  2079. crypto_unregister_alg(&aes_cfb64_alg);
  2080. err_aes_cfb64_alg:
  2081. i = ARRAY_SIZE(aes_algs);
  2082. err_aes_algs:
  2083. for (j = 0; j < i; j++)
  2084. crypto_unregister_alg(&aes_algs[j]);
  2085. return err;
  2086. }
  2087. static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
  2088. {
  2089. dd->caps.has_dualbuff = 0;
  2090. dd->caps.has_cfb64 = 0;
  2091. dd->caps.has_ctr32 = 0;
  2092. dd->caps.has_gcm = 0;
  2093. dd->caps.has_xts = 0;
  2094. dd->caps.has_authenc = 0;
  2095. dd->caps.max_burst_size = 1;
  2096. /* keep only major version number */
  2097. switch (dd->hw_version & 0xff0) {
  2098. case 0x500:
  2099. dd->caps.has_dualbuff = 1;
  2100. dd->caps.has_cfb64 = 1;
  2101. dd->caps.has_ctr32 = 1;
  2102. dd->caps.has_gcm = 1;
  2103. dd->caps.has_xts = 1;
  2104. dd->caps.has_authenc = 1;
  2105. dd->caps.max_burst_size = 4;
  2106. break;
  2107. case 0x200:
  2108. dd->caps.has_dualbuff = 1;
  2109. dd->caps.has_cfb64 = 1;
  2110. dd->caps.has_ctr32 = 1;
  2111. dd->caps.has_gcm = 1;
  2112. dd->caps.max_burst_size = 4;
  2113. break;
  2114. case 0x130:
  2115. dd->caps.has_dualbuff = 1;
  2116. dd->caps.has_cfb64 = 1;
  2117. dd->caps.max_burst_size = 4;
  2118. break;
  2119. case 0x120:
  2120. break;
  2121. default:
  2122. dev_warn(dd->dev,
  2123. "Unmanaged aes version, set minimum capabilities\n");
  2124. break;
  2125. }
  2126. }
  2127. #if defined(CONFIG_OF)
  2128. static const struct of_device_id atmel_aes_dt_ids[] = {
  2129. { .compatible = "atmel,at91sam9g46-aes" },
  2130. { /* sentinel */ }
  2131. };
  2132. MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
  2133. static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  2134. {
  2135. struct device_node *np = pdev->dev.of_node;
  2136. struct crypto_platform_data *pdata;
  2137. if (!np) {
  2138. dev_err(&pdev->dev, "device node not found\n");
  2139. return ERR_PTR(-EINVAL);
  2140. }
  2141. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  2142. if (!pdata)
  2143. return ERR_PTR(-ENOMEM);
  2144. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  2145. sizeof(*(pdata->dma_slave)),
  2146. GFP_KERNEL);
  2147. if (!pdata->dma_slave) {
  2148. devm_kfree(&pdev->dev, pdata);
  2149. return ERR_PTR(-ENOMEM);
  2150. }
  2151. return pdata;
  2152. }
  2153. #else
  2154. static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  2155. {
  2156. return ERR_PTR(-EINVAL);
  2157. }
  2158. #endif
  2159. static int atmel_aes_probe(struct platform_device *pdev)
  2160. {
  2161. struct atmel_aes_dev *aes_dd;
  2162. struct crypto_platform_data *pdata;
  2163. struct device *dev = &pdev->dev;
  2164. struct resource *aes_res;
  2165. int err;
  2166. pdata = pdev->dev.platform_data;
  2167. if (!pdata) {
  2168. pdata = atmel_aes_of_init(pdev);
  2169. if (IS_ERR(pdata)) {
  2170. err = PTR_ERR(pdata);
  2171. goto aes_dd_err;
  2172. }
  2173. }
  2174. if (!pdata->dma_slave) {
  2175. err = -ENXIO;
  2176. goto aes_dd_err;
  2177. }
  2178. aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
  2179. if (aes_dd == NULL) {
  2180. err = -ENOMEM;
  2181. goto aes_dd_err;
  2182. }
  2183. aes_dd->dev = dev;
  2184. platform_set_drvdata(pdev, aes_dd);
  2185. INIT_LIST_HEAD(&aes_dd->list);
  2186. spin_lock_init(&aes_dd->lock);
  2187. tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
  2188. (unsigned long)aes_dd);
  2189. tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
  2190. (unsigned long)aes_dd);
  2191. crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
  2192. /* Get the base address */
  2193. aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2194. if (!aes_res) {
  2195. dev_err(dev, "no MEM resource info\n");
  2196. err = -ENODEV;
  2197. goto res_err;
  2198. }
  2199. aes_dd->phys_base = aes_res->start;
  2200. /* Get the IRQ */
  2201. aes_dd->irq = platform_get_irq(pdev, 0);
  2202. if (aes_dd->irq < 0) {
  2203. dev_err(dev, "no IRQ resource info\n");
  2204. err = aes_dd->irq;
  2205. goto res_err;
  2206. }
  2207. err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
  2208. IRQF_SHARED, "atmel-aes", aes_dd);
  2209. if (err) {
  2210. dev_err(dev, "unable to request aes irq.\n");
  2211. goto res_err;
  2212. }
  2213. /* Initializing the clock */
  2214. aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
  2215. if (IS_ERR(aes_dd->iclk)) {
  2216. dev_err(dev, "clock initialization failed.\n");
  2217. err = PTR_ERR(aes_dd->iclk);
  2218. goto res_err;
  2219. }
  2220. aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
  2221. if (IS_ERR(aes_dd->io_base)) {
  2222. dev_err(dev, "can't ioremap\n");
  2223. err = PTR_ERR(aes_dd->io_base);
  2224. goto res_err;
  2225. }
  2226. err = clk_prepare(aes_dd->iclk);
  2227. if (err)
  2228. goto res_err;
  2229. err = atmel_aes_hw_version_init(aes_dd);
  2230. if (err)
  2231. goto iclk_unprepare;
  2232. atmel_aes_get_cap(aes_dd);
  2233. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2234. if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
  2235. err = -EPROBE_DEFER;
  2236. goto iclk_unprepare;
  2237. }
  2238. #endif
  2239. err = atmel_aes_buff_init(aes_dd);
  2240. if (err)
  2241. goto err_aes_buff;
  2242. err = atmel_aes_dma_init(aes_dd, pdata);
  2243. if (err)
  2244. goto err_aes_dma;
  2245. spin_lock(&atmel_aes.lock);
  2246. list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
  2247. spin_unlock(&atmel_aes.lock);
  2248. err = atmel_aes_register_algs(aes_dd);
  2249. if (err)
  2250. goto err_algs;
  2251. dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
  2252. dma_chan_name(aes_dd->src.chan),
  2253. dma_chan_name(aes_dd->dst.chan));
  2254. return 0;
  2255. err_algs:
  2256. spin_lock(&atmel_aes.lock);
  2257. list_del(&aes_dd->list);
  2258. spin_unlock(&atmel_aes.lock);
  2259. atmel_aes_dma_cleanup(aes_dd);
  2260. err_aes_dma:
  2261. atmel_aes_buff_cleanup(aes_dd);
  2262. err_aes_buff:
  2263. iclk_unprepare:
  2264. clk_unprepare(aes_dd->iclk);
  2265. res_err:
  2266. tasklet_kill(&aes_dd->done_task);
  2267. tasklet_kill(&aes_dd->queue_task);
  2268. aes_dd_err:
  2269. if (err != -EPROBE_DEFER)
  2270. dev_err(dev, "initialization failed.\n");
  2271. return err;
  2272. }
  2273. static int atmel_aes_remove(struct platform_device *pdev)
  2274. {
  2275. struct atmel_aes_dev *aes_dd;
  2276. aes_dd = platform_get_drvdata(pdev);
  2277. if (!aes_dd)
  2278. return -ENODEV;
  2279. spin_lock(&atmel_aes.lock);
  2280. list_del(&aes_dd->list);
  2281. spin_unlock(&atmel_aes.lock);
  2282. atmel_aes_unregister_algs(aes_dd);
  2283. tasklet_kill(&aes_dd->done_task);
  2284. tasklet_kill(&aes_dd->queue_task);
  2285. atmel_aes_dma_cleanup(aes_dd);
  2286. atmel_aes_buff_cleanup(aes_dd);
  2287. clk_unprepare(aes_dd->iclk);
  2288. return 0;
  2289. }
  2290. static struct platform_driver atmel_aes_driver = {
  2291. .probe = atmel_aes_probe,
  2292. .remove = atmel_aes_remove,
  2293. .driver = {
  2294. .name = "atmel_aes",
  2295. .of_match_table = of_match_ptr(atmel_aes_dt_ids),
  2296. },
  2297. };
  2298. module_platform_driver(atmel_aes_driver);
  2299. MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
  2300. MODULE_LICENSE("GPL v2");
  2301. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");