brcmstb-avs-cpufreq.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741
  1. /*
  2. * CPU frequency scaling for Broadcom SoCs with AVS firmware that
  3. * supports DVS or DVFS
  4. *
  5. * Copyright (c) 2016 Broadcom
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation version 2.
  10. *
  11. * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  12. * kind, whether express or implied; without even the implied warranty
  13. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. /*
  17. * "AVS" is the name of a firmware developed at Broadcom. It derives
  18. * its name from the technique called "Adaptive Voltage Scaling".
  19. * Adaptive voltage scaling was the original purpose of this firmware.
  20. * The AVS firmware still supports "AVS mode", where all it does is
  21. * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
  22. * AVS Firmware, despite its unchanged name, also supports DFS mode and
  23. * DVFS mode.
  24. *
  25. * In the context of this document and the related driver, "AVS" by
  26. * itself always means the Broadcom firmware and never refers to the
  27. * technique called "Adaptive Voltage Scaling".
  28. *
  29. * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
  30. * scaling on Broadcom SoCs using AVS firmware with support for DFS and
  31. * DVFS. The AVS firmware is running on its own co-processor. The
  32. * driver supports both uniprocessor (UP) and symmetric multiprocessor
  33. * (SMP) systems which share clock and voltage across all CPUs.
  34. *
  35. * Actual voltage and frequency scaling is done solely by the AVS
  36. * firmware. This driver does not change frequency or voltage itself.
  37. * It provides a standard CPUfreq interface to the rest of the kernel
  38. * and to userland. It interfaces with the AVS firmware to effect the
  39. * requested changes and to report back the current system status in a
  40. * way that is expected by existing tools.
  41. */
  42. #include <linux/cpufreq.h>
  43. #include <linux/interrupt.h>
  44. #include <linux/io.h>
  45. #include <linux/module.h>
  46. #include <linux/of_address.h>
  47. #include <linux/platform_device.h>
  48. #include <linux/semaphore.h>
  49. /* Max number of arguments AVS calls take */
  50. #define AVS_MAX_CMD_ARGS 4
  51. /*
  52. * This macro is used to generate AVS parameter register offsets. For
  53. * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
  54. * access outside of the parameter range. (Offset 0 is the first parameter.)
  55. */
  56. #define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
  57. /* AVS Mailbox Register offsets */
  58. #define AVS_MBOX_COMMAND 0x00
  59. #define AVS_MBOX_STATUS 0x04
  60. #define AVS_MBOX_VOLTAGE0 0x08
  61. #define AVS_MBOX_TEMP0 0x0c
  62. #define AVS_MBOX_PV0 0x10
  63. #define AVS_MBOX_MV0 0x14
  64. #define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
  65. #define AVS_MBOX_REVISION 0x28
  66. #define AVS_MBOX_PSTATE 0x2c
  67. #define AVS_MBOX_HEARTBEAT 0x30
  68. #define AVS_MBOX_MAGIC 0x34
  69. #define AVS_MBOX_SIGMA_HVT 0x38
  70. #define AVS_MBOX_SIGMA_SVT 0x3c
  71. #define AVS_MBOX_VOLTAGE1 0x40
  72. #define AVS_MBOX_TEMP1 0x44
  73. #define AVS_MBOX_PV1 0x48
  74. #define AVS_MBOX_MV1 0x4c
  75. #define AVS_MBOX_FREQUENCY 0x50
  76. /* AVS Commands */
  77. #define AVS_CMD_AVAILABLE 0x00
  78. #define AVS_CMD_DISABLE 0x10
  79. #define AVS_CMD_ENABLE 0x11
  80. #define AVS_CMD_S2_ENTER 0x12
  81. #define AVS_CMD_S2_EXIT 0x13
  82. #define AVS_CMD_BBM_ENTER 0x14
  83. #define AVS_CMD_BBM_EXIT 0x15
  84. #define AVS_CMD_S3_ENTER 0x16
  85. #define AVS_CMD_S3_EXIT 0x17
  86. #define AVS_CMD_BALANCE 0x18
  87. /* PMAP and P-STATE commands */
  88. #define AVS_CMD_GET_PMAP 0x30
  89. #define AVS_CMD_SET_PMAP 0x31
  90. #define AVS_CMD_GET_PSTATE 0x40
  91. #define AVS_CMD_SET_PSTATE 0x41
  92. /* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
  93. #define AVS_MODE_AVS 0x0
  94. #define AVS_MODE_DFS 0x1
  95. #define AVS_MODE_DVS 0x2
  96. #define AVS_MODE_DVFS 0x3
  97. /*
  98. * PMAP parameter p1
  99. * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
  100. */
  101. #define NDIV_INT_SHIFT 0
  102. #define NDIV_INT_MASK 0x3ff
  103. #define PDIV_SHIFT 10
  104. #define PDIV_MASK 0xf
  105. #define MDIV_P0_SHIFT 16
  106. #define MDIV_P0_MASK 0xff
  107. /*
  108. * PMAP parameter p2
  109. * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
  110. */
  111. #define MDIV_P1_SHIFT 0
  112. #define MDIV_P1_MASK 0xff
  113. #define MDIV_P2_SHIFT 8
  114. #define MDIV_P2_MASK 0xff
  115. #define MDIV_P3_SHIFT 16
  116. #define MDIV_P3_MASK 0xff
  117. #define MDIV_P4_SHIFT 24
  118. #define MDIV_P4_MASK 0xff
  119. /* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
  120. #define AVS_PSTATE_P0 0x0
  121. #define AVS_PSTATE_P1 0x1
  122. #define AVS_PSTATE_P2 0x2
  123. #define AVS_PSTATE_P3 0x3
  124. #define AVS_PSTATE_P4 0x4
  125. #define AVS_PSTATE_MAX AVS_PSTATE_P4
  126. /* CPU L2 Interrupt Controller Registers */
  127. #define AVS_CPU_L2_SET0 0x04
  128. #define AVS_CPU_L2_INT_MASK BIT(31)
  129. /* AVS Command Status Values */
  130. #define AVS_STATUS_CLEAR 0x00
  131. /* Command/notification accepted */
  132. #define AVS_STATUS_SUCCESS 0xf0
  133. /* Command/notification rejected */
  134. #define AVS_STATUS_FAILURE 0xff
  135. /* Invalid command/notification (unknown) */
  136. #define AVS_STATUS_INVALID 0xf1
  137. /* Non-AVS modes are not supported */
  138. #define AVS_STATUS_NO_SUPP 0xf2
  139. /* Cannot set P-State until P-Map supplied */
  140. #define AVS_STATUS_NO_MAP 0xf3
  141. /* Cannot change P-Map after initial P-Map set */
  142. #define AVS_STATUS_MAP_SET 0xf4
  143. /* Max AVS status; higher numbers are used for debugging */
  144. #define AVS_STATUS_MAX 0xff
  145. /* Other AVS related constants */
  146. #define AVS_LOOP_LIMIT 10000
  147. #define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */
  148. #define AVS_FIRMWARE_MAGIC 0xa11600d1
  149. #define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs"
  150. #define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
  151. #define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem"
  152. #define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr"
  153. #define BRCM_AVS_HOST_INTR "sw_intr"
  154. struct pmap {
  155. unsigned int mode;
  156. unsigned int p1;
  157. unsigned int p2;
  158. unsigned int state;
  159. };
  160. struct private_data {
  161. void __iomem *base;
  162. void __iomem *avs_intr_base;
  163. struct device *dev;
  164. struct completion done;
  165. struct semaphore sem;
  166. struct pmap pmap;
  167. };
  168. static void __iomem *__map_region(const char *name)
  169. {
  170. struct device_node *np;
  171. void __iomem *ptr;
  172. np = of_find_compatible_node(NULL, NULL, name);
  173. if (!np)
  174. return NULL;
  175. ptr = of_iomap(np, 0);
  176. of_node_put(np);
  177. return ptr;
  178. }
  179. static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
  180. u32 args[])
  181. {
  182. unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
  183. void __iomem *base = priv->base;
  184. unsigned int i;
  185. int ret;
  186. u32 val;
  187. ret = down_interruptible(&priv->sem);
  188. if (ret)
  189. return ret;
  190. /*
  191. * Make sure no other command is currently running: cmd is 0 if AVS
  192. * co-processor is idle. Due to the guard above, we should almost never
  193. * have to wait here.
  194. */
  195. for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
  196. val = readl(base + AVS_MBOX_COMMAND);
  197. /* Give the caller a chance to retry if AVS is busy. */
  198. if (i == AVS_LOOP_LIMIT) {
  199. ret = -EAGAIN;
  200. goto out;
  201. }
  202. /* Clear status before we begin. */
  203. writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
  204. /* We need to send arguments for this command. */
  205. if (args && is_send) {
  206. for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
  207. writel(args[i], base + AVS_MBOX_PARAM(i));
  208. }
  209. /* Protect from spurious interrupts. */
  210. reinit_completion(&priv->done);
  211. /* Now issue the command & tell firmware to wake up to process it. */
  212. writel(cmd, base + AVS_MBOX_COMMAND);
  213. writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
  214. /* Wait for AVS co-processor to finish processing the command. */
  215. time_left = wait_for_completion_timeout(&priv->done, time_left);
  216. /*
  217. * If the AVS status is not in the expected range, it means AVS didn't
  218. * complete our command in time, and we return an error. Also, if there
  219. * is no "time left", we timed out waiting for the interrupt.
  220. */
  221. val = readl(base + AVS_MBOX_STATUS);
  222. if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
  223. dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
  224. cmd);
  225. dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n",
  226. jiffies_to_msecs(time_left), val);
  227. ret = -ETIMEDOUT;
  228. goto out;
  229. }
  230. /* This command returned arguments, so we read them back. */
  231. if (args && !is_send) {
  232. for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
  233. args[i] = readl(base + AVS_MBOX_PARAM(i));
  234. }
  235. /* Clear status to tell AVS co-processor we are done. */
  236. writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
  237. /* Convert firmware errors to errno's as much as possible. */
  238. switch (val) {
  239. case AVS_STATUS_INVALID:
  240. ret = -EINVAL;
  241. break;
  242. case AVS_STATUS_NO_SUPP:
  243. ret = -ENOTSUPP;
  244. break;
  245. case AVS_STATUS_NO_MAP:
  246. ret = -ENOENT;
  247. break;
  248. case AVS_STATUS_MAP_SET:
  249. ret = -EEXIST;
  250. break;
  251. case AVS_STATUS_FAILURE:
  252. ret = -EIO;
  253. break;
  254. }
  255. out:
  256. up(&priv->sem);
  257. return ret;
  258. }
  259. static irqreturn_t irq_handler(int irq, void *data)
  260. {
  261. struct private_data *priv = data;
  262. /* AVS command completed execution. Wake up __issue_avs_command(). */
  263. complete(&priv->done);
  264. return IRQ_HANDLED;
  265. }
  266. static char *brcm_avs_mode_to_string(unsigned int mode)
  267. {
  268. switch (mode) {
  269. case AVS_MODE_AVS:
  270. return "AVS";
  271. case AVS_MODE_DFS:
  272. return "DFS";
  273. case AVS_MODE_DVS:
  274. return "DVS";
  275. case AVS_MODE_DVFS:
  276. return "DVFS";
  277. }
  278. return NULL;
  279. }
  280. static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
  281. unsigned int *ndiv)
  282. {
  283. *mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
  284. *pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
  285. *ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
  286. }
  287. static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
  288. unsigned int *mdiv_p2, unsigned int *mdiv_p3,
  289. unsigned int *mdiv_p4)
  290. {
  291. *mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
  292. *mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
  293. *mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
  294. *mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
  295. }
  296. static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
  297. {
  298. u32 args[AVS_MAX_CMD_ARGS];
  299. int ret;
  300. ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
  301. if (ret || !pmap)
  302. return ret;
  303. pmap->mode = args[0];
  304. pmap->p1 = args[1];
  305. pmap->p2 = args[2];
  306. pmap->state = args[3];
  307. return 0;
  308. }
  309. static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
  310. {
  311. u32 args[AVS_MAX_CMD_ARGS];
  312. args[0] = pmap->mode;
  313. args[1] = pmap->p1;
  314. args[2] = pmap->p2;
  315. args[3] = pmap->state;
  316. return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
  317. }
  318. static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
  319. {
  320. u32 args[AVS_MAX_CMD_ARGS];
  321. int ret;
  322. ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
  323. if (ret)
  324. return ret;
  325. *pstate = args[0];
  326. return 0;
  327. }
  328. static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
  329. {
  330. u32 args[AVS_MAX_CMD_ARGS];
  331. args[0] = pstate;
  332. return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
  333. }
  334. static unsigned long brcm_avs_get_voltage(void __iomem *base)
  335. {
  336. return readl(base + AVS_MBOX_VOLTAGE1);
  337. }
  338. static unsigned long brcm_avs_get_frequency(void __iomem *base)
  339. {
  340. return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */
  341. }
  342. /*
  343. * We determine which frequencies are supported by cycling through all P-states
  344. * and reading back what frequency we are running at for each P-state.
  345. */
  346. static struct cpufreq_frequency_table *
  347. brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
  348. {
  349. struct cpufreq_frequency_table *table;
  350. unsigned int pstate;
  351. int i, ret;
  352. /* Remember P-state for later */
  353. ret = brcm_avs_get_pstate(priv, &pstate);
  354. if (ret)
  355. return ERR_PTR(ret);
  356. table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1, sizeof(*table),
  357. GFP_KERNEL);
  358. if (!table)
  359. return ERR_PTR(-ENOMEM);
  360. for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
  361. ret = brcm_avs_set_pstate(priv, i);
  362. if (ret)
  363. return ERR_PTR(ret);
  364. table[i].frequency = brcm_avs_get_frequency(priv->base);
  365. table[i].driver_data = i;
  366. }
  367. table[i].frequency = CPUFREQ_TABLE_END;
  368. /* Restore P-state */
  369. ret = brcm_avs_set_pstate(priv, pstate);
  370. if (ret)
  371. return ERR_PTR(ret);
  372. return table;
  373. }
  374. /*
  375. * To ensure the right firmware is running we need to
  376. * - check the MAGIC matches what we expect
  377. * - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
  378. * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
  379. */
  380. static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
  381. {
  382. u32 magic;
  383. int rc;
  384. rc = brcm_avs_get_pmap(priv, NULL);
  385. magic = readl(priv->base + AVS_MBOX_MAGIC);
  386. return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) &&
  387. (rc != -EINVAL);
  388. }
  389. static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
  390. {
  391. struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
  392. struct private_data *priv = policy->driver_data;
  393. return brcm_avs_get_frequency(priv->base);
  394. }
  395. static int brcm_avs_target_index(struct cpufreq_policy *policy,
  396. unsigned int index)
  397. {
  398. return brcm_avs_set_pstate(policy->driver_data,
  399. policy->freq_table[index].driver_data);
  400. }
  401. static int brcm_avs_suspend(struct cpufreq_policy *policy)
  402. {
  403. struct private_data *priv = policy->driver_data;
  404. int ret;
  405. ret = brcm_avs_get_pmap(priv, &priv->pmap);
  406. if (ret)
  407. return ret;
  408. /*
  409. * We can't use the P-state returned by brcm_avs_get_pmap(), since
  410. * that's the initial P-state from when the P-map was downloaded to the
  411. * AVS co-processor, not necessarily the P-state we are running at now.
  412. * So, we get the current P-state explicitly.
  413. */
  414. return brcm_avs_get_pstate(priv, &priv->pmap.state);
  415. }
  416. static int brcm_avs_resume(struct cpufreq_policy *policy)
  417. {
  418. struct private_data *priv = policy->driver_data;
  419. int ret;
  420. ret = brcm_avs_set_pmap(priv, &priv->pmap);
  421. if (ret == -EEXIST) {
  422. struct platform_device *pdev = cpufreq_get_driver_data();
  423. struct device *dev = &pdev->dev;
  424. dev_warn(dev, "PMAP was already set\n");
  425. ret = 0;
  426. }
  427. return ret;
  428. }
  429. /*
  430. * All initialization code that we only want to execute once goes here. Setup
  431. * code that can be re-tried on every core (if it failed before) can go into
  432. * brcm_avs_cpufreq_init().
  433. */
  434. static int brcm_avs_prepare_init(struct platform_device *pdev)
  435. {
  436. struct private_data *priv;
  437. struct device *dev;
  438. int host_irq, ret;
  439. dev = &pdev->dev;
  440. priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
  441. if (!priv)
  442. return -ENOMEM;
  443. priv->dev = dev;
  444. sema_init(&priv->sem, 1);
  445. init_completion(&priv->done);
  446. platform_set_drvdata(pdev, priv);
  447. priv->base = __map_region(BRCM_AVS_CPU_DATA);
  448. if (!priv->base) {
  449. dev_err(dev, "Couldn't find property %s in device tree.\n",
  450. BRCM_AVS_CPU_DATA);
  451. return -ENOENT;
  452. }
  453. priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
  454. if (!priv->avs_intr_base) {
  455. dev_err(dev, "Couldn't find property %s in device tree.\n",
  456. BRCM_AVS_CPU_INTR);
  457. ret = -ENOENT;
  458. goto unmap_base;
  459. }
  460. host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
  461. if (host_irq < 0) {
  462. dev_err(dev, "Couldn't find interrupt %s -- %d\n",
  463. BRCM_AVS_HOST_INTR, host_irq);
  464. ret = host_irq;
  465. goto unmap_intr_base;
  466. }
  467. ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
  468. BRCM_AVS_HOST_INTR, priv);
  469. if (ret) {
  470. dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
  471. BRCM_AVS_HOST_INTR, host_irq, ret);
  472. goto unmap_intr_base;
  473. }
  474. if (brcm_avs_is_firmware_loaded(priv))
  475. return 0;
  476. dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
  477. ret = -ENODEV;
  478. unmap_intr_base:
  479. iounmap(priv->avs_intr_base);
  480. unmap_base:
  481. iounmap(priv->base);
  482. return ret;
  483. }
  484. static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
  485. {
  486. struct cpufreq_frequency_table *freq_table;
  487. struct platform_device *pdev;
  488. struct private_data *priv;
  489. struct device *dev;
  490. int ret;
  491. pdev = cpufreq_get_driver_data();
  492. priv = platform_get_drvdata(pdev);
  493. policy->driver_data = priv;
  494. dev = &pdev->dev;
  495. freq_table = brcm_avs_get_freq_table(dev, priv);
  496. if (IS_ERR(freq_table)) {
  497. ret = PTR_ERR(freq_table);
  498. dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
  499. return ret;
  500. }
  501. policy->freq_table = freq_table;
  502. /* All cores share the same clock and thus the same policy. */
  503. cpumask_setall(policy->cpus);
  504. ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
  505. if (!ret) {
  506. unsigned int pstate;
  507. ret = brcm_avs_get_pstate(priv, &pstate);
  508. if (!ret) {
  509. policy->cur = freq_table[pstate].frequency;
  510. dev_info(dev, "registered\n");
  511. return 0;
  512. }
  513. }
  514. dev_err(dev, "couldn't initialize driver (%d)\n", ret);
  515. return ret;
  516. }
  517. static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
  518. {
  519. struct private_data *priv = policy->driver_data;
  520. unsigned int pstate;
  521. if (brcm_avs_get_pstate(priv, &pstate))
  522. return sprintf(buf, "<unknown>\n");
  523. return sprintf(buf, "%u\n", pstate);
  524. }
  525. static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
  526. {
  527. struct private_data *priv = policy->driver_data;
  528. struct pmap pmap;
  529. if (brcm_avs_get_pmap(priv, &pmap))
  530. return sprintf(buf, "<unknown>\n");
  531. return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
  532. pmap.mode);
  533. }
  534. static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
  535. {
  536. unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
  537. struct private_data *priv = policy->driver_data;
  538. unsigned int ndiv, pdiv;
  539. struct pmap pmap;
  540. if (brcm_avs_get_pmap(priv, &pmap))
  541. return sprintf(buf, "<unknown>\n");
  542. brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
  543. brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
  544. return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
  545. pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
  546. mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
  547. }
  548. static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
  549. {
  550. struct private_data *priv = policy->driver_data;
  551. return sprintf(buf, "0x%08lx\n", brcm_avs_get_voltage(priv->base));
  552. }
  553. static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
  554. {
  555. struct private_data *priv = policy->driver_data;
  556. return sprintf(buf, "0x%08lx\n", brcm_avs_get_frequency(priv->base));
  557. }
  558. cpufreq_freq_attr_ro(brcm_avs_pstate);
  559. cpufreq_freq_attr_ro(brcm_avs_mode);
  560. cpufreq_freq_attr_ro(brcm_avs_pmap);
  561. cpufreq_freq_attr_ro(brcm_avs_voltage);
  562. cpufreq_freq_attr_ro(brcm_avs_frequency);
  563. static struct freq_attr *brcm_avs_cpufreq_attr[] = {
  564. &cpufreq_freq_attr_scaling_available_freqs,
  565. &brcm_avs_pstate,
  566. &brcm_avs_mode,
  567. &brcm_avs_pmap,
  568. &brcm_avs_voltage,
  569. &brcm_avs_frequency,
  570. NULL
  571. };
  572. static struct cpufreq_driver brcm_avs_driver = {
  573. .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  574. .verify = cpufreq_generic_frequency_table_verify,
  575. .target_index = brcm_avs_target_index,
  576. .get = brcm_avs_cpufreq_get,
  577. .suspend = brcm_avs_suspend,
  578. .resume = brcm_avs_resume,
  579. .init = brcm_avs_cpufreq_init,
  580. .attr = brcm_avs_cpufreq_attr,
  581. .name = BRCM_AVS_CPUFREQ_PREFIX,
  582. };
  583. static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
  584. {
  585. int ret;
  586. ret = brcm_avs_prepare_init(pdev);
  587. if (ret)
  588. return ret;
  589. brcm_avs_driver.driver_data = pdev;
  590. return cpufreq_register_driver(&brcm_avs_driver);
  591. }
  592. static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
  593. {
  594. struct private_data *priv;
  595. int ret;
  596. ret = cpufreq_unregister_driver(&brcm_avs_driver);
  597. if (ret)
  598. return ret;
  599. priv = platform_get_drvdata(pdev);
  600. iounmap(priv->base);
  601. iounmap(priv->avs_intr_base);
  602. return 0;
  603. }
  604. static const struct of_device_id brcm_avs_cpufreq_match[] = {
  605. { .compatible = BRCM_AVS_CPU_DATA },
  606. { }
  607. };
  608. MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
  609. static struct platform_driver brcm_avs_cpufreq_platdrv = {
  610. .driver = {
  611. .name = BRCM_AVS_CPUFREQ_NAME,
  612. .of_match_table = brcm_avs_cpufreq_match,
  613. },
  614. .probe = brcm_avs_cpufreq_probe,
  615. .remove = brcm_avs_cpufreq_remove,
  616. };
  617. module_platform_driver(brcm_avs_cpufreq_platdrv);
  618. MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
  619. MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
  620. MODULE_LICENSE("GPL");