riscv_timer.c 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2012 Regents of the University of California
  4. * Copyright (C) 2017 SiFive
  5. */
  6. #include <linux/clocksource.h>
  7. #include <linux/clockchips.h>
  8. #include <linux/cpu.h>
  9. #include <linux/delay.h>
  10. #include <linux/irq.h>
  11. #include <asm/smp.h>
  12. #include <asm/sbi.h>
  13. /*
  14. * All RISC-V systems have a timer attached to every hart. These timers can be
  15. * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup
  16. * events. In order to abstract the architecture-specific timer reading and
  17. * setting functions away from the clock event insertion code, we provide
  18. * function pointers to the clockevent subsystem that perform two basic
  19. * operations: rdtime() reads the timer on the current CPU, and
  20. * next_event(delta) sets the next timer event to 'delta' cycles in the future.
  21. * As the timers are inherently a per-cpu resource, these callbacks perform
  22. * operations on the current hart. There is guaranteed to be exactly one timer
  23. * per hart on all RISC-V systems.
  24. */
  25. static int riscv_clock_next_event(unsigned long delta,
  26. struct clock_event_device *ce)
  27. {
  28. csr_set(sie, SIE_STIE);
  29. sbi_set_timer(get_cycles64() + delta);
  30. return 0;
  31. }
  32. static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
  33. .name = "riscv_timer_clockevent",
  34. .features = CLOCK_EVT_FEAT_ONESHOT,
  35. .rating = 100,
  36. .set_next_event = riscv_clock_next_event,
  37. };
  38. /*
  39. * It is guaranteed that all the timers across all the harts are synchronized
  40. * within one tick of each other, so while this could technically go
  41. * backwards when hopping between CPUs, practically it won't happen.
  42. */
  43. static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
  44. {
  45. return get_cycles64();
  46. }
  47. static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = {
  48. .name = "riscv_clocksource",
  49. .rating = 300,
  50. .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
  51. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  52. .read = riscv_clocksource_rdtime,
  53. };
  54. static int riscv_timer_starting_cpu(unsigned int cpu)
  55. {
  56. struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
  57. ce->cpumask = cpumask_of(cpu);
  58. clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
  59. csr_set(sie, SIE_STIE);
  60. return 0;
  61. }
  62. static int riscv_timer_dying_cpu(unsigned int cpu)
  63. {
  64. csr_clear(sie, SIE_STIE);
  65. return 0;
  66. }
  67. /* called directly from the low-level interrupt handler */
  68. void riscv_timer_interrupt(void)
  69. {
  70. struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
  71. csr_clear(sie, SIE_STIE);
  72. evdev->event_handler(evdev);
  73. }
  74. static int __init riscv_timer_init_dt(struct device_node *n)
  75. {
  76. int cpuid, hartid, error;
  77. struct clocksource *cs;
  78. hartid = riscv_of_processor_hartid(n);
  79. cpuid = riscv_hartid_to_cpuid(hartid);
  80. if (cpuid != smp_processor_id())
  81. return 0;
  82. cs = per_cpu_ptr(&riscv_clocksource, cpuid);
  83. clocksource_register_hz(cs, riscv_timebase);
  84. error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
  85. "clockevents/riscv/timer:starting",
  86. riscv_timer_starting_cpu, riscv_timer_dying_cpu);
  87. if (error)
  88. pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
  89. error, cpuid);
  90. return error;
  91. }
  92. TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);