adpll.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License as
  4. * published by the Free Software Foundation version 2.
  5. *
  6. * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  7. * kind, whether express or implied; without even the implied warranty
  8. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. */
  11. #include <linux/clk.h>
  12. #include <linux/clkdev.h>
  13. #include <linux/clk-provider.h>
  14. #include <linux/delay.h>
  15. #include <linux/err.h>
  16. #include <linux/math64.h>
  17. #include <linux/module.h>
  18. #include <linux/of_device.h>
  19. #include <linux/string.h>
  20. #define ADPLL_PLLSS_MMR_LOCK_OFFSET 0x00 /* Managed by MPPULL */
  21. #define ADPLL_PLLSS_MMR_LOCK_ENABLED 0x1f125B64
  22. #define ADPLL_PLLSS_MMR_UNLOCK_MAGIC 0x1eda4c3d
  23. #define ADPLL_PWRCTRL_OFFSET 0x00
  24. #define ADPLL_PWRCTRL_PONIN 5
  25. #define ADPLL_PWRCTRL_PGOODIN 4
  26. #define ADPLL_PWRCTRL_RET 3
  27. #define ADPLL_PWRCTRL_ISORET 2
  28. #define ADPLL_PWRCTRL_ISOSCAN 1
  29. #define ADPLL_PWRCTRL_OFFMODE 0
  30. #define ADPLL_CLKCTRL_OFFSET 0x04
  31. #define ADPLL_CLKCTRL_CLKDCOLDOEN 29
  32. #define ADPLL_CLKCTRL_IDLE 23
  33. #define ADPLL_CLKCTRL_CLKOUTEN 20
  34. #define ADPLL_CLKINPHIFSEL_ADPLL_S 19 /* REVISIT: which bit? */
  35. #define ADPLL_CLKCTRL_CLKOUTLDOEN_ADPLL_LJ 19
  36. #define ADPLL_CLKCTRL_ULOWCLKEN 18
  37. #define ADPLL_CLKCTRL_CLKDCOLDOPWDNZ 17
  38. #define ADPLL_CLKCTRL_M2PWDNZ 16
  39. #define ADPLL_CLKCTRL_M3PWDNZ_ADPLL_S 15
  40. #define ADPLL_CLKCTRL_LOWCURRSTDBY_ADPLL_S 13
  41. #define ADPLL_CLKCTRL_LPMODE_ADPLL_S 12
  42. #define ADPLL_CLKCTRL_REGM4XEN_ADPLL_S 10
  43. #define ADPLL_CLKCTRL_SELFREQDCO_ADPLL_LJ 10
  44. #define ADPLL_CLKCTRL_TINITZ 0
  45. #define ADPLL_TENABLE_OFFSET 0x08
  46. #define ADPLL_TENABLEDIV_OFFSET 0x8c
  47. #define ADPLL_M2NDIV_OFFSET 0x10
  48. #define ADPLL_M2NDIV_M2 16
  49. #define ADPLL_M2NDIV_M2_ADPLL_S_WIDTH 5
  50. #define ADPLL_M2NDIV_M2_ADPLL_LJ_WIDTH 7
  51. #define ADPLL_MN2DIV_OFFSET 0x14
  52. #define ADPLL_MN2DIV_N2 16
  53. #define ADPLL_FRACDIV_OFFSET 0x18
  54. #define ADPLL_FRACDIV_REGSD 24
  55. #define ADPLL_FRACDIV_FRACTIONALM 0
  56. #define ADPLL_FRACDIV_FRACTIONALM_MASK 0x3ffff
  57. #define ADPLL_BWCTRL_OFFSET 0x1c
  58. #define ADPLL_BWCTRL_BWCONTROL 1
  59. #define ADPLL_BWCTRL_BW_INCR_DECRZ 0
  60. #define ADPLL_RESERVED_OFFSET 0x20
  61. #define ADPLL_STATUS_OFFSET 0x24
  62. #define ADPLL_STATUS_PONOUT 31
  63. #define ADPLL_STATUS_PGOODOUT 30
  64. #define ADPLL_STATUS_LDOPWDN 29
  65. #define ADPLL_STATUS_RECAL_BSTATUS3 28
  66. #define ADPLL_STATUS_RECAL_OPPIN 27
  67. #define ADPLL_STATUS_PHASELOCK 10
  68. #define ADPLL_STATUS_FREQLOCK 9
  69. #define ADPLL_STATUS_BYPASSACK 8
  70. #define ADPLL_STATUS_LOSSREF 6
  71. #define ADPLL_STATUS_CLKOUTENACK 5
  72. #define ADPLL_STATUS_LOCK2 4
  73. #define ADPLL_STATUS_M2CHANGEACK 3
  74. #define ADPLL_STATUS_HIGHJITTER 1
  75. #define ADPLL_STATUS_BYPASS 0
  76. #define ADPLL_STATUS_PREPARED_MASK (BIT(ADPLL_STATUS_PHASELOCK) | \
  77. BIT(ADPLL_STATUS_FREQLOCK))
  78. #define ADPLL_M3DIV_OFFSET 0x28 /* Only on MPUPLL */
  79. #define ADPLL_M3DIV_M3 0
  80. #define ADPLL_M3DIV_M3_WIDTH 5
  81. #define ADPLL_M3DIV_M3_MASK 0x1f
  82. #define ADPLL_RAMPCTRL_OFFSET 0x2c /* Only on MPUPLL */
  83. #define ADPLL_RAMPCTRL_CLKRAMPLEVEL 19
  84. #define ADPLL_RAMPCTRL_CLKRAMPRATE 16
  85. #define ADPLL_RAMPCTRL_RELOCK_RAMP_EN 0
  86. #define MAX_ADPLL_INPUTS 3
  87. #define MAX_ADPLL_OUTPUTS 4
  88. #define ADPLL_MAX_RETRIES 5
  89. #define to_dco(_hw) container_of(_hw, struct ti_adpll_dco_data, hw)
  90. #define to_adpll(_hw) container_of(_hw, struct ti_adpll_data, dco)
  91. #define to_clkout(_hw) container_of(_hw, struct ti_adpll_clkout_data, hw)
  92. enum ti_adpll_clocks {
  93. TI_ADPLL_DCO,
  94. TI_ADPLL_DCO_GATE,
  95. TI_ADPLL_N2,
  96. TI_ADPLL_M2,
  97. TI_ADPLL_M2_GATE,
  98. TI_ADPLL_BYPASS,
  99. TI_ADPLL_HIF,
  100. TI_ADPLL_DIV2,
  101. TI_ADPLL_CLKOUT,
  102. TI_ADPLL_CLKOUT2,
  103. TI_ADPLL_M3,
  104. };
  105. #define TI_ADPLL_NR_CLOCKS (TI_ADPLL_M3 + 1)
  106. enum ti_adpll_inputs {
  107. TI_ADPLL_CLKINP,
  108. TI_ADPLL_CLKINPULOW,
  109. TI_ADPLL_CLKINPHIF,
  110. };
  111. enum ti_adpll_s_outputs {
  112. TI_ADPLL_S_DCOCLKLDO,
  113. TI_ADPLL_S_CLKOUT,
  114. TI_ADPLL_S_CLKOUTX2,
  115. TI_ADPLL_S_CLKOUTHIF,
  116. };
  117. enum ti_adpll_lj_outputs {
  118. TI_ADPLL_LJ_CLKDCOLDO,
  119. TI_ADPLL_LJ_CLKOUT,
  120. TI_ADPLL_LJ_CLKOUTLDO,
  121. };
  122. struct ti_adpll_platform_data {
  123. const bool is_type_s;
  124. const int nr_max_inputs;
  125. const int nr_max_outputs;
  126. const int output_index;
  127. };
  128. struct ti_adpll_clock {
  129. struct clk *clk;
  130. struct clk_lookup *cl;
  131. void (*unregister)(struct clk *clk);
  132. };
  133. struct ti_adpll_dco_data {
  134. struct clk_hw hw;
  135. };
  136. struct ti_adpll_clkout_data {
  137. struct ti_adpll_data *adpll;
  138. struct clk_gate gate;
  139. struct clk_hw hw;
  140. };
  141. struct ti_adpll_data {
  142. struct device *dev;
  143. const struct ti_adpll_platform_data *c;
  144. struct device_node *np;
  145. unsigned long pa;
  146. void __iomem *iobase;
  147. void __iomem *regs;
  148. spinlock_t lock; /* For ADPLL shared register access */
  149. const char *parent_names[MAX_ADPLL_INPUTS];
  150. struct clk *parent_clocks[MAX_ADPLL_INPUTS];
  151. struct ti_adpll_clock *clocks;
  152. struct clk_onecell_data outputs;
  153. struct ti_adpll_dco_data dco;
  154. };
  155. static const char *ti_adpll_clk_get_name(struct ti_adpll_data *d,
  156. int output_index,
  157. const char *postfix)
  158. {
  159. const char *name;
  160. int err;
  161. if (output_index >= 0) {
  162. err = of_property_read_string_index(d->np,
  163. "clock-output-names",
  164. output_index,
  165. &name);
  166. if (err)
  167. return NULL;
  168. } else {
  169. const char *base_name = "adpll";
  170. char *buf;
  171. buf = devm_kzalloc(d->dev, 8 + 1 + strlen(base_name) + 1 +
  172. strlen(postfix), GFP_KERNEL);
  173. if (!buf)
  174. return NULL;
  175. sprintf(buf, "%08lx.%s.%s", d->pa, base_name, postfix);
  176. name = buf;
  177. }
  178. return name;
  179. }
  180. #define ADPLL_MAX_CON_ID 16 /* See MAX_CON_ID */
  181. static int ti_adpll_setup_clock(struct ti_adpll_data *d, struct clk *clock,
  182. int index, int output_index, const char *name,
  183. void (*unregister)(struct clk *clk))
  184. {
  185. struct clk_lookup *cl;
  186. const char *postfix = NULL;
  187. char con_id[ADPLL_MAX_CON_ID];
  188. d->clocks[index].clk = clock;
  189. d->clocks[index].unregister = unregister;
  190. /* Separate con_id in format "pll040dcoclkldo" to fit MAX_CON_ID */
  191. postfix = strrchr(name, '.');
  192. if (postfix && strlen(postfix) > 1) {
  193. if (strlen(postfix) > ADPLL_MAX_CON_ID)
  194. dev_warn(d->dev, "clock %s con_id lookup may fail\n",
  195. name);
  196. snprintf(con_id, 16, "pll%03lx%s", d->pa & 0xfff, postfix + 1);
  197. cl = clkdev_create(clock, con_id, NULL);
  198. if (!cl)
  199. return -ENOMEM;
  200. d->clocks[index].cl = cl;
  201. } else {
  202. dev_warn(d->dev, "no con_id for clock %s\n", name);
  203. }
  204. if (output_index < 0)
  205. return 0;
  206. d->outputs.clks[output_index] = clock;
  207. d->outputs.clk_num++;
  208. return 0;
  209. }
  210. static int ti_adpll_init_divider(struct ti_adpll_data *d,
  211. enum ti_adpll_clocks index,
  212. int output_index, char *name,
  213. struct clk *parent_clock,
  214. void __iomem *reg,
  215. u8 shift, u8 width,
  216. u8 clk_divider_flags)
  217. {
  218. const char *child_name;
  219. const char *parent_name;
  220. struct clk *clock;
  221. child_name = ti_adpll_clk_get_name(d, output_index, name);
  222. if (!child_name)
  223. return -EINVAL;
  224. parent_name = __clk_get_name(parent_clock);
  225. clock = clk_register_divider(d->dev, child_name, parent_name, 0,
  226. reg, shift, width, clk_divider_flags,
  227. &d->lock);
  228. if (IS_ERR(clock)) {
  229. dev_err(d->dev, "failed to register divider %s: %li\n",
  230. name, PTR_ERR(clock));
  231. return PTR_ERR(clock);
  232. }
  233. return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
  234. clk_unregister_divider);
  235. }
  236. static int ti_adpll_init_mux(struct ti_adpll_data *d,
  237. enum ti_adpll_clocks index,
  238. char *name, struct clk *clk0,
  239. struct clk *clk1,
  240. void __iomem *reg,
  241. u8 shift)
  242. {
  243. const char *child_name;
  244. const char *parents[2];
  245. struct clk *clock;
  246. child_name = ti_adpll_clk_get_name(d, -ENODEV, name);
  247. if (!child_name)
  248. return -ENOMEM;
  249. parents[0] = __clk_get_name(clk0);
  250. parents[1] = __clk_get_name(clk1);
  251. clock = clk_register_mux(d->dev, child_name, parents, 2, 0,
  252. reg, shift, 1, 0, &d->lock);
  253. if (IS_ERR(clock)) {
  254. dev_err(d->dev, "failed to register mux %s: %li\n",
  255. name, PTR_ERR(clock));
  256. return PTR_ERR(clock);
  257. }
  258. return ti_adpll_setup_clock(d, clock, index, -ENODEV, child_name,
  259. clk_unregister_mux);
  260. }
  261. static int ti_adpll_init_gate(struct ti_adpll_data *d,
  262. enum ti_adpll_clocks index,
  263. int output_index, char *name,
  264. struct clk *parent_clock,
  265. void __iomem *reg,
  266. u8 bit_idx,
  267. u8 clk_gate_flags)
  268. {
  269. const char *child_name;
  270. const char *parent_name;
  271. struct clk *clock;
  272. child_name = ti_adpll_clk_get_name(d, output_index, name);
  273. if (!child_name)
  274. return -EINVAL;
  275. parent_name = __clk_get_name(parent_clock);
  276. clock = clk_register_gate(d->dev, child_name, parent_name, 0,
  277. reg, bit_idx, clk_gate_flags,
  278. &d->lock);
  279. if (IS_ERR(clock)) {
  280. dev_err(d->dev, "failed to register gate %s: %li\n",
  281. name, PTR_ERR(clock));
  282. return PTR_ERR(clock);
  283. }
  284. return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
  285. clk_unregister_gate);
  286. }
  287. static int ti_adpll_init_fixed_factor(struct ti_adpll_data *d,
  288. enum ti_adpll_clocks index,
  289. char *name,
  290. struct clk *parent_clock,
  291. unsigned int mult,
  292. unsigned int div)
  293. {
  294. const char *child_name;
  295. const char *parent_name;
  296. struct clk *clock;
  297. child_name = ti_adpll_clk_get_name(d, -ENODEV, name);
  298. if (!child_name)
  299. return -ENOMEM;
  300. parent_name = __clk_get_name(parent_clock);
  301. clock = clk_register_fixed_factor(d->dev, child_name, parent_name,
  302. 0, mult, div);
  303. if (IS_ERR(clock))
  304. return PTR_ERR(clock);
  305. return ti_adpll_setup_clock(d, clock, index, -ENODEV, child_name,
  306. clk_unregister);
  307. }
  308. static void ti_adpll_set_idle_bypass(struct ti_adpll_data *d)
  309. {
  310. unsigned long flags;
  311. u32 v;
  312. spin_lock_irqsave(&d->lock, flags);
  313. v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
  314. v |= BIT(ADPLL_CLKCTRL_IDLE);
  315. writel_relaxed(v, d->regs + ADPLL_CLKCTRL_OFFSET);
  316. spin_unlock_irqrestore(&d->lock, flags);
  317. }
  318. static void ti_adpll_clear_idle_bypass(struct ti_adpll_data *d)
  319. {
  320. unsigned long flags;
  321. u32 v;
  322. spin_lock_irqsave(&d->lock, flags);
  323. v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
  324. v &= ~BIT(ADPLL_CLKCTRL_IDLE);
  325. writel_relaxed(v, d->regs + ADPLL_CLKCTRL_OFFSET);
  326. spin_unlock_irqrestore(&d->lock, flags);
  327. }
  328. static bool ti_adpll_clock_is_bypass(struct ti_adpll_data *d)
  329. {
  330. u32 v;
  331. v = readl_relaxed(d->regs + ADPLL_STATUS_OFFSET);
  332. return v & BIT(ADPLL_STATUS_BYPASS);
  333. }
  334. /*
  335. * Locked and bypass are not actually mutually exclusive: if you only care
  336. * about the DCO clock and not CLKOUT you can clear M2PWDNZ before enabling
  337. * the PLL, resulting in status (FREQLOCK | PHASELOCK | BYPASS) after lock.
  338. */
  339. static bool ti_adpll_is_locked(struct ti_adpll_data *d)
  340. {
  341. u32 v = readl_relaxed(d->regs + ADPLL_STATUS_OFFSET);
  342. return (v & ADPLL_STATUS_PREPARED_MASK) == ADPLL_STATUS_PREPARED_MASK;
  343. }
  344. static int ti_adpll_wait_lock(struct ti_adpll_data *d)
  345. {
  346. int retries = ADPLL_MAX_RETRIES;
  347. do {
  348. if (ti_adpll_is_locked(d))
  349. return 0;
  350. usleep_range(200, 300);
  351. } while (retries--);
  352. dev_err(d->dev, "pll failed to lock\n");
  353. return -ETIMEDOUT;
  354. }
  355. static int ti_adpll_prepare(struct clk_hw *hw)
  356. {
  357. struct ti_adpll_dco_data *dco = to_dco(hw);
  358. struct ti_adpll_data *d = to_adpll(dco);
  359. ti_adpll_clear_idle_bypass(d);
  360. ti_adpll_wait_lock(d);
  361. return 0;
  362. }
  363. static void ti_adpll_unprepare(struct clk_hw *hw)
  364. {
  365. struct ti_adpll_dco_data *dco = to_dco(hw);
  366. struct ti_adpll_data *d = to_adpll(dco);
  367. ti_adpll_set_idle_bypass(d);
  368. }
  369. static int ti_adpll_is_prepared(struct clk_hw *hw)
  370. {
  371. struct ti_adpll_dco_data *dco = to_dco(hw);
  372. struct ti_adpll_data *d = to_adpll(dco);
  373. return ti_adpll_is_locked(d);
  374. }
  375. /*
  376. * Note that the DCO clock is never subject to bypass: if the PLL is off,
  377. * dcoclk is low.
  378. */
  379. static unsigned long ti_adpll_recalc_rate(struct clk_hw *hw,
  380. unsigned long parent_rate)
  381. {
  382. struct ti_adpll_dco_data *dco = to_dco(hw);
  383. struct ti_adpll_data *d = to_adpll(dco);
  384. u32 frac_m, divider, v;
  385. u64 rate;
  386. unsigned long flags;
  387. if (ti_adpll_clock_is_bypass(d))
  388. return 0;
  389. spin_lock_irqsave(&d->lock, flags);
  390. frac_m = readl_relaxed(d->regs + ADPLL_FRACDIV_OFFSET);
  391. frac_m &= ADPLL_FRACDIV_FRACTIONALM_MASK;
  392. rate = (u64)readw_relaxed(d->regs + ADPLL_MN2DIV_OFFSET) << 18;
  393. rate += frac_m;
  394. rate *= parent_rate;
  395. divider = (readw_relaxed(d->regs + ADPLL_M2NDIV_OFFSET) + 1) << 18;
  396. spin_unlock_irqrestore(&d->lock, flags);
  397. do_div(rate, divider);
  398. if (d->c->is_type_s) {
  399. v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
  400. if (v & BIT(ADPLL_CLKCTRL_REGM4XEN_ADPLL_S))
  401. rate *= 4;
  402. rate *= 2;
  403. }
  404. return rate;
  405. }
  406. /* PLL parent is always clkinp, bypass only affects the children */
  407. static u8 ti_adpll_get_parent(struct clk_hw *hw)
  408. {
  409. return 0;
  410. }
  411. static const struct clk_ops ti_adpll_ops = {
  412. .prepare = ti_adpll_prepare,
  413. .unprepare = ti_adpll_unprepare,
  414. .is_prepared = ti_adpll_is_prepared,
  415. .recalc_rate = ti_adpll_recalc_rate,
  416. .get_parent = ti_adpll_get_parent,
  417. };
  418. static int ti_adpll_init_dco(struct ti_adpll_data *d)
  419. {
  420. struct clk_init_data init;
  421. struct clk *clock;
  422. const char *postfix;
  423. int width, err;
  424. d->outputs.clks = devm_kcalloc(d->dev,
  425. MAX_ADPLL_OUTPUTS,
  426. sizeof(struct clk *),
  427. GFP_KERNEL);
  428. if (!d->outputs.clks)
  429. return -ENOMEM;
  430. if (d->c->output_index < 0)
  431. postfix = "dco";
  432. else
  433. postfix = NULL;
  434. init.name = ti_adpll_clk_get_name(d, d->c->output_index, postfix);
  435. if (!init.name)
  436. return -EINVAL;
  437. init.parent_names = d->parent_names;
  438. init.num_parents = d->c->nr_max_inputs;
  439. init.ops = &ti_adpll_ops;
  440. init.flags = CLK_GET_RATE_NOCACHE;
  441. d->dco.hw.init = &init;
  442. if (d->c->is_type_s)
  443. width = 5;
  444. else
  445. width = 4;
  446. /* Internal input clock divider N2 */
  447. err = ti_adpll_init_divider(d, TI_ADPLL_N2, -ENODEV, "n2",
  448. d->parent_clocks[TI_ADPLL_CLKINP],
  449. d->regs + ADPLL_MN2DIV_OFFSET,
  450. ADPLL_MN2DIV_N2, width, 0);
  451. if (err)
  452. return err;
  453. clock = devm_clk_register(d->dev, &d->dco.hw);
  454. if (IS_ERR(clock))
  455. return PTR_ERR(clock);
  456. return ti_adpll_setup_clock(d, clock, TI_ADPLL_DCO, d->c->output_index,
  457. init.name, NULL);
  458. }
  459. static int ti_adpll_clkout_enable(struct clk_hw *hw)
  460. {
  461. struct ti_adpll_clkout_data *co = to_clkout(hw);
  462. struct clk_hw *gate_hw = &co->gate.hw;
  463. __clk_hw_set_clk(gate_hw, hw);
  464. return clk_gate_ops.enable(gate_hw);
  465. }
  466. static void ti_adpll_clkout_disable(struct clk_hw *hw)
  467. {
  468. struct ti_adpll_clkout_data *co = to_clkout(hw);
  469. struct clk_hw *gate_hw = &co->gate.hw;
  470. __clk_hw_set_clk(gate_hw, hw);
  471. clk_gate_ops.disable(gate_hw);
  472. }
  473. static int ti_adpll_clkout_is_enabled(struct clk_hw *hw)
  474. {
  475. struct ti_adpll_clkout_data *co = to_clkout(hw);
  476. struct clk_hw *gate_hw = &co->gate.hw;
  477. __clk_hw_set_clk(gate_hw, hw);
  478. return clk_gate_ops.is_enabled(gate_hw);
  479. }
  480. /* Setting PLL bypass puts clkout and clkoutx2 into bypass */
  481. static u8 ti_adpll_clkout_get_parent(struct clk_hw *hw)
  482. {
  483. struct ti_adpll_clkout_data *co = to_clkout(hw);
  484. struct ti_adpll_data *d = co->adpll;
  485. return ti_adpll_clock_is_bypass(d);
  486. }
  487. static int ti_adpll_init_clkout(struct ti_adpll_data *d,
  488. enum ti_adpll_clocks index,
  489. int output_index, int gate_bit,
  490. char *name, struct clk *clk0,
  491. struct clk *clk1)
  492. {
  493. struct ti_adpll_clkout_data *co;
  494. struct clk_init_data init;
  495. struct clk_ops *ops;
  496. const char *parent_names[2];
  497. const char *child_name;
  498. struct clk *clock;
  499. int err;
  500. co = devm_kzalloc(d->dev, sizeof(*co), GFP_KERNEL);
  501. if (!co)
  502. return -ENOMEM;
  503. co->adpll = d;
  504. err = of_property_read_string_index(d->np,
  505. "clock-output-names",
  506. output_index,
  507. &child_name);
  508. if (err)
  509. return err;
  510. ops = devm_kzalloc(d->dev, sizeof(*ops), GFP_KERNEL);
  511. if (!ops)
  512. return -ENOMEM;
  513. init.name = child_name;
  514. init.ops = ops;
  515. init.flags = CLK_IS_BASIC;
  516. co->hw.init = &init;
  517. parent_names[0] = __clk_get_name(clk0);
  518. parent_names[1] = __clk_get_name(clk1);
  519. init.parent_names = parent_names;
  520. init.num_parents = 2;
  521. ops->get_parent = ti_adpll_clkout_get_parent;
  522. ops->determine_rate = __clk_mux_determine_rate;
  523. if (gate_bit) {
  524. co->gate.lock = &d->lock;
  525. co->gate.reg = d->regs + ADPLL_CLKCTRL_OFFSET;
  526. co->gate.bit_idx = gate_bit;
  527. ops->enable = ti_adpll_clkout_enable;
  528. ops->disable = ti_adpll_clkout_disable;
  529. ops->is_enabled = ti_adpll_clkout_is_enabled;
  530. }
  531. clock = devm_clk_register(d->dev, &co->hw);
  532. if (IS_ERR(clock)) {
  533. dev_err(d->dev, "failed to register output %s: %li\n",
  534. name, PTR_ERR(clock));
  535. return PTR_ERR(clock);
  536. }
  537. return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
  538. NULL);
  539. }
  540. static int ti_adpll_init_children_adpll_s(struct ti_adpll_data *d)
  541. {
  542. int err;
  543. if (!d->c->is_type_s)
  544. return 0;
  545. /* Internal mux, sources from divider N2 or clkinpulow */
  546. err = ti_adpll_init_mux(d, TI_ADPLL_BYPASS, "bypass",
  547. d->clocks[TI_ADPLL_N2].clk,
  548. d->parent_clocks[TI_ADPLL_CLKINPULOW],
  549. d->regs + ADPLL_CLKCTRL_OFFSET,
  550. ADPLL_CLKCTRL_ULOWCLKEN);
  551. if (err)
  552. return err;
  553. /* Internal divider M2, sources DCO */
  554. err = ti_adpll_init_divider(d, TI_ADPLL_M2, -ENODEV, "m2",
  555. d->clocks[TI_ADPLL_DCO].clk,
  556. d->regs + ADPLL_M2NDIV_OFFSET,
  557. ADPLL_M2NDIV_M2,
  558. ADPLL_M2NDIV_M2_ADPLL_S_WIDTH,
  559. CLK_DIVIDER_ONE_BASED);
  560. if (err)
  561. return err;
  562. /* Internal fixed divider, after M2 before clkout */
  563. err = ti_adpll_init_fixed_factor(d, TI_ADPLL_DIV2, "div2",
  564. d->clocks[TI_ADPLL_M2].clk,
  565. 1, 2);
  566. if (err)
  567. return err;
  568. /* Output clkout with a mux and gate, sources from div2 or bypass */
  569. err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT, TI_ADPLL_S_CLKOUT,
  570. ADPLL_CLKCTRL_CLKOUTEN, "clkout",
  571. d->clocks[TI_ADPLL_DIV2].clk,
  572. d->clocks[TI_ADPLL_BYPASS].clk);
  573. if (err)
  574. return err;
  575. /* Output clkoutx2 with a mux and gate, sources from M2 or bypass */
  576. err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT2, TI_ADPLL_S_CLKOUTX2, 0,
  577. "clkout2", d->clocks[TI_ADPLL_M2].clk,
  578. d->clocks[TI_ADPLL_BYPASS].clk);
  579. if (err)
  580. return err;
  581. /* Internal mux, sources from DCO and clkinphif */
  582. if (d->parent_clocks[TI_ADPLL_CLKINPHIF]) {
  583. err = ti_adpll_init_mux(d, TI_ADPLL_HIF, "hif",
  584. d->clocks[TI_ADPLL_DCO].clk,
  585. d->parent_clocks[TI_ADPLL_CLKINPHIF],
  586. d->regs + ADPLL_CLKCTRL_OFFSET,
  587. ADPLL_CLKINPHIFSEL_ADPLL_S);
  588. if (err)
  589. return err;
  590. }
  591. /* Output clkouthif with a divider M3, sources from hif */
  592. err = ti_adpll_init_divider(d, TI_ADPLL_M3, TI_ADPLL_S_CLKOUTHIF, "m3",
  593. d->clocks[TI_ADPLL_HIF].clk,
  594. d->regs + ADPLL_M3DIV_OFFSET,
  595. ADPLL_M3DIV_M3,
  596. ADPLL_M3DIV_M3_WIDTH,
  597. CLK_DIVIDER_ONE_BASED);
  598. if (err)
  599. return err;
  600. /* Output clock dcoclkldo is the DCO */
  601. return 0;
  602. }
  603. static int ti_adpll_init_children_adpll_lj(struct ti_adpll_data *d)
  604. {
  605. int err;
  606. if (d->c->is_type_s)
  607. return 0;
  608. /* Output clkdcoldo, gated output of DCO */
  609. err = ti_adpll_init_gate(d, TI_ADPLL_DCO_GATE, TI_ADPLL_LJ_CLKDCOLDO,
  610. "clkdcoldo", d->clocks[TI_ADPLL_DCO].clk,
  611. d->regs + ADPLL_CLKCTRL_OFFSET,
  612. ADPLL_CLKCTRL_CLKDCOLDOEN, 0);
  613. if (err)
  614. return err;
  615. /* Internal divider M2, sources from DCO */
  616. err = ti_adpll_init_divider(d, TI_ADPLL_M2, -ENODEV,
  617. "m2", d->clocks[TI_ADPLL_DCO].clk,
  618. d->regs + ADPLL_M2NDIV_OFFSET,
  619. ADPLL_M2NDIV_M2,
  620. ADPLL_M2NDIV_M2_ADPLL_LJ_WIDTH,
  621. CLK_DIVIDER_ONE_BASED);
  622. if (err)
  623. return err;
  624. /* Output clkoutldo, gated output of M2 */
  625. err = ti_adpll_init_gate(d, TI_ADPLL_M2_GATE, TI_ADPLL_LJ_CLKOUTLDO,
  626. "clkoutldo", d->clocks[TI_ADPLL_M2].clk,
  627. d->regs + ADPLL_CLKCTRL_OFFSET,
  628. ADPLL_CLKCTRL_CLKOUTLDOEN_ADPLL_LJ,
  629. 0);
  630. if (err)
  631. return err;
  632. /* Internal mux, sources from divider N2 or clkinpulow */
  633. err = ti_adpll_init_mux(d, TI_ADPLL_BYPASS, "bypass",
  634. d->clocks[TI_ADPLL_N2].clk,
  635. d->parent_clocks[TI_ADPLL_CLKINPULOW],
  636. d->regs + ADPLL_CLKCTRL_OFFSET,
  637. ADPLL_CLKCTRL_ULOWCLKEN);
  638. if (err)
  639. return err;
  640. /* Output clkout, sources M2 or bypass */
  641. err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT, TI_ADPLL_S_CLKOUT,
  642. ADPLL_CLKCTRL_CLKOUTEN, "clkout",
  643. d->clocks[TI_ADPLL_M2].clk,
  644. d->clocks[TI_ADPLL_BYPASS].clk);
  645. if (err)
  646. return err;
  647. return 0;
  648. }
  649. static void ti_adpll_free_resources(struct ti_adpll_data *d)
  650. {
  651. int i;
  652. for (i = TI_ADPLL_M3; i >= 0; i--) {
  653. struct ti_adpll_clock *ac = &d->clocks[i];
  654. if (!ac || IS_ERR_OR_NULL(ac->clk))
  655. continue;
  656. if (ac->cl)
  657. clkdev_drop(ac->cl);
  658. if (ac->unregister)
  659. ac->unregister(ac->clk);
  660. }
  661. }
  662. /* MPU PLL manages the lock register for all PLLs */
  663. static void ti_adpll_unlock_all(void __iomem *reg)
  664. {
  665. u32 v;
  666. v = readl_relaxed(reg);
  667. if (v == ADPLL_PLLSS_MMR_LOCK_ENABLED)
  668. writel_relaxed(ADPLL_PLLSS_MMR_UNLOCK_MAGIC, reg);
  669. }
  670. static int ti_adpll_init_registers(struct ti_adpll_data *d)
  671. {
  672. int register_offset = 0;
  673. if (d->c->is_type_s) {
  674. register_offset = 8;
  675. ti_adpll_unlock_all(d->iobase + ADPLL_PLLSS_MMR_LOCK_OFFSET);
  676. }
  677. d->regs = d->iobase + register_offset + ADPLL_PWRCTRL_OFFSET;
  678. return 0;
  679. }
  680. static int ti_adpll_init_inputs(struct ti_adpll_data *d)
  681. {
  682. const char *error = "need at least %i inputs";
  683. struct clk *clock;
  684. int nr_inputs;
  685. nr_inputs = of_clk_get_parent_count(d->np);
  686. if (nr_inputs < d->c->nr_max_inputs) {
  687. dev_err(d->dev, error, nr_inputs);
  688. return -EINVAL;
  689. }
  690. of_clk_parent_fill(d->np, d->parent_names, nr_inputs);
  691. clock = devm_clk_get(d->dev, d->parent_names[0]);
  692. if (IS_ERR(clock)) {
  693. dev_err(d->dev, "could not get clkinp\n");
  694. return PTR_ERR(clock);
  695. }
  696. d->parent_clocks[TI_ADPLL_CLKINP] = clock;
  697. clock = devm_clk_get(d->dev, d->parent_names[1]);
  698. if (IS_ERR(clock)) {
  699. dev_err(d->dev, "could not get clkinpulow clock\n");
  700. return PTR_ERR(clock);
  701. }
  702. d->parent_clocks[TI_ADPLL_CLKINPULOW] = clock;
  703. if (d->c->is_type_s) {
  704. clock = devm_clk_get(d->dev, d->parent_names[2]);
  705. if (IS_ERR(clock)) {
  706. dev_err(d->dev, "could not get clkinphif clock\n");
  707. return PTR_ERR(clock);
  708. }
  709. d->parent_clocks[TI_ADPLL_CLKINPHIF] = clock;
  710. }
  711. return 0;
  712. }
  713. static const struct ti_adpll_platform_data ti_adpll_type_s = {
  714. .is_type_s = true,
  715. .nr_max_inputs = MAX_ADPLL_INPUTS,
  716. .nr_max_outputs = MAX_ADPLL_OUTPUTS,
  717. .output_index = TI_ADPLL_S_DCOCLKLDO,
  718. };
  719. static const struct ti_adpll_platform_data ti_adpll_type_lj = {
  720. .is_type_s = false,
  721. .nr_max_inputs = MAX_ADPLL_INPUTS - 1,
  722. .nr_max_outputs = MAX_ADPLL_OUTPUTS - 1,
  723. .output_index = -EINVAL,
  724. };
  725. static const struct of_device_id ti_adpll_match[] = {
  726. { .compatible = "ti,dm814-adpll-s-clock", &ti_adpll_type_s },
  727. { .compatible = "ti,dm814-adpll-lj-clock", &ti_adpll_type_lj },
  728. {},
  729. };
  730. MODULE_DEVICE_TABLE(of, ti_adpll_match);
  731. static int ti_adpll_probe(struct platform_device *pdev)
  732. {
  733. struct device_node *node = pdev->dev.of_node;
  734. struct device *dev = &pdev->dev;
  735. const struct of_device_id *match;
  736. const struct ti_adpll_platform_data *pdata;
  737. struct ti_adpll_data *d;
  738. struct resource *res;
  739. int err;
  740. match = of_match_device(ti_adpll_match, dev);
  741. if (match)
  742. pdata = match->data;
  743. else
  744. return -ENODEV;
  745. d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
  746. if (!d)
  747. return -ENOMEM;
  748. d->dev = dev;
  749. d->np = node;
  750. d->c = pdata;
  751. dev_set_drvdata(d->dev, d);
  752. spin_lock_init(&d->lock);
  753. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  754. if (!res)
  755. return -ENODEV;
  756. d->pa = res->start;
  757. d->iobase = devm_ioremap_resource(dev, res);
  758. if (IS_ERR(d->iobase)) {
  759. dev_err(dev, "could not get IO base: %li\n",
  760. PTR_ERR(d->iobase));
  761. return PTR_ERR(d->iobase);
  762. }
  763. err = ti_adpll_init_registers(d);
  764. if (err)
  765. return err;
  766. err = ti_adpll_init_inputs(d);
  767. if (err)
  768. return err;
  769. d->clocks = devm_kcalloc(d->dev,
  770. TI_ADPLL_NR_CLOCKS,
  771. sizeof(struct ti_adpll_clock),
  772. GFP_KERNEL);
  773. if (!d->clocks)
  774. return -ENOMEM;
  775. err = ti_adpll_init_dco(d);
  776. if (err) {
  777. dev_err(dev, "could not register dco: %i\n", err);
  778. goto free;
  779. }
  780. err = ti_adpll_init_children_adpll_s(d);
  781. if (err)
  782. goto free;
  783. err = ti_adpll_init_children_adpll_lj(d);
  784. if (err)
  785. goto free;
  786. err = of_clk_add_provider(d->np, of_clk_src_onecell_get, &d->outputs);
  787. if (err)
  788. goto free;
  789. return 0;
  790. free:
  791. WARN_ON(1);
  792. ti_adpll_free_resources(d);
  793. return err;
  794. }
  795. static int ti_adpll_remove(struct platform_device *pdev)
  796. {
  797. struct ti_adpll_data *d = dev_get_drvdata(&pdev->dev);
  798. ti_adpll_free_resources(d);
  799. return 0;
  800. }
  801. static struct platform_driver ti_adpll_driver = {
  802. .driver = {
  803. .name = "ti-adpll",
  804. .of_match_table = ti_adpll_match,
  805. },
  806. .probe = ti_adpll_probe,
  807. .remove = ti_adpll_remove,
  808. };
  809. static int __init ti_adpll_init(void)
  810. {
  811. return platform_driver_register(&ti_adpll_driver);
  812. }
  813. core_initcall(ti_adpll_init);
  814. static void __exit ti_adpll_exit(void)
  815. {
  816. platform_driver_unregister(&ti_adpll_driver);
  817. }
  818. module_exit(ti_adpll_exit);
  819. MODULE_DESCRIPTION("Clock driver for dm814x ADPLL");
  820. MODULE_ALIAS("platform:dm814-adpll-clock");
  821. MODULE_AUTHOR("Tony LIndgren <tony@atomide.com>");
  822. MODULE_LICENSE("GPL v2");