r9a06g032-clocks.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * R9A09G032 clock driver
  4. *
  5. * Copyright (C) 2018 Renesas Electronics Europe Limited
  6. *
  7. * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
  8. */
  9. #include <linux/clk.h>
  10. #include <linux/clk-provider.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/math64.h>
  15. #include <linux/of.h>
  16. #include <linux/of_address.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/slab.h>
  19. #include <linux/spinlock.h>
  20. #include <dt-bindings/clock/r9a06g032-sysctrl.h>
  21. struct r9a06g032_gate {
  22. u16 gate, reset, ready, midle,
  23. scon, mirack, mistat;
  24. };
  25. /* This is used to describe a clock for instantiation */
  26. struct r9a06g032_clkdesc {
  27. const char *name;
  28. uint32_t type: 3;
  29. uint32_t index: 8;
  30. uint32_t source : 8; /* source index + 1 (0 == none) */
  31. /* these are used to populate the bitsel struct */
  32. union {
  33. struct r9a06g032_gate gate;
  34. /* for dividers */
  35. struct {
  36. unsigned int div_min : 10, div_max : 10, reg: 10;
  37. u16 div_table[4];
  38. };
  39. /* For fixed-factor ones */
  40. struct {
  41. u16 div, mul;
  42. };
  43. unsigned int factor;
  44. unsigned int frequency;
  45. /* for dual gate */
  46. struct {
  47. uint16_t group : 1, index: 3;
  48. u16 sel, g1, r1, g2, r2;
  49. } dual;
  50. };
  51. } __packed;
  52. #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
  53. { .gate = _clk, .reset = _rst, \
  54. .ready = _rdy, .midle = _midle, \
  55. .scon = _scon, .mirack = _mirack, .mistat = _mistat }
  56. #define D_GATE(_idx, _n, _src, ...) \
  57. { .type = K_GATE, .index = R9A06G032_##_idx, \
  58. .source = 1 + R9A06G032_##_src, .name = _n, \
  59. .gate = I_GATE(__VA_ARGS__), }
  60. #define D_ROOT(_idx, _n, _mul, _div) \
  61. { .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
  62. .div = _div, .mul = _mul }
  63. #define D_FFC(_idx, _n, _src, _div) \
  64. { .type = K_FFC, .index = R9A06G032_##_idx, \
  65. .source = 1 + R9A06G032_##_src, .name = _n, \
  66. .div = _div, .mul = 1}
  67. #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
  68. { .type = K_DIV, .index = R9A06G032_##_idx, \
  69. .source = 1 + R9A06G032_##_src, .name = _n, \
  70. .reg = _reg, .div_min = _min, .div_max = _max, \
  71. .div_table = { __VA_ARGS__ } }
  72. #define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
  73. { .type = K_DUALGATE, .index = R9A06G032_##_idx, \
  74. .source = 1 + R9A06G032_##_src, .name = _n, \
  75. .dual = { .group = _g, .index = _gi, \
  76. .g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
  77. enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
  78. /* Internal clock IDs */
  79. #define R9A06G032_CLKOUT 0
  80. #define R9A06G032_CLKOUT_D10 2
  81. #define R9A06G032_CLKOUT_D16 3
  82. #define R9A06G032_CLKOUT_D160 4
  83. #define R9A06G032_CLKOUT_D1OR2 5
  84. #define R9A06G032_CLKOUT_D20 6
  85. #define R9A06G032_CLKOUT_D40 7
  86. #define R9A06G032_CLKOUT_D5 8
  87. #define R9A06G032_CLKOUT_D8 9
  88. #define R9A06G032_DIV_ADC 10
  89. #define R9A06G032_DIV_I2C 11
  90. #define R9A06G032_DIV_NAND 12
  91. #define R9A06G032_DIV_P1_PG 13
  92. #define R9A06G032_DIV_P2_PG 14
  93. #define R9A06G032_DIV_P3_PG 15
  94. #define R9A06G032_DIV_P4_PG 16
  95. #define R9A06G032_DIV_P5_PG 17
  96. #define R9A06G032_DIV_P6_PG 18
  97. #define R9A06G032_DIV_QSPI0 19
  98. #define R9A06G032_DIV_QSPI1 20
  99. #define R9A06G032_DIV_REF_SYNC 21
  100. #define R9A06G032_DIV_SDIO0 22
  101. #define R9A06G032_DIV_SDIO1 23
  102. #define R9A06G032_DIV_SWITCH 24
  103. #define R9A06G032_DIV_UART 25
  104. #define R9A06G032_DIV_MOTOR 64
  105. #define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78
  106. #define R9A06G032_CLK_ECAT100_D4 79
  107. #define R9A06G032_CLK_HSR100_D2 80
  108. #define R9A06G032_CLK_REF_SYNC_D4 81
  109. #define R9A06G032_CLK_REF_SYNC_D8 82
  110. #define R9A06G032_CLK_SERCOS100_D2 83
  111. #define R9A06G032_DIV_CA7 84
  112. #define R9A06G032_UART_GROUP_012 154
  113. #define R9A06G032_UART_GROUP_34567 155
  114. #define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1)
  115. static const struct r9a06g032_clkdesc r9a06g032_clocks[] __initconst = {
  116. D_ROOT(CLKOUT, "clkout", 25, 1),
  117. D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
  118. D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
  119. D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
  120. D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
  121. D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
  122. D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
  123. D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
  124. D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
  125. D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
  126. D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
  127. D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
  128. D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
  129. D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
  130. D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
  131. D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
  132. D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
  133. D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
  134. D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
  135. D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
  136. D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
  137. D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
  138. D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
  139. D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
  140. D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
  141. D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
  142. D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
  143. D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
  144. D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
  145. D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
  146. D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
  147. D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
  148. D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
  149. D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
  150. D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
  151. D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
  152. D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
  153. D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
  154. D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
  155. D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
  156. D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
  157. D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
  158. D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
  159. D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
  160. D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
  161. D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
  162. D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
  163. D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
  164. D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
  165. D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
  166. D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
  167. D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
  168. D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
  169. D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
  170. D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
  171. D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
  172. D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
  173. D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
  174. D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
  175. D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
  176. D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
  177. D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
  178. D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
  179. D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
  180. D_GATE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
  181. D_GATE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
  182. D_GATE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
  183. D_GATE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
  184. D_GATE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
  185. D_GATE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
  186. D_GATE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
  187. D_GATE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
  188. D_GATE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
  189. D_GATE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
  190. D_GATE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
  191. D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
  192. D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
  193. D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
  194. D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
  195. D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
  196. D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
  197. D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
  198. D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
  199. D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
  200. D_GATE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
  201. D_GATE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
  202. D_GATE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
  203. D_GATE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
  204. D_GATE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
  205. D_GATE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
  206. D_GATE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
  207. D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
  208. D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
  209. D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
  210. D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
  211. D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
  212. D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
  213. D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
  214. D_GATE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
  215. D_GATE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
  216. D_GATE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
  217. D_GATE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
  218. D_GATE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
  219. D_GATE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
  220. D_GATE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
  221. D_GATE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
  222. D_GATE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
  223. D_GATE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
  224. D_GATE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
  225. D_GATE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
  226. D_GATE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
  227. D_GATE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
  228. D_GATE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
  229. D_GATE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
  230. D_GATE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
  231. D_GATE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
  232. D_GATE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
  233. D_GATE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
  234. D_GATE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
  235. D_GATE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
  236. D_GATE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
  237. D_GATE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
  238. D_GATE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
  239. D_GATE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
  240. D_GATE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
  241. D_GATE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0, 0, 0, 0, 0, 0),
  242. D_GATE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
  243. D_GATE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
  244. D_GATE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
  245. D_GATE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
  246. D_GATE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
  247. D_GATE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
  248. D_GATE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
  249. D_GATE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
  250. D_GATE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
  251. D_GATE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
  252. D_GATE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
  253. D_GATE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
  254. D_GATE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
  255. D_GATE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
  256. D_GATE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
  257. D_GATE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
  258. D_GATE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
  259. D_GATE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
  260. D_GATE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
  261. /*
  262. * These are not hardware clocks, but are needed to handle the special
  263. * case where we have a 'selector bit' that doesn't just change the
  264. * parent for a clock, but also the gate it's suposed to use.
  265. */
  266. {
  267. .index = R9A06G032_UART_GROUP_012,
  268. .name = "uart_group_012",
  269. .type = K_BITSEL,
  270. .source = 1 + R9A06G032_DIV_UART,
  271. /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
  272. .dual.sel = ((0xec / 4) << 5) | 24,
  273. .dual.group = 0,
  274. },
  275. {
  276. .index = R9A06G032_UART_GROUP_34567,
  277. .name = "uart_group_34567",
  278. .type = K_BITSEL,
  279. .source = 1 + R9A06G032_DIV_P2_PG,
  280. /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
  281. .dual.sel = ((0x34 / 4) << 5) | 30,
  282. .dual.group = 1,
  283. },
  284. D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
  285. D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
  286. D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
  287. D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
  288. D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
  289. D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
  290. D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
  291. D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
  292. };
  293. struct r9a06g032_priv {
  294. struct clk_onecell_data data;
  295. spinlock_t lock; /* protects concurent access to gates */
  296. void __iomem *reg;
  297. };
  298. /* register/bit pairs are encoded as an uint16_t */
  299. static void
  300. clk_rdesc_set(struct r9a06g032_priv *clocks,
  301. u16 one, unsigned int on)
  302. {
  303. u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
  304. u32 val = readl(reg);
  305. val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
  306. writel(val, reg);
  307. }
  308. static int
  309. clk_rdesc_get(struct r9a06g032_priv *clocks,
  310. uint16_t one)
  311. {
  312. u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
  313. u32 val = readl(reg);
  314. return !!(val & (1U << (one & 0x1f)));
  315. }
  316. /*
  317. * This implements the R9A09G032 clock gate 'driver'. We cannot use the system's
  318. * clock gate framework as the gates on the R9A09G032 have a special enabling
  319. * sequence, therefore we use this little proxy.
  320. */
  321. struct r9a06g032_clk_gate {
  322. struct clk_hw hw;
  323. struct r9a06g032_priv *clocks;
  324. u16 index;
  325. struct r9a06g032_gate gate;
  326. };
  327. #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
  328. static void
  329. r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
  330. struct r9a06g032_gate *g, int on)
  331. {
  332. unsigned long flags;
  333. WARN_ON(!g->gate);
  334. spin_lock_irqsave(&clocks->lock, flags);
  335. clk_rdesc_set(clocks, g->gate, on);
  336. /* De-assert reset */
  337. if (g->reset)
  338. clk_rdesc_set(clocks, g->reset, 1);
  339. spin_unlock_irqrestore(&clocks->lock, flags);
  340. /* Hardware manual recommends 5us delay after enabling clock & reset */
  341. udelay(5);
  342. /* If the peripheral is memory mapped (i.e. an AXI slave), there is an
  343. * associated SLVRDY bit in the System Controller that needs to be set
  344. * so that the FlexWAY bus fabric passes on the read/write requests.
  345. */
  346. if (g->ready || g->midle) {
  347. spin_lock_irqsave(&clocks->lock, flags);
  348. if (g->ready)
  349. clk_rdesc_set(clocks, g->ready, on);
  350. /* Clear 'Master Idle Request' bit */
  351. if (g->midle)
  352. clk_rdesc_set(clocks, g->midle, !on);
  353. spin_unlock_irqrestore(&clocks->lock, flags);
  354. }
  355. /* Note: We don't wait for FlexWAY Socket Connection signal */
  356. }
  357. static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
  358. {
  359. struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
  360. r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
  361. return 0;
  362. }
  363. static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
  364. {
  365. struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
  366. r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
  367. }
  368. static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
  369. {
  370. struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
  371. /* if clock is in reset, the gate might be on, and still not 'be' on */
  372. if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
  373. return 0;
  374. return clk_rdesc_get(g->clocks, g->gate.gate);
  375. }
  376. static const struct clk_ops r9a06g032_clk_gate_ops = {
  377. .enable = r9a06g032_clk_gate_enable,
  378. .disable = r9a06g032_clk_gate_disable,
  379. .is_enabled = r9a06g032_clk_gate_is_enabled,
  380. };
  381. static struct clk *
  382. r9a06g032_register_gate(struct r9a06g032_priv *clocks,
  383. const char *parent_name,
  384. const struct r9a06g032_clkdesc *desc)
  385. {
  386. struct clk *clk;
  387. struct r9a06g032_clk_gate *g;
  388. struct clk_init_data init;
  389. g = kzalloc(sizeof(*g), GFP_KERNEL);
  390. if (!g)
  391. return NULL;
  392. init.name = desc->name;
  393. init.ops = &r9a06g032_clk_gate_ops;
  394. init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
  395. init.parent_names = parent_name ? &parent_name : NULL;
  396. init.num_parents = parent_name ? 1 : 0;
  397. g->clocks = clocks;
  398. g->index = desc->index;
  399. g->gate = desc->gate;
  400. g->hw.init = &init;
  401. /*
  402. * important here, some clocks are already in use by the CM3, we
  403. * have to assume they are not Linux's to play with and try to disable
  404. * at the end of the boot!
  405. */
  406. if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
  407. init.flags |= CLK_IS_CRITICAL;
  408. pr_debug("%s was enabled, making read-only\n", desc->name);
  409. }
  410. clk = clk_register(NULL, &g->hw);
  411. if (IS_ERR(clk)) {
  412. kfree(g);
  413. return NULL;
  414. }
  415. return clk;
  416. }
  417. struct r9a06g032_clk_div {
  418. struct clk_hw hw;
  419. struct r9a06g032_priv *clocks;
  420. u16 index;
  421. u16 reg;
  422. u16 min, max;
  423. u8 table_size;
  424. u16 table[8]; /* we know there are no more than 8 */
  425. };
  426. #define to_r9a06g032_div(_hw) \
  427. container_of(_hw, struct r9a06g032_clk_div, hw)
  428. static unsigned long
  429. r9a06g032_div_recalc_rate(struct clk_hw *hw,
  430. unsigned long parent_rate)
  431. {
  432. struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
  433. u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
  434. u32 div = readl(reg);
  435. if (div < clk->min)
  436. div = clk->min;
  437. else if (div > clk->max)
  438. div = clk->max;
  439. return DIV_ROUND_UP(parent_rate, div);
  440. }
  441. /*
  442. * Attempts to find a value that is in range of min,max,
  443. * and if a table of set dividers was specified for this
  444. * register, try to find the fixed divider that is the closest
  445. * to the target frequency
  446. */
  447. static long
  448. r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
  449. unsigned long rate, unsigned long prate)
  450. {
  451. /* + 1 to cope with rates that have the remainder dropped */
  452. u32 div = DIV_ROUND_UP(prate, rate + 1);
  453. int i;
  454. if (div <= clk->min)
  455. return clk->min;
  456. if (div >= clk->max)
  457. return clk->max;
  458. for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
  459. if (div >= clk->table[i] && div <= clk->table[i + 1]) {
  460. unsigned long m = rate -
  461. DIV_ROUND_UP(prate, clk->table[i]);
  462. unsigned long p =
  463. DIV_ROUND_UP(prate, clk->table[i + 1]) -
  464. rate;
  465. /*
  466. * select the divider that generates
  467. * the value closest to the ideal frequency
  468. */
  469. div = p >= m ? clk->table[i] : clk->table[i + 1];
  470. return div;
  471. }
  472. }
  473. return div;
  474. }
  475. static long
  476. r9a06g032_div_round_rate(struct clk_hw *hw,
  477. unsigned long rate, unsigned long *prate)
  478. {
  479. struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
  480. u32 div = DIV_ROUND_UP(*prate, rate);
  481. pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
  482. hw->clk, rate, *prate, div);
  483. pr_devel(" min %d (%ld) max %d (%ld)\n",
  484. clk->min, DIV_ROUND_UP(*prate, clk->min),
  485. clk->max, DIV_ROUND_UP(*prate, clk->max));
  486. div = r9a06g032_div_clamp_div(clk, rate, *prate);
  487. /*
  488. * this is a hack. Currently the serial driver asks for a clock rate
  489. * that is 16 times the baud rate -- and that is wildly outside the
  490. * range of the UART divider, somehow there is no provision for that
  491. * case of 'let the divider as is if outside range'.
  492. * The serial driver *shouldn't* play with these clocks anyway, there's
  493. * several uarts attached to this divider, and changing this impacts
  494. * everyone.
  495. */
  496. if (clk->index == R9A06G032_DIV_UART ||
  497. clk->index == R9A06G032_DIV_P2_PG) {
  498. pr_devel("%s div uart hack!\n", __func__);
  499. return clk_get_rate(hw->clk);
  500. }
  501. pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
  502. *prate, div, DIV_ROUND_UP(*prate, div));
  503. return DIV_ROUND_UP(*prate, div);
  504. }
  505. static int
  506. r9a06g032_div_set_rate(struct clk_hw *hw,
  507. unsigned long rate, unsigned long parent_rate)
  508. {
  509. struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
  510. /* + 1 to cope with rates that have the remainder dropped */
  511. u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
  512. u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
  513. pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
  514. rate, parent_rate, div);
  515. /*
  516. * Need to write the bit 31 with the divider value to
  517. * latch it. Technically we should wait until it has been
  518. * cleared too.
  519. * TODO: Find whether this callback is sleepable, in case
  520. * the hardware /does/ require some sort of spinloop here.
  521. */
  522. writel(div | BIT(31), reg);
  523. return 0;
  524. }
  525. static const struct clk_ops r9a06g032_clk_div_ops = {
  526. .recalc_rate = r9a06g032_div_recalc_rate,
  527. .round_rate = r9a06g032_div_round_rate,
  528. .set_rate = r9a06g032_div_set_rate,
  529. };
  530. static struct clk *
  531. r9a06g032_register_div(struct r9a06g032_priv *clocks,
  532. const char *parent_name,
  533. const struct r9a06g032_clkdesc *desc)
  534. {
  535. struct r9a06g032_clk_div *div;
  536. struct clk *clk;
  537. struct clk_init_data init;
  538. unsigned int i;
  539. div = kzalloc(sizeof(*div), GFP_KERNEL);
  540. if (!div)
  541. return NULL;
  542. init.name = desc->name;
  543. init.ops = &r9a06g032_clk_div_ops;
  544. init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
  545. init.parent_names = parent_name ? &parent_name : NULL;
  546. init.num_parents = parent_name ? 1 : 0;
  547. div->clocks = clocks;
  548. div->index = desc->index;
  549. div->reg = desc->reg;
  550. div->hw.init = &init;
  551. div->min = desc->div_min;
  552. div->max = desc->div_max;
  553. /* populate (optional) divider table fixed values */
  554. for (i = 0; i < ARRAY_SIZE(div->table) &&
  555. i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
  556. div->table[div->table_size++] = desc->div_table[i];
  557. }
  558. clk = clk_register(NULL, &div->hw);
  559. if (IS_ERR(clk)) {
  560. kfree(div);
  561. return NULL;
  562. }
  563. return clk;
  564. }
  565. /*
  566. * This clock provider handles the case of the R9A06G032 where you have
  567. * peripherals that have two potential clock source and two gates, one for
  568. * each of the clock source - the used clock source (for all sub clocks)
  569. * is selected by a single bit.
  570. * That single bit affects all sub-clocks, and therefore needs to change the
  571. * active gate (and turn the others off) and force a recalculation of the rates.
  572. *
  573. * This implements two clock providers, one 'bitselect' that
  574. * handles the switch between both parents, and another 'dualgate'
  575. * that knows which gate to poke at, depending on the parent's bit position.
  576. */
  577. struct r9a06g032_clk_bitsel {
  578. struct clk_hw hw;
  579. struct r9a06g032_priv *clocks;
  580. u16 index;
  581. u16 selector; /* selector register + bit */
  582. };
  583. #define to_clk_bitselect(_hw) \
  584. container_of(_hw, struct r9a06g032_clk_bitsel, hw)
  585. static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
  586. {
  587. struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
  588. return clk_rdesc_get(set->clocks, set->selector);
  589. }
  590. static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
  591. {
  592. struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
  593. /* a single bit in the register selects one of two parent clocks */
  594. clk_rdesc_set(set->clocks, set->selector, !!index);
  595. return 0;
  596. }
  597. static const struct clk_ops clk_bitselect_ops = {
  598. .get_parent = r9a06g032_clk_mux_get_parent,
  599. .set_parent = r9a06g032_clk_mux_set_parent,
  600. };
  601. static struct clk *
  602. r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
  603. const char *parent_name,
  604. const struct r9a06g032_clkdesc *desc)
  605. {
  606. struct clk *clk;
  607. struct r9a06g032_clk_bitsel *g;
  608. struct clk_init_data init;
  609. const char *names[2];
  610. /* allocate the gate */
  611. g = kzalloc(sizeof(*g), GFP_KERNEL);
  612. if (!g)
  613. return NULL;
  614. names[0] = parent_name;
  615. names[1] = "clk_pll_usb";
  616. init.name = desc->name;
  617. init.ops = &clk_bitselect_ops;
  618. init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
  619. init.parent_names = names;
  620. init.num_parents = 2;
  621. g->clocks = clocks;
  622. g->index = desc->index;
  623. g->selector = desc->dual.sel;
  624. g->hw.init = &init;
  625. clk = clk_register(NULL, &g->hw);
  626. if (IS_ERR(clk)) {
  627. kfree(g);
  628. return NULL;
  629. }
  630. return clk;
  631. }
  632. struct r9a06g032_clk_dualgate {
  633. struct clk_hw hw;
  634. struct r9a06g032_priv *clocks;
  635. u16 index;
  636. u16 selector; /* selector register + bit */
  637. struct r9a06g032_gate gate[2];
  638. };
  639. #define to_clk_dualgate(_hw) \
  640. container_of(_hw, struct r9a06g032_clk_dualgate, hw)
  641. static int
  642. r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
  643. {
  644. u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
  645. /* we always turn off the 'other' gate, regardless */
  646. r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
  647. r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
  648. return 0;
  649. }
  650. static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
  651. {
  652. struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
  653. r9a06g032_clk_dualgate_setenable(gate, 1);
  654. return 0;
  655. }
  656. static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
  657. {
  658. struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
  659. r9a06g032_clk_dualgate_setenable(gate, 0);
  660. }
  661. static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
  662. {
  663. struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
  664. u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
  665. return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
  666. }
  667. static const struct clk_ops r9a06g032_clk_dualgate_ops = {
  668. .enable = r9a06g032_clk_dualgate_enable,
  669. .disable = r9a06g032_clk_dualgate_disable,
  670. .is_enabled = r9a06g032_clk_dualgate_is_enabled,
  671. };
  672. static struct clk *
  673. r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
  674. const char *parent_name,
  675. const struct r9a06g032_clkdesc *desc,
  676. uint16_t sel)
  677. {
  678. struct r9a06g032_clk_dualgate *g;
  679. struct clk *clk;
  680. struct clk_init_data init;
  681. /* allocate the gate */
  682. g = kzalloc(sizeof(*g), GFP_KERNEL);
  683. if (!g)
  684. return NULL;
  685. g->clocks = clocks;
  686. g->index = desc->index;
  687. g->selector = sel;
  688. g->gate[0].gate = desc->dual.g1;
  689. g->gate[0].reset = desc->dual.r1;
  690. g->gate[1].gate = desc->dual.g2;
  691. g->gate[1].reset = desc->dual.r2;
  692. init.name = desc->name;
  693. init.ops = &r9a06g032_clk_dualgate_ops;
  694. init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
  695. init.parent_names = &parent_name;
  696. init.num_parents = 1;
  697. g->hw.init = &init;
  698. /*
  699. * important here, some clocks are already in use by the CM3, we
  700. * have to assume they are not Linux's to play with and try to disable
  701. * at the end of the boot!
  702. */
  703. if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
  704. init.flags |= CLK_IS_CRITICAL;
  705. pr_debug("%s was enabled, making read-only\n", desc->name);
  706. }
  707. clk = clk_register(NULL, &g->hw);
  708. if (IS_ERR(clk)) {
  709. kfree(g);
  710. return NULL;
  711. }
  712. return clk;
  713. }
  714. static void r9a06g032_clocks_del_clk_provider(void *data)
  715. {
  716. of_clk_del_provider(data);
  717. }
  718. static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
  719. {
  720. struct device *dev = &pdev->dev;
  721. struct device_node *np = dev->of_node;
  722. struct r9a06g032_priv *clocks;
  723. struct clk **clks;
  724. struct clk *mclk;
  725. unsigned int i;
  726. u16 uart_group_sel[2];
  727. int error;
  728. clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
  729. clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
  730. GFP_KERNEL);
  731. if (!clocks || !clks)
  732. return -ENOMEM;
  733. spin_lock_init(&clocks->lock);
  734. clocks->data.clks = clks;
  735. clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
  736. mclk = devm_clk_get(dev, "mclk");
  737. if (IS_ERR(mclk))
  738. return PTR_ERR(mclk);
  739. clocks->reg = of_iomap(np, 0);
  740. if (WARN_ON(!clocks->reg))
  741. return -ENOMEM;
  742. for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
  743. const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
  744. const char *parent_name = d->source ?
  745. __clk_get_name(clocks->data.clks[d->source - 1]) :
  746. __clk_get_name(mclk);
  747. struct clk *clk = NULL;
  748. switch (d->type) {
  749. case K_FFC:
  750. clk = clk_register_fixed_factor(NULL, d->name,
  751. parent_name, 0,
  752. d->mul, d->div);
  753. break;
  754. case K_GATE:
  755. clk = r9a06g032_register_gate(clocks, parent_name, d);
  756. break;
  757. case K_DIV:
  758. clk = r9a06g032_register_div(clocks, parent_name, d);
  759. break;
  760. case K_BITSEL:
  761. /* keep that selector register around */
  762. uart_group_sel[d->dual.group] = d->dual.sel;
  763. clk = r9a06g032_register_bitsel(clocks, parent_name, d);
  764. break;
  765. case K_DUALGATE:
  766. clk = r9a06g032_register_dualgate(clocks, parent_name,
  767. d,
  768. uart_group_sel[d->dual.group]);
  769. break;
  770. }
  771. clocks->data.clks[d->index] = clk;
  772. }
  773. error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
  774. if (error)
  775. return error;
  776. return devm_add_action_or_reset(dev,
  777. r9a06g032_clocks_del_clk_provider, np);
  778. }
  779. static const struct of_device_id r9a06g032_match[] = {
  780. { .compatible = "renesas,r9a06g032-sysctrl" },
  781. { }
  782. };
  783. static struct platform_driver r9a06g032_clock_driver = {
  784. .driver = {
  785. .name = "renesas,r9a06g032-sysctrl",
  786. .of_match_table = r9a06g032_match,
  787. },
  788. };
  789. static int __init r9a06g032_clocks_init(void)
  790. {
  791. return platform_driver_probe(&r9a06g032_clock_driver,
  792. r9a06g032_clocks_probe);
  793. }
  794. subsys_initcall(r9a06g032_clocks_init);