random.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
  5. * Rights Reserved.
  6. *
  7. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  8. *
  9. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  10. * rights reserved.
  11. *
  12. * Redistribution and use in source and binary forms, with or without
  13. * modification, are permitted provided that the following conditions
  14. * are met:
  15. * 1. Redistributions of source code must retain the above copyright
  16. * notice, and the entire permission notice in its entirety,
  17. * including the disclaimer of warranties.
  18. * 2. Redistributions in binary form must reproduce the above copyright
  19. * notice, this list of conditions and the following disclaimer in the
  20. * documentation and/or other materials provided with the distribution.
  21. * 3. The name of the author may not be used to endorse or promote
  22. * products derived from this software without specific prior
  23. * written permission.
  24. *
  25. * ALTERNATIVELY, this product may be distributed under the terms of
  26. * the GNU General Public License, in which case the provisions of the GPL are
  27. * required INSTEAD OF the above restrictions. (This clause is
  28. * necessary due to a potential bad interaction between the GPL and
  29. * the restrictions contained in a BSD-style copyright.)
  30. *
  31. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  35. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42. * DAMAGE.
  43. */
  44. /*
  45. * (now, with legal B.S. out of the way.....)
  46. *
  47. * This routine gathers environmental noise from device drivers, etc.,
  48. * and returns good random numbers, suitable for cryptographic use.
  49. * Besides the obvious cryptographic uses, these numbers are also good
  50. * for seeding TCP sequence numbers, and other places where it is
  51. * desirable to have numbers which are not only random, but hard to
  52. * predict by an attacker.
  53. *
  54. * Theory of operation
  55. * ===================
  56. *
  57. * Computers are very predictable devices. Hence it is extremely hard
  58. * to produce truly random numbers on a computer --- as opposed to
  59. * pseudo-random numbers, which can easily generated by using a
  60. * algorithm. Unfortunately, it is very easy for attackers to guess
  61. * the sequence of pseudo-random number generators, and for some
  62. * applications this is not acceptable. So instead, we must try to
  63. * gather "environmental noise" from the computer's environment, which
  64. * must be hard for outside attackers to observe, and use that to
  65. * generate random numbers. In a Unix environment, this is best done
  66. * from inside the kernel.
  67. *
  68. * Sources of randomness from the environment include inter-keyboard
  69. * timings, inter-interrupt timings from some interrupts, and other
  70. * events which are both (a) non-deterministic and (b) hard for an
  71. * outside observer to measure. Randomness from these sources are
  72. * added to an "entropy pool", which is mixed using a CRC-like function.
  73. * This is not cryptographically strong, but it is adequate assuming
  74. * the randomness is not chosen maliciously, and it is fast enough that
  75. * the overhead of doing it on every interrupt is very reasonable.
  76. * As random bytes are mixed into the entropy pool, the routines keep
  77. * an *estimate* of how many bits of randomness have been stored into
  78. * the random number generator's internal state.
  79. *
  80. * When random bytes are desired, they are obtained by taking the SHA
  81. * hash of the contents of the "entropy pool". The SHA hash avoids
  82. * exposing the internal state of the entropy pool. It is believed to
  83. * be computationally infeasible to derive any useful information
  84. * about the input of SHA from its output. Even if it is possible to
  85. * analyze SHA in some clever way, as long as the amount of data
  86. * returned from the generator is less than the inherent entropy in
  87. * the pool, the output data is totally unpredictable. For this
  88. * reason, the routine decreases its internal estimate of how many
  89. * bits of "true randomness" are contained in the entropy pool as it
  90. * outputs random numbers.
  91. *
  92. * If this estimate goes to zero, the routine can still generate
  93. * random numbers; however, an attacker may (at least in theory) be
  94. * able to infer the future output of the generator from prior
  95. * outputs. This requires successful cryptanalysis of SHA, which is
  96. * not believed to be feasible, but there is a remote possibility.
  97. * Nonetheless, these numbers should be useful for the vast majority
  98. * of purposes.
  99. *
  100. * Exported interfaces ---- output
  101. * ===============================
  102. *
  103. * There are three exported interfaces; the first is one designed to
  104. * be used from within the kernel:
  105. *
  106. * void get_random_bytes(void *buf, int nbytes);
  107. *
  108. * This interface will return the requested number of random bytes,
  109. * and place it in the requested buffer.
  110. *
  111. * The two other interfaces are two character devices /dev/random and
  112. * /dev/urandom. /dev/random is suitable for use when very high
  113. * quality randomness is desired (for example, for key generation or
  114. * one-time pads), as it will only return a maximum of the number of
  115. * bits of randomness (as estimated by the random number generator)
  116. * contained in the entropy pool.
  117. *
  118. * The /dev/urandom device does not have this limit, and will return
  119. * as many bytes as are requested. As more and more random bytes are
  120. * requested without giving time for the entropy pool to recharge,
  121. * this will result in random numbers that are merely cryptographically
  122. * strong. For many applications, however, this is acceptable.
  123. *
  124. * Exported interfaces ---- input
  125. * ==============================
  126. *
  127. * The current exported interfaces for gathering environmental noise
  128. * from the devices are:
  129. *
  130. * void add_device_randomness(const void *buf, unsigned int size);
  131. * void add_input_randomness(unsigned int type, unsigned int code,
  132. * unsigned int value);
  133. * void add_interrupt_randomness(int irq, int irq_flags);
  134. * void add_disk_randomness(struct gendisk *disk);
  135. *
  136. * add_device_randomness() is for adding data to the random pool that
  137. * is likely to differ between two devices (or possibly even per boot).
  138. * This would be things like MAC addresses or serial numbers, or the
  139. * read-out of the RTC. This does *not* add any actual entropy to the
  140. * pool, but it initializes the pool to different values for devices
  141. * that might otherwise be identical and have very little entropy
  142. * available to them (particularly common in the embedded world).
  143. *
  144. * add_input_randomness() uses the input layer interrupt timing, as well as
  145. * the event type information from the hardware.
  146. *
  147. * add_interrupt_randomness() uses the interrupt timing as random
  148. * inputs to the entropy pool. Using the cycle counters and the irq source
  149. * as inputs, it feeds the randomness roughly once a second.
  150. *
  151. * add_disk_randomness() uses what amounts to the seek time of block
  152. * layer request events, on a per-disk_devt basis, as input to the
  153. * entropy pool. Note that high-speed solid state drives with very low
  154. * seek times do not make for good sources of entropy, as their seek
  155. * times are usually fairly consistent.
  156. *
  157. * All of these routines try to estimate how many bits of randomness a
  158. * particular randomness source. They do this by keeping track of the
  159. * first and second order deltas of the event timings.
  160. *
  161. * Ensuring unpredictability at system startup
  162. * ============================================
  163. *
  164. * When any operating system starts up, it will go through a sequence
  165. * of actions that are fairly predictable by an adversary, especially
  166. * if the start-up does not involve interaction with a human operator.
  167. * This reduces the actual number of bits of unpredictability in the
  168. * entropy pool below the value in entropy_count. In order to
  169. * counteract this effect, it helps to carry information in the
  170. * entropy pool across shut-downs and start-ups. To do this, put the
  171. * following lines an appropriate script which is run during the boot
  172. * sequence:
  173. *
  174. * echo "Initializing random number generator..."
  175. * random_seed=/var/run/random-seed
  176. * # Carry a random seed from start-up to start-up
  177. * # Load and then save the whole entropy pool
  178. * if [ -f $random_seed ]; then
  179. * cat $random_seed >/dev/urandom
  180. * else
  181. * touch $random_seed
  182. * fi
  183. * chmod 600 $random_seed
  184. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  185. *
  186. * and the following lines in an appropriate script which is run as
  187. * the system is shutdown:
  188. *
  189. * # Carry a random seed from shut-down to start-up
  190. * # Save the whole entropy pool
  191. * echo "Saving random seed..."
  192. * random_seed=/var/run/random-seed
  193. * touch $random_seed
  194. * chmod 600 $random_seed
  195. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  196. *
  197. * For example, on most modern systems using the System V init
  198. * scripts, such code fragments would be found in
  199. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  200. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  201. *
  202. * Effectively, these commands cause the contents of the entropy pool
  203. * to be saved at shut-down time and reloaded into the entropy pool at
  204. * start-up. (The 'dd' in the addition to the bootup script is to
  205. * make sure that /etc/random-seed is different for every start-up,
  206. * even if the system crashes without executing rc.0.) Even with
  207. * complete knowledge of the start-up activities, predicting the state
  208. * of the entropy pool requires knowledge of the previous history of
  209. * the system.
  210. *
  211. * Configuring the /dev/random driver under Linux
  212. * ==============================================
  213. *
  214. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  215. * the /dev/mem major number (#1). So if your system does not have
  216. * /dev/random and /dev/urandom created already, they can be created
  217. * by using the commands:
  218. *
  219. * mknod /dev/random c 1 8
  220. * mknod /dev/urandom c 1 9
  221. *
  222. * Acknowledgements:
  223. * =================
  224. *
  225. * Ideas for constructing this random number generator were derived
  226. * from Pretty Good Privacy's random number generator, and from private
  227. * discussions with Phil Karn. Colin Plumb provided a faster random
  228. * number generator, which speed up the mixing function of the entropy
  229. * pool, taken from PGPfone. Dale Worley has also contributed many
  230. * useful ideas and suggestions to improve this driver.
  231. *
  232. * Any flaws in the design are solely my responsibility, and should
  233. * not be attributed to the Phil, Colin, or any of authors of PGP.
  234. *
  235. * Further background information on this topic may be obtained from
  236. * RFC 1750, "Randomness Recommendations for Security", by Donald
  237. * Eastlake, Steve Crocker, and Jeff Schiller.
  238. */
  239. #include <linux/utsname.h>
  240. #include <linux/module.h>
  241. #include <linux/kernel.h>
  242. #include <linux/major.h>
  243. #include <linux/string.h>
  244. #include <linux/fcntl.h>
  245. #include <linux/slab.h>
  246. #include <linux/random.h>
  247. #include <linux/poll.h>
  248. #include <linux/init.h>
  249. #include <linux/fs.h>
  250. #include <linux/genhd.h>
  251. #include <linux/interrupt.h>
  252. #include <linux/mm.h>
  253. #include <linux/nodemask.h>
  254. #include <linux/spinlock.h>
  255. #include <linux/kthread.h>
  256. #include <linux/percpu.h>
  257. #include <linux/cryptohash.h>
  258. #include <linux/fips.h>
  259. #include <linux/ptrace.h>
  260. #include <linux/workqueue.h>
  261. #include <linux/irq.h>
  262. #include <linux/ratelimit.h>
  263. #include <linux/syscalls.h>
  264. #include <linux/completion.h>
  265. #include <linux/uuid.h>
  266. #include <crypto/chacha20.h>
  267. #include <asm/processor.h>
  268. #include <linux/uaccess.h>
  269. #include <asm/irq.h>
  270. #include <asm/irq_regs.h>
  271. #include <asm/io.h>
  272. #define CREATE_TRACE_POINTS
  273. #include <trace/events/random.h>
  274. /* #define ADD_INTERRUPT_BENCH */
  275. /*
  276. * Configuration information
  277. */
  278. #define INPUT_POOL_SHIFT 12
  279. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  280. #define OUTPUT_POOL_SHIFT 10
  281. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  282. #define SEC_XFER_SIZE 512
  283. #define EXTRACT_SIZE 10
  284. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  285. /*
  286. * To allow fractional bits to be tracked, the entropy_count field is
  287. * denominated in units of 1/8th bits.
  288. *
  289. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  290. * credit_entropy_bits() needs to be 64 bits wide.
  291. */
  292. #define ENTROPY_SHIFT 3
  293. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  294. /*
  295. * The minimum number of bits of entropy before we wake up a read on
  296. * /dev/random. Should be enough to do a significant reseed.
  297. */
  298. static int random_read_wakeup_bits = 64;
  299. /*
  300. * If the entropy count falls under this number of bits, then we
  301. * should wake up processes which are selecting or polling on write
  302. * access to /dev/random.
  303. */
  304. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  305. /*
  306. * Originally, we used a primitive polynomial of degree .poolwords
  307. * over GF(2). The taps for various sizes are defined below. They
  308. * were chosen to be evenly spaced except for the last tap, which is 1
  309. * to get the twisting happening as fast as possible.
  310. *
  311. * For the purposes of better mixing, we use the CRC-32 polynomial as
  312. * well to make a (modified) twisted Generalized Feedback Shift
  313. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  314. * generators. ACM Transactions on Modeling and Computer Simulation
  315. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  316. * GFSR generators II. ACM Transactions on Modeling and Computer
  317. * Simulation 4:254-266)
  318. *
  319. * Thanks to Colin Plumb for suggesting this.
  320. *
  321. * The mixing operation is much less sensitive than the output hash,
  322. * where we use SHA-1. All that we want of mixing operation is that
  323. * it be a good non-cryptographic hash; i.e. it not produce collisions
  324. * when fed "random" data of the sort we expect to see. As long as
  325. * the pool state differs for different inputs, we have preserved the
  326. * input entropy and done a good job. The fact that an intelligent
  327. * attacker can construct inputs that will produce controlled
  328. * alterations to the pool's state is not important because we don't
  329. * consider such inputs to contribute any randomness. The only
  330. * property we need with respect to them is that the attacker can't
  331. * increase his/her knowledge of the pool's state. Since all
  332. * additions are reversible (knowing the final state and the input,
  333. * you can reconstruct the initial state), if an attacker has any
  334. * uncertainty about the initial state, he/she can only shuffle that
  335. * uncertainty about, but never cause any collisions (which would
  336. * decrease the uncertainty).
  337. *
  338. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  339. * Videau in their paper, "The Linux Pseudorandom Number Generator
  340. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  341. * paper, they point out that we are not using a true Twisted GFSR,
  342. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  343. * is, with only three taps, instead of the six that we are using).
  344. * As a result, the resulting polynomial is neither primitive nor
  345. * irreducible, and hence does not have a maximal period over
  346. * GF(2**32). They suggest a slight change to the generator
  347. * polynomial which improves the resulting TGFSR polynomial to be
  348. * irreducible, which we have made here.
  349. */
  350. static struct poolinfo {
  351. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  352. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  353. int tap1, tap2, tap3, tap4, tap5;
  354. } poolinfo_table[] = {
  355. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  356. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  357. { S(128), 104, 76, 51, 25, 1 },
  358. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  359. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  360. { S(32), 26, 19, 14, 7, 1 },
  361. #if 0
  362. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  363. { S(2048), 1638, 1231, 819, 411, 1 },
  364. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  365. { S(1024), 817, 615, 412, 204, 1 },
  366. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  367. { S(1024), 819, 616, 410, 207, 2 },
  368. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  369. { S(512), 411, 308, 208, 104, 1 },
  370. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  371. { S(512), 409, 307, 206, 102, 2 },
  372. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  373. { S(512), 409, 309, 205, 103, 2 },
  374. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  375. { S(256), 205, 155, 101, 52, 1 },
  376. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  377. { S(128), 103, 78, 51, 27, 2 },
  378. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  379. { S(64), 52, 39, 26, 14, 1 },
  380. #endif
  381. };
  382. /*
  383. * Static global variables
  384. */
  385. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  386. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  387. static struct fasync_struct *fasync;
  388. static DEFINE_SPINLOCK(random_ready_list_lock);
  389. static LIST_HEAD(random_ready_list);
  390. struct crng_state {
  391. __u32 state[16];
  392. unsigned long init_time;
  393. spinlock_t lock;
  394. };
  395. struct crng_state primary_crng = {
  396. .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
  397. };
  398. /*
  399. * crng_init = 0 --> Uninitialized
  400. * 1 --> Initialized
  401. * 2 --> Initialized from input_pool
  402. *
  403. * crng_init is protected by primary_crng->lock, and only increases
  404. * its value (from 0->1->2).
  405. */
  406. static int crng_init = 0;
  407. #define crng_ready() (likely(crng_init > 1))
  408. static int crng_init_cnt = 0;
  409. static unsigned long crng_global_init_time = 0;
  410. #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
  411. static void _extract_crng(struct crng_state *crng,
  412. __u8 out[CHACHA20_BLOCK_SIZE]);
  413. static void _crng_backtrack_protect(struct crng_state *crng,
  414. __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
  415. static void process_random_ready_list(void);
  416. static void _get_random_bytes(void *buf, int nbytes);
  417. static struct ratelimit_state unseeded_warning =
  418. RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
  419. static struct ratelimit_state urandom_warning =
  420. RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
  421. static int ratelimit_disable __read_mostly;
  422. module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
  423. MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
  424. /**********************************************************************
  425. *
  426. * OS independent entropy store. Here are the functions which handle
  427. * storing entropy in an entropy pool.
  428. *
  429. **********************************************************************/
  430. struct entropy_store;
  431. struct entropy_store {
  432. /* read-only data: */
  433. const struct poolinfo *poolinfo;
  434. __u32 *pool;
  435. const char *name;
  436. struct entropy_store *pull;
  437. struct work_struct push_work;
  438. /* read-write data: */
  439. unsigned long last_pulled;
  440. spinlock_t lock;
  441. unsigned short add_ptr;
  442. unsigned short input_rotate;
  443. int entropy_count;
  444. int entropy_total;
  445. unsigned int initialized:1;
  446. unsigned int last_data_init:1;
  447. __u8 last_data[EXTRACT_SIZE];
  448. };
  449. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  450. size_t nbytes, int min, int rsvd);
  451. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  452. size_t nbytes, int fips);
  453. static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
  454. static void push_to_pool(struct work_struct *work);
  455. static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
  456. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
  457. static struct entropy_store input_pool = {
  458. .poolinfo = &poolinfo_table[0],
  459. .name = "input",
  460. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  461. .pool = input_pool_data
  462. };
  463. static struct entropy_store blocking_pool = {
  464. .poolinfo = &poolinfo_table[1],
  465. .name = "blocking",
  466. .pull = &input_pool,
  467. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  468. .pool = blocking_pool_data,
  469. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  470. push_to_pool),
  471. };
  472. static __u32 const twist_table[8] = {
  473. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  474. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  475. /*
  476. * This function adds bytes into the entropy "pool". It does not
  477. * update the entropy estimate. The caller should call
  478. * credit_entropy_bits if this is appropriate.
  479. *
  480. * The pool is stirred with a primitive polynomial of the appropriate
  481. * degree, and then twisted. We twist by three bits at a time because
  482. * it's cheap to do so and helps slightly in the expected case where
  483. * the entropy is concentrated in the low-order bits.
  484. */
  485. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  486. int nbytes)
  487. {
  488. unsigned long i, tap1, tap2, tap3, tap4, tap5;
  489. int input_rotate;
  490. int wordmask = r->poolinfo->poolwords - 1;
  491. const char *bytes = in;
  492. __u32 w;
  493. tap1 = r->poolinfo->tap1;
  494. tap2 = r->poolinfo->tap2;
  495. tap3 = r->poolinfo->tap3;
  496. tap4 = r->poolinfo->tap4;
  497. tap5 = r->poolinfo->tap5;
  498. input_rotate = r->input_rotate;
  499. i = r->add_ptr;
  500. /* mix one byte at a time to simplify size handling and churn faster */
  501. while (nbytes--) {
  502. w = rol32(*bytes++, input_rotate);
  503. i = (i - 1) & wordmask;
  504. /* XOR in the various taps */
  505. w ^= r->pool[i];
  506. w ^= r->pool[(i + tap1) & wordmask];
  507. w ^= r->pool[(i + tap2) & wordmask];
  508. w ^= r->pool[(i + tap3) & wordmask];
  509. w ^= r->pool[(i + tap4) & wordmask];
  510. w ^= r->pool[(i + tap5) & wordmask];
  511. /* Mix the result back in with a twist */
  512. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  513. /*
  514. * Normally, we add 7 bits of rotation to the pool.
  515. * At the beginning of the pool, add an extra 7 bits
  516. * rotation, so that successive passes spread the
  517. * input bits across the pool evenly.
  518. */
  519. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  520. }
  521. r->input_rotate = input_rotate;
  522. r->add_ptr = i;
  523. }
  524. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  525. int nbytes)
  526. {
  527. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  528. _mix_pool_bytes(r, in, nbytes);
  529. }
  530. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  531. int nbytes)
  532. {
  533. unsigned long flags;
  534. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  535. spin_lock_irqsave(&r->lock, flags);
  536. _mix_pool_bytes(r, in, nbytes);
  537. spin_unlock_irqrestore(&r->lock, flags);
  538. }
  539. struct fast_pool {
  540. __u32 pool[4];
  541. unsigned long last;
  542. unsigned short reg_idx;
  543. unsigned char count;
  544. };
  545. /*
  546. * This is a fast mixing routine used by the interrupt randomness
  547. * collector. It's hardcoded for an 128 bit pool and assumes that any
  548. * locks that might be needed are taken by the caller.
  549. */
  550. static void fast_mix(struct fast_pool *f)
  551. {
  552. __u32 a = f->pool[0], b = f->pool[1];
  553. __u32 c = f->pool[2], d = f->pool[3];
  554. a += b; c += d;
  555. b = rol32(b, 6); d = rol32(d, 27);
  556. d ^= a; b ^= c;
  557. a += b; c += d;
  558. b = rol32(b, 16); d = rol32(d, 14);
  559. d ^= a; b ^= c;
  560. a += b; c += d;
  561. b = rol32(b, 6); d = rol32(d, 27);
  562. d ^= a; b ^= c;
  563. a += b; c += d;
  564. b = rol32(b, 16); d = rol32(d, 14);
  565. d ^= a; b ^= c;
  566. f->pool[0] = a; f->pool[1] = b;
  567. f->pool[2] = c; f->pool[3] = d;
  568. f->count++;
  569. }
  570. static void process_random_ready_list(void)
  571. {
  572. unsigned long flags;
  573. struct random_ready_callback *rdy, *tmp;
  574. spin_lock_irqsave(&random_ready_list_lock, flags);
  575. list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
  576. struct module *owner = rdy->owner;
  577. list_del_init(&rdy->list);
  578. rdy->func(rdy);
  579. module_put(owner);
  580. }
  581. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  582. }
  583. /*
  584. * Credit (or debit) the entropy store with n bits of entropy.
  585. * Use credit_entropy_bits_safe() if the value comes from userspace
  586. * or otherwise should be checked for extreme values.
  587. */
  588. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  589. {
  590. int entropy_count, orig;
  591. const int pool_size = r->poolinfo->poolfracbits;
  592. int nfrac = nbits << ENTROPY_SHIFT;
  593. if (!nbits)
  594. return;
  595. retry:
  596. entropy_count = orig = READ_ONCE(r->entropy_count);
  597. if (nfrac < 0) {
  598. /* Debit */
  599. entropy_count += nfrac;
  600. } else {
  601. /*
  602. * Credit: we have to account for the possibility of
  603. * overwriting already present entropy. Even in the
  604. * ideal case of pure Shannon entropy, new contributions
  605. * approach the full value asymptotically:
  606. *
  607. * entropy <- entropy + (pool_size - entropy) *
  608. * (1 - exp(-add_entropy/pool_size))
  609. *
  610. * For add_entropy <= pool_size/2 then
  611. * (1 - exp(-add_entropy/pool_size)) >=
  612. * (add_entropy/pool_size)*0.7869...
  613. * so we can approximate the exponential with
  614. * 3/4*add_entropy/pool_size and still be on the
  615. * safe side by adding at most pool_size/2 at a time.
  616. *
  617. * The use of pool_size-2 in the while statement is to
  618. * prevent rounding artifacts from making the loop
  619. * arbitrarily long; this limits the loop to log2(pool_size)*2
  620. * turns no matter how large nbits is.
  621. */
  622. int pnfrac = nfrac;
  623. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  624. /* The +2 corresponds to the /4 in the denominator */
  625. do {
  626. unsigned int anfrac = min(pnfrac, pool_size/2);
  627. unsigned int add =
  628. ((pool_size - entropy_count)*anfrac*3) >> s;
  629. entropy_count += add;
  630. pnfrac -= anfrac;
  631. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  632. }
  633. if (unlikely(entropy_count < 0)) {
  634. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  635. r->name, entropy_count);
  636. WARN_ON(1);
  637. entropy_count = 0;
  638. } else if (entropy_count > pool_size)
  639. entropy_count = pool_size;
  640. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  641. goto retry;
  642. r->entropy_total += nbits;
  643. if (!r->initialized && r->entropy_total > 128) {
  644. r->initialized = 1;
  645. r->entropy_total = 0;
  646. }
  647. trace_credit_entropy_bits(r->name, nbits,
  648. entropy_count >> ENTROPY_SHIFT,
  649. r->entropy_total, _RET_IP_);
  650. if (r == &input_pool) {
  651. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  652. if (crng_init < 2 && entropy_bits >= 128) {
  653. crng_reseed(&primary_crng, r);
  654. entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
  655. }
  656. /* should we wake readers? */
  657. if (entropy_bits >= random_read_wakeup_bits &&
  658. wq_has_sleeper(&random_read_wait)) {
  659. wake_up_interruptible(&random_read_wait);
  660. kill_fasync(&fasync, SIGIO, POLL_IN);
  661. }
  662. /* If the input pool is getting full, send some
  663. * entropy to the blocking pool until it is 75% full.
  664. */
  665. if (entropy_bits > random_write_wakeup_bits &&
  666. r->initialized &&
  667. r->entropy_total >= 2*random_read_wakeup_bits) {
  668. struct entropy_store *other = &blocking_pool;
  669. if (other->entropy_count <=
  670. 3 * other->poolinfo->poolfracbits / 4) {
  671. schedule_work(&other->push_work);
  672. r->entropy_total = 0;
  673. }
  674. }
  675. }
  676. }
  677. static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  678. {
  679. const int nbits_max = r->poolinfo->poolwords * 32;
  680. if (nbits < 0)
  681. return -EINVAL;
  682. /* Cap the value to avoid overflows */
  683. nbits = min(nbits, nbits_max);
  684. credit_entropy_bits(r, nbits);
  685. return 0;
  686. }
  687. /*********************************************************************
  688. *
  689. * CRNG using CHACHA20
  690. *
  691. *********************************************************************/
  692. #define CRNG_RESEED_INTERVAL (300*HZ)
  693. static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  694. #ifdef CONFIG_NUMA
  695. /*
  696. * Hack to deal with crazy userspace progams when they are all trying
  697. * to access /dev/urandom in parallel. The programs are almost
  698. * certainly doing something terribly wrong, but we'll work around
  699. * their brain damage.
  700. */
  701. static struct crng_state **crng_node_pool __read_mostly;
  702. #endif
  703. static void invalidate_batched_entropy(void);
  704. static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
  705. static int __init parse_trust_cpu(char *arg)
  706. {
  707. return kstrtobool(arg, &trust_cpu);
  708. }
  709. early_param("random.trust_cpu", parse_trust_cpu);
  710. static void crng_initialize(struct crng_state *crng)
  711. {
  712. int i;
  713. int arch_init = 1;
  714. unsigned long rv;
  715. memcpy(&crng->state[0], "expand 32-byte k", 16);
  716. if (crng == &primary_crng)
  717. _extract_entropy(&input_pool, &crng->state[4],
  718. sizeof(__u32) * 12, 0);
  719. else
  720. _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
  721. for (i = 4; i < 16; i++) {
  722. if (!arch_get_random_seed_long(&rv) &&
  723. !arch_get_random_long(&rv)) {
  724. rv = random_get_entropy();
  725. arch_init = 0;
  726. }
  727. crng->state[i] ^= rv;
  728. }
  729. if (trust_cpu && arch_init) {
  730. crng_init = 2;
  731. pr_notice("random: crng done (trusting CPU's manufacturer)\n");
  732. }
  733. crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
  734. }
  735. #ifdef CONFIG_NUMA
  736. static void do_numa_crng_init(struct work_struct *work)
  737. {
  738. int i;
  739. struct crng_state *crng;
  740. struct crng_state **pool;
  741. pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
  742. for_each_online_node(i) {
  743. crng = kmalloc_node(sizeof(struct crng_state),
  744. GFP_KERNEL | __GFP_NOFAIL, i);
  745. spin_lock_init(&crng->lock);
  746. crng_initialize(crng);
  747. pool[i] = crng;
  748. }
  749. mb();
  750. if (cmpxchg(&crng_node_pool, NULL, pool)) {
  751. for_each_node(i)
  752. kfree(pool[i]);
  753. kfree(pool);
  754. }
  755. }
  756. static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
  757. static void numa_crng_init(void)
  758. {
  759. schedule_work(&numa_crng_init_work);
  760. }
  761. #else
  762. static void numa_crng_init(void) {}
  763. #endif
  764. /*
  765. * crng_fast_load() can be called by code in the interrupt service
  766. * path. So we can't afford to dilly-dally.
  767. */
  768. static int crng_fast_load(const char *cp, size_t len)
  769. {
  770. unsigned long flags;
  771. char *p;
  772. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  773. return 0;
  774. if (crng_init != 0) {
  775. spin_unlock_irqrestore(&primary_crng.lock, flags);
  776. return 0;
  777. }
  778. p = (unsigned char *) &primary_crng.state[4];
  779. while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
  780. p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
  781. cp++; crng_init_cnt++; len--;
  782. }
  783. spin_unlock_irqrestore(&primary_crng.lock, flags);
  784. if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
  785. invalidate_batched_entropy();
  786. crng_init = 1;
  787. wake_up_interruptible(&crng_init_wait);
  788. pr_notice("random: fast init done\n");
  789. }
  790. return 1;
  791. }
  792. /*
  793. * crng_slow_load() is called by add_device_randomness, which has two
  794. * attributes. (1) We can't trust the buffer passed to it is
  795. * guaranteed to be unpredictable (so it might not have any entropy at
  796. * all), and (2) it doesn't have the performance constraints of
  797. * crng_fast_load().
  798. *
  799. * So we do something more comprehensive which is guaranteed to touch
  800. * all of the primary_crng's state, and which uses a LFSR with a
  801. * period of 255 as part of the mixing algorithm. Finally, we do
  802. * *not* advance crng_init_cnt since buffer we may get may be something
  803. * like a fixed DMI table (for example), which might very well be
  804. * unique to the machine, but is otherwise unvarying.
  805. */
  806. static int crng_slow_load(const char *cp, size_t len)
  807. {
  808. unsigned long flags;
  809. static unsigned char lfsr = 1;
  810. unsigned char tmp;
  811. unsigned i, max = CHACHA20_KEY_SIZE;
  812. const char * src_buf = cp;
  813. char * dest_buf = (char *) &primary_crng.state[4];
  814. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  815. return 0;
  816. if (crng_init != 0) {
  817. spin_unlock_irqrestore(&primary_crng.lock, flags);
  818. return 0;
  819. }
  820. if (len > max)
  821. max = len;
  822. for (i = 0; i < max ; i++) {
  823. tmp = lfsr;
  824. lfsr >>= 1;
  825. if (tmp & 1)
  826. lfsr ^= 0xE1;
  827. tmp = dest_buf[i % CHACHA20_KEY_SIZE];
  828. dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
  829. lfsr += (tmp << 3) | (tmp >> 5);
  830. }
  831. spin_unlock_irqrestore(&primary_crng.lock, flags);
  832. return 1;
  833. }
  834. static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
  835. {
  836. unsigned long flags;
  837. int i, num;
  838. union {
  839. __u8 block[CHACHA20_BLOCK_SIZE];
  840. __u32 key[8];
  841. } buf;
  842. if (r) {
  843. num = extract_entropy(r, &buf, 32, 16, 0);
  844. if (num == 0)
  845. return;
  846. } else {
  847. _extract_crng(&primary_crng, buf.block);
  848. _crng_backtrack_protect(&primary_crng, buf.block,
  849. CHACHA20_KEY_SIZE);
  850. }
  851. spin_lock_irqsave(&crng->lock, flags);
  852. for (i = 0; i < 8; i++) {
  853. unsigned long rv;
  854. if (!arch_get_random_seed_long(&rv) &&
  855. !arch_get_random_long(&rv))
  856. rv = random_get_entropy();
  857. crng->state[i+4] ^= buf.key[i] ^ rv;
  858. }
  859. memzero_explicit(&buf, sizeof(buf));
  860. crng->init_time = jiffies;
  861. spin_unlock_irqrestore(&crng->lock, flags);
  862. if (crng == &primary_crng && crng_init < 2) {
  863. invalidate_batched_entropy();
  864. numa_crng_init();
  865. crng_init = 2;
  866. process_random_ready_list();
  867. wake_up_interruptible(&crng_init_wait);
  868. pr_notice("random: crng init done\n");
  869. if (unseeded_warning.missed) {
  870. pr_notice("random: %d get_random_xx warning(s) missed "
  871. "due to ratelimiting\n",
  872. unseeded_warning.missed);
  873. unseeded_warning.missed = 0;
  874. }
  875. if (urandom_warning.missed) {
  876. pr_notice("random: %d urandom warning(s) missed "
  877. "due to ratelimiting\n",
  878. urandom_warning.missed);
  879. urandom_warning.missed = 0;
  880. }
  881. }
  882. }
  883. static void _extract_crng(struct crng_state *crng,
  884. __u8 out[CHACHA20_BLOCK_SIZE])
  885. {
  886. unsigned long v, flags;
  887. if (crng_ready() &&
  888. (time_after(crng_global_init_time, crng->init_time) ||
  889. time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
  890. crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
  891. spin_lock_irqsave(&crng->lock, flags);
  892. if (arch_get_random_long(&v))
  893. crng->state[14] ^= v;
  894. chacha20_block(&crng->state[0], out);
  895. if (crng->state[12] == 0)
  896. crng->state[13]++;
  897. spin_unlock_irqrestore(&crng->lock, flags);
  898. }
  899. static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
  900. {
  901. struct crng_state *crng = NULL;
  902. #ifdef CONFIG_NUMA
  903. if (crng_node_pool)
  904. crng = crng_node_pool[numa_node_id()];
  905. if (crng == NULL)
  906. #endif
  907. crng = &primary_crng;
  908. _extract_crng(crng, out);
  909. }
  910. /*
  911. * Use the leftover bytes from the CRNG block output (if there is
  912. * enough) to mutate the CRNG key to provide backtracking protection.
  913. */
  914. static void _crng_backtrack_protect(struct crng_state *crng,
  915. __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  916. {
  917. unsigned long flags;
  918. __u32 *s, *d;
  919. int i;
  920. used = round_up(used, sizeof(__u32));
  921. if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
  922. extract_crng(tmp);
  923. used = 0;
  924. }
  925. spin_lock_irqsave(&crng->lock, flags);
  926. s = (__u32 *) &tmp[used];
  927. d = &crng->state[4];
  928. for (i=0; i < 8; i++)
  929. *d++ ^= *s++;
  930. spin_unlock_irqrestore(&crng->lock, flags);
  931. }
  932. static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  933. {
  934. struct crng_state *crng = NULL;
  935. #ifdef CONFIG_NUMA
  936. if (crng_node_pool)
  937. crng = crng_node_pool[numa_node_id()];
  938. if (crng == NULL)
  939. #endif
  940. crng = &primary_crng;
  941. _crng_backtrack_protect(crng, tmp, used);
  942. }
  943. static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
  944. {
  945. ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
  946. __u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
  947. int large_request = (nbytes > 256);
  948. while (nbytes) {
  949. if (large_request && need_resched()) {
  950. if (signal_pending(current)) {
  951. if (ret == 0)
  952. ret = -ERESTARTSYS;
  953. break;
  954. }
  955. schedule();
  956. }
  957. extract_crng(tmp);
  958. i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
  959. if (copy_to_user(buf, tmp, i)) {
  960. ret = -EFAULT;
  961. break;
  962. }
  963. nbytes -= i;
  964. buf += i;
  965. ret += i;
  966. }
  967. crng_backtrack_protect(tmp, i);
  968. /* Wipe data just written to memory */
  969. memzero_explicit(tmp, sizeof(tmp));
  970. return ret;
  971. }
  972. /*********************************************************************
  973. *
  974. * Entropy input management
  975. *
  976. *********************************************************************/
  977. /* There is one of these per entropy source */
  978. struct timer_rand_state {
  979. cycles_t last_time;
  980. long last_delta, last_delta2;
  981. };
  982. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  983. /*
  984. * Add device- or boot-specific data to the input pool to help
  985. * initialize it.
  986. *
  987. * None of this adds any entropy; it is meant to avoid the problem of
  988. * the entropy pool having similar initial state across largely
  989. * identical devices.
  990. */
  991. void add_device_randomness(const void *buf, unsigned int size)
  992. {
  993. unsigned long time = random_get_entropy() ^ jiffies;
  994. unsigned long flags;
  995. if (!crng_ready() && size)
  996. crng_slow_load(buf, size);
  997. trace_add_device_randomness(size, _RET_IP_);
  998. spin_lock_irqsave(&input_pool.lock, flags);
  999. _mix_pool_bytes(&input_pool, buf, size);
  1000. _mix_pool_bytes(&input_pool, &time, sizeof(time));
  1001. spin_unlock_irqrestore(&input_pool.lock, flags);
  1002. }
  1003. EXPORT_SYMBOL(add_device_randomness);
  1004. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  1005. /*
  1006. * This function adds entropy to the entropy "pool" by using timing
  1007. * delays. It uses the timer_rand_state structure to make an estimate
  1008. * of how many bits of entropy this call has added to the pool.
  1009. *
  1010. * The number "num" is also added to the pool - it should somehow describe
  1011. * the type of event which just happened. This is currently 0-255 for
  1012. * keyboard scan codes, and 256 upwards for interrupts.
  1013. *
  1014. */
  1015. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  1016. {
  1017. struct entropy_store *r;
  1018. struct {
  1019. long jiffies;
  1020. unsigned cycles;
  1021. unsigned num;
  1022. } sample;
  1023. long delta, delta2, delta3;
  1024. sample.jiffies = jiffies;
  1025. sample.cycles = random_get_entropy();
  1026. sample.num = num;
  1027. r = &input_pool;
  1028. mix_pool_bytes(r, &sample, sizeof(sample));
  1029. /*
  1030. * Calculate number of bits of randomness we probably added.
  1031. * We take into account the first, second and third-order deltas
  1032. * in order to make our estimate.
  1033. */
  1034. delta = sample.jiffies - state->last_time;
  1035. state->last_time = sample.jiffies;
  1036. delta2 = delta - state->last_delta;
  1037. state->last_delta = delta;
  1038. delta3 = delta2 - state->last_delta2;
  1039. state->last_delta2 = delta2;
  1040. if (delta < 0)
  1041. delta = -delta;
  1042. if (delta2 < 0)
  1043. delta2 = -delta2;
  1044. if (delta3 < 0)
  1045. delta3 = -delta3;
  1046. if (delta > delta2)
  1047. delta = delta2;
  1048. if (delta > delta3)
  1049. delta = delta3;
  1050. /*
  1051. * delta is now minimum absolute delta.
  1052. * Round down by 1 bit on general principles,
  1053. * and limit entropy entimate to 12 bits.
  1054. */
  1055. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  1056. }
  1057. void add_input_randomness(unsigned int type, unsigned int code,
  1058. unsigned int value)
  1059. {
  1060. static unsigned char last_value;
  1061. /* ignore autorepeat and the like */
  1062. if (value == last_value)
  1063. return;
  1064. last_value = value;
  1065. add_timer_randomness(&input_timer_state,
  1066. (type << 4) ^ code ^ (code >> 4) ^ value);
  1067. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  1068. }
  1069. EXPORT_SYMBOL_GPL(add_input_randomness);
  1070. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  1071. #ifdef ADD_INTERRUPT_BENCH
  1072. static unsigned long avg_cycles, avg_deviation;
  1073. #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
  1074. #define FIXED_1_2 (1 << (AVG_SHIFT-1))
  1075. static void add_interrupt_bench(cycles_t start)
  1076. {
  1077. long delta = random_get_entropy() - start;
  1078. /* Use a weighted moving average */
  1079. delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
  1080. avg_cycles += delta;
  1081. /* And average deviation */
  1082. delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
  1083. avg_deviation += delta;
  1084. }
  1085. #else
  1086. #define add_interrupt_bench(x)
  1087. #endif
  1088. static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
  1089. {
  1090. __u32 *ptr = (__u32 *) regs;
  1091. unsigned int idx;
  1092. if (regs == NULL)
  1093. return 0;
  1094. idx = READ_ONCE(f->reg_idx);
  1095. if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
  1096. idx = 0;
  1097. ptr += idx++;
  1098. WRITE_ONCE(f->reg_idx, idx);
  1099. return *ptr;
  1100. }
  1101. void add_interrupt_randomness(int irq, int irq_flags)
  1102. {
  1103. struct entropy_store *r;
  1104. struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
  1105. struct pt_regs *regs = get_irq_regs();
  1106. unsigned long now = jiffies;
  1107. cycles_t cycles = random_get_entropy();
  1108. __u32 c_high, j_high;
  1109. __u64 ip;
  1110. unsigned long seed;
  1111. int credit = 0;
  1112. if (cycles == 0)
  1113. cycles = get_reg(fast_pool, regs);
  1114. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  1115. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  1116. fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
  1117. fast_pool->pool[1] ^= now ^ c_high;
  1118. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  1119. fast_pool->pool[2] ^= ip;
  1120. fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
  1121. get_reg(fast_pool, regs);
  1122. fast_mix(fast_pool);
  1123. add_interrupt_bench(cycles);
  1124. if (unlikely(crng_init == 0)) {
  1125. if ((fast_pool->count >= 64) &&
  1126. crng_fast_load((char *) fast_pool->pool,
  1127. sizeof(fast_pool->pool))) {
  1128. fast_pool->count = 0;
  1129. fast_pool->last = now;
  1130. }
  1131. return;
  1132. }
  1133. if ((fast_pool->count < 64) &&
  1134. !time_after(now, fast_pool->last + HZ))
  1135. return;
  1136. r = &input_pool;
  1137. if (!spin_trylock(&r->lock))
  1138. return;
  1139. fast_pool->last = now;
  1140. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
  1141. /*
  1142. * If we have architectural seed generator, produce a seed and
  1143. * add it to the pool. For the sake of paranoia don't let the
  1144. * architectural seed generator dominate the input from the
  1145. * interrupt noise.
  1146. */
  1147. if (arch_get_random_seed_long(&seed)) {
  1148. __mix_pool_bytes(r, &seed, sizeof(seed));
  1149. credit = 1;
  1150. }
  1151. spin_unlock(&r->lock);
  1152. fast_pool->count = 0;
  1153. /* award one bit for the contents of the fast pool */
  1154. credit_entropy_bits(r, credit + 1);
  1155. }
  1156. EXPORT_SYMBOL_GPL(add_interrupt_randomness);
  1157. #ifdef CONFIG_BLOCK
  1158. void add_disk_randomness(struct gendisk *disk)
  1159. {
  1160. if (!disk || !disk->random)
  1161. return;
  1162. /* first major is 1, so we get >= 0x200 here */
  1163. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  1164. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  1165. }
  1166. EXPORT_SYMBOL_GPL(add_disk_randomness);
  1167. #endif
  1168. /*********************************************************************
  1169. *
  1170. * Entropy extraction routines
  1171. *
  1172. *********************************************************************/
  1173. /*
  1174. * This utility inline function is responsible for transferring entropy
  1175. * from the primary pool to the secondary extraction pool. We make
  1176. * sure we pull enough for a 'catastrophic reseed'.
  1177. */
  1178. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  1179. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1180. {
  1181. if (!r->pull ||
  1182. r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
  1183. r->entropy_count > r->poolinfo->poolfracbits)
  1184. return;
  1185. _xfer_secondary_pool(r, nbytes);
  1186. }
  1187. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1188. {
  1189. __u32 tmp[OUTPUT_POOL_WORDS];
  1190. int bytes = nbytes;
  1191. /* pull at least as much as a wakeup */
  1192. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  1193. /* but never more than the buffer size */
  1194. bytes = min_t(int, bytes, sizeof(tmp));
  1195. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  1196. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  1197. bytes = extract_entropy(r->pull, tmp, bytes,
  1198. random_read_wakeup_bits / 8, 0);
  1199. mix_pool_bytes(r, tmp, bytes);
  1200. credit_entropy_bits(r, bytes*8);
  1201. }
  1202. /*
  1203. * Used as a workqueue function so that when the input pool is getting
  1204. * full, we can "spill over" some entropy to the output pools. That
  1205. * way the output pools can store some of the excess entropy instead
  1206. * of letting it go to waste.
  1207. */
  1208. static void push_to_pool(struct work_struct *work)
  1209. {
  1210. struct entropy_store *r = container_of(work, struct entropy_store,
  1211. push_work);
  1212. BUG_ON(!r);
  1213. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  1214. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  1215. r->pull->entropy_count >> ENTROPY_SHIFT);
  1216. }
  1217. /*
  1218. * This function decides how many bytes to actually take from the
  1219. * given pool, and also debits the entropy count accordingly.
  1220. */
  1221. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  1222. int reserved)
  1223. {
  1224. int entropy_count, orig, have_bytes;
  1225. size_t ibytes, nfrac;
  1226. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  1227. /* Can we pull enough? */
  1228. retry:
  1229. entropy_count = orig = READ_ONCE(r->entropy_count);
  1230. ibytes = nbytes;
  1231. /* never pull more than available */
  1232. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  1233. if ((have_bytes -= reserved) < 0)
  1234. have_bytes = 0;
  1235. ibytes = min_t(size_t, ibytes, have_bytes);
  1236. if (ibytes < min)
  1237. ibytes = 0;
  1238. if (unlikely(entropy_count < 0)) {
  1239. pr_warn("random: negative entropy count: pool %s count %d\n",
  1240. r->name, entropy_count);
  1241. WARN_ON(1);
  1242. entropy_count = 0;
  1243. }
  1244. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  1245. if ((size_t) entropy_count > nfrac)
  1246. entropy_count -= nfrac;
  1247. else
  1248. entropy_count = 0;
  1249. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  1250. goto retry;
  1251. trace_debit_entropy(r->name, 8 * ibytes);
  1252. if (ibytes &&
  1253. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  1254. wake_up_interruptible(&random_write_wait);
  1255. kill_fasync(&fasync, SIGIO, POLL_OUT);
  1256. }
  1257. return ibytes;
  1258. }
  1259. /*
  1260. * This function does the actual extraction for extract_entropy and
  1261. * extract_entropy_user.
  1262. *
  1263. * Note: we assume that .poolwords is a multiple of 16 words.
  1264. */
  1265. static void extract_buf(struct entropy_store *r, __u8 *out)
  1266. {
  1267. int i;
  1268. union {
  1269. __u32 w[5];
  1270. unsigned long l[LONGS(20)];
  1271. } hash;
  1272. __u32 workspace[SHA_WORKSPACE_WORDS];
  1273. unsigned long flags;
  1274. /*
  1275. * If we have an architectural hardware random number
  1276. * generator, use it for SHA's initial vector
  1277. */
  1278. sha_init(hash.w);
  1279. for (i = 0; i < LONGS(20); i++) {
  1280. unsigned long v;
  1281. if (!arch_get_random_long(&v))
  1282. break;
  1283. hash.l[i] = v;
  1284. }
  1285. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  1286. spin_lock_irqsave(&r->lock, flags);
  1287. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  1288. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  1289. /*
  1290. * We mix the hash back into the pool to prevent backtracking
  1291. * attacks (where the attacker knows the state of the pool
  1292. * plus the current outputs, and attempts to find previous
  1293. * ouputs), unless the hash function can be inverted. By
  1294. * mixing at least a SHA1 worth of hash data back, we make
  1295. * brute-forcing the feedback as hard as brute-forcing the
  1296. * hash.
  1297. */
  1298. __mix_pool_bytes(r, hash.w, sizeof(hash.w));
  1299. spin_unlock_irqrestore(&r->lock, flags);
  1300. memzero_explicit(workspace, sizeof(workspace));
  1301. /*
  1302. * In case the hash function has some recognizable output
  1303. * pattern, we fold it in half. Thus, we always feed back
  1304. * twice as much data as we output.
  1305. */
  1306. hash.w[0] ^= hash.w[3];
  1307. hash.w[1] ^= hash.w[4];
  1308. hash.w[2] ^= rol32(hash.w[2], 16);
  1309. memcpy(out, &hash, EXTRACT_SIZE);
  1310. memzero_explicit(&hash, sizeof(hash));
  1311. }
  1312. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  1313. size_t nbytes, int fips)
  1314. {
  1315. ssize_t ret = 0, i;
  1316. __u8 tmp[EXTRACT_SIZE];
  1317. unsigned long flags;
  1318. while (nbytes) {
  1319. extract_buf(r, tmp);
  1320. if (fips) {
  1321. spin_lock_irqsave(&r->lock, flags);
  1322. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1323. panic("Hardware RNG duplicated output!\n");
  1324. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1325. spin_unlock_irqrestore(&r->lock, flags);
  1326. }
  1327. i = min_t(int, nbytes, EXTRACT_SIZE);
  1328. memcpy(buf, tmp, i);
  1329. nbytes -= i;
  1330. buf += i;
  1331. ret += i;
  1332. }
  1333. /* Wipe data just returned from memory */
  1334. memzero_explicit(tmp, sizeof(tmp));
  1335. return ret;
  1336. }
  1337. /*
  1338. * This function extracts randomness from the "entropy pool", and
  1339. * returns it in a buffer.
  1340. *
  1341. * The min parameter specifies the minimum amount we can pull before
  1342. * failing to avoid races that defeat catastrophic reseeding while the
  1343. * reserved parameter indicates how much entropy we must leave in the
  1344. * pool after each pull to avoid starving other readers.
  1345. */
  1346. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  1347. size_t nbytes, int min, int reserved)
  1348. {
  1349. __u8 tmp[EXTRACT_SIZE];
  1350. unsigned long flags;
  1351. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  1352. if (fips_enabled) {
  1353. spin_lock_irqsave(&r->lock, flags);
  1354. if (!r->last_data_init) {
  1355. r->last_data_init = 1;
  1356. spin_unlock_irqrestore(&r->lock, flags);
  1357. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1358. ENTROPY_BITS(r), _RET_IP_);
  1359. xfer_secondary_pool(r, EXTRACT_SIZE);
  1360. extract_buf(r, tmp);
  1361. spin_lock_irqsave(&r->lock, flags);
  1362. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1363. }
  1364. spin_unlock_irqrestore(&r->lock, flags);
  1365. }
  1366. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1367. xfer_secondary_pool(r, nbytes);
  1368. nbytes = account(r, nbytes, min, reserved);
  1369. return _extract_entropy(r, buf, nbytes, fips_enabled);
  1370. }
  1371. /*
  1372. * This function extracts randomness from the "entropy pool", and
  1373. * returns it in a userspace buffer.
  1374. */
  1375. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1376. size_t nbytes)
  1377. {
  1378. ssize_t ret = 0, i;
  1379. __u8 tmp[EXTRACT_SIZE];
  1380. int large_request = (nbytes > 256);
  1381. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1382. xfer_secondary_pool(r, nbytes);
  1383. nbytes = account(r, nbytes, 0, 0);
  1384. while (nbytes) {
  1385. if (large_request && need_resched()) {
  1386. if (signal_pending(current)) {
  1387. if (ret == 0)
  1388. ret = -ERESTARTSYS;
  1389. break;
  1390. }
  1391. schedule();
  1392. }
  1393. extract_buf(r, tmp);
  1394. i = min_t(int, nbytes, EXTRACT_SIZE);
  1395. if (copy_to_user(buf, tmp, i)) {
  1396. ret = -EFAULT;
  1397. break;
  1398. }
  1399. nbytes -= i;
  1400. buf += i;
  1401. ret += i;
  1402. }
  1403. /* Wipe data just returned from memory */
  1404. memzero_explicit(tmp, sizeof(tmp));
  1405. return ret;
  1406. }
  1407. #define warn_unseeded_randomness(previous) \
  1408. _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
  1409. static void _warn_unseeded_randomness(const char *func_name, void *caller,
  1410. void **previous)
  1411. {
  1412. #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1413. const bool print_once = false;
  1414. #else
  1415. static bool print_once __read_mostly;
  1416. #endif
  1417. if (print_once ||
  1418. crng_ready() ||
  1419. (previous && (caller == READ_ONCE(*previous))))
  1420. return;
  1421. WRITE_ONCE(*previous, caller);
  1422. #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1423. print_once = true;
  1424. #endif
  1425. if (__ratelimit(&unseeded_warning))
  1426. pr_notice("random: %s called from %pS with crng_init=%d\n",
  1427. func_name, caller, crng_init);
  1428. }
  1429. /*
  1430. * This function is the exported kernel interface. It returns some
  1431. * number of good random numbers, suitable for key generation, seeding
  1432. * TCP sequence numbers, etc. It does not rely on the hardware random
  1433. * number generator. For random bytes direct from the hardware RNG
  1434. * (when available), use get_random_bytes_arch(). In order to ensure
  1435. * that the randomness provided by this function is okay, the function
  1436. * wait_for_random_bytes() should be called and return 0 at least once
  1437. * at any point prior.
  1438. */
  1439. static void _get_random_bytes(void *buf, int nbytes)
  1440. {
  1441. __u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
  1442. trace_get_random_bytes(nbytes, _RET_IP_);
  1443. while (nbytes >= CHACHA20_BLOCK_SIZE) {
  1444. extract_crng(buf);
  1445. buf += CHACHA20_BLOCK_SIZE;
  1446. nbytes -= CHACHA20_BLOCK_SIZE;
  1447. }
  1448. if (nbytes > 0) {
  1449. extract_crng(tmp);
  1450. memcpy(buf, tmp, nbytes);
  1451. crng_backtrack_protect(tmp, nbytes);
  1452. } else
  1453. crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
  1454. memzero_explicit(tmp, sizeof(tmp));
  1455. }
  1456. void get_random_bytes(void *buf, int nbytes)
  1457. {
  1458. static void *previous;
  1459. warn_unseeded_randomness(&previous);
  1460. _get_random_bytes(buf, nbytes);
  1461. }
  1462. EXPORT_SYMBOL(get_random_bytes);
  1463. /*
  1464. * Wait for the urandom pool to be seeded and thus guaranteed to supply
  1465. * cryptographically secure random numbers. This applies to: the /dev/urandom
  1466. * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
  1467. * family of functions. Using any of these functions without first calling
  1468. * this function forfeits the guarantee of security.
  1469. *
  1470. * Returns: 0 if the urandom pool has been seeded.
  1471. * -ERESTARTSYS if the function was interrupted by a signal.
  1472. */
  1473. int wait_for_random_bytes(void)
  1474. {
  1475. if (likely(crng_ready()))
  1476. return 0;
  1477. return wait_event_interruptible(crng_init_wait, crng_ready());
  1478. }
  1479. EXPORT_SYMBOL(wait_for_random_bytes);
  1480. /*
  1481. * Returns whether or not the urandom pool has been seeded and thus guaranteed
  1482. * to supply cryptographically secure random numbers. This applies to: the
  1483. * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
  1484. * ,u64,int,long} family of functions.
  1485. *
  1486. * Returns: true if the urandom pool has been seeded.
  1487. * false if the urandom pool has not been seeded.
  1488. */
  1489. bool rng_is_initialized(void)
  1490. {
  1491. return crng_ready();
  1492. }
  1493. EXPORT_SYMBOL(rng_is_initialized);
  1494. /*
  1495. * Add a callback function that will be invoked when the nonblocking
  1496. * pool is initialised.
  1497. *
  1498. * returns: 0 if callback is successfully added
  1499. * -EALREADY if pool is already initialised (callback not called)
  1500. * -ENOENT if module for callback is not alive
  1501. */
  1502. int add_random_ready_callback(struct random_ready_callback *rdy)
  1503. {
  1504. struct module *owner;
  1505. unsigned long flags;
  1506. int err = -EALREADY;
  1507. if (crng_ready())
  1508. return err;
  1509. owner = rdy->owner;
  1510. if (!try_module_get(owner))
  1511. return -ENOENT;
  1512. spin_lock_irqsave(&random_ready_list_lock, flags);
  1513. if (crng_ready())
  1514. goto out;
  1515. owner = NULL;
  1516. list_add(&rdy->list, &random_ready_list);
  1517. err = 0;
  1518. out:
  1519. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1520. module_put(owner);
  1521. return err;
  1522. }
  1523. EXPORT_SYMBOL(add_random_ready_callback);
  1524. /*
  1525. * Delete a previously registered readiness callback function.
  1526. */
  1527. void del_random_ready_callback(struct random_ready_callback *rdy)
  1528. {
  1529. unsigned long flags;
  1530. struct module *owner = NULL;
  1531. spin_lock_irqsave(&random_ready_list_lock, flags);
  1532. if (!list_empty(&rdy->list)) {
  1533. list_del_init(&rdy->list);
  1534. owner = rdy->owner;
  1535. }
  1536. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1537. module_put(owner);
  1538. }
  1539. EXPORT_SYMBOL(del_random_ready_callback);
  1540. /*
  1541. * This function will use the architecture-specific hardware random
  1542. * number generator if it is available. The arch-specific hw RNG will
  1543. * almost certainly be faster than what we can do in software, but it
  1544. * is impossible to verify that it is implemented securely (as
  1545. * opposed, to, say, the AES encryption of a sequence number using a
  1546. * key known by the NSA). So it's useful if we need the speed, but
  1547. * only if we're willing to trust the hardware manufacturer not to
  1548. * have put in a back door.
  1549. *
  1550. * Return number of bytes filled in.
  1551. */
  1552. int __must_check get_random_bytes_arch(void *buf, int nbytes)
  1553. {
  1554. int left = nbytes;
  1555. char *p = buf;
  1556. trace_get_random_bytes_arch(left, _RET_IP_);
  1557. while (left) {
  1558. unsigned long v;
  1559. int chunk = min_t(int, left, sizeof(unsigned long));
  1560. if (!arch_get_random_long(&v))
  1561. break;
  1562. memcpy(p, &v, chunk);
  1563. p += chunk;
  1564. left -= chunk;
  1565. }
  1566. return nbytes - left;
  1567. }
  1568. EXPORT_SYMBOL(get_random_bytes_arch);
  1569. /*
  1570. * init_std_data - initialize pool with system data
  1571. *
  1572. * @r: pool to initialize
  1573. *
  1574. * This function clears the pool's entropy count and mixes some system
  1575. * data into the pool to prepare it for use. The pool is not cleared
  1576. * as that can only decrease the entropy in the pool.
  1577. */
  1578. static void init_std_data(struct entropy_store *r)
  1579. {
  1580. int i;
  1581. ktime_t now = ktime_get_real();
  1582. unsigned long rv;
  1583. r->last_pulled = jiffies;
  1584. mix_pool_bytes(r, &now, sizeof(now));
  1585. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1586. if (!arch_get_random_seed_long(&rv) &&
  1587. !arch_get_random_long(&rv))
  1588. rv = random_get_entropy();
  1589. mix_pool_bytes(r, &rv, sizeof(rv));
  1590. }
  1591. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  1592. }
  1593. /*
  1594. * Note that setup_arch() may call add_device_randomness()
  1595. * long before we get here. This allows seeding of the pools
  1596. * with some platform dependent data very early in the boot
  1597. * process. But it limits our options here. We must use
  1598. * statically allocated structures that already have all
  1599. * initializations complete at compile time. We should also
  1600. * take care not to overwrite the precious per platform data
  1601. * we were given.
  1602. */
  1603. static int rand_initialize(void)
  1604. {
  1605. init_std_data(&input_pool);
  1606. init_std_data(&blocking_pool);
  1607. crng_initialize(&primary_crng);
  1608. crng_global_init_time = jiffies;
  1609. if (ratelimit_disable) {
  1610. urandom_warning.interval = 0;
  1611. unseeded_warning.interval = 0;
  1612. }
  1613. return 0;
  1614. }
  1615. early_initcall(rand_initialize);
  1616. #ifdef CONFIG_BLOCK
  1617. void rand_initialize_disk(struct gendisk *disk)
  1618. {
  1619. struct timer_rand_state *state;
  1620. /*
  1621. * If kzalloc returns null, we just won't use that entropy
  1622. * source.
  1623. */
  1624. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1625. if (state) {
  1626. state->last_time = INITIAL_JIFFIES;
  1627. disk->random = state;
  1628. }
  1629. }
  1630. #endif
  1631. static ssize_t
  1632. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1633. {
  1634. ssize_t n;
  1635. if (nbytes == 0)
  1636. return 0;
  1637. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1638. while (1) {
  1639. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1640. if (n < 0)
  1641. return n;
  1642. trace_random_read(n*8, (nbytes-n)*8,
  1643. ENTROPY_BITS(&blocking_pool),
  1644. ENTROPY_BITS(&input_pool));
  1645. if (n > 0)
  1646. return n;
  1647. /* Pool is (near) empty. Maybe wait and retry. */
  1648. if (nonblock)
  1649. return -EAGAIN;
  1650. wait_event_interruptible(random_read_wait,
  1651. ENTROPY_BITS(&input_pool) >=
  1652. random_read_wakeup_bits);
  1653. if (signal_pending(current))
  1654. return -ERESTARTSYS;
  1655. }
  1656. }
  1657. static ssize_t
  1658. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1659. {
  1660. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1661. }
  1662. static ssize_t
  1663. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1664. {
  1665. unsigned long flags;
  1666. static int maxwarn = 10;
  1667. int ret;
  1668. if (!crng_ready() && maxwarn > 0) {
  1669. maxwarn--;
  1670. if (__ratelimit(&urandom_warning))
  1671. printk(KERN_NOTICE "random: %s: uninitialized "
  1672. "urandom read (%zd bytes read)\n",
  1673. current->comm, nbytes);
  1674. spin_lock_irqsave(&primary_crng.lock, flags);
  1675. crng_init_cnt = 0;
  1676. spin_unlock_irqrestore(&primary_crng.lock, flags);
  1677. }
  1678. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1679. ret = extract_crng_user(buf, nbytes);
  1680. trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
  1681. return ret;
  1682. }
  1683. static __poll_t
  1684. random_poll(struct file *file, poll_table * wait)
  1685. {
  1686. __poll_t mask;
  1687. poll_wait(file, &random_read_wait, wait);
  1688. poll_wait(file, &random_write_wait, wait);
  1689. mask = 0;
  1690. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1691. mask |= EPOLLIN | EPOLLRDNORM;
  1692. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1693. mask |= EPOLLOUT | EPOLLWRNORM;
  1694. return mask;
  1695. }
  1696. static int
  1697. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1698. {
  1699. size_t bytes;
  1700. __u32 t, buf[16];
  1701. const char __user *p = buffer;
  1702. while (count > 0) {
  1703. int b, i = 0;
  1704. bytes = min(count, sizeof(buf));
  1705. if (copy_from_user(&buf, p, bytes))
  1706. return -EFAULT;
  1707. for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
  1708. if (!arch_get_random_int(&t))
  1709. break;
  1710. buf[i] ^= t;
  1711. }
  1712. count -= bytes;
  1713. p += bytes;
  1714. mix_pool_bytes(r, buf, bytes);
  1715. cond_resched();
  1716. }
  1717. return 0;
  1718. }
  1719. static ssize_t random_write(struct file *file, const char __user *buffer,
  1720. size_t count, loff_t *ppos)
  1721. {
  1722. size_t ret;
  1723. ret = write_pool(&input_pool, buffer, count);
  1724. if (ret)
  1725. return ret;
  1726. return (ssize_t)count;
  1727. }
  1728. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1729. {
  1730. int size, ent_count;
  1731. int __user *p = (int __user *)arg;
  1732. int retval;
  1733. switch (cmd) {
  1734. case RNDGETENTCNT:
  1735. /* inherently racy, no point locking */
  1736. ent_count = ENTROPY_BITS(&input_pool);
  1737. if (put_user(ent_count, p))
  1738. return -EFAULT;
  1739. return 0;
  1740. case RNDADDTOENTCNT:
  1741. if (!capable(CAP_SYS_ADMIN))
  1742. return -EPERM;
  1743. if (get_user(ent_count, p))
  1744. return -EFAULT;
  1745. return credit_entropy_bits_safe(&input_pool, ent_count);
  1746. case RNDADDENTROPY:
  1747. if (!capable(CAP_SYS_ADMIN))
  1748. return -EPERM;
  1749. if (get_user(ent_count, p++))
  1750. return -EFAULT;
  1751. if (ent_count < 0)
  1752. return -EINVAL;
  1753. if (get_user(size, p++))
  1754. return -EFAULT;
  1755. retval = write_pool(&input_pool, (const char __user *)p,
  1756. size);
  1757. if (retval < 0)
  1758. return retval;
  1759. return credit_entropy_bits_safe(&input_pool, ent_count);
  1760. case RNDZAPENTCNT:
  1761. case RNDCLEARPOOL:
  1762. /*
  1763. * Clear the entropy pool counters. We no longer clear
  1764. * the entropy pool, as that's silly.
  1765. */
  1766. if (!capable(CAP_SYS_ADMIN))
  1767. return -EPERM;
  1768. input_pool.entropy_count = 0;
  1769. blocking_pool.entropy_count = 0;
  1770. return 0;
  1771. case RNDRESEEDCRNG:
  1772. if (!capable(CAP_SYS_ADMIN))
  1773. return -EPERM;
  1774. if (crng_init < 2)
  1775. return -ENODATA;
  1776. crng_reseed(&primary_crng, NULL);
  1777. crng_global_init_time = jiffies - 1;
  1778. return 0;
  1779. default:
  1780. return -EINVAL;
  1781. }
  1782. }
  1783. static int random_fasync(int fd, struct file *filp, int on)
  1784. {
  1785. return fasync_helper(fd, filp, on, &fasync);
  1786. }
  1787. const struct file_operations random_fops = {
  1788. .read = random_read,
  1789. .write = random_write,
  1790. .poll = random_poll,
  1791. .unlocked_ioctl = random_ioctl,
  1792. .fasync = random_fasync,
  1793. .llseek = noop_llseek,
  1794. };
  1795. const struct file_operations urandom_fops = {
  1796. .read = urandom_read,
  1797. .write = random_write,
  1798. .unlocked_ioctl = random_ioctl,
  1799. .fasync = random_fasync,
  1800. .llseek = noop_llseek,
  1801. };
  1802. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1803. unsigned int, flags)
  1804. {
  1805. int ret;
  1806. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1807. return -EINVAL;
  1808. if (count > INT_MAX)
  1809. count = INT_MAX;
  1810. if (flags & GRND_RANDOM)
  1811. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1812. if (!crng_ready()) {
  1813. if (flags & GRND_NONBLOCK)
  1814. return -EAGAIN;
  1815. ret = wait_for_random_bytes();
  1816. if (unlikely(ret))
  1817. return ret;
  1818. }
  1819. return urandom_read(NULL, buf, count, NULL);
  1820. }
  1821. /********************************************************************
  1822. *
  1823. * Sysctl interface
  1824. *
  1825. ********************************************************************/
  1826. #ifdef CONFIG_SYSCTL
  1827. #include <linux/sysctl.h>
  1828. static int min_read_thresh = 8, min_write_thresh;
  1829. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1830. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1831. static int random_min_urandom_seed = 60;
  1832. static char sysctl_bootid[16];
  1833. /*
  1834. * This function is used to return both the bootid UUID, and random
  1835. * UUID. The difference is in whether table->data is NULL; if it is,
  1836. * then a new UUID is generated and returned to the user.
  1837. *
  1838. * If the user accesses this via the proc interface, the UUID will be
  1839. * returned as an ASCII string in the standard UUID format; if via the
  1840. * sysctl system call, as 16 bytes of binary data.
  1841. */
  1842. static int proc_do_uuid(struct ctl_table *table, int write,
  1843. void __user *buffer, size_t *lenp, loff_t *ppos)
  1844. {
  1845. struct ctl_table fake_table;
  1846. unsigned char buf[64], tmp_uuid[16], *uuid;
  1847. uuid = table->data;
  1848. if (!uuid) {
  1849. uuid = tmp_uuid;
  1850. generate_random_uuid(uuid);
  1851. } else {
  1852. static DEFINE_SPINLOCK(bootid_spinlock);
  1853. spin_lock(&bootid_spinlock);
  1854. if (!uuid[8])
  1855. generate_random_uuid(uuid);
  1856. spin_unlock(&bootid_spinlock);
  1857. }
  1858. sprintf(buf, "%pU", uuid);
  1859. fake_table.data = buf;
  1860. fake_table.maxlen = sizeof(buf);
  1861. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1862. }
  1863. /*
  1864. * Return entropy available scaled to integral bits
  1865. */
  1866. static int proc_do_entropy(struct ctl_table *table, int write,
  1867. void __user *buffer, size_t *lenp, loff_t *ppos)
  1868. {
  1869. struct ctl_table fake_table;
  1870. int entropy_count;
  1871. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1872. fake_table.data = &entropy_count;
  1873. fake_table.maxlen = sizeof(entropy_count);
  1874. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1875. }
  1876. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1877. extern struct ctl_table random_table[];
  1878. struct ctl_table random_table[] = {
  1879. {
  1880. .procname = "poolsize",
  1881. .data = &sysctl_poolsize,
  1882. .maxlen = sizeof(int),
  1883. .mode = 0444,
  1884. .proc_handler = proc_dointvec,
  1885. },
  1886. {
  1887. .procname = "entropy_avail",
  1888. .maxlen = sizeof(int),
  1889. .mode = 0444,
  1890. .proc_handler = proc_do_entropy,
  1891. .data = &input_pool.entropy_count,
  1892. },
  1893. {
  1894. .procname = "read_wakeup_threshold",
  1895. .data = &random_read_wakeup_bits,
  1896. .maxlen = sizeof(int),
  1897. .mode = 0644,
  1898. .proc_handler = proc_dointvec_minmax,
  1899. .extra1 = &min_read_thresh,
  1900. .extra2 = &max_read_thresh,
  1901. },
  1902. {
  1903. .procname = "write_wakeup_threshold",
  1904. .data = &random_write_wakeup_bits,
  1905. .maxlen = sizeof(int),
  1906. .mode = 0644,
  1907. .proc_handler = proc_dointvec_minmax,
  1908. .extra1 = &min_write_thresh,
  1909. .extra2 = &max_write_thresh,
  1910. },
  1911. {
  1912. .procname = "urandom_min_reseed_secs",
  1913. .data = &random_min_urandom_seed,
  1914. .maxlen = sizeof(int),
  1915. .mode = 0644,
  1916. .proc_handler = proc_dointvec,
  1917. },
  1918. {
  1919. .procname = "boot_id",
  1920. .data = &sysctl_bootid,
  1921. .maxlen = 16,
  1922. .mode = 0444,
  1923. .proc_handler = proc_do_uuid,
  1924. },
  1925. {
  1926. .procname = "uuid",
  1927. .maxlen = 16,
  1928. .mode = 0444,
  1929. .proc_handler = proc_do_uuid,
  1930. },
  1931. #ifdef ADD_INTERRUPT_BENCH
  1932. {
  1933. .procname = "add_interrupt_avg_cycles",
  1934. .data = &avg_cycles,
  1935. .maxlen = sizeof(avg_cycles),
  1936. .mode = 0444,
  1937. .proc_handler = proc_doulongvec_minmax,
  1938. },
  1939. {
  1940. .procname = "add_interrupt_avg_deviation",
  1941. .data = &avg_deviation,
  1942. .maxlen = sizeof(avg_deviation),
  1943. .mode = 0444,
  1944. .proc_handler = proc_doulongvec_minmax,
  1945. },
  1946. #endif
  1947. { }
  1948. };
  1949. #endif /* CONFIG_SYSCTL */
  1950. struct batched_entropy {
  1951. union {
  1952. u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
  1953. u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
  1954. };
  1955. unsigned int position;
  1956. };
  1957. static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
  1958. /*
  1959. * Get a random word for internal kernel use only. The quality of the random
  1960. * number is either as good as RDRAND or as good as /dev/urandom, with the
  1961. * goal of being quite fast and not depleting entropy. In order to ensure
  1962. * that the randomness provided by this function is okay, the function
  1963. * wait_for_random_bytes() should be called and return 0 at least once
  1964. * at any point prior.
  1965. */
  1966. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
  1967. u64 get_random_u64(void)
  1968. {
  1969. u64 ret;
  1970. bool use_lock;
  1971. unsigned long flags = 0;
  1972. struct batched_entropy *batch;
  1973. static void *previous;
  1974. #if BITS_PER_LONG == 64
  1975. if (arch_get_random_long((unsigned long *)&ret))
  1976. return ret;
  1977. #else
  1978. if (arch_get_random_long((unsigned long *)&ret) &&
  1979. arch_get_random_long((unsigned long *)&ret + 1))
  1980. return ret;
  1981. #endif
  1982. warn_unseeded_randomness(&previous);
  1983. use_lock = READ_ONCE(crng_init) < 2;
  1984. batch = &get_cpu_var(batched_entropy_u64);
  1985. if (use_lock)
  1986. read_lock_irqsave(&batched_entropy_reset_lock, flags);
  1987. if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
  1988. extract_crng((u8 *)batch->entropy_u64);
  1989. batch->position = 0;
  1990. }
  1991. ret = batch->entropy_u64[batch->position++];
  1992. if (use_lock)
  1993. read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1994. put_cpu_var(batched_entropy_u64);
  1995. return ret;
  1996. }
  1997. EXPORT_SYMBOL(get_random_u64);
  1998. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
  1999. u32 get_random_u32(void)
  2000. {
  2001. u32 ret;
  2002. bool use_lock;
  2003. unsigned long flags = 0;
  2004. struct batched_entropy *batch;
  2005. static void *previous;
  2006. if (arch_get_random_int(&ret))
  2007. return ret;
  2008. warn_unseeded_randomness(&previous);
  2009. use_lock = READ_ONCE(crng_init) < 2;
  2010. batch = &get_cpu_var(batched_entropy_u32);
  2011. if (use_lock)
  2012. read_lock_irqsave(&batched_entropy_reset_lock, flags);
  2013. if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
  2014. extract_crng((u8 *)batch->entropy_u32);
  2015. batch->position = 0;
  2016. }
  2017. ret = batch->entropy_u32[batch->position++];
  2018. if (use_lock)
  2019. read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  2020. put_cpu_var(batched_entropy_u32);
  2021. return ret;
  2022. }
  2023. EXPORT_SYMBOL(get_random_u32);
  2024. /* It's important to invalidate all potential batched entropy that might
  2025. * be stored before the crng is initialized, which we can do lazily by
  2026. * simply resetting the counter to zero so that it's re-extracted on the
  2027. * next usage. */
  2028. static void invalidate_batched_entropy(void)
  2029. {
  2030. int cpu;
  2031. unsigned long flags;
  2032. write_lock_irqsave(&batched_entropy_reset_lock, flags);
  2033. for_each_possible_cpu (cpu) {
  2034. per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
  2035. per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
  2036. }
  2037. write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  2038. }
  2039. /**
  2040. * randomize_page - Generate a random, page aligned address
  2041. * @start: The smallest acceptable address the caller will take.
  2042. * @range: The size of the area, starting at @start, within which the
  2043. * random address must fall.
  2044. *
  2045. * If @start + @range would overflow, @range is capped.
  2046. *
  2047. * NOTE: Historical use of randomize_range, which this replaces, presumed that
  2048. * @start was already page aligned. We now align it regardless.
  2049. *
  2050. * Return: A page aligned address within [start, start + range). On error,
  2051. * @start is returned.
  2052. */
  2053. unsigned long
  2054. randomize_page(unsigned long start, unsigned long range)
  2055. {
  2056. if (!PAGE_ALIGNED(start)) {
  2057. range -= PAGE_ALIGN(start) - start;
  2058. start = PAGE_ALIGN(start);
  2059. }
  2060. if (start > ULONG_MAX - range)
  2061. range = ULONG_MAX - start;
  2062. range >>= PAGE_SHIFT;
  2063. if (range == 0)
  2064. return start;
  2065. return start + (get_random_long() % range << PAGE_SHIFT);
  2066. }
  2067. /* Interface for in-kernel drivers of true hardware RNGs.
  2068. * Those devices may produce endless random bits and will be throttled
  2069. * when our pool is full.
  2070. */
  2071. void add_hwgenerator_randomness(const char *buffer, size_t count,
  2072. size_t entropy)
  2073. {
  2074. struct entropy_store *poolp = &input_pool;
  2075. if (unlikely(crng_init == 0)) {
  2076. crng_fast_load(buffer, count);
  2077. return;
  2078. }
  2079. /* Suspend writing if we're above the trickle threshold.
  2080. * We'll be woken up again once below random_write_wakeup_thresh,
  2081. * or when the calling thread is about to terminate.
  2082. */
  2083. wait_event_interruptible(random_write_wait, kthread_should_stop() ||
  2084. ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
  2085. mix_pool_bytes(poolp, buffer, count);
  2086. credit_entropy_bits(poolp, entropy);
  2087. }
  2088. EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);