bfq-iosched.c 193 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848
  1. /*
  2. * Budget Fair Queueing (BFQ) I/O scheduler.
  3. *
  4. * Based on ideas and code from CFQ:
  5. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  6. *
  7. * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
  8. * Paolo Valente <paolo.valente@unimore.it>
  9. *
  10. * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
  11. * Arianna Avanzini <avanzini@google.com>
  12. *
  13. * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License as
  17. * published by the Free Software Foundation; either version 2 of the
  18. * License, or (at your option) any later version.
  19. *
  20. * This program is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * BFQ is a proportional-share I/O scheduler, with some extra
  26. * low-latency capabilities. BFQ also supports full hierarchical
  27. * scheduling through cgroups. Next paragraphs provide an introduction
  28. * on BFQ inner workings. Details on BFQ benefits, usage and
  29. * limitations can be found in Documentation/block/bfq-iosched.txt.
  30. *
  31. * BFQ is a proportional-share storage-I/O scheduling algorithm based
  32. * on the slice-by-slice service scheme of CFQ. But BFQ assigns
  33. * budgets, measured in number of sectors, to processes instead of
  34. * time slices. The device is not granted to the in-service process
  35. * for a given time slice, but until it has exhausted its assigned
  36. * budget. This change from the time to the service domain enables BFQ
  37. * to distribute the device throughput among processes as desired,
  38. * without any distortion due to throughput fluctuations, or to device
  39. * internal queueing. BFQ uses an ad hoc internal scheduler, called
  40. * B-WF2Q+, to schedule processes according to their budgets. More
  41. * precisely, BFQ schedules queues associated with processes. Each
  42. * process/queue is assigned a user-configurable weight, and B-WF2Q+
  43. * guarantees that each queue receives a fraction of the throughput
  44. * proportional to its weight. Thanks to the accurate policy of
  45. * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
  46. * processes issuing sequential requests (to boost the throughput),
  47. * and yet guarantee a low latency to interactive and soft real-time
  48. * applications.
  49. *
  50. * In particular, to provide these low-latency guarantees, BFQ
  51. * explicitly privileges the I/O of two classes of time-sensitive
  52. * applications: interactive and soft real-time. In more detail, BFQ
  53. * behaves this way if the low_latency parameter is set (default
  54. * configuration). This feature enables BFQ to provide applications in
  55. * these classes with a very low latency.
  56. *
  57. * To implement this feature, BFQ constantly tries to detect whether
  58. * the I/O requests in a bfq_queue come from an interactive or a soft
  59. * real-time application. For brevity, in these cases, the queue is
  60. * said to be interactive or soft real-time. In both cases, BFQ
  61. * privileges the service of the queue, over that of non-interactive
  62. * and non-soft-real-time queues. This privileging is performed,
  63. * mainly, by raising the weight of the queue. So, for brevity, we
  64. * call just weight-raising periods the time periods during which a
  65. * queue is privileged, because deemed interactive or soft real-time.
  66. *
  67. * The detection of soft real-time queues/applications is described in
  68. * detail in the comments on the function
  69. * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
  70. * interactive queue works as follows: a queue is deemed interactive
  71. * if it is constantly non empty only for a limited time interval,
  72. * after which it does become empty. The queue may be deemed
  73. * interactive again (for a limited time), if it restarts being
  74. * constantly non empty, provided that this happens only after the
  75. * queue has remained empty for a given minimum idle time.
  76. *
  77. * By default, BFQ computes automatically the above maximum time
  78. * interval, i.e., the time interval after which a constantly
  79. * non-empty queue stops being deemed interactive. Since a queue is
  80. * weight-raised while it is deemed interactive, this maximum time
  81. * interval happens to coincide with the (maximum) duration of the
  82. * weight-raising for interactive queues.
  83. *
  84. * Finally, BFQ also features additional heuristics for
  85. * preserving both a low latency and a high throughput on NCQ-capable,
  86. * rotational or flash-based devices, and to get the job done quickly
  87. * for applications consisting in many I/O-bound processes.
  88. *
  89. * NOTE: if the main or only goal, with a given device, is to achieve
  90. * the maximum-possible throughput at all times, then do switch off
  91. * all low-latency heuristics for that device, by setting low_latency
  92. * to 0.
  93. *
  94. * BFQ is described in [1], where also a reference to the initial,
  95. * more theoretical paper on BFQ can be found. The interested reader
  96. * can find in the latter paper full details on the main algorithm, as
  97. * well as formulas of the guarantees and formal proofs of all the
  98. * properties. With respect to the version of BFQ presented in these
  99. * papers, this implementation adds a few more heuristics, such as the
  100. * ones that guarantee a low latency to interactive and soft real-time
  101. * applications, and a hierarchical extension based on H-WF2Q+.
  102. *
  103. * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
  104. * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
  105. * with O(log N) complexity derives from the one introduced with EEVDF
  106. * in [3].
  107. *
  108. * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
  109. * Scheduler", Proceedings of the First Workshop on Mobile System
  110. * Technologies (MST-2015), May 2015.
  111. * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
  112. *
  113. * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
  114. * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
  115. * Oct 1997.
  116. *
  117. * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
  118. *
  119. * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
  120. * First: A Flexible and Accurate Mechanism for Proportional Share
  121. * Resource Allocation", technical report.
  122. *
  123. * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
  124. */
  125. #include <linux/module.h>
  126. #include <linux/slab.h>
  127. #include <linux/blkdev.h>
  128. #include <linux/cgroup.h>
  129. #include <linux/elevator.h>
  130. #include <linux/ktime.h>
  131. #include <linux/rbtree.h>
  132. #include <linux/ioprio.h>
  133. #include <linux/sbitmap.h>
  134. #include <linux/delay.h>
  135. #include "blk.h"
  136. #include "blk-mq.h"
  137. #include "blk-mq-tag.h"
  138. #include "blk-mq-sched.h"
  139. #include "bfq-iosched.h"
  140. #include "blk-wbt.h"
  141. #define BFQ_BFQQ_FNS(name) \
  142. void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
  143. { \
  144. __set_bit(BFQQF_##name, &(bfqq)->flags); \
  145. } \
  146. void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
  147. { \
  148. __clear_bit(BFQQF_##name, &(bfqq)->flags); \
  149. } \
  150. int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
  151. { \
  152. return test_bit(BFQQF_##name, &(bfqq)->flags); \
  153. }
  154. BFQ_BFQQ_FNS(just_created);
  155. BFQ_BFQQ_FNS(busy);
  156. BFQ_BFQQ_FNS(wait_request);
  157. BFQ_BFQQ_FNS(non_blocking_wait_rq);
  158. BFQ_BFQQ_FNS(fifo_expire);
  159. BFQ_BFQQ_FNS(has_short_ttime);
  160. BFQ_BFQQ_FNS(sync);
  161. BFQ_BFQQ_FNS(IO_bound);
  162. BFQ_BFQQ_FNS(in_large_burst);
  163. BFQ_BFQQ_FNS(coop);
  164. BFQ_BFQQ_FNS(split_coop);
  165. BFQ_BFQQ_FNS(softrt_update);
  166. #undef BFQ_BFQQ_FNS \
  167. /* Expiration time of sync (0) and async (1) requests, in ns. */
  168. static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
  169. /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
  170. static const int bfq_back_max = 16 * 1024;
  171. /* Penalty of a backwards seek, in number of sectors. */
  172. static const int bfq_back_penalty = 2;
  173. /* Idling period duration, in ns. */
  174. static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
  175. /* Minimum number of assigned budgets for which stats are safe to compute. */
  176. static const int bfq_stats_min_budgets = 194;
  177. /* Default maximum budget values, in sectors and number of requests. */
  178. static const int bfq_default_max_budget = 16 * 1024;
  179. /*
  180. * When a sync request is dispatched, the queue that contains that
  181. * request, and all the ancestor entities of that queue, are charged
  182. * with the number of sectors of the request. In constrast, if the
  183. * request is async, then the queue and its ancestor entities are
  184. * charged with the number of sectors of the request, multiplied by
  185. * the factor below. This throttles the bandwidth for async I/O,
  186. * w.r.t. to sync I/O, and it is done to counter the tendency of async
  187. * writes to steal I/O throughput to reads.
  188. *
  189. * The current value of this parameter is the result of a tuning with
  190. * several hardware and software configurations. We tried to find the
  191. * lowest value for which writes do not cause noticeable problems to
  192. * reads. In fact, the lower this parameter, the stabler I/O control,
  193. * in the following respect. The lower this parameter is, the less
  194. * the bandwidth enjoyed by a group decreases
  195. * - when the group does writes, w.r.t. to when it does reads;
  196. * - when other groups do reads, w.r.t. to when they do writes.
  197. */
  198. static const int bfq_async_charge_factor = 3;
  199. /* Default timeout values, in jiffies, approximating CFQ defaults. */
  200. const int bfq_timeout = HZ / 8;
  201. /*
  202. * Time limit for merging (see comments in bfq_setup_cooperator). Set
  203. * to the slowest value that, in our tests, proved to be effective in
  204. * removing false positives, while not causing true positives to miss
  205. * queue merging.
  206. *
  207. * As can be deduced from the low time limit below, queue merging, if
  208. * successful, happens at the very beggining of the I/O of the involved
  209. * cooperating processes, as a consequence of the arrival of the very
  210. * first requests from each cooperator. After that, there is very
  211. * little chance to find cooperators.
  212. */
  213. static const unsigned long bfq_merge_time_limit = HZ/10;
  214. static struct kmem_cache *bfq_pool;
  215. /* Below this threshold (in ns), we consider thinktime immediate. */
  216. #define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
  217. /* hw_tag detection: parallel requests threshold and min samples needed. */
  218. #define BFQ_HW_QUEUE_THRESHOLD 4
  219. #define BFQ_HW_QUEUE_SAMPLES 32
  220. #define BFQQ_SEEK_THR (sector_t)(8 * 100)
  221. #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  222. #define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
  223. #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
  224. /* Min number of samples required to perform peak-rate update */
  225. #define BFQ_RATE_MIN_SAMPLES 32
  226. /* Min observation time interval required to perform a peak-rate update (ns) */
  227. #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
  228. /* Target observation time interval for a peak-rate update (ns) */
  229. #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
  230. /*
  231. * Shift used for peak-rate fixed precision calculations.
  232. * With
  233. * - the current shift: 16 positions
  234. * - the current type used to store rate: u32
  235. * - the current unit of measure for rate: [sectors/usec], or, more precisely,
  236. * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
  237. * the range of rates that can be stored is
  238. * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
  239. * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
  240. * [15, 65G] sectors/sec
  241. * Which, assuming a sector size of 512B, corresponds to a range of
  242. * [7.5K, 33T] B/sec
  243. */
  244. #define BFQ_RATE_SHIFT 16
  245. /*
  246. * When configured for computing the duration of the weight-raising
  247. * for interactive queues automatically (see the comments at the
  248. * beginning of this file), BFQ does it using the following formula:
  249. * duration = (ref_rate / r) * ref_wr_duration,
  250. * where r is the peak rate of the device, and ref_rate and
  251. * ref_wr_duration are two reference parameters. In particular,
  252. * ref_rate is the peak rate of the reference storage device (see
  253. * below), and ref_wr_duration is about the maximum time needed, with
  254. * BFQ and while reading two files in parallel, to load typical large
  255. * applications on the reference device (see the comments on
  256. * max_service_from_wr below, for more details on how ref_wr_duration
  257. * is obtained). In practice, the slower/faster the device at hand
  258. * is, the more/less it takes to load applications with respect to the
  259. * reference device. Accordingly, the longer/shorter BFQ grants
  260. * weight raising to interactive applications.
  261. *
  262. * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
  263. * depending on whether the device is rotational or non-rotational.
  264. *
  265. * In the following definitions, ref_rate[0] and ref_wr_duration[0]
  266. * are the reference values for a rotational device, whereas
  267. * ref_rate[1] and ref_wr_duration[1] are the reference values for a
  268. * non-rotational device. The reference rates are not the actual peak
  269. * rates of the devices used as a reference, but slightly lower
  270. * values. The reason for using slightly lower values is that the
  271. * peak-rate estimator tends to yield slightly lower values than the
  272. * actual peak rate (it can yield the actual peak rate only if there
  273. * is only one process doing I/O, and the process does sequential
  274. * I/O).
  275. *
  276. * The reference peak rates are measured in sectors/usec, left-shifted
  277. * by BFQ_RATE_SHIFT.
  278. */
  279. static int ref_rate[2] = {14000, 33000};
  280. /*
  281. * To improve readability, a conversion function is used to initialize
  282. * the following array, which entails that the array can be
  283. * initialized only in a function.
  284. */
  285. static int ref_wr_duration[2];
  286. /*
  287. * BFQ uses the above-detailed, time-based weight-raising mechanism to
  288. * privilege interactive tasks. This mechanism is vulnerable to the
  289. * following false positives: I/O-bound applications that will go on
  290. * doing I/O for much longer than the duration of weight
  291. * raising. These applications have basically no benefit from being
  292. * weight-raised at the beginning of their I/O. On the opposite end,
  293. * while being weight-raised, these applications
  294. * a) unjustly steal throughput to applications that may actually need
  295. * low latency;
  296. * b) make BFQ uselessly perform device idling; device idling results
  297. * in loss of device throughput with most flash-based storage, and may
  298. * increase latencies when used purposelessly.
  299. *
  300. * BFQ tries to reduce these problems, by adopting the following
  301. * countermeasure. To introduce this countermeasure, we need first to
  302. * finish explaining how the duration of weight-raising for
  303. * interactive tasks is computed.
  304. *
  305. * For a bfq_queue deemed as interactive, the duration of weight
  306. * raising is dynamically adjusted, as a function of the estimated
  307. * peak rate of the device, so as to be equal to the time needed to
  308. * execute the 'largest' interactive task we benchmarked so far. By
  309. * largest task, we mean the task for which each involved process has
  310. * to do more I/O than for any of the other tasks we benchmarked. This
  311. * reference interactive task is the start-up of LibreOffice Writer,
  312. * and in this task each process/bfq_queue needs to have at most ~110K
  313. * sectors transferred.
  314. *
  315. * This last piece of information enables BFQ to reduce the actual
  316. * duration of weight-raising for at least one class of I/O-bound
  317. * applications: those doing sequential or quasi-sequential I/O. An
  318. * example is file copy. In fact, once started, the main I/O-bound
  319. * processes of these applications usually consume the above 110K
  320. * sectors in much less time than the processes of an application that
  321. * is starting, because these I/O-bound processes will greedily devote
  322. * almost all their CPU cycles only to their target,
  323. * throughput-friendly I/O operations. This is even more true if BFQ
  324. * happens to be underestimating the device peak rate, and thus
  325. * overestimating the duration of weight raising. But, according to
  326. * our measurements, once transferred 110K sectors, these processes
  327. * have no right to be weight-raised any longer.
  328. *
  329. * Basing on the last consideration, BFQ ends weight-raising for a
  330. * bfq_queue if the latter happens to have received an amount of
  331. * service at least equal to the following constant. The constant is
  332. * set to slightly more than 110K, to have a minimum safety margin.
  333. *
  334. * This early ending of weight-raising reduces the amount of time
  335. * during which interactive false positives cause the two problems
  336. * described at the beginning of these comments.
  337. */
  338. static const unsigned long max_service_from_wr = 120000;
  339. #define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
  340. #define RQ_BFQQ(rq) ((rq)->elv.priv[1])
  341. struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
  342. {
  343. return bic->bfqq[is_sync];
  344. }
  345. void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
  346. {
  347. bic->bfqq[is_sync] = bfqq;
  348. }
  349. struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
  350. {
  351. return bic->icq.q->elevator->elevator_data;
  352. }
  353. /**
  354. * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
  355. * @icq: the iocontext queue.
  356. */
  357. static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
  358. {
  359. /* bic->icq is the first member, %NULL will convert to %NULL */
  360. return container_of(icq, struct bfq_io_cq, icq);
  361. }
  362. /**
  363. * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
  364. * @bfqd: the lookup key.
  365. * @ioc: the io_context of the process doing I/O.
  366. * @q: the request queue.
  367. */
  368. static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
  369. struct io_context *ioc,
  370. struct request_queue *q)
  371. {
  372. if (ioc) {
  373. unsigned long flags;
  374. struct bfq_io_cq *icq;
  375. spin_lock_irqsave(q->queue_lock, flags);
  376. icq = icq_to_bic(ioc_lookup_icq(ioc, q));
  377. spin_unlock_irqrestore(q->queue_lock, flags);
  378. return icq;
  379. }
  380. return NULL;
  381. }
  382. /*
  383. * Scheduler run of queue, if there are requests pending and no one in the
  384. * driver that will restart queueing.
  385. */
  386. void bfq_schedule_dispatch(struct bfq_data *bfqd)
  387. {
  388. if (bfqd->queued != 0) {
  389. bfq_log(bfqd, "schedule dispatch");
  390. blk_mq_run_hw_queues(bfqd->queue, true);
  391. }
  392. }
  393. #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  394. #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
  395. #define bfq_sample_valid(samples) ((samples) > 80)
  396. /*
  397. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  398. * We choose the request that is closesr to the head right now. Distance
  399. * behind the head is penalized and only allowed to a certain extent.
  400. */
  401. static struct request *bfq_choose_req(struct bfq_data *bfqd,
  402. struct request *rq1,
  403. struct request *rq2,
  404. sector_t last)
  405. {
  406. sector_t s1, s2, d1 = 0, d2 = 0;
  407. unsigned long back_max;
  408. #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  409. #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  410. unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
  411. if (!rq1 || rq1 == rq2)
  412. return rq2;
  413. if (!rq2)
  414. return rq1;
  415. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  416. return rq1;
  417. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  418. return rq2;
  419. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  420. return rq1;
  421. else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
  422. return rq2;
  423. s1 = blk_rq_pos(rq1);
  424. s2 = blk_rq_pos(rq2);
  425. /*
  426. * By definition, 1KiB is 2 sectors.
  427. */
  428. back_max = bfqd->bfq_back_max * 2;
  429. /*
  430. * Strict one way elevator _except_ in the case where we allow
  431. * short backward seeks which are biased as twice the cost of a
  432. * similar forward seek.
  433. */
  434. if (s1 >= last)
  435. d1 = s1 - last;
  436. else if (s1 + back_max >= last)
  437. d1 = (last - s1) * bfqd->bfq_back_penalty;
  438. else
  439. wrap |= BFQ_RQ1_WRAP;
  440. if (s2 >= last)
  441. d2 = s2 - last;
  442. else if (s2 + back_max >= last)
  443. d2 = (last - s2) * bfqd->bfq_back_penalty;
  444. else
  445. wrap |= BFQ_RQ2_WRAP;
  446. /* Found required data */
  447. /*
  448. * By doing switch() on the bit mask "wrap" we avoid having to
  449. * check two variables for all permutations: --> faster!
  450. */
  451. switch (wrap) {
  452. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  453. if (d1 < d2)
  454. return rq1;
  455. else if (d2 < d1)
  456. return rq2;
  457. if (s1 >= s2)
  458. return rq1;
  459. else
  460. return rq2;
  461. case BFQ_RQ2_WRAP:
  462. return rq1;
  463. case BFQ_RQ1_WRAP:
  464. return rq2;
  465. case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
  466. default:
  467. /*
  468. * Since both rqs are wrapped,
  469. * start with the one that's further behind head
  470. * (--> only *one* back seek required),
  471. * since back seek takes more time than forward.
  472. */
  473. if (s1 <= s2)
  474. return rq1;
  475. else
  476. return rq2;
  477. }
  478. }
  479. /*
  480. * Async I/O can easily starve sync I/O (both sync reads and sync
  481. * writes), by consuming all tags. Similarly, storms of sync writes,
  482. * such as those that sync(2) may trigger, can starve sync reads.
  483. * Limit depths of async I/O and sync writes so as to counter both
  484. * problems.
  485. */
  486. static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
  487. {
  488. struct bfq_data *bfqd = data->q->elevator->elevator_data;
  489. if (op_is_sync(op) && !op_is_write(op))
  490. return;
  491. data->shallow_depth =
  492. bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
  493. bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
  494. __func__, bfqd->wr_busy_queues, op_is_sync(op),
  495. data->shallow_depth);
  496. }
  497. static struct bfq_queue *
  498. bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
  499. sector_t sector, struct rb_node **ret_parent,
  500. struct rb_node ***rb_link)
  501. {
  502. struct rb_node **p, *parent;
  503. struct bfq_queue *bfqq = NULL;
  504. parent = NULL;
  505. p = &root->rb_node;
  506. while (*p) {
  507. struct rb_node **n;
  508. parent = *p;
  509. bfqq = rb_entry(parent, struct bfq_queue, pos_node);
  510. /*
  511. * Sort strictly based on sector. Smallest to the left,
  512. * largest to the right.
  513. */
  514. if (sector > blk_rq_pos(bfqq->next_rq))
  515. n = &(*p)->rb_right;
  516. else if (sector < blk_rq_pos(bfqq->next_rq))
  517. n = &(*p)->rb_left;
  518. else
  519. break;
  520. p = n;
  521. bfqq = NULL;
  522. }
  523. *ret_parent = parent;
  524. if (rb_link)
  525. *rb_link = p;
  526. bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
  527. (unsigned long long)sector,
  528. bfqq ? bfqq->pid : 0);
  529. return bfqq;
  530. }
  531. static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
  532. {
  533. return bfqq->service_from_backlogged > 0 &&
  534. time_is_before_jiffies(bfqq->first_IO_time +
  535. bfq_merge_time_limit);
  536. }
  537. void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  538. {
  539. struct rb_node **p, *parent;
  540. struct bfq_queue *__bfqq;
  541. if (bfqq->pos_root) {
  542. rb_erase(&bfqq->pos_node, bfqq->pos_root);
  543. bfqq->pos_root = NULL;
  544. }
  545. /*
  546. * bfqq cannot be merged any longer (see comments in
  547. * bfq_setup_cooperator): no point in adding bfqq into the
  548. * position tree.
  549. */
  550. if (bfq_too_late_for_merging(bfqq))
  551. return;
  552. if (bfq_class_idle(bfqq))
  553. return;
  554. if (!bfqq->next_rq)
  555. return;
  556. bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
  557. __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
  558. blk_rq_pos(bfqq->next_rq), &parent, &p);
  559. if (!__bfqq) {
  560. rb_link_node(&bfqq->pos_node, parent, p);
  561. rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
  562. } else
  563. bfqq->pos_root = NULL;
  564. }
  565. /*
  566. * Tell whether there are active queues with different weights or
  567. * active groups.
  568. */
  569. static bool bfq_varied_queue_weights_or_active_groups(struct bfq_data *bfqd)
  570. {
  571. /*
  572. * For queue weights to differ, queue_weights_tree must contain
  573. * at least two nodes.
  574. */
  575. return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
  576. (bfqd->queue_weights_tree.rb_node->rb_left ||
  577. bfqd->queue_weights_tree.rb_node->rb_right)
  578. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  579. ) ||
  580. (bfqd->num_groups_with_pending_reqs > 0
  581. #endif
  582. );
  583. }
  584. /*
  585. * The following function returns true if every queue must receive the
  586. * same share of the throughput (this condition is used when deciding
  587. * whether idling may be disabled, see the comments in the function
  588. * bfq_better_to_idle()).
  589. *
  590. * Such a scenario occurs when:
  591. * 1) all active queues have the same weight,
  592. * 2) all active groups at the same level in the groups tree have the same
  593. * weight,
  594. * 3) all active groups at the same level in the groups tree have the same
  595. * number of children.
  596. *
  597. * Unfortunately, keeping the necessary state for evaluating exactly
  598. * the last two symmetry sub-conditions above would be quite complex
  599. * and time consuming. Therefore this function evaluates, instead,
  600. * only the following stronger two sub-conditions, for which it is
  601. * much easier to maintain the needed state:
  602. * 1) all active queues have the same weight,
  603. * 2) there are no active groups.
  604. * In particular, the last condition is always true if hierarchical
  605. * support or the cgroups interface are not enabled, thus no state
  606. * needs to be maintained in this case.
  607. */
  608. static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
  609. {
  610. return !bfq_varied_queue_weights_or_active_groups(bfqd);
  611. }
  612. /*
  613. * If the weight-counter tree passed as input contains no counter for
  614. * the weight of the input queue, then add that counter; otherwise just
  615. * increment the existing counter.
  616. *
  617. * Note that weight-counter trees contain few nodes in mostly symmetric
  618. * scenarios. For example, if all queues have the same weight, then the
  619. * weight-counter tree for the queues may contain at most one node.
  620. * This holds even if low_latency is on, because weight-raised queues
  621. * are not inserted in the tree.
  622. * In most scenarios, the rate at which nodes are created/destroyed
  623. * should be low too.
  624. */
  625. void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  626. struct rb_root *root)
  627. {
  628. struct bfq_entity *entity = &bfqq->entity;
  629. struct rb_node **new = &(root->rb_node), *parent = NULL;
  630. /*
  631. * Do not insert if the queue is already associated with a
  632. * counter, which happens if:
  633. * 1) a request arrival has caused the queue to become both
  634. * non-weight-raised, and hence change its weight, and
  635. * backlogged; in this respect, each of the two events
  636. * causes an invocation of this function,
  637. * 2) this is the invocation of this function caused by the
  638. * second event. This second invocation is actually useless,
  639. * and we handle this fact by exiting immediately. More
  640. * efficient or clearer solutions might possibly be adopted.
  641. */
  642. if (bfqq->weight_counter)
  643. return;
  644. while (*new) {
  645. struct bfq_weight_counter *__counter = container_of(*new,
  646. struct bfq_weight_counter,
  647. weights_node);
  648. parent = *new;
  649. if (entity->weight == __counter->weight) {
  650. bfqq->weight_counter = __counter;
  651. goto inc_counter;
  652. }
  653. if (entity->weight < __counter->weight)
  654. new = &((*new)->rb_left);
  655. else
  656. new = &((*new)->rb_right);
  657. }
  658. bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
  659. GFP_ATOMIC);
  660. /*
  661. * In the unlucky event of an allocation failure, we just
  662. * exit. This will cause the weight of queue to not be
  663. * considered in bfq_varied_queue_weights_or_active_groups,
  664. * which, in its turn, causes the scenario to be deemed
  665. * wrongly symmetric in case bfqq's weight would have been
  666. * the only weight making the scenario asymmetric. On the
  667. * bright side, no unbalance will however occur when bfqq
  668. * becomes inactive again (the invocation of this function
  669. * is triggered by an activation of queue). In fact,
  670. * bfq_weights_tree_remove does nothing if
  671. * !bfqq->weight_counter.
  672. */
  673. if (unlikely(!bfqq->weight_counter))
  674. return;
  675. bfqq->weight_counter->weight = entity->weight;
  676. rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
  677. rb_insert_color(&bfqq->weight_counter->weights_node, root);
  678. inc_counter:
  679. bfqq->weight_counter->num_active++;
  680. }
  681. /*
  682. * Decrement the weight counter associated with the queue, and, if the
  683. * counter reaches 0, remove the counter from the tree.
  684. * See the comments to the function bfq_weights_tree_add() for considerations
  685. * about overhead.
  686. */
  687. void __bfq_weights_tree_remove(struct bfq_data *bfqd,
  688. struct bfq_queue *bfqq,
  689. struct rb_root *root)
  690. {
  691. if (!bfqq->weight_counter)
  692. return;
  693. bfqq->weight_counter->num_active--;
  694. if (bfqq->weight_counter->num_active > 0)
  695. goto reset_entity_pointer;
  696. rb_erase(&bfqq->weight_counter->weights_node, root);
  697. kfree(bfqq->weight_counter);
  698. reset_entity_pointer:
  699. bfqq->weight_counter = NULL;
  700. }
  701. /*
  702. * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
  703. * of active groups for each queue's inactive parent entity.
  704. */
  705. void bfq_weights_tree_remove(struct bfq_data *bfqd,
  706. struct bfq_queue *bfqq)
  707. {
  708. struct bfq_entity *entity = bfqq->entity.parent;
  709. __bfq_weights_tree_remove(bfqd, bfqq,
  710. &bfqd->queue_weights_tree);
  711. for_each_entity(entity) {
  712. struct bfq_sched_data *sd = entity->my_sched_data;
  713. if (sd->next_in_service || sd->in_service_entity) {
  714. /*
  715. * entity is still active, because either
  716. * next_in_service or in_service_entity is not
  717. * NULL (see the comments on the definition of
  718. * next_in_service for details on why
  719. * in_service_entity must be checked too).
  720. *
  721. * As a consequence, its parent entities are
  722. * active as well, and thus this loop must
  723. * stop here.
  724. */
  725. break;
  726. }
  727. /*
  728. * The decrement of num_groups_with_pending_reqs is
  729. * not performed immediately upon the deactivation of
  730. * entity, but it is delayed to when it also happens
  731. * that the first leaf descendant bfqq of entity gets
  732. * all its pending requests completed. The following
  733. * instructions perform this delayed decrement, if
  734. * needed. See the comments on
  735. * num_groups_with_pending_reqs for details.
  736. */
  737. if (entity->in_groups_with_pending_reqs) {
  738. entity->in_groups_with_pending_reqs = false;
  739. bfqd->num_groups_with_pending_reqs--;
  740. }
  741. }
  742. }
  743. /*
  744. * Return expired entry, or NULL to just start from scratch in rbtree.
  745. */
  746. static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
  747. struct request *last)
  748. {
  749. struct request *rq;
  750. if (bfq_bfqq_fifo_expire(bfqq))
  751. return NULL;
  752. bfq_mark_bfqq_fifo_expire(bfqq);
  753. rq = rq_entry_fifo(bfqq->fifo.next);
  754. if (rq == last || ktime_get_ns() < rq->fifo_time)
  755. return NULL;
  756. bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
  757. return rq;
  758. }
  759. static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
  760. struct bfq_queue *bfqq,
  761. struct request *last)
  762. {
  763. struct rb_node *rbnext = rb_next(&last->rb_node);
  764. struct rb_node *rbprev = rb_prev(&last->rb_node);
  765. struct request *next, *prev = NULL;
  766. /* Follow expired path, else get first next available. */
  767. next = bfq_check_fifo(bfqq, last);
  768. if (next)
  769. return next;
  770. if (rbprev)
  771. prev = rb_entry_rq(rbprev);
  772. if (rbnext)
  773. next = rb_entry_rq(rbnext);
  774. else {
  775. rbnext = rb_first(&bfqq->sort_list);
  776. if (rbnext && rbnext != &last->rb_node)
  777. next = rb_entry_rq(rbnext);
  778. }
  779. return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
  780. }
  781. /* see the definition of bfq_async_charge_factor for details */
  782. static unsigned long bfq_serv_to_charge(struct request *rq,
  783. struct bfq_queue *bfqq)
  784. {
  785. if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
  786. return blk_rq_sectors(rq);
  787. return blk_rq_sectors(rq) * bfq_async_charge_factor;
  788. }
  789. /**
  790. * bfq_updated_next_req - update the queue after a new next_rq selection.
  791. * @bfqd: the device data the queue belongs to.
  792. * @bfqq: the queue to update.
  793. *
  794. * If the first request of a queue changes we make sure that the queue
  795. * has enough budget to serve at least its first request (if the
  796. * request has grown). We do this because if the queue has not enough
  797. * budget for its first request, it has to go through two dispatch
  798. * rounds to actually get it dispatched.
  799. */
  800. static void bfq_updated_next_req(struct bfq_data *bfqd,
  801. struct bfq_queue *bfqq)
  802. {
  803. struct bfq_entity *entity = &bfqq->entity;
  804. struct request *next_rq = bfqq->next_rq;
  805. unsigned long new_budget;
  806. if (!next_rq)
  807. return;
  808. if (bfqq == bfqd->in_service_queue)
  809. /*
  810. * In order not to break guarantees, budgets cannot be
  811. * changed after an entity has been selected.
  812. */
  813. return;
  814. new_budget = max_t(unsigned long, bfqq->max_budget,
  815. bfq_serv_to_charge(next_rq, bfqq));
  816. if (entity->budget != new_budget) {
  817. entity->budget = new_budget;
  818. bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
  819. new_budget);
  820. bfq_requeue_bfqq(bfqd, bfqq, false);
  821. }
  822. }
  823. static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
  824. {
  825. u64 dur;
  826. if (bfqd->bfq_wr_max_time > 0)
  827. return bfqd->bfq_wr_max_time;
  828. dur = bfqd->rate_dur_prod;
  829. do_div(dur, bfqd->peak_rate);
  830. /*
  831. * Limit duration between 3 and 25 seconds. The upper limit
  832. * has been conservatively set after the following worst case:
  833. * on a QEMU/KVM virtual machine
  834. * - running in a slow PC
  835. * - with a virtual disk stacked on a slow low-end 5400rpm HDD
  836. * - serving a heavy I/O workload, such as the sequential reading
  837. * of several files
  838. * mplayer took 23 seconds to start, if constantly weight-raised.
  839. *
  840. * As for higher values than that accomodating the above bad
  841. * scenario, tests show that higher values would often yield
  842. * the opposite of the desired result, i.e., would worsen
  843. * responsiveness by allowing non-interactive applications to
  844. * preserve weight raising for too long.
  845. *
  846. * On the other end, lower values than 3 seconds make it
  847. * difficult for most interactive tasks to complete their jobs
  848. * before weight-raising finishes.
  849. */
  850. return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
  851. }
  852. /* switch back from soft real-time to interactive weight raising */
  853. static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
  854. struct bfq_data *bfqd)
  855. {
  856. bfqq->wr_coeff = bfqd->bfq_wr_coeff;
  857. bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
  858. bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
  859. }
  860. static void
  861. bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
  862. struct bfq_io_cq *bic, bool bfq_already_existing)
  863. {
  864. unsigned int old_wr_coeff = bfqq->wr_coeff;
  865. bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
  866. if (bic->saved_has_short_ttime)
  867. bfq_mark_bfqq_has_short_ttime(bfqq);
  868. else
  869. bfq_clear_bfqq_has_short_ttime(bfqq);
  870. if (bic->saved_IO_bound)
  871. bfq_mark_bfqq_IO_bound(bfqq);
  872. else
  873. bfq_clear_bfqq_IO_bound(bfqq);
  874. bfqq->ttime = bic->saved_ttime;
  875. bfqq->wr_coeff = bic->saved_wr_coeff;
  876. bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
  877. bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
  878. bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
  879. if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
  880. time_is_before_jiffies(bfqq->last_wr_start_finish +
  881. bfqq->wr_cur_max_time))) {
  882. if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
  883. !bfq_bfqq_in_large_burst(bfqq) &&
  884. time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
  885. bfq_wr_duration(bfqd))) {
  886. switch_back_to_interactive_wr(bfqq, bfqd);
  887. } else {
  888. bfqq->wr_coeff = 1;
  889. bfq_log_bfqq(bfqq->bfqd, bfqq,
  890. "resume state: switching off wr");
  891. }
  892. }
  893. /* make sure weight will be updated, however we got here */
  894. bfqq->entity.prio_changed = 1;
  895. if (likely(!busy))
  896. return;
  897. if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
  898. bfqd->wr_busy_queues++;
  899. else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
  900. bfqd->wr_busy_queues--;
  901. }
  902. static int bfqq_process_refs(struct bfq_queue *bfqq)
  903. {
  904. return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
  905. }
  906. /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
  907. static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  908. {
  909. struct bfq_queue *item;
  910. struct hlist_node *n;
  911. hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
  912. hlist_del_init(&item->burst_list_node);
  913. hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
  914. bfqd->burst_size = 1;
  915. bfqd->burst_parent_entity = bfqq->entity.parent;
  916. }
  917. /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
  918. static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  919. {
  920. /* Increment burst size to take into account also bfqq */
  921. bfqd->burst_size++;
  922. if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
  923. struct bfq_queue *pos, *bfqq_item;
  924. struct hlist_node *n;
  925. /*
  926. * Enough queues have been activated shortly after each
  927. * other to consider this burst as large.
  928. */
  929. bfqd->large_burst = true;
  930. /*
  931. * We can now mark all queues in the burst list as
  932. * belonging to a large burst.
  933. */
  934. hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
  935. burst_list_node)
  936. bfq_mark_bfqq_in_large_burst(bfqq_item);
  937. bfq_mark_bfqq_in_large_burst(bfqq);
  938. /*
  939. * From now on, and until the current burst finishes, any
  940. * new queue being activated shortly after the last queue
  941. * was inserted in the burst can be immediately marked as
  942. * belonging to a large burst. So the burst list is not
  943. * needed any more. Remove it.
  944. */
  945. hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
  946. burst_list_node)
  947. hlist_del_init(&pos->burst_list_node);
  948. } else /*
  949. * Burst not yet large: add bfqq to the burst list. Do
  950. * not increment the ref counter for bfqq, because bfqq
  951. * is removed from the burst list before freeing bfqq
  952. * in put_queue.
  953. */
  954. hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
  955. }
  956. /*
  957. * If many queues belonging to the same group happen to be created
  958. * shortly after each other, then the processes associated with these
  959. * queues have typically a common goal. In particular, bursts of queue
  960. * creations are usually caused by services or applications that spawn
  961. * many parallel threads/processes. Examples are systemd during boot,
  962. * or git grep. To help these processes get their job done as soon as
  963. * possible, it is usually better to not grant either weight-raising
  964. * or device idling to their queues.
  965. *
  966. * In this comment we describe, firstly, the reasons why this fact
  967. * holds, and, secondly, the next function, which implements the main
  968. * steps needed to properly mark these queues so that they can then be
  969. * treated in a different way.
  970. *
  971. * The above services or applications benefit mostly from a high
  972. * throughput: the quicker the requests of the activated queues are
  973. * cumulatively served, the sooner the target job of these queues gets
  974. * completed. As a consequence, weight-raising any of these queues,
  975. * which also implies idling the device for it, is almost always
  976. * counterproductive. In most cases it just lowers throughput.
  977. *
  978. * On the other hand, a burst of queue creations may be caused also by
  979. * the start of an application that does not consist of a lot of
  980. * parallel I/O-bound threads. In fact, with a complex application,
  981. * several short processes may need to be executed to start-up the
  982. * application. In this respect, to start an application as quickly as
  983. * possible, the best thing to do is in any case to privilege the I/O
  984. * related to the application with respect to all other
  985. * I/O. Therefore, the best strategy to start as quickly as possible
  986. * an application that causes a burst of queue creations is to
  987. * weight-raise all the queues created during the burst. This is the
  988. * exact opposite of the best strategy for the other type of bursts.
  989. *
  990. * In the end, to take the best action for each of the two cases, the
  991. * two types of bursts need to be distinguished. Fortunately, this
  992. * seems relatively easy, by looking at the sizes of the bursts. In
  993. * particular, we found a threshold such that only bursts with a
  994. * larger size than that threshold are apparently caused by
  995. * services or commands such as systemd or git grep. For brevity,
  996. * hereafter we call just 'large' these bursts. BFQ *does not*
  997. * weight-raise queues whose creation occurs in a large burst. In
  998. * addition, for each of these queues BFQ performs or does not perform
  999. * idling depending on which choice boosts the throughput more. The
  1000. * exact choice depends on the device and request pattern at
  1001. * hand.
  1002. *
  1003. * Unfortunately, false positives may occur while an interactive task
  1004. * is starting (e.g., an application is being started). The
  1005. * consequence is that the queues associated with the task do not
  1006. * enjoy weight raising as expected. Fortunately these false positives
  1007. * are very rare. They typically occur if some service happens to
  1008. * start doing I/O exactly when the interactive task starts.
  1009. *
  1010. * Turning back to the next function, it implements all the steps
  1011. * needed to detect the occurrence of a large burst and to properly
  1012. * mark all the queues belonging to it (so that they can then be
  1013. * treated in a different way). This goal is achieved by maintaining a
  1014. * "burst list" that holds, temporarily, the queues that belong to the
  1015. * burst in progress. The list is then used to mark these queues as
  1016. * belonging to a large burst if the burst does become large. The main
  1017. * steps are the following.
  1018. *
  1019. * . when the very first queue is created, the queue is inserted into the
  1020. * list (as it could be the first queue in a possible burst)
  1021. *
  1022. * . if the current burst has not yet become large, and a queue Q that does
  1023. * not yet belong to the burst is activated shortly after the last time
  1024. * at which a new queue entered the burst list, then the function appends
  1025. * Q to the burst list
  1026. *
  1027. * . if, as a consequence of the previous step, the burst size reaches
  1028. * the large-burst threshold, then
  1029. *
  1030. * . all the queues in the burst list are marked as belonging to a
  1031. * large burst
  1032. *
  1033. * . the burst list is deleted; in fact, the burst list already served
  1034. * its purpose (keeping temporarily track of the queues in a burst,
  1035. * so as to be able to mark them as belonging to a large burst in the
  1036. * previous sub-step), and now is not needed any more
  1037. *
  1038. * . the device enters a large-burst mode
  1039. *
  1040. * . if a queue Q that does not belong to the burst is created while
  1041. * the device is in large-burst mode and shortly after the last time
  1042. * at which a queue either entered the burst list or was marked as
  1043. * belonging to the current large burst, then Q is immediately marked
  1044. * as belonging to a large burst.
  1045. *
  1046. * . if a queue Q that does not belong to the burst is created a while
  1047. * later, i.e., not shortly after, than the last time at which a queue
  1048. * either entered the burst list or was marked as belonging to the
  1049. * current large burst, then the current burst is deemed as finished and:
  1050. *
  1051. * . the large-burst mode is reset if set
  1052. *
  1053. * . the burst list is emptied
  1054. *
  1055. * . Q is inserted in the burst list, as Q may be the first queue
  1056. * in a possible new burst (then the burst list contains just Q
  1057. * after this step).
  1058. */
  1059. static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  1060. {
  1061. /*
  1062. * If bfqq is already in the burst list or is part of a large
  1063. * burst, or finally has just been split, then there is
  1064. * nothing else to do.
  1065. */
  1066. if (!hlist_unhashed(&bfqq->burst_list_node) ||
  1067. bfq_bfqq_in_large_burst(bfqq) ||
  1068. time_is_after_eq_jiffies(bfqq->split_time +
  1069. msecs_to_jiffies(10)))
  1070. return;
  1071. /*
  1072. * If bfqq's creation happens late enough, or bfqq belongs to
  1073. * a different group than the burst group, then the current
  1074. * burst is finished, and related data structures must be
  1075. * reset.
  1076. *
  1077. * In this respect, consider the special case where bfqq is
  1078. * the very first queue created after BFQ is selected for this
  1079. * device. In this case, last_ins_in_burst and
  1080. * burst_parent_entity are not yet significant when we get
  1081. * here. But it is easy to verify that, whether or not the
  1082. * following condition is true, bfqq will end up being
  1083. * inserted into the burst list. In particular the list will
  1084. * happen to contain only bfqq. And this is exactly what has
  1085. * to happen, as bfqq may be the first queue of the first
  1086. * burst.
  1087. */
  1088. if (time_is_before_jiffies(bfqd->last_ins_in_burst +
  1089. bfqd->bfq_burst_interval) ||
  1090. bfqq->entity.parent != bfqd->burst_parent_entity) {
  1091. bfqd->large_burst = false;
  1092. bfq_reset_burst_list(bfqd, bfqq);
  1093. goto end;
  1094. }
  1095. /*
  1096. * If we get here, then bfqq is being activated shortly after the
  1097. * last queue. So, if the current burst is also large, we can mark
  1098. * bfqq as belonging to this large burst immediately.
  1099. */
  1100. if (bfqd->large_burst) {
  1101. bfq_mark_bfqq_in_large_burst(bfqq);
  1102. goto end;
  1103. }
  1104. /*
  1105. * If we get here, then a large-burst state has not yet been
  1106. * reached, but bfqq is being activated shortly after the last
  1107. * queue. Then we add bfqq to the burst.
  1108. */
  1109. bfq_add_to_burst(bfqd, bfqq);
  1110. end:
  1111. /*
  1112. * At this point, bfqq either has been added to the current
  1113. * burst or has caused the current burst to terminate and a
  1114. * possible new burst to start. In particular, in the second
  1115. * case, bfqq has become the first queue in the possible new
  1116. * burst. In both cases last_ins_in_burst needs to be moved
  1117. * forward.
  1118. */
  1119. bfqd->last_ins_in_burst = jiffies;
  1120. }
  1121. static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
  1122. {
  1123. struct bfq_entity *entity = &bfqq->entity;
  1124. return entity->budget - entity->service;
  1125. }
  1126. /*
  1127. * If enough samples have been computed, return the current max budget
  1128. * stored in bfqd, which is dynamically updated according to the
  1129. * estimated disk peak rate; otherwise return the default max budget
  1130. */
  1131. static int bfq_max_budget(struct bfq_data *bfqd)
  1132. {
  1133. if (bfqd->budgets_assigned < bfq_stats_min_budgets)
  1134. return bfq_default_max_budget;
  1135. else
  1136. return bfqd->bfq_max_budget;
  1137. }
  1138. /*
  1139. * Return min budget, which is a fraction of the current or default
  1140. * max budget (trying with 1/32)
  1141. */
  1142. static int bfq_min_budget(struct bfq_data *bfqd)
  1143. {
  1144. if (bfqd->budgets_assigned < bfq_stats_min_budgets)
  1145. return bfq_default_max_budget / 32;
  1146. else
  1147. return bfqd->bfq_max_budget / 32;
  1148. }
  1149. /*
  1150. * The next function, invoked after the input queue bfqq switches from
  1151. * idle to busy, updates the budget of bfqq. The function also tells
  1152. * whether the in-service queue should be expired, by returning
  1153. * true. The purpose of expiring the in-service queue is to give bfqq
  1154. * the chance to possibly preempt the in-service queue, and the reason
  1155. * for preempting the in-service queue is to achieve one of the two
  1156. * goals below.
  1157. *
  1158. * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
  1159. * expired because it has remained idle. In particular, bfqq may have
  1160. * expired for one of the following two reasons:
  1161. *
  1162. * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
  1163. * and did not make it to issue a new request before its last
  1164. * request was served;
  1165. *
  1166. * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
  1167. * a new request before the expiration of the idling-time.
  1168. *
  1169. * Even if bfqq has expired for one of the above reasons, the process
  1170. * associated with the queue may be however issuing requests greedily,
  1171. * and thus be sensitive to the bandwidth it receives (bfqq may have
  1172. * remained idle for other reasons: CPU high load, bfqq not enjoying
  1173. * idling, I/O throttling somewhere in the path from the process to
  1174. * the I/O scheduler, ...). But if, after every expiration for one of
  1175. * the above two reasons, bfqq has to wait for the service of at least
  1176. * one full budget of another queue before being served again, then
  1177. * bfqq is likely to get a much lower bandwidth or resource time than
  1178. * its reserved ones. To address this issue, two countermeasures need
  1179. * to be taken.
  1180. *
  1181. * First, the budget and the timestamps of bfqq need to be updated in
  1182. * a special way on bfqq reactivation: they need to be updated as if
  1183. * bfqq did not remain idle and did not expire. In fact, if they are
  1184. * computed as if bfqq expired and remained idle until reactivation,
  1185. * then the process associated with bfqq is treated as if, instead of
  1186. * being greedy, it stopped issuing requests when bfqq remained idle,
  1187. * and restarts issuing requests only on this reactivation. In other
  1188. * words, the scheduler does not help the process recover the "service
  1189. * hole" between bfqq expiration and reactivation. As a consequence,
  1190. * the process receives a lower bandwidth than its reserved one. In
  1191. * contrast, to recover this hole, the budget must be updated as if
  1192. * bfqq was not expired at all before this reactivation, i.e., it must
  1193. * be set to the value of the remaining budget when bfqq was
  1194. * expired. Along the same line, timestamps need to be assigned the
  1195. * value they had the last time bfqq was selected for service, i.e.,
  1196. * before last expiration. Thus timestamps need to be back-shifted
  1197. * with respect to their normal computation (see [1] for more details
  1198. * on this tricky aspect).
  1199. *
  1200. * Secondly, to allow the process to recover the hole, the in-service
  1201. * queue must be expired too, to give bfqq the chance to preempt it
  1202. * immediately. In fact, if bfqq has to wait for a full budget of the
  1203. * in-service queue to be completed, then it may become impossible to
  1204. * let the process recover the hole, even if the back-shifted
  1205. * timestamps of bfqq are lower than those of the in-service queue. If
  1206. * this happens for most or all of the holes, then the process may not
  1207. * receive its reserved bandwidth. In this respect, it is worth noting
  1208. * that, being the service of outstanding requests unpreemptible, a
  1209. * little fraction of the holes may however be unrecoverable, thereby
  1210. * causing a little loss of bandwidth.
  1211. *
  1212. * The last important point is detecting whether bfqq does need this
  1213. * bandwidth recovery. In this respect, the next function deems the
  1214. * process associated with bfqq greedy, and thus allows it to recover
  1215. * the hole, if: 1) the process is waiting for the arrival of a new
  1216. * request (which implies that bfqq expired for one of the above two
  1217. * reasons), and 2) such a request has arrived soon. The first
  1218. * condition is controlled through the flag non_blocking_wait_rq,
  1219. * while the second through the flag arrived_in_time. If both
  1220. * conditions hold, then the function computes the budget in the
  1221. * above-described special way, and signals that the in-service queue
  1222. * should be expired. Timestamp back-shifting is done later in
  1223. * __bfq_activate_entity.
  1224. *
  1225. * 2. Reduce latency. Even if timestamps are not backshifted to let
  1226. * the process associated with bfqq recover a service hole, bfqq may
  1227. * however happen to have, after being (re)activated, a lower finish
  1228. * timestamp than the in-service queue. That is, the next budget of
  1229. * bfqq may have to be completed before the one of the in-service
  1230. * queue. If this is the case, then preempting the in-service queue
  1231. * allows this goal to be achieved, apart from the unpreemptible,
  1232. * outstanding requests mentioned above.
  1233. *
  1234. * Unfortunately, regardless of which of the above two goals one wants
  1235. * to achieve, service trees need first to be updated to know whether
  1236. * the in-service queue must be preempted. To have service trees
  1237. * correctly updated, the in-service queue must be expired and
  1238. * rescheduled, and bfqq must be scheduled too. This is one of the
  1239. * most costly operations (in future versions, the scheduling
  1240. * mechanism may be re-designed in such a way to make it possible to
  1241. * know whether preemption is needed without needing to update service
  1242. * trees). In addition, queue preemptions almost always cause random
  1243. * I/O, and thus loss of throughput. Because of these facts, the next
  1244. * function adopts the following simple scheme to avoid both costly
  1245. * operations and too frequent preemptions: it requests the expiration
  1246. * of the in-service queue (unconditionally) only for queues that need
  1247. * to recover a hole, or that either are weight-raised or deserve to
  1248. * be weight-raised.
  1249. */
  1250. static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
  1251. struct bfq_queue *bfqq,
  1252. bool arrived_in_time,
  1253. bool wr_or_deserves_wr)
  1254. {
  1255. struct bfq_entity *entity = &bfqq->entity;
  1256. if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
  1257. /*
  1258. * We do not clear the flag non_blocking_wait_rq here, as
  1259. * the latter is used in bfq_activate_bfqq to signal
  1260. * that timestamps need to be back-shifted (and is
  1261. * cleared right after).
  1262. */
  1263. /*
  1264. * In next assignment we rely on that either
  1265. * entity->service or entity->budget are not updated
  1266. * on expiration if bfqq is empty (see
  1267. * __bfq_bfqq_recalc_budget). Thus both quantities
  1268. * remain unchanged after such an expiration, and the
  1269. * following statement therefore assigns to
  1270. * entity->budget the remaining budget on such an
  1271. * expiration.
  1272. */
  1273. entity->budget = min_t(unsigned long,
  1274. bfq_bfqq_budget_left(bfqq),
  1275. bfqq->max_budget);
  1276. /*
  1277. * At this point, we have used entity->service to get
  1278. * the budget left (needed for updating
  1279. * entity->budget). Thus we finally can, and have to,
  1280. * reset entity->service. The latter must be reset
  1281. * because bfqq would otherwise be charged again for
  1282. * the service it has received during its previous
  1283. * service slot(s).
  1284. */
  1285. entity->service = 0;
  1286. return true;
  1287. }
  1288. /*
  1289. * We can finally complete expiration, by setting service to 0.
  1290. */
  1291. entity->service = 0;
  1292. entity->budget = max_t(unsigned long, bfqq->max_budget,
  1293. bfq_serv_to_charge(bfqq->next_rq, bfqq));
  1294. bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
  1295. return wr_or_deserves_wr;
  1296. }
  1297. /*
  1298. * Return the farthest past time instant according to jiffies
  1299. * macros.
  1300. */
  1301. static unsigned long bfq_smallest_from_now(void)
  1302. {
  1303. return jiffies - MAX_JIFFY_OFFSET;
  1304. }
  1305. static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
  1306. struct bfq_queue *bfqq,
  1307. unsigned int old_wr_coeff,
  1308. bool wr_or_deserves_wr,
  1309. bool interactive,
  1310. bool in_burst,
  1311. bool soft_rt)
  1312. {
  1313. if (old_wr_coeff == 1 && wr_or_deserves_wr) {
  1314. /* start a weight-raising period */
  1315. if (interactive) {
  1316. bfqq->service_from_wr = 0;
  1317. bfqq->wr_coeff = bfqd->bfq_wr_coeff;
  1318. bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
  1319. } else {
  1320. /*
  1321. * No interactive weight raising in progress
  1322. * here: assign minus infinity to
  1323. * wr_start_at_switch_to_srt, to make sure
  1324. * that, at the end of the soft-real-time
  1325. * weight raising periods that is starting
  1326. * now, no interactive weight-raising period
  1327. * may be wrongly considered as still in
  1328. * progress (and thus actually started by
  1329. * mistake).
  1330. */
  1331. bfqq->wr_start_at_switch_to_srt =
  1332. bfq_smallest_from_now();
  1333. bfqq->wr_coeff = bfqd->bfq_wr_coeff *
  1334. BFQ_SOFTRT_WEIGHT_FACTOR;
  1335. bfqq->wr_cur_max_time =
  1336. bfqd->bfq_wr_rt_max_time;
  1337. }
  1338. /*
  1339. * If needed, further reduce budget to make sure it is
  1340. * close to bfqq's backlog, so as to reduce the
  1341. * scheduling-error component due to a too large
  1342. * budget. Do not care about throughput consequences,
  1343. * but only about latency. Finally, do not assign a
  1344. * too small budget either, to avoid increasing
  1345. * latency by causing too frequent expirations.
  1346. */
  1347. bfqq->entity.budget = min_t(unsigned long,
  1348. bfqq->entity.budget,
  1349. 2 * bfq_min_budget(bfqd));
  1350. } else if (old_wr_coeff > 1) {
  1351. if (interactive) { /* update wr coeff and duration */
  1352. bfqq->wr_coeff = bfqd->bfq_wr_coeff;
  1353. bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
  1354. } else if (in_burst)
  1355. bfqq->wr_coeff = 1;
  1356. else if (soft_rt) {
  1357. /*
  1358. * The application is now or still meeting the
  1359. * requirements for being deemed soft rt. We
  1360. * can then correctly and safely (re)charge
  1361. * the weight-raising duration for the
  1362. * application with the weight-raising
  1363. * duration for soft rt applications.
  1364. *
  1365. * In particular, doing this recharge now, i.e.,
  1366. * before the weight-raising period for the
  1367. * application finishes, reduces the probability
  1368. * of the following negative scenario:
  1369. * 1) the weight of a soft rt application is
  1370. * raised at startup (as for any newly
  1371. * created application),
  1372. * 2) since the application is not interactive,
  1373. * at a certain time weight-raising is
  1374. * stopped for the application,
  1375. * 3) at that time the application happens to
  1376. * still have pending requests, and hence
  1377. * is destined to not have a chance to be
  1378. * deemed soft rt before these requests are
  1379. * completed (see the comments to the
  1380. * function bfq_bfqq_softrt_next_start()
  1381. * for details on soft rt detection),
  1382. * 4) these pending requests experience a high
  1383. * latency because the application is not
  1384. * weight-raised while they are pending.
  1385. */
  1386. if (bfqq->wr_cur_max_time !=
  1387. bfqd->bfq_wr_rt_max_time) {
  1388. bfqq->wr_start_at_switch_to_srt =
  1389. bfqq->last_wr_start_finish;
  1390. bfqq->wr_cur_max_time =
  1391. bfqd->bfq_wr_rt_max_time;
  1392. bfqq->wr_coeff = bfqd->bfq_wr_coeff *
  1393. BFQ_SOFTRT_WEIGHT_FACTOR;
  1394. }
  1395. bfqq->last_wr_start_finish = jiffies;
  1396. }
  1397. }
  1398. }
  1399. static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
  1400. struct bfq_queue *bfqq)
  1401. {
  1402. return bfqq->dispatched == 0 &&
  1403. time_is_before_jiffies(
  1404. bfqq->budget_timeout +
  1405. bfqd->bfq_wr_min_idle_time);
  1406. }
  1407. static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
  1408. struct bfq_queue *bfqq,
  1409. int old_wr_coeff,
  1410. struct request *rq,
  1411. bool *interactive)
  1412. {
  1413. bool soft_rt, in_burst, wr_or_deserves_wr,
  1414. bfqq_wants_to_preempt,
  1415. idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
  1416. /*
  1417. * See the comments on
  1418. * bfq_bfqq_update_budg_for_activation for
  1419. * details on the usage of the next variable.
  1420. */
  1421. arrived_in_time = ktime_get_ns() <=
  1422. bfqq->ttime.last_end_request +
  1423. bfqd->bfq_slice_idle * 3;
  1424. /*
  1425. * bfqq deserves to be weight-raised if:
  1426. * - it is sync,
  1427. * - it does not belong to a large burst,
  1428. * - it has been idle for enough time or is soft real-time,
  1429. * - is linked to a bfq_io_cq (it is not shared in any sense).
  1430. */
  1431. in_burst = bfq_bfqq_in_large_burst(bfqq);
  1432. soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
  1433. !in_burst &&
  1434. time_is_before_jiffies(bfqq->soft_rt_next_start) &&
  1435. bfqq->dispatched == 0;
  1436. *interactive = !in_burst && idle_for_long_time;
  1437. wr_or_deserves_wr = bfqd->low_latency &&
  1438. (bfqq->wr_coeff > 1 ||
  1439. (bfq_bfqq_sync(bfqq) &&
  1440. bfqq->bic && (*interactive || soft_rt)));
  1441. /*
  1442. * Using the last flag, update budget and check whether bfqq
  1443. * may want to preempt the in-service queue.
  1444. */
  1445. bfqq_wants_to_preempt =
  1446. bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
  1447. arrived_in_time,
  1448. wr_or_deserves_wr);
  1449. /*
  1450. * If bfqq happened to be activated in a burst, but has been
  1451. * idle for much more than an interactive queue, then we
  1452. * assume that, in the overall I/O initiated in the burst, the
  1453. * I/O associated with bfqq is finished. So bfqq does not need
  1454. * to be treated as a queue belonging to a burst
  1455. * anymore. Accordingly, we reset bfqq's in_large_burst flag
  1456. * if set, and remove bfqq from the burst list if it's
  1457. * there. We do not decrement burst_size, because the fact
  1458. * that bfqq does not need to belong to the burst list any
  1459. * more does not invalidate the fact that bfqq was created in
  1460. * a burst.
  1461. */
  1462. if (likely(!bfq_bfqq_just_created(bfqq)) &&
  1463. idle_for_long_time &&
  1464. time_is_before_jiffies(
  1465. bfqq->budget_timeout +
  1466. msecs_to_jiffies(10000))) {
  1467. hlist_del_init(&bfqq->burst_list_node);
  1468. bfq_clear_bfqq_in_large_burst(bfqq);
  1469. }
  1470. bfq_clear_bfqq_just_created(bfqq);
  1471. if (!bfq_bfqq_IO_bound(bfqq)) {
  1472. if (arrived_in_time) {
  1473. bfqq->requests_within_timer++;
  1474. if (bfqq->requests_within_timer >=
  1475. bfqd->bfq_requests_within_timer)
  1476. bfq_mark_bfqq_IO_bound(bfqq);
  1477. } else
  1478. bfqq->requests_within_timer = 0;
  1479. }
  1480. if (bfqd->low_latency) {
  1481. if (unlikely(time_is_after_jiffies(bfqq->split_time)))
  1482. /* wraparound */
  1483. bfqq->split_time =
  1484. jiffies - bfqd->bfq_wr_min_idle_time - 1;
  1485. if (time_is_before_jiffies(bfqq->split_time +
  1486. bfqd->bfq_wr_min_idle_time)) {
  1487. bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
  1488. old_wr_coeff,
  1489. wr_or_deserves_wr,
  1490. *interactive,
  1491. in_burst,
  1492. soft_rt);
  1493. if (old_wr_coeff != bfqq->wr_coeff)
  1494. bfqq->entity.prio_changed = 1;
  1495. }
  1496. }
  1497. bfqq->last_idle_bklogged = jiffies;
  1498. bfqq->service_from_backlogged = 0;
  1499. bfq_clear_bfqq_softrt_update(bfqq);
  1500. bfq_add_bfqq_busy(bfqd, bfqq);
  1501. /*
  1502. * Expire in-service queue only if preemption may be needed
  1503. * for guarantees. In this respect, the function
  1504. * next_queue_may_preempt just checks a simple, necessary
  1505. * condition, and not a sufficient condition based on
  1506. * timestamps. In fact, for the latter condition to be
  1507. * evaluated, timestamps would need first to be updated, and
  1508. * this operation is quite costly (see the comments on the
  1509. * function bfq_bfqq_update_budg_for_activation).
  1510. */
  1511. if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
  1512. bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
  1513. next_queue_may_preempt(bfqd))
  1514. bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
  1515. false, BFQQE_PREEMPTED);
  1516. }
  1517. static void bfq_add_request(struct request *rq)
  1518. {
  1519. struct bfq_queue *bfqq = RQ_BFQQ(rq);
  1520. struct bfq_data *bfqd = bfqq->bfqd;
  1521. struct request *next_rq, *prev;
  1522. unsigned int old_wr_coeff = bfqq->wr_coeff;
  1523. bool interactive = false;
  1524. bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
  1525. bfqq->queued[rq_is_sync(rq)]++;
  1526. bfqd->queued++;
  1527. elv_rb_add(&bfqq->sort_list, rq);
  1528. /*
  1529. * Check if this request is a better next-serve candidate.
  1530. */
  1531. prev = bfqq->next_rq;
  1532. next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
  1533. bfqq->next_rq = next_rq;
  1534. /*
  1535. * Adjust priority tree position, if next_rq changes.
  1536. */
  1537. if (prev != bfqq->next_rq)
  1538. bfq_pos_tree_add_move(bfqd, bfqq);
  1539. if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
  1540. bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
  1541. rq, &interactive);
  1542. else {
  1543. if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
  1544. time_is_before_jiffies(
  1545. bfqq->last_wr_start_finish +
  1546. bfqd->bfq_wr_min_inter_arr_async)) {
  1547. bfqq->wr_coeff = bfqd->bfq_wr_coeff;
  1548. bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
  1549. bfqd->wr_busy_queues++;
  1550. bfqq->entity.prio_changed = 1;
  1551. }
  1552. if (prev != bfqq->next_rq)
  1553. bfq_updated_next_req(bfqd, bfqq);
  1554. }
  1555. /*
  1556. * Assign jiffies to last_wr_start_finish in the following
  1557. * cases:
  1558. *
  1559. * . if bfqq is not going to be weight-raised, because, for
  1560. * non weight-raised queues, last_wr_start_finish stores the
  1561. * arrival time of the last request; as of now, this piece
  1562. * of information is used only for deciding whether to
  1563. * weight-raise async queues
  1564. *
  1565. * . if bfqq is not weight-raised, because, if bfqq is now
  1566. * switching to weight-raised, then last_wr_start_finish
  1567. * stores the time when weight-raising starts
  1568. *
  1569. * . if bfqq is interactive, because, regardless of whether
  1570. * bfqq is currently weight-raised, the weight-raising
  1571. * period must start or restart (this case is considered
  1572. * separately because it is not detected by the above
  1573. * conditions, if bfqq is already weight-raised)
  1574. *
  1575. * last_wr_start_finish has to be updated also if bfqq is soft
  1576. * real-time, because the weight-raising period is constantly
  1577. * restarted on idle-to-busy transitions for these queues, but
  1578. * this is already done in bfq_bfqq_handle_idle_busy_switch if
  1579. * needed.
  1580. */
  1581. if (bfqd->low_latency &&
  1582. (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
  1583. bfqq->last_wr_start_finish = jiffies;
  1584. }
  1585. static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
  1586. struct bio *bio,
  1587. struct request_queue *q)
  1588. {
  1589. struct bfq_queue *bfqq = bfqd->bio_bfqq;
  1590. if (bfqq)
  1591. return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
  1592. return NULL;
  1593. }
  1594. static sector_t get_sdist(sector_t last_pos, struct request *rq)
  1595. {
  1596. if (last_pos)
  1597. return abs(blk_rq_pos(rq) - last_pos);
  1598. return 0;
  1599. }
  1600. #if 0 /* Still not clear if we can do without next two functions */
  1601. static void bfq_activate_request(struct request_queue *q, struct request *rq)
  1602. {
  1603. struct bfq_data *bfqd = q->elevator->elevator_data;
  1604. bfqd->rq_in_driver++;
  1605. }
  1606. static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
  1607. {
  1608. struct bfq_data *bfqd = q->elevator->elevator_data;
  1609. bfqd->rq_in_driver--;
  1610. }
  1611. #endif
  1612. static void bfq_remove_request(struct request_queue *q,
  1613. struct request *rq)
  1614. {
  1615. struct bfq_queue *bfqq = RQ_BFQQ(rq);
  1616. struct bfq_data *bfqd = bfqq->bfqd;
  1617. const int sync = rq_is_sync(rq);
  1618. if (bfqq->next_rq == rq) {
  1619. bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
  1620. bfq_updated_next_req(bfqd, bfqq);
  1621. }
  1622. if (rq->queuelist.prev != &rq->queuelist)
  1623. list_del_init(&rq->queuelist);
  1624. bfqq->queued[sync]--;
  1625. bfqd->queued--;
  1626. elv_rb_del(&bfqq->sort_list, rq);
  1627. elv_rqhash_del(q, rq);
  1628. if (q->last_merge == rq)
  1629. q->last_merge = NULL;
  1630. if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
  1631. bfqq->next_rq = NULL;
  1632. if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
  1633. bfq_del_bfqq_busy(bfqd, bfqq, false);
  1634. /*
  1635. * bfqq emptied. In normal operation, when
  1636. * bfqq is empty, bfqq->entity.service and
  1637. * bfqq->entity.budget must contain,
  1638. * respectively, the service received and the
  1639. * budget used last time bfqq emptied. These
  1640. * facts do not hold in this case, as at least
  1641. * this last removal occurred while bfqq is
  1642. * not in service. To avoid inconsistencies,
  1643. * reset both bfqq->entity.service and
  1644. * bfqq->entity.budget, if bfqq has still a
  1645. * process that may issue I/O requests to it.
  1646. */
  1647. bfqq->entity.budget = bfqq->entity.service = 0;
  1648. }
  1649. /*
  1650. * Remove queue from request-position tree as it is empty.
  1651. */
  1652. if (bfqq->pos_root) {
  1653. rb_erase(&bfqq->pos_node, bfqq->pos_root);
  1654. bfqq->pos_root = NULL;
  1655. }
  1656. } else {
  1657. bfq_pos_tree_add_move(bfqd, bfqq);
  1658. }
  1659. if (rq->cmd_flags & REQ_META)
  1660. bfqq->meta_pending--;
  1661. }
  1662. static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
  1663. {
  1664. struct request_queue *q = hctx->queue;
  1665. struct bfq_data *bfqd = q->elevator->elevator_data;
  1666. struct request *free = NULL;
  1667. /*
  1668. * bfq_bic_lookup grabs the queue_lock: invoke it now and
  1669. * store its return value for later use, to avoid nesting
  1670. * queue_lock inside the bfqd->lock. We assume that the bic
  1671. * returned by bfq_bic_lookup does not go away before
  1672. * bfqd->lock is taken.
  1673. */
  1674. struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
  1675. bool ret;
  1676. spin_lock_irq(&bfqd->lock);
  1677. if (bic)
  1678. bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
  1679. else
  1680. bfqd->bio_bfqq = NULL;
  1681. bfqd->bio_bic = bic;
  1682. ret = blk_mq_sched_try_merge(q, bio, &free);
  1683. if (free)
  1684. blk_mq_free_request(free);
  1685. spin_unlock_irq(&bfqd->lock);
  1686. return ret;
  1687. }
  1688. static int bfq_request_merge(struct request_queue *q, struct request **req,
  1689. struct bio *bio)
  1690. {
  1691. struct bfq_data *bfqd = q->elevator->elevator_data;
  1692. struct request *__rq;
  1693. __rq = bfq_find_rq_fmerge(bfqd, bio, q);
  1694. if (__rq && elv_bio_merge_ok(__rq, bio)) {
  1695. *req = __rq;
  1696. return ELEVATOR_FRONT_MERGE;
  1697. }
  1698. return ELEVATOR_NO_MERGE;
  1699. }
  1700. static struct bfq_queue *bfq_init_rq(struct request *rq);
  1701. static void bfq_request_merged(struct request_queue *q, struct request *req,
  1702. enum elv_merge type)
  1703. {
  1704. if (type == ELEVATOR_FRONT_MERGE &&
  1705. rb_prev(&req->rb_node) &&
  1706. blk_rq_pos(req) <
  1707. blk_rq_pos(container_of(rb_prev(&req->rb_node),
  1708. struct request, rb_node))) {
  1709. struct bfq_queue *bfqq = bfq_init_rq(req);
  1710. struct bfq_data *bfqd = bfqq->bfqd;
  1711. struct request *prev, *next_rq;
  1712. /* Reposition request in its sort_list */
  1713. elv_rb_del(&bfqq->sort_list, req);
  1714. elv_rb_add(&bfqq->sort_list, req);
  1715. /* Choose next request to be served for bfqq */
  1716. prev = bfqq->next_rq;
  1717. next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
  1718. bfqd->last_position);
  1719. bfqq->next_rq = next_rq;
  1720. /*
  1721. * If next_rq changes, update both the queue's budget to
  1722. * fit the new request and the queue's position in its
  1723. * rq_pos_tree.
  1724. */
  1725. if (prev != bfqq->next_rq) {
  1726. bfq_updated_next_req(bfqd, bfqq);
  1727. bfq_pos_tree_add_move(bfqd, bfqq);
  1728. }
  1729. }
  1730. }
  1731. /*
  1732. * This function is called to notify the scheduler that the requests
  1733. * rq and 'next' have been merged, with 'next' going away. BFQ
  1734. * exploits this hook to address the following issue: if 'next' has a
  1735. * fifo_time lower that rq, then the fifo_time of rq must be set to
  1736. * the value of 'next', to not forget the greater age of 'next'.
  1737. *
  1738. * NOTE: in this function we assume that rq is in a bfq_queue, basing
  1739. * on that rq is picked from the hash table q->elevator->hash, which,
  1740. * in its turn, is filled only with I/O requests present in
  1741. * bfq_queues, while BFQ is in use for the request queue q. In fact,
  1742. * the function that fills this hash table (elv_rqhash_add) is called
  1743. * only by bfq_insert_request.
  1744. */
  1745. static void bfq_requests_merged(struct request_queue *q, struct request *rq,
  1746. struct request *next)
  1747. {
  1748. struct bfq_queue *bfqq = bfq_init_rq(rq),
  1749. *next_bfqq = bfq_init_rq(next);
  1750. /*
  1751. * If next and rq belong to the same bfq_queue and next is older
  1752. * than rq, then reposition rq in the fifo (by substituting next
  1753. * with rq). Otherwise, if next and rq belong to different
  1754. * bfq_queues, never reposition rq: in fact, we would have to
  1755. * reposition it with respect to next's position in its own fifo,
  1756. * which would most certainly be too expensive with respect to
  1757. * the benefits.
  1758. */
  1759. if (bfqq == next_bfqq &&
  1760. !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1761. next->fifo_time < rq->fifo_time) {
  1762. list_del_init(&rq->queuelist);
  1763. list_replace_init(&next->queuelist, &rq->queuelist);
  1764. rq->fifo_time = next->fifo_time;
  1765. }
  1766. if (bfqq->next_rq == next)
  1767. bfqq->next_rq = rq;
  1768. bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
  1769. }
  1770. /* Must be called with bfqq != NULL */
  1771. static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
  1772. {
  1773. if (bfq_bfqq_busy(bfqq))
  1774. bfqq->bfqd->wr_busy_queues--;
  1775. bfqq->wr_coeff = 1;
  1776. bfqq->wr_cur_max_time = 0;
  1777. bfqq->last_wr_start_finish = jiffies;
  1778. /*
  1779. * Trigger a weight change on the next invocation of
  1780. * __bfq_entity_update_weight_prio.
  1781. */
  1782. bfqq->entity.prio_changed = 1;
  1783. }
  1784. void bfq_end_wr_async_queues(struct bfq_data *bfqd,
  1785. struct bfq_group *bfqg)
  1786. {
  1787. int i, j;
  1788. for (i = 0; i < 2; i++)
  1789. for (j = 0; j < IOPRIO_BE_NR; j++)
  1790. if (bfqg->async_bfqq[i][j])
  1791. bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
  1792. if (bfqg->async_idle_bfqq)
  1793. bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
  1794. }
  1795. static void bfq_end_wr(struct bfq_data *bfqd)
  1796. {
  1797. struct bfq_queue *bfqq;
  1798. spin_lock_irq(&bfqd->lock);
  1799. list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
  1800. bfq_bfqq_end_wr(bfqq);
  1801. list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
  1802. bfq_bfqq_end_wr(bfqq);
  1803. bfq_end_wr_async(bfqd);
  1804. spin_unlock_irq(&bfqd->lock);
  1805. }
  1806. static sector_t bfq_io_struct_pos(void *io_struct, bool request)
  1807. {
  1808. if (request)
  1809. return blk_rq_pos(io_struct);
  1810. else
  1811. return ((struct bio *)io_struct)->bi_iter.bi_sector;
  1812. }
  1813. static int bfq_rq_close_to_sector(void *io_struct, bool request,
  1814. sector_t sector)
  1815. {
  1816. return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
  1817. BFQQ_CLOSE_THR;
  1818. }
  1819. static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
  1820. struct bfq_queue *bfqq,
  1821. sector_t sector)
  1822. {
  1823. struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
  1824. struct rb_node *parent, *node;
  1825. struct bfq_queue *__bfqq;
  1826. if (RB_EMPTY_ROOT(root))
  1827. return NULL;
  1828. /*
  1829. * First, if we find a request starting at the end of the last
  1830. * request, choose it.
  1831. */
  1832. __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
  1833. if (__bfqq)
  1834. return __bfqq;
  1835. /*
  1836. * If the exact sector wasn't found, the parent of the NULL leaf
  1837. * will contain the closest sector (rq_pos_tree sorted by
  1838. * next_request position).
  1839. */
  1840. __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
  1841. if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
  1842. return __bfqq;
  1843. if (blk_rq_pos(__bfqq->next_rq) < sector)
  1844. node = rb_next(&__bfqq->pos_node);
  1845. else
  1846. node = rb_prev(&__bfqq->pos_node);
  1847. if (!node)
  1848. return NULL;
  1849. __bfqq = rb_entry(node, struct bfq_queue, pos_node);
  1850. if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
  1851. return __bfqq;
  1852. return NULL;
  1853. }
  1854. static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
  1855. struct bfq_queue *cur_bfqq,
  1856. sector_t sector)
  1857. {
  1858. struct bfq_queue *bfqq;
  1859. /*
  1860. * We shall notice if some of the queues are cooperating,
  1861. * e.g., working closely on the same area of the device. In
  1862. * that case, we can group them together and: 1) don't waste
  1863. * time idling, and 2) serve the union of their requests in
  1864. * the best possible order for throughput.
  1865. */
  1866. bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
  1867. if (!bfqq || bfqq == cur_bfqq)
  1868. return NULL;
  1869. return bfqq;
  1870. }
  1871. static struct bfq_queue *
  1872. bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
  1873. {
  1874. int process_refs, new_process_refs;
  1875. struct bfq_queue *__bfqq;
  1876. /*
  1877. * If there are no process references on the new_bfqq, then it is
  1878. * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
  1879. * may have dropped their last reference (not just their last process
  1880. * reference).
  1881. */
  1882. if (!bfqq_process_refs(new_bfqq))
  1883. return NULL;
  1884. /* Avoid a circular list and skip interim queue merges. */
  1885. while ((__bfqq = new_bfqq->new_bfqq)) {
  1886. if (__bfqq == bfqq)
  1887. return NULL;
  1888. new_bfqq = __bfqq;
  1889. }
  1890. process_refs = bfqq_process_refs(bfqq);
  1891. new_process_refs = bfqq_process_refs(new_bfqq);
  1892. /*
  1893. * If the process for the bfqq has gone away, there is no
  1894. * sense in merging the queues.
  1895. */
  1896. if (process_refs == 0 || new_process_refs == 0)
  1897. return NULL;
  1898. bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
  1899. new_bfqq->pid);
  1900. /*
  1901. * Merging is just a redirection: the requests of the process
  1902. * owning one of the two queues are redirected to the other queue.
  1903. * The latter queue, in its turn, is set as shared if this is the
  1904. * first time that the requests of some process are redirected to
  1905. * it.
  1906. *
  1907. * We redirect bfqq to new_bfqq and not the opposite, because
  1908. * we are in the context of the process owning bfqq, thus we
  1909. * have the io_cq of this process. So we can immediately
  1910. * configure this io_cq to redirect the requests of the
  1911. * process to new_bfqq. In contrast, the io_cq of new_bfqq is
  1912. * not available any more (new_bfqq->bic == NULL).
  1913. *
  1914. * Anyway, even in case new_bfqq coincides with the in-service
  1915. * queue, redirecting requests the in-service queue is the
  1916. * best option, as we feed the in-service queue with new
  1917. * requests close to the last request served and, by doing so,
  1918. * are likely to increase the throughput.
  1919. */
  1920. bfqq->new_bfqq = new_bfqq;
  1921. new_bfqq->ref += process_refs;
  1922. return new_bfqq;
  1923. }
  1924. static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
  1925. struct bfq_queue *new_bfqq)
  1926. {
  1927. if (bfq_too_late_for_merging(new_bfqq))
  1928. return false;
  1929. if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
  1930. (bfqq->ioprio_class != new_bfqq->ioprio_class))
  1931. return false;
  1932. /*
  1933. * If either of the queues has already been detected as seeky,
  1934. * then merging it with the other queue is unlikely to lead to
  1935. * sequential I/O.
  1936. */
  1937. if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
  1938. return false;
  1939. /*
  1940. * Interleaved I/O is known to be done by (some) applications
  1941. * only for reads, so it does not make sense to merge async
  1942. * queues.
  1943. */
  1944. if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
  1945. return false;
  1946. return true;
  1947. }
  1948. /*
  1949. * Attempt to schedule a merge of bfqq with the currently in-service
  1950. * queue or with a close queue among the scheduled queues. Return
  1951. * NULL if no merge was scheduled, a pointer to the shared bfq_queue
  1952. * structure otherwise.
  1953. *
  1954. * The OOM queue is not allowed to participate to cooperation: in fact, since
  1955. * the requests temporarily redirected to the OOM queue could be redirected
  1956. * again to dedicated queues at any time, the state needed to correctly
  1957. * handle merging with the OOM queue would be quite complex and expensive
  1958. * to maintain. Besides, in such a critical condition as an out of memory,
  1959. * the benefits of queue merging may be little relevant, or even negligible.
  1960. *
  1961. * WARNING: queue merging may impair fairness among non-weight raised
  1962. * queues, for at least two reasons: 1) the original weight of a
  1963. * merged queue may change during the merged state, 2) even being the
  1964. * weight the same, a merged queue may be bloated with many more
  1965. * requests than the ones produced by its originally-associated
  1966. * process.
  1967. */
  1968. static struct bfq_queue *
  1969. bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  1970. void *io_struct, bool request)
  1971. {
  1972. struct bfq_queue *in_service_bfqq, *new_bfqq;
  1973. /*
  1974. * Prevent bfqq from being merged if it has been created too
  1975. * long ago. The idea is that true cooperating processes, and
  1976. * thus their associated bfq_queues, are supposed to be
  1977. * created shortly after each other. This is the case, e.g.,
  1978. * for KVM/QEMU and dump I/O threads. Basing on this
  1979. * assumption, the following filtering greatly reduces the
  1980. * probability that two non-cooperating processes, which just
  1981. * happen to do close I/O for some short time interval, have
  1982. * their queues merged by mistake.
  1983. */
  1984. if (bfq_too_late_for_merging(bfqq))
  1985. return NULL;
  1986. if (bfqq->new_bfqq)
  1987. return bfqq->new_bfqq;
  1988. if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
  1989. return NULL;
  1990. /* If there is only one backlogged queue, don't search. */
  1991. if (bfqd->busy_queues == 1)
  1992. return NULL;
  1993. in_service_bfqq = bfqd->in_service_queue;
  1994. if (in_service_bfqq && in_service_bfqq != bfqq &&
  1995. likely(in_service_bfqq != &bfqd->oom_bfqq) &&
  1996. bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
  1997. bfqq->entity.parent == in_service_bfqq->entity.parent &&
  1998. bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
  1999. new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
  2000. if (new_bfqq)
  2001. return new_bfqq;
  2002. }
  2003. /*
  2004. * Check whether there is a cooperator among currently scheduled
  2005. * queues. The only thing we need is that the bio/request is not
  2006. * NULL, as we need it to establish whether a cooperator exists.
  2007. */
  2008. new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
  2009. bfq_io_struct_pos(io_struct, request));
  2010. if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
  2011. bfq_may_be_close_cooperator(bfqq, new_bfqq))
  2012. return bfq_setup_merge(bfqq, new_bfqq);
  2013. return NULL;
  2014. }
  2015. static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
  2016. {
  2017. struct bfq_io_cq *bic = bfqq->bic;
  2018. /*
  2019. * If !bfqq->bic, the queue is already shared or its requests
  2020. * have already been redirected to a shared queue; both idle window
  2021. * and weight raising state have already been saved. Do nothing.
  2022. */
  2023. if (!bic)
  2024. return;
  2025. bic->saved_ttime = bfqq->ttime;
  2026. bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
  2027. bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
  2028. bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
  2029. bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
  2030. if (unlikely(bfq_bfqq_just_created(bfqq) &&
  2031. !bfq_bfqq_in_large_burst(bfqq) &&
  2032. bfqq->bfqd->low_latency)) {
  2033. /*
  2034. * bfqq being merged right after being created: bfqq
  2035. * would have deserved interactive weight raising, but
  2036. * did not make it to be set in a weight-raised state,
  2037. * because of this early merge. Store directly the
  2038. * weight-raising state that would have been assigned
  2039. * to bfqq, so that to avoid that bfqq unjustly fails
  2040. * to enjoy weight raising if split soon.
  2041. */
  2042. bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
  2043. bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
  2044. bic->saved_last_wr_start_finish = jiffies;
  2045. } else {
  2046. bic->saved_wr_coeff = bfqq->wr_coeff;
  2047. bic->saved_wr_start_at_switch_to_srt =
  2048. bfqq->wr_start_at_switch_to_srt;
  2049. bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
  2050. bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
  2051. }
  2052. }
  2053. static void
  2054. bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
  2055. struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
  2056. {
  2057. bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
  2058. (unsigned long)new_bfqq->pid);
  2059. /* Save weight raising and idle window of the merged queues */
  2060. bfq_bfqq_save_state(bfqq);
  2061. bfq_bfqq_save_state(new_bfqq);
  2062. if (bfq_bfqq_IO_bound(bfqq))
  2063. bfq_mark_bfqq_IO_bound(new_bfqq);
  2064. bfq_clear_bfqq_IO_bound(bfqq);
  2065. /*
  2066. * If bfqq is weight-raised, then let new_bfqq inherit
  2067. * weight-raising. To reduce false positives, neglect the case
  2068. * where bfqq has just been created, but has not yet made it
  2069. * to be weight-raised (which may happen because EQM may merge
  2070. * bfqq even before bfq_add_request is executed for the first
  2071. * time for bfqq). Handling this case would however be very
  2072. * easy, thanks to the flag just_created.
  2073. */
  2074. if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
  2075. new_bfqq->wr_coeff = bfqq->wr_coeff;
  2076. new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
  2077. new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
  2078. new_bfqq->wr_start_at_switch_to_srt =
  2079. bfqq->wr_start_at_switch_to_srt;
  2080. if (bfq_bfqq_busy(new_bfqq))
  2081. bfqd->wr_busy_queues++;
  2082. new_bfqq->entity.prio_changed = 1;
  2083. }
  2084. if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
  2085. bfqq->wr_coeff = 1;
  2086. bfqq->entity.prio_changed = 1;
  2087. if (bfq_bfqq_busy(bfqq))
  2088. bfqd->wr_busy_queues--;
  2089. }
  2090. bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
  2091. bfqd->wr_busy_queues);
  2092. /*
  2093. * Merge queues (that is, let bic redirect its requests to new_bfqq)
  2094. */
  2095. bic_set_bfqq(bic, new_bfqq, 1);
  2096. bfq_mark_bfqq_coop(new_bfqq);
  2097. /*
  2098. * new_bfqq now belongs to at least two bics (it is a shared queue):
  2099. * set new_bfqq->bic to NULL. bfqq either:
  2100. * - does not belong to any bic any more, and hence bfqq->bic must
  2101. * be set to NULL, or
  2102. * - is a queue whose owning bics have already been redirected to a
  2103. * different queue, hence the queue is destined to not belong to
  2104. * any bic soon and bfqq->bic is already NULL (therefore the next
  2105. * assignment causes no harm).
  2106. */
  2107. new_bfqq->bic = NULL;
  2108. bfqq->bic = NULL;
  2109. /* release process reference to bfqq */
  2110. bfq_put_queue(bfqq);
  2111. }
  2112. static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
  2113. struct bio *bio)
  2114. {
  2115. struct bfq_data *bfqd = q->elevator->elevator_data;
  2116. bool is_sync = op_is_sync(bio->bi_opf);
  2117. struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
  2118. /*
  2119. * Disallow merge of a sync bio into an async request.
  2120. */
  2121. if (is_sync && !rq_is_sync(rq))
  2122. return false;
  2123. /*
  2124. * Lookup the bfqq that this bio will be queued with. Allow
  2125. * merge only if rq is queued there.
  2126. */
  2127. if (!bfqq)
  2128. return false;
  2129. /*
  2130. * We take advantage of this function to perform an early merge
  2131. * of the queues of possible cooperating processes.
  2132. */
  2133. new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
  2134. if (new_bfqq) {
  2135. /*
  2136. * bic still points to bfqq, then it has not yet been
  2137. * redirected to some other bfq_queue, and a queue
  2138. * merge beween bfqq and new_bfqq can be safely
  2139. * fulfillled, i.e., bic can be redirected to new_bfqq
  2140. * and bfqq can be put.
  2141. */
  2142. bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
  2143. new_bfqq);
  2144. /*
  2145. * If we get here, bio will be queued into new_queue,
  2146. * so use new_bfqq to decide whether bio and rq can be
  2147. * merged.
  2148. */
  2149. bfqq = new_bfqq;
  2150. /*
  2151. * Change also bqfd->bio_bfqq, as
  2152. * bfqd->bio_bic now points to new_bfqq, and
  2153. * this function may be invoked again (and then may
  2154. * use again bqfd->bio_bfqq).
  2155. */
  2156. bfqd->bio_bfqq = bfqq;
  2157. }
  2158. return bfqq == RQ_BFQQ(rq);
  2159. }
  2160. /*
  2161. * Set the maximum time for the in-service queue to consume its
  2162. * budget. This prevents seeky processes from lowering the throughput.
  2163. * In practice, a time-slice service scheme is used with seeky
  2164. * processes.
  2165. */
  2166. static void bfq_set_budget_timeout(struct bfq_data *bfqd,
  2167. struct bfq_queue *bfqq)
  2168. {
  2169. unsigned int timeout_coeff;
  2170. if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
  2171. timeout_coeff = 1;
  2172. else
  2173. timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
  2174. bfqd->last_budget_start = ktime_get();
  2175. bfqq->budget_timeout = jiffies +
  2176. bfqd->bfq_timeout * timeout_coeff;
  2177. }
  2178. static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
  2179. struct bfq_queue *bfqq)
  2180. {
  2181. if (bfqq) {
  2182. bfq_clear_bfqq_fifo_expire(bfqq);
  2183. bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
  2184. if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
  2185. bfqq->wr_coeff > 1 &&
  2186. bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
  2187. time_is_before_jiffies(bfqq->budget_timeout)) {
  2188. /*
  2189. * For soft real-time queues, move the start
  2190. * of the weight-raising period forward by the
  2191. * time the queue has not received any
  2192. * service. Otherwise, a relatively long
  2193. * service delay is likely to cause the
  2194. * weight-raising period of the queue to end,
  2195. * because of the short duration of the
  2196. * weight-raising period of a soft real-time
  2197. * queue. It is worth noting that this move
  2198. * is not so dangerous for the other queues,
  2199. * because soft real-time queues are not
  2200. * greedy.
  2201. *
  2202. * To not add a further variable, we use the
  2203. * overloaded field budget_timeout to
  2204. * determine for how long the queue has not
  2205. * received service, i.e., how much time has
  2206. * elapsed since the queue expired. However,
  2207. * this is a little imprecise, because
  2208. * budget_timeout is set to jiffies if bfqq
  2209. * not only expires, but also remains with no
  2210. * request.
  2211. */
  2212. if (time_after(bfqq->budget_timeout,
  2213. bfqq->last_wr_start_finish))
  2214. bfqq->last_wr_start_finish +=
  2215. jiffies - bfqq->budget_timeout;
  2216. else
  2217. bfqq->last_wr_start_finish = jiffies;
  2218. }
  2219. bfq_set_budget_timeout(bfqd, bfqq);
  2220. bfq_log_bfqq(bfqd, bfqq,
  2221. "set_in_service_queue, cur-budget = %d",
  2222. bfqq->entity.budget);
  2223. }
  2224. bfqd->in_service_queue = bfqq;
  2225. }
  2226. /*
  2227. * Get and set a new queue for service.
  2228. */
  2229. static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
  2230. {
  2231. struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
  2232. __bfq_set_in_service_queue(bfqd, bfqq);
  2233. return bfqq;
  2234. }
  2235. static void bfq_arm_slice_timer(struct bfq_data *bfqd)
  2236. {
  2237. struct bfq_queue *bfqq = bfqd->in_service_queue;
  2238. u32 sl;
  2239. bfq_mark_bfqq_wait_request(bfqq);
  2240. /*
  2241. * We don't want to idle for seeks, but we do want to allow
  2242. * fair distribution of slice time for a process doing back-to-back
  2243. * seeks. So allow a little bit of time for him to submit a new rq.
  2244. */
  2245. sl = bfqd->bfq_slice_idle;
  2246. /*
  2247. * Unless the queue is being weight-raised or the scenario is
  2248. * asymmetric, grant only minimum idle time if the queue
  2249. * is seeky. A long idling is preserved for a weight-raised
  2250. * queue, or, more in general, in an asymmetric scenario,
  2251. * because a long idling is needed for guaranteeing to a queue
  2252. * its reserved share of the throughput (in particular, it is
  2253. * needed if the queue has a higher weight than some other
  2254. * queue).
  2255. */
  2256. if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
  2257. bfq_symmetric_scenario(bfqd))
  2258. sl = min_t(u64, sl, BFQ_MIN_TT);
  2259. bfqd->last_idling_start = ktime_get();
  2260. hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
  2261. HRTIMER_MODE_REL);
  2262. bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
  2263. }
  2264. /*
  2265. * In autotuning mode, max_budget is dynamically recomputed as the
  2266. * amount of sectors transferred in timeout at the estimated peak
  2267. * rate. This enables BFQ to utilize a full timeslice with a full
  2268. * budget, even if the in-service queue is served at peak rate. And
  2269. * this maximises throughput with sequential workloads.
  2270. */
  2271. static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
  2272. {
  2273. return (u64)bfqd->peak_rate * USEC_PER_MSEC *
  2274. jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
  2275. }
  2276. /*
  2277. * Update parameters related to throughput and responsiveness, as a
  2278. * function of the estimated peak rate. See comments on
  2279. * bfq_calc_max_budget(), and on the ref_wr_duration array.
  2280. */
  2281. static void update_thr_responsiveness_params(struct bfq_data *bfqd)
  2282. {
  2283. if (bfqd->bfq_user_max_budget == 0) {
  2284. bfqd->bfq_max_budget =
  2285. bfq_calc_max_budget(bfqd);
  2286. bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
  2287. }
  2288. }
  2289. static void bfq_reset_rate_computation(struct bfq_data *bfqd,
  2290. struct request *rq)
  2291. {
  2292. if (rq != NULL) { /* new rq dispatch now, reset accordingly */
  2293. bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
  2294. bfqd->peak_rate_samples = 1;
  2295. bfqd->sequential_samples = 0;
  2296. bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
  2297. blk_rq_sectors(rq);
  2298. } else /* no new rq dispatched, just reset the number of samples */
  2299. bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
  2300. bfq_log(bfqd,
  2301. "reset_rate_computation at end, sample %u/%u tot_sects %llu",
  2302. bfqd->peak_rate_samples, bfqd->sequential_samples,
  2303. bfqd->tot_sectors_dispatched);
  2304. }
  2305. static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
  2306. {
  2307. u32 rate, weight, divisor;
  2308. /*
  2309. * For the convergence property to hold (see comments on
  2310. * bfq_update_peak_rate()) and for the assessment to be
  2311. * reliable, a minimum number of samples must be present, and
  2312. * a minimum amount of time must have elapsed. If not so, do
  2313. * not compute new rate. Just reset parameters, to get ready
  2314. * for a new evaluation attempt.
  2315. */
  2316. if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
  2317. bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
  2318. goto reset_computation;
  2319. /*
  2320. * If a new request completion has occurred after last
  2321. * dispatch, then, to approximate the rate at which requests
  2322. * have been served by the device, it is more precise to
  2323. * extend the observation interval to the last completion.
  2324. */
  2325. bfqd->delta_from_first =
  2326. max_t(u64, bfqd->delta_from_first,
  2327. bfqd->last_completion - bfqd->first_dispatch);
  2328. /*
  2329. * Rate computed in sects/usec, and not sects/nsec, for
  2330. * precision issues.
  2331. */
  2332. rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
  2333. div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
  2334. /*
  2335. * Peak rate not updated if:
  2336. * - the percentage of sequential dispatches is below 3/4 of the
  2337. * total, and rate is below the current estimated peak rate
  2338. * - rate is unreasonably high (> 20M sectors/sec)
  2339. */
  2340. if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
  2341. rate <= bfqd->peak_rate) ||
  2342. rate > 20<<BFQ_RATE_SHIFT)
  2343. goto reset_computation;
  2344. /*
  2345. * We have to update the peak rate, at last! To this purpose,
  2346. * we use a low-pass filter. We compute the smoothing constant
  2347. * of the filter as a function of the 'weight' of the new
  2348. * measured rate.
  2349. *
  2350. * As can be seen in next formulas, we define this weight as a
  2351. * quantity proportional to how sequential the workload is,
  2352. * and to how long the observation time interval is.
  2353. *
  2354. * The weight runs from 0 to 8. The maximum value of the
  2355. * weight, 8, yields the minimum value for the smoothing
  2356. * constant. At this minimum value for the smoothing constant,
  2357. * the measured rate contributes for half of the next value of
  2358. * the estimated peak rate.
  2359. *
  2360. * So, the first step is to compute the weight as a function
  2361. * of how sequential the workload is. Note that the weight
  2362. * cannot reach 9, because bfqd->sequential_samples cannot
  2363. * become equal to bfqd->peak_rate_samples, which, in its
  2364. * turn, holds true because bfqd->sequential_samples is not
  2365. * incremented for the first sample.
  2366. */
  2367. weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
  2368. /*
  2369. * Second step: further refine the weight as a function of the
  2370. * duration of the observation interval.
  2371. */
  2372. weight = min_t(u32, 8,
  2373. div_u64(weight * bfqd->delta_from_first,
  2374. BFQ_RATE_REF_INTERVAL));
  2375. /*
  2376. * Divisor ranging from 10, for minimum weight, to 2, for
  2377. * maximum weight.
  2378. */
  2379. divisor = 10 - weight;
  2380. /*
  2381. * Finally, update peak rate:
  2382. *
  2383. * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
  2384. */
  2385. bfqd->peak_rate *= divisor-1;
  2386. bfqd->peak_rate /= divisor;
  2387. rate /= divisor; /* smoothing constant alpha = 1/divisor */
  2388. bfqd->peak_rate += rate;
  2389. /*
  2390. * For a very slow device, bfqd->peak_rate can reach 0 (see
  2391. * the minimum representable values reported in the comments
  2392. * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
  2393. * divisions by zero where bfqd->peak_rate is used as a
  2394. * divisor.
  2395. */
  2396. bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
  2397. update_thr_responsiveness_params(bfqd);
  2398. reset_computation:
  2399. bfq_reset_rate_computation(bfqd, rq);
  2400. }
  2401. /*
  2402. * Update the read/write peak rate (the main quantity used for
  2403. * auto-tuning, see update_thr_responsiveness_params()).
  2404. *
  2405. * It is not trivial to estimate the peak rate (correctly): because of
  2406. * the presence of sw and hw queues between the scheduler and the
  2407. * device components that finally serve I/O requests, it is hard to
  2408. * say exactly when a given dispatched request is served inside the
  2409. * device, and for how long. As a consequence, it is hard to know
  2410. * precisely at what rate a given set of requests is actually served
  2411. * by the device.
  2412. *
  2413. * On the opposite end, the dispatch time of any request is trivially
  2414. * available, and, from this piece of information, the "dispatch rate"
  2415. * of requests can be immediately computed. So, the idea in the next
  2416. * function is to use what is known, namely request dispatch times
  2417. * (plus, when useful, request completion times), to estimate what is
  2418. * unknown, namely in-device request service rate.
  2419. *
  2420. * The main issue is that, because of the above facts, the rate at
  2421. * which a certain set of requests is dispatched over a certain time
  2422. * interval can vary greatly with respect to the rate at which the
  2423. * same requests are then served. But, since the size of any
  2424. * intermediate queue is limited, and the service scheme is lossless
  2425. * (no request is silently dropped), the following obvious convergence
  2426. * property holds: the number of requests dispatched MUST become
  2427. * closer and closer to the number of requests completed as the
  2428. * observation interval grows. This is the key property used in
  2429. * the next function to estimate the peak service rate as a function
  2430. * of the observed dispatch rate. The function assumes to be invoked
  2431. * on every request dispatch.
  2432. */
  2433. static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
  2434. {
  2435. u64 now_ns = ktime_get_ns();
  2436. if (bfqd->peak_rate_samples == 0) { /* first dispatch */
  2437. bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
  2438. bfqd->peak_rate_samples);
  2439. bfq_reset_rate_computation(bfqd, rq);
  2440. goto update_last_values; /* will add one sample */
  2441. }
  2442. /*
  2443. * Device idle for very long: the observation interval lasting
  2444. * up to this dispatch cannot be a valid observation interval
  2445. * for computing a new peak rate (similarly to the late-
  2446. * completion event in bfq_completed_request()). Go to
  2447. * update_rate_and_reset to have the following three steps
  2448. * taken:
  2449. * - close the observation interval at the last (previous)
  2450. * request dispatch or completion
  2451. * - compute rate, if possible, for that observation interval
  2452. * - start a new observation interval with this dispatch
  2453. */
  2454. if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
  2455. bfqd->rq_in_driver == 0)
  2456. goto update_rate_and_reset;
  2457. /* Update sampling information */
  2458. bfqd->peak_rate_samples++;
  2459. if ((bfqd->rq_in_driver > 0 ||
  2460. now_ns - bfqd->last_completion < BFQ_MIN_TT)
  2461. && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
  2462. bfqd->sequential_samples++;
  2463. bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
  2464. /* Reset max observed rq size every 32 dispatches */
  2465. if (likely(bfqd->peak_rate_samples % 32))
  2466. bfqd->last_rq_max_size =
  2467. max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
  2468. else
  2469. bfqd->last_rq_max_size = blk_rq_sectors(rq);
  2470. bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
  2471. /* Target observation interval not yet reached, go on sampling */
  2472. if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
  2473. goto update_last_values;
  2474. update_rate_and_reset:
  2475. bfq_update_rate_reset(bfqd, rq);
  2476. update_last_values:
  2477. bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2478. bfqd->last_dispatch = now_ns;
  2479. }
  2480. /*
  2481. * Remove request from internal lists.
  2482. */
  2483. static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
  2484. {
  2485. struct bfq_queue *bfqq = RQ_BFQQ(rq);
  2486. /*
  2487. * For consistency, the next instruction should have been
  2488. * executed after removing the request from the queue and
  2489. * dispatching it. We execute instead this instruction before
  2490. * bfq_remove_request() (and hence introduce a temporary
  2491. * inconsistency), for efficiency. In fact, should this
  2492. * dispatch occur for a non in-service bfqq, this anticipated
  2493. * increment prevents two counters related to bfqq->dispatched
  2494. * from risking to be, first, uselessly decremented, and then
  2495. * incremented again when the (new) value of bfqq->dispatched
  2496. * happens to be taken into account.
  2497. */
  2498. bfqq->dispatched++;
  2499. bfq_update_peak_rate(q->elevator->elevator_data, rq);
  2500. bfq_remove_request(q, rq);
  2501. }
  2502. static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  2503. {
  2504. /*
  2505. * If this bfqq is shared between multiple processes, check
  2506. * to make sure that those processes are still issuing I/Os
  2507. * within the mean seek distance. If not, it may be time to
  2508. * break the queues apart again.
  2509. */
  2510. if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
  2511. bfq_mark_bfqq_split_coop(bfqq);
  2512. if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
  2513. if (bfqq->dispatched == 0)
  2514. /*
  2515. * Overloading budget_timeout field to store
  2516. * the time at which the queue remains with no
  2517. * backlog and no outstanding request; used by
  2518. * the weight-raising mechanism.
  2519. */
  2520. bfqq->budget_timeout = jiffies;
  2521. bfq_del_bfqq_busy(bfqd, bfqq, true);
  2522. } else {
  2523. bfq_requeue_bfqq(bfqd, bfqq, true);
  2524. /*
  2525. * Resort priority tree of potential close cooperators.
  2526. */
  2527. bfq_pos_tree_add_move(bfqd, bfqq);
  2528. }
  2529. /*
  2530. * All in-service entities must have been properly deactivated
  2531. * or requeued before executing the next function, which
  2532. * resets all in-service entites as no more in service.
  2533. */
  2534. __bfq_bfqd_reset_in_service(bfqd);
  2535. }
  2536. /**
  2537. * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
  2538. * @bfqd: device data.
  2539. * @bfqq: queue to update.
  2540. * @reason: reason for expiration.
  2541. *
  2542. * Handle the feedback on @bfqq budget at queue expiration.
  2543. * See the body for detailed comments.
  2544. */
  2545. static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
  2546. struct bfq_queue *bfqq,
  2547. enum bfqq_expiration reason)
  2548. {
  2549. struct request *next_rq;
  2550. int budget, min_budget;
  2551. min_budget = bfq_min_budget(bfqd);
  2552. if (bfqq->wr_coeff == 1)
  2553. budget = bfqq->max_budget;
  2554. else /*
  2555. * Use a constant, low budget for weight-raised queues,
  2556. * to help achieve a low latency. Keep it slightly higher
  2557. * than the minimum possible budget, to cause a little
  2558. * bit fewer expirations.
  2559. */
  2560. budget = 2 * min_budget;
  2561. bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
  2562. bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
  2563. bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
  2564. budget, bfq_min_budget(bfqd));
  2565. bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
  2566. bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
  2567. if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
  2568. switch (reason) {
  2569. /*
  2570. * Caveat: in all the following cases we trade latency
  2571. * for throughput.
  2572. */
  2573. case BFQQE_TOO_IDLE:
  2574. /*
  2575. * This is the only case where we may reduce
  2576. * the budget: if there is no request of the
  2577. * process still waiting for completion, then
  2578. * we assume (tentatively) that the timer has
  2579. * expired because the batch of requests of
  2580. * the process could have been served with a
  2581. * smaller budget. Hence, betting that
  2582. * process will behave in the same way when it
  2583. * becomes backlogged again, we reduce its
  2584. * next budget. As long as we guess right,
  2585. * this budget cut reduces the latency
  2586. * experienced by the process.
  2587. *
  2588. * However, if there are still outstanding
  2589. * requests, then the process may have not yet
  2590. * issued its next request just because it is
  2591. * still waiting for the completion of some of
  2592. * the still outstanding ones. So in this
  2593. * subcase we do not reduce its budget, on the
  2594. * contrary we increase it to possibly boost
  2595. * the throughput, as discussed in the
  2596. * comments to the BUDGET_TIMEOUT case.
  2597. */
  2598. if (bfqq->dispatched > 0) /* still outstanding reqs */
  2599. budget = min(budget * 2, bfqd->bfq_max_budget);
  2600. else {
  2601. if (budget > 5 * min_budget)
  2602. budget -= 4 * min_budget;
  2603. else
  2604. budget = min_budget;
  2605. }
  2606. break;
  2607. case BFQQE_BUDGET_TIMEOUT:
  2608. /*
  2609. * We double the budget here because it gives
  2610. * the chance to boost the throughput if this
  2611. * is not a seeky process (and has bumped into
  2612. * this timeout because of, e.g., ZBR).
  2613. */
  2614. budget = min(budget * 2, bfqd->bfq_max_budget);
  2615. break;
  2616. case BFQQE_BUDGET_EXHAUSTED:
  2617. /*
  2618. * The process still has backlog, and did not
  2619. * let either the budget timeout or the disk
  2620. * idling timeout expire. Hence it is not
  2621. * seeky, has a short thinktime and may be
  2622. * happy with a higher budget too. So
  2623. * definitely increase the budget of this good
  2624. * candidate to boost the disk throughput.
  2625. */
  2626. budget = min(budget * 4, bfqd->bfq_max_budget);
  2627. break;
  2628. case BFQQE_NO_MORE_REQUESTS:
  2629. /*
  2630. * For queues that expire for this reason, it
  2631. * is particularly important to keep the
  2632. * budget close to the actual service they
  2633. * need. Doing so reduces the timestamp
  2634. * misalignment problem described in the
  2635. * comments in the body of
  2636. * __bfq_activate_entity. In fact, suppose
  2637. * that a queue systematically expires for
  2638. * BFQQE_NO_MORE_REQUESTS and presents a
  2639. * new request in time to enjoy timestamp
  2640. * back-shifting. The larger the budget of the
  2641. * queue is with respect to the service the
  2642. * queue actually requests in each service
  2643. * slot, the more times the queue can be
  2644. * reactivated with the same virtual finish
  2645. * time. It follows that, even if this finish
  2646. * time is pushed to the system virtual time
  2647. * to reduce the consequent timestamp
  2648. * misalignment, the queue unjustly enjoys for
  2649. * many re-activations a lower finish time
  2650. * than all newly activated queues.
  2651. *
  2652. * The service needed by bfqq is measured
  2653. * quite precisely by bfqq->entity.service.
  2654. * Since bfqq does not enjoy device idling,
  2655. * bfqq->entity.service is equal to the number
  2656. * of sectors that the process associated with
  2657. * bfqq requested to read/write before waiting
  2658. * for request completions, or blocking for
  2659. * other reasons.
  2660. */
  2661. budget = max_t(int, bfqq->entity.service, min_budget);
  2662. break;
  2663. default:
  2664. return;
  2665. }
  2666. } else if (!bfq_bfqq_sync(bfqq)) {
  2667. /*
  2668. * Async queues get always the maximum possible
  2669. * budget, as for them we do not care about latency
  2670. * (in addition, their ability to dispatch is limited
  2671. * by the charging factor).
  2672. */
  2673. budget = bfqd->bfq_max_budget;
  2674. }
  2675. bfqq->max_budget = budget;
  2676. if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
  2677. !bfqd->bfq_user_max_budget)
  2678. bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
  2679. /*
  2680. * If there is still backlog, then assign a new budget, making
  2681. * sure that it is large enough for the next request. Since
  2682. * the finish time of bfqq must be kept in sync with the
  2683. * budget, be sure to call __bfq_bfqq_expire() *after* this
  2684. * update.
  2685. *
  2686. * If there is no backlog, then no need to update the budget;
  2687. * it will be updated on the arrival of a new request.
  2688. */
  2689. next_rq = bfqq->next_rq;
  2690. if (next_rq)
  2691. bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
  2692. bfq_serv_to_charge(next_rq, bfqq));
  2693. bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
  2694. next_rq ? blk_rq_sectors(next_rq) : 0,
  2695. bfqq->entity.budget);
  2696. }
  2697. /*
  2698. * Return true if the process associated with bfqq is "slow". The slow
  2699. * flag is used, in addition to the budget timeout, to reduce the
  2700. * amount of service provided to seeky processes, and thus reduce
  2701. * their chances to lower the throughput. More details in the comments
  2702. * on the function bfq_bfqq_expire().
  2703. *
  2704. * An important observation is in order: as discussed in the comments
  2705. * on the function bfq_update_peak_rate(), with devices with internal
  2706. * queues, it is hard if ever possible to know when and for how long
  2707. * an I/O request is processed by the device (apart from the trivial
  2708. * I/O pattern where a new request is dispatched only after the
  2709. * previous one has been completed). This makes it hard to evaluate
  2710. * the real rate at which the I/O requests of each bfq_queue are
  2711. * served. In fact, for an I/O scheduler like BFQ, serving a
  2712. * bfq_queue means just dispatching its requests during its service
  2713. * slot (i.e., until the budget of the queue is exhausted, or the
  2714. * queue remains idle, or, finally, a timeout fires). But, during the
  2715. * service slot of a bfq_queue, around 100 ms at most, the device may
  2716. * be even still processing requests of bfq_queues served in previous
  2717. * service slots. On the opposite end, the requests of the in-service
  2718. * bfq_queue may be completed after the service slot of the queue
  2719. * finishes.
  2720. *
  2721. * Anyway, unless more sophisticated solutions are used
  2722. * (where possible), the sum of the sizes of the requests dispatched
  2723. * during the service slot of a bfq_queue is probably the only
  2724. * approximation available for the service received by the bfq_queue
  2725. * during its service slot. And this sum is the quantity used in this
  2726. * function to evaluate the I/O speed of a process.
  2727. */
  2728. static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  2729. bool compensate, enum bfqq_expiration reason,
  2730. unsigned long *delta_ms)
  2731. {
  2732. ktime_t delta_ktime;
  2733. u32 delta_usecs;
  2734. bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
  2735. if (!bfq_bfqq_sync(bfqq))
  2736. return false;
  2737. if (compensate)
  2738. delta_ktime = bfqd->last_idling_start;
  2739. else
  2740. delta_ktime = ktime_get();
  2741. delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
  2742. delta_usecs = ktime_to_us(delta_ktime);
  2743. /* don't use too short time intervals */
  2744. if (delta_usecs < 1000) {
  2745. if (blk_queue_nonrot(bfqd->queue))
  2746. /*
  2747. * give same worst-case guarantees as idling
  2748. * for seeky
  2749. */
  2750. *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
  2751. else /* charge at least one seek */
  2752. *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
  2753. return slow;
  2754. }
  2755. *delta_ms = delta_usecs / USEC_PER_MSEC;
  2756. /*
  2757. * Use only long (> 20ms) intervals to filter out excessive
  2758. * spikes in service rate estimation.
  2759. */
  2760. if (delta_usecs > 20000) {
  2761. /*
  2762. * Caveat for rotational devices: processes doing I/O
  2763. * in the slower disk zones tend to be slow(er) even
  2764. * if not seeky. In this respect, the estimated peak
  2765. * rate is likely to be an average over the disk
  2766. * surface. Accordingly, to not be too harsh with
  2767. * unlucky processes, a process is deemed slow only if
  2768. * its rate has been lower than half of the estimated
  2769. * peak rate.
  2770. */
  2771. slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
  2772. }
  2773. bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
  2774. return slow;
  2775. }
  2776. /*
  2777. * To be deemed as soft real-time, an application must meet two
  2778. * requirements. First, the application must not require an average
  2779. * bandwidth higher than the approximate bandwidth required to playback or
  2780. * record a compressed high-definition video.
  2781. * The next function is invoked on the completion of the last request of a
  2782. * batch, to compute the next-start time instant, soft_rt_next_start, such
  2783. * that, if the next request of the application does not arrive before
  2784. * soft_rt_next_start, then the above requirement on the bandwidth is met.
  2785. *
  2786. * The second requirement is that the request pattern of the application is
  2787. * isochronous, i.e., that, after issuing a request or a batch of requests,
  2788. * the application stops issuing new requests until all its pending requests
  2789. * have been completed. After that, the application may issue a new batch,
  2790. * and so on.
  2791. * For this reason the next function is invoked to compute
  2792. * soft_rt_next_start only for applications that meet this requirement,
  2793. * whereas soft_rt_next_start is set to infinity for applications that do
  2794. * not.
  2795. *
  2796. * Unfortunately, even a greedy (i.e., I/O-bound) application may
  2797. * happen to meet, occasionally or systematically, both the above
  2798. * bandwidth and isochrony requirements. This may happen at least in
  2799. * the following circumstances. First, if the CPU load is high. The
  2800. * application may stop issuing requests while the CPUs are busy
  2801. * serving other processes, then restart, then stop again for a while,
  2802. * and so on. The other circumstances are related to the storage
  2803. * device: the storage device is highly loaded or reaches a low-enough
  2804. * throughput with the I/O of the application (e.g., because the I/O
  2805. * is random and/or the device is slow). In all these cases, the
  2806. * I/O of the application may be simply slowed down enough to meet
  2807. * the bandwidth and isochrony requirements. To reduce the probability
  2808. * that greedy applications are deemed as soft real-time in these
  2809. * corner cases, a further rule is used in the computation of
  2810. * soft_rt_next_start: the return value of this function is forced to
  2811. * be higher than the maximum between the following two quantities.
  2812. *
  2813. * (a) Current time plus: (1) the maximum time for which the arrival
  2814. * of a request is waited for when a sync queue becomes idle,
  2815. * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
  2816. * postpone for a moment the reason for adding a few extra
  2817. * jiffies; we get back to it after next item (b). Lower-bounding
  2818. * the return value of this function with the current time plus
  2819. * bfqd->bfq_slice_idle tends to filter out greedy applications,
  2820. * because the latter issue their next request as soon as possible
  2821. * after the last one has been completed. In contrast, a soft
  2822. * real-time application spends some time processing data, after a
  2823. * batch of its requests has been completed.
  2824. *
  2825. * (b) Current value of bfqq->soft_rt_next_start. As pointed out
  2826. * above, greedy applications may happen to meet both the
  2827. * bandwidth and isochrony requirements under heavy CPU or
  2828. * storage-device load. In more detail, in these scenarios, these
  2829. * applications happen, only for limited time periods, to do I/O
  2830. * slowly enough to meet all the requirements described so far,
  2831. * including the filtering in above item (a). These slow-speed
  2832. * time intervals are usually interspersed between other time
  2833. * intervals during which these applications do I/O at a very high
  2834. * speed. Fortunately, exactly because of the high speed of the
  2835. * I/O in the high-speed intervals, the values returned by this
  2836. * function happen to be so high, near the end of any such
  2837. * high-speed interval, to be likely to fall *after* the end of
  2838. * the low-speed time interval that follows. These high values are
  2839. * stored in bfqq->soft_rt_next_start after each invocation of
  2840. * this function. As a consequence, if the last value of
  2841. * bfqq->soft_rt_next_start is constantly used to lower-bound the
  2842. * next value that this function may return, then, from the very
  2843. * beginning of a low-speed interval, bfqq->soft_rt_next_start is
  2844. * likely to be constantly kept so high that any I/O request
  2845. * issued during the low-speed interval is considered as arriving
  2846. * to soon for the application to be deemed as soft
  2847. * real-time. Then, in the high-speed interval that follows, the
  2848. * application will not be deemed as soft real-time, just because
  2849. * it will do I/O at a high speed. And so on.
  2850. *
  2851. * Getting back to the filtering in item (a), in the following two
  2852. * cases this filtering might be easily passed by a greedy
  2853. * application, if the reference quantity was just
  2854. * bfqd->bfq_slice_idle:
  2855. * 1) HZ is so low that the duration of a jiffy is comparable to or
  2856. * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
  2857. * devices with HZ=100. The time granularity may be so coarse
  2858. * that the approximation, in jiffies, of bfqd->bfq_slice_idle
  2859. * is rather lower than the exact value.
  2860. * 2) jiffies, instead of increasing at a constant rate, may stop increasing
  2861. * for a while, then suddenly 'jump' by several units to recover the lost
  2862. * increments. This seems to happen, e.g., inside virtual machines.
  2863. * To address this issue, in the filtering in (a) we do not use as a
  2864. * reference time interval just bfqd->bfq_slice_idle, but
  2865. * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
  2866. * minimum number of jiffies for which the filter seems to be quite
  2867. * precise also in embedded systems and KVM/QEMU virtual machines.
  2868. */
  2869. static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
  2870. struct bfq_queue *bfqq)
  2871. {
  2872. return max3(bfqq->soft_rt_next_start,
  2873. bfqq->last_idle_bklogged +
  2874. HZ * bfqq->service_from_backlogged /
  2875. bfqd->bfq_wr_max_softrt_rate,
  2876. jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
  2877. }
  2878. static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
  2879. {
  2880. return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
  2881. blk_queue_nonrot(bfqq->bfqd->queue) &&
  2882. bfqq->bfqd->hw_tag;
  2883. }
  2884. /**
  2885. * bfq_bfqq_expire - expire a queue.
  2886. * @bfqd: device owning the queue.
  2887. * @bfqq: the queue to expire.
  2888. * @compensate: if true, compensate for the time spent idling.
  2889. * @reason: the reason causing the expiration.
  2890. *
  2891. * If the process associated with bfqq does slow I/O (e.g., because it
  2892. * issues random requests), we charge bfqq with the time it has been
  2893. * in service instead of the service it has received (see
  2894. * bfq_bfqq_charge_time for details on how this goal is achieved). As
  2895. * a consequence, bfqq will typically get higher timestamps upon
  2896. * reactivation, and hence it will be rescheduled as if it had
  2897. * received more service than what it has actually received. In the
  2898. * end, bfqq receives less service in proportion to how slowly its
  2899. * associated process consumes its budgets (and hence how seriously it
  2900. * tends to lower the throughput). In addition, this time-charging
  2901. * strategy guarantees time fairness among slow processes. In
  2902. * contrast, if the process associated with bfqq is not slow, we
  2903. * charge bfqq exactly with the service it has received.
  2904. *
  2905. * Charging time to the first type of queues and the exact service to
  2906. * the other has the effect of using the WF2Q+ policy to schedule the
  2907. * former on a timeslice basis, without violating service domain
  2908. * guarantees among the latter.
  2909. */
  2910. void bfq_bfqq_expire(struct bfq_data *bfqd,
  2911. struct bfq_queue *bfqq,
  2912. bool compensate,
  2913. enum bfqq_expiration reason)
  2914. {
  2915. bool slow;
  2916. unsigned long delta = 0;
  2917. struct bfq_entity *entity = &bfqq->entity;
  2918. int ref;
  2919. /*
  2920. * Check whether the process is slow (see bfq_bfqq_is_slow).
  2921. */
  2922. slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
  2923. /*
  2924. * As above explained, charge slow (typically seeky) and
  2925. * timed-out queues with the time and not the service
  2926. * received, to favor sequential workloads.
  2927. *
  2928. * Processes doing I/O in the slower disk zones will tend to
  2929. * be slow(er) even if not seeky. Therefore, since the
  2930. * estimated peak rate is actually an average over the disk
  2931. * surface, these processes may timeout just for bad luck. To
  2932. * avoid punishing them, do not charge time to processes that
  2933. * succeeded in consuming at least 2/3 of their budget. This
  2934. * allows BFQ to preserve enough elasticity to still perform
  2935. * bandwidth, and not time, distribution with little unlucky
  2936. * or quasi-sequential processes.
  2937. */
  2938. if (bfqq->wr_coeff == 1 &&
  2939. (slow ||
  2940. (reason == BFQQE_BUDGET_TIMEOUT &&
  2941. bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
  2942. bfq_bfqq_charge_time(bfqd, bfqq, delta);
  2943. if (reason == BFQQE_TOO_IDLE &&
  2944. entity->service <= 2 * entity->budget / 10)
  2945. bfq_clear_bfqq_IO_bound(bfqq);
  2946. if (bfqd->low_latency && bfqq->wr_coeff == 1)
  2947. bfqq->last_wr_start_finish = jiffies;
  2948. if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
  2949. RB_EMPTY_ROOT(&bfqq->sort_list)) {
  2950. /*
  2951. * If we get here, and there are no outstanding
  2952. * requests, then the request pattern is isochronous
  2953. * (see the comments on the function
  2954. * bfq_bfqq_softrt_next_start()). Thus we can compute
  2955. * soft_rt_next_start. If, instead, the queue still
  2956. * has outstanding requests, then we have to wait for
  2957. * the completion of all the outstanding requests to
  2958. * discover whether the request pattern is actually
  2959. * isochronous.
  2960. */
  2961. if (bfqq->dispatched == 0)
  2962. bfqq->soft_rt_next_start =
  2963. bfq_bfqq_softrt_next_start(bfqd, bfqq);
  2964. else {
  2965. /*
  2966. * Schedule an update of soft_rt_next_start to when
  2967. * the task may be discovered to be isochronous.
  2968. */
  2969. bfq_mark_bfqq_softrt_update(bfqq);
  2970. }
  2971. }
  2972. bfq_log_bfqq(bfqd, bfqq,
  2973. "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
  2974. slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
  2975. /*
  2976. * Increase, decrease or leave budget unchanged according to
  2977. * reason.
  2978. */
  2979. __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
  2980. ref = bfqq->ref;
  2981. __bfq_bfqq_expire(bfqd, bfqq);
  2982. if (ref == 1) /* bfqq is gone, no more actions on it */
  2983. return;
  2984. bfqq->injected_service = 0;
  2985. /* mark bfqq as waiting a request only if a bic still points to it */
  2986. if (!bfq_bfqq_busy(bfqq) &&
  2987. reason != BFQQE_BUDGET_TIMEOUT &&
  2988. reason != BFQQE_BUDGET_EXHAUSTED) {
  2989. bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
  2990. /*
  2991. * Not setting service to 0, because, if the next rq
  2992. * arrives in time, the queue will go on receiving
  2993. * service with this same budget (as if it never expired)
  2994. */
  2995. } else
  2996. entity->service = 0;
  2997. /*
  2998. * Reset the received-service counter for every parent entity.
  2999. * Differently from what happens with bfqq->entity.service,
  3000. * the resetting of this counter never needs to be postponed
  3001. * for parent entities. In fact, in case bfqq may have a
  3002. * chance to go on being served using the last, partially
  3003. * consumed budget, bfqq->entity.service needs to be kept,
  3004. * because if bfqq then actually goes on being served using
  3005. * the same budget, the last value of bfqq->entity.service is
  3006. * needed to properly decrement bfqq->entity.budget by the
  3007. * portion already consumed. In contrast, it is not necessary
  3008. * to keep entity->service for parent entities too, because
  3009. * the bubble up of the new value of bfqq->entity.budget will
  3010. * make sure that the budgets of parent entities are correct,
  3011. * even in case bfqq and thus parent entities go on receiving
  3012. * service with the same budget.
  3013. */
  3014. entity = entity->parent;
  3015. for_each_entity(entity)
  3016. entity->service = 0;
  3017. }
  3018. /*
  3019. * Budget timeout is not implemented through a dedicated timer, but
  3020. * just checked on request arrivals and completions, as well as on
  3021. * idle timer expirations.
  3022. */
  3023. static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
  3024. {
  3025. return time_is_before_eq_jiffies(bfqq->budget_timeout);
  3026. }
  3027. /*
  3028. * If we expire a queue that is actively waiting (i.e., with the
  3029. * device idled) for the arrival of a new request, then we may incur
  3030. * the timestamp misalignment problem described in the body of the
  3031. * function __bfq_activate_entity. Hence we return true only if this
  3032. * condition does not hold, or if the queue is slow enough to deserve
  3033. * only to be kicked off for preserving a high throughput.
  3034. */
  3035. static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
  3036. {
  3037. bfq_log_bfqq(bfqq->bfqd, bfqq,
  3038. "may_budget_timeout: wait_request %d left %d timeout %d",
  3039. bfq_bfqq_wait_request(bfqq),
  3040. bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
  3041. bfq_bfqq_budget_timeout(bfqq));
  3042. return (!bfq_bfqq_wait_request(bfqq) ||
  3043. bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
  3044. &&
  3045. bfq_bfqq_budget_timeout(bfqq);
  3046. }
  3047. /*
  3048. * For a queue that becomes empty, device idling is allowed only if
  3049. * this function returns true for the queue. As a consequence, since
  3050. * device idling plays a critical role in both throughput boosting and
  3051. * service guarantees, the return value of this function plays a
  3052. * critical role in both these aspects as well.
  3053. *
  3054. * In a nutshell, this function returns true only if idling is
  3055. * beneficial for throughput or, even if detrimental for throughput,
  3056. * idling is however necessary to preserve service guarantees (low
  3057. * latency, desired throughput distribution, ...). In particular, on
  3058. * NCQ-capable devices, this function tries to return false, so as to
  3059. * help keep the drives' internal queues full, whenever this helps the
  3060. * device boost the throughput without causing any service-guarantee
  3061. * issue.
  3062. *
  3063. * In more detail, the return value of this function is obtained by,
  3064. * first, computing a number of boolean variables that take into
  3065. * account throughput and service-guarantee issues, and, then,
  3066. * combining these variables in a logical expression. Most of the
  3067. * issues taken into account are not trivial. We discuss these issues
  3068. * individually while introducing the variables.
  3069. */
  3070. static bool bfq_better_to_idle(struct bfq_queue *bfqq)
  3071. {
  3072. struct bfq_data *bfqd = bfqq->bfqd;
  3073. bool rot_without_queueing =
  3074. !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
  3075. bfqq_sequential_and_IO_bound,
  3076. idling_boosts_thr, idling_boosts_thr_without_issues,
  3077. idling_needed_for_service_guarantees,
  3078. asymmetric_scenario;
  3079. if (bfqd->strict_guarantees)
  3080. return true;
  3081. /*
  3082. * Idling is performed only if slice_idle > 0. In addition, we
  3083. * do not idle if
  3084. * (a) bfqq is async
  3085. * (b) bfqq is in the idle io prio class: in this case we do
  3086. * not idle because we want to minimize the bandwidth that
  3087. * queues in this class can steal to higher-priority queues
  3088. */
  3089. if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
  3090. bfq_class_idle(bfqq))
  3091. return false;
  3092. bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
  3093. bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
  3094. /*
  3095. * The next variable takes into account the cases where idling
  3096. * boosts the throughput.
  3097. *
  3098. * The value of the variable is computed considering, first, that
  3099. * idling is virtually always beneficial for the throughput if:
  3100. * (a) the device is not NCQ-capable and rotational, or
  3101. * (b) regardless of the presence of NCQ, the device is rotational and
  3102. * the request pattern for bfqq is I/O-bound and sequential, or
  3103. * (c) regardless of whether it is rotational, the device is
  3104. * not NCQ-capable and the request pattern for bfqq is
  3105. * I/O-bound and sequential.
  3106. *
  3107. * Secondly, and in contrast to the above item (b), idling an
  3108. * NCQ-capable flash-based device would not boost the
  3109. * throughput even with sequential I/O; rather it would lower
  3110. * the throughput in proportion to how fast the device
  3111. * is. Accordingly, the next variable is true if any of the
  3112. * above conditions (a), (b) or (c) is true, and, in
  3113. * particular, happens to be false if bfqd is an NCQ-capable
  3114. * flash-based device.
  3115. */
  3116. idling_boosts_thr = rot_without_queueing ||
  3117. ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
  3118. bfqq_sequential_and_IO_bound);
  3119. /*
  3120. * The value of the next variable,
  3121. * idling_boosts_thr_without_issues, is equal to that of
  3122. * idling_boosts_thr, unless a special case holds. In this
  3123. * special case, described below, idling may cause problems to
  3124. * weight-raised queues.
  3125. *
  3126. * When the request pool is saturated (e.g., in the presence
  3127. * of write hogs), if the processes associated with
  3128. * non-weight-raised queues ask for requests at a lower rate,
  3129. * then processes associated with weight-raised queues have a
  3130. * higher probability to get a request from the pool
  3131. * immediately (or at least soon) when they need one. Thus
  3132. * they have a higher probability to actually get a fraction
  3133. * of the device throughput proportional to their high
  3134. * weight. This is especially true with NCQ-capable drives,
  3135. * which enqueue several requests in advance, and further
  3136. * reorder internally-queued requests.
  3137. *
  3138. * For this reason, we force to false the value of
  3139. * idling_boosts_thr_without_issues if there are weight-raised
  3140. * busy queues. In this case, and if bfqq is not weight-raised,
  3141. * this guarantees that the device is not idled for bfqq (if,
  3142. * instead, bfqq is weight-raised, then idling will be
  3143. * guaranteed by another variable, see below). Combined with
  3144. * the timestamping rules of BFQ (see [1] for details), this
  3145. * behavior causes bfqq, and hence any sync non-weight-raised
  3146. * queue, to get a lower number of requests served, and thus
  3147. * to ask for a lower number of requests from the request
  3148. * pool, before the busy weight-raised queues get served
  3149. * again. This often mitigates starvation problems in the
  3150. * presence of heavy write workloads and NCQ, thereby
  3151. * guaranteeing a higher application and system responsiveness
  3152. * in these hostile scenarios.
  3153. */
  3154. idling_boosts_thr_without_issues = idling_boosts_thr &&
  3155. bfqd->wr_busy_queues == 0;
  3156. /*
  3157. * There is then a case where idling must be performed not
  3158. * for throughput concerns, but to preserve service
  3159. * guarantees.
  3160. *
  3161. * To introduce this case, we can note that allowing the drive
  3162. * to enqueue more than one request at a time, and hence
  3163. * delegating de facto final scheduling decisions to the
  3164. * drive's internal scheduler, entails loss of control on the
  3165. * actual request service order. In particular, the critical
  3166. * situation is when requests from different processes happen
  3167. * to be present, at the same time, in the internal queue(s)
  3168. * of the drive. In such a situation, the drive, by deciding
  3169. * the service order of the internally-queued requests, does
  3170. * determine also the actual throughput distribution among
  3171. * these processes. But the drive typically has no notion or
  3172. * concern about per-process throughput distribution, and
  3173. * makes its decisions only on a per-request basis. Therefore,
  3174. * the service distribution enforced by the drive's internal
  3175. * scheduler is likely to coincide with the desired
  3176. * device-throughput distribution only in a completely
  3177. * symmetric scenario where:
  3178. * (i) each of these processes must get the same throughput as
  3179. * the others;
  3180. * (ii) the I/O of each process has the same properties, in
  3181. * terms of locality (sequential or random), direction
  3182. * (reads or writes), request sizes, greediness
  3183. * (from I/O-bound to sporadic), and so on.
  3184. * In fact, in such a scenario, the drive tends to treat
  3185. * the requests of each of these processes in about the same
  3186. * way as the requests of the others, and thus to provide
  3187. * each of these processes with about the same throughput
  3188. * (which is exactly the desired throughput distribution). In
  3189. * contrast, in any asymmetric scenario, device idling is
  3190. * certainly needed to guarantee that bfqq receives its
  3191. * assigned fraction of the device throughput (see [1] for
  3192. * details).
  3193. * The problem is that idling may significantly reduce
  3194. * throughput with certain combinations of types of I/O and
  3195. * devices. An important example is sync random I/O, on flash
  3196. * storage with command queueing. So, unless bfqq falls in the
  3197. * above cases where idling also boosts throughput, it would
  3198. * be important to check conditions (i) and (ii) accurately,
  3199. * so as to avoid idling when not strictly needed for service
  3200. * guarantees.
  3201. *
  3202. * Unfortunately, it is extremely difficult to thoroughly
  3203. * check condition (ii). And, in case there are active groups,
  3204. * it becomes very difficult to check condition (i) too. In
  3205. * fact, if there are active groups, then, for condition (i)
  3206. * to become false, it is enough that an active group contains
  3207. * more active processes or sub-groups than some other active
  3208. * group. More precisely, for condition (i) to hold because of
  3209. * such a group, it is not even necessary that the group is
  3210. * (still) active: it is sufficient that, even if the group
  3211. * has become inactive, some of its descendant processes still
  3212. * have some request already dispatched but still waiting for
  3213. * completion. In fact, requests have still to be guaranteed
  3214. * their share of the throughput even after being
  3215. * dispatched. In this respect, it is easy to show that, if a
  3216. * group frequently becomes inactive while still having
  3217. * in-flight requests, and if, when this happens, the group is
  3218. * not considered in the calculation of whether the scenario
  3219. * is asymmetric, then the group may fail to be guaranteed its
  3220. * fair share of the throughput (basically because idling may
  3221. * not be performed for the descendant processes of the group,
  3222. * but it had to be). We address this issue with the
  3223. * following bi-modal behavior, implemented in the function
  3224. * bfq_symmetric_scenario().
  3225. *
  3226. * If there are groups with requests waiting for completion
  3227. * (as commented above, some of these groups may even be
  3228. * already inactive), then the scenario is tagged as
  3229. * asymmetric, conservatively, without checking any of the
  3230. * conditions (i) and (ii). So the device is idled for bfqq.
  3231. * This behavior matches also the fact that groups are created
  3232. * exactly if controlling I/O is a primary concern (to
  3233. * preserve bandwidth and latency guarantees).
  3234. *
  3235. * On the opposite end, if there are no groups with requests
  3236. * waiting for completion, then only condition (i) is actually
  3237. * controlled, i.e., provided that condition (i) holds, idling
  3238. * is not performed, regardless of whether condition (ii)
  3239. * holds. In other words, only if condition (i) does not hold,
  3240. * then idling is allowed, and the device tends to be
  3241. * prevented from queueing many requests, possibly of several
  3242. * processes. Since there are no groups with requests waiting
  3243. * for completion, then, to control condition (i) it is enough
  3244. * to check just whether all the queues with requests waiting
  3245. * for completion also have the same weight.
  3246. *
  3247. * Not checking condition (ii) evidently exposes bfqq to the
  3248. * risk of getting less throughput than its fair share.
  3249. * However, for queues with the same weight, a further
  3250. * mechanism, preemption, mitigates or even eliminates this
  3251. * problem. And it does so without consequences on overall
  3252. * throughput. This mechanism and its benefits are explained
  3253. * in the next three paragraphs.
  3254. *
  3255. * Even if a queue, say Q, is expired when it remains idle, Q
  3256. * can still preempt the new in-service queue if the next
  3257. * request of Q arrives soon (see the comments on
  3258. * bfq_bfqq_update_budg_for_activation). If all queues and
  3259. * groups have the same weight, this form of preemption,
  3260. * combined with the hole-recovery heuristic described in the
  3261. * comments on function bfq_bfqq_update_budg_for_activation,
  3262. * are enough to preserve a correct bandwidth distribution in
  3263. * the mid term, even without idling. In fact, even if not
  3264. * idling allows the internal queues of the device to contain
  3265. * many requests, and thus to reorder requests, we can rather
  3266. * safely assume that the internal scheduler still preserves a
  3267. * minimum of mid-term fairness.
  3268. *
  3269. * More precisely, this preemption-based, idleless approach
  3270. * provides fairness in terms of IOPS, and not sectors per
  3271. * second. This can be seen with a simple example. Suppose
  3272. * that there are two queues with the same weight, but that
  3273. * the first queue receives requests of 8 sectors, while the
  3274. * second queue receives requests of 1024 sectors. In
  3275. * addition, suppose that each of the two queues contains at
  3276. * most one request at a time, which implies that each queue
  3277. * always remains idle after it is served. Finally, after
  3278. * remaining idle, each queue receives very quickly a new
  3279. * request. It follows that the two queues are served
  3280. * alternatively, preempting each other if needed. This
  3281. * implies that, although both queues have the same weight,
  3282. * the queue with large requests receives a service that is
  3283. * 1024/8 times as high as the service received by the other
  3284. * queue.
  3285. *
  3286. * The motivation for using preemption instead of idling (for
  3287. * queues with the same weight) is that, by not idling,
  3288. * service guarantees are preserved (completely or at least in
  3289. * part) without minimally sacrificing throughput. And, if
  3290. * there is no active group, then the primary expectation for
  3291. * this device is probably a high throughput.
  3292. *
  3293. * We are now left only with explaining the additional
  3294. * compound condition that is checked below for deciding
  3295. * whether the scenario is asymmetric. To explain this
  3296. * compound condition, we need to add that the function
  3297. * bfq_symmetric_scenario checks the weights of only
  3298. * non-weight-raised queues, for efficiency reasons (see
  3299. * comments on bfq_weights_tree_add()). Then the fact that
  3300. * bfqq is weight-raised is checked explicitly here. More
  3301. * precisely, the compound condition below takes into account
  3302. * also the fact that, even if bfqq is being weight-raised,
  3303. * the scenario is still symmetric if all queues with requests
  3304. * waiting for completion happen to be
  3305. * weight-raised. Actually, we should be even more precise
  3306. * here, and differentiate between interactive weight raising
  3307. * and soft real-time weight raising.
  3308. *
  3309. * As a side note, it is worth considering that the above
  3310. * device-idling countermeasures may however fail in the
  3311. * following unlucky scenario: if idling is (correctly)
  3312. * disabled in a time period during which all symmetry
  3313. * sub-conditions hold, and hence the device is allowed to
  3314. * enqueue many requests, but at some later point in time some
  3315. * sub-condition stops to hold, then it may become impossible
  3316. * to let requests be served in the desired order until all
  3317. * the requests already queued in the device have been served.
  3318. */
  3319. asymmetric_scenario = (bfqq->wr_coeff > 1 &&
  3320. bfqd->wr_busy_queues < bfqd->busy_queues) ||
  3321. !bfq_symmetric_scenario(bfqd);
  3322. /*
  3323. * Finally, there is a case where maximizing throughput is the
  3324. * best choice even if it may cause unfairness toward
  3325. * bfqq. Such a case is when bfqq became active in a burst of
  3326. * queue activations. Queues that became active during a large
  3327. * burst benefit only from throughput, as discussed in the
  3328. * comments on bfq_handle_burst. Thus, if bfqq became active
  3329. * in a burst and not idling the device maximizes throughput,
  3330. * then the device must no be idled, because not idling the
  3331. * device provides bfqq and all other queues in the burst with
  3332. * maximum benefit. Combining this and the above case, we can
  3333. * now establish when idling is actually needed to preserve
  3334. * service guarantees.
  3335. */
  3336. idling_needed_for_service_guarantees =
  3337. asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
  3338. /*
  3339. * We have now all the components we need to compute the
  3340. * return value of the function, which is true only if idling
  3341. * either boosts the throughput (without issues), or is
  3342. * necessary to preserve service guarantees.
  3343. */
  3344. return idling_boosts_thr_without_issues ||
  3345. idling_needed_for_service_guarantees;
  3346. }
  3347. /*
  3348. * If the in-service queue is empty but the function bfq_better_to_idle
  3349. * returns true, then:
  3350. * 1) the queue must remain in service and cannot be expired, and
  3351. * 2) the device must be idled to wait for the possible arrival of a new
  3352. * request for the queue.
  3353. * See the comments on the function bfq_better_to_idle for the reasons
  3354. * why performing device idling is the best choice to boost the throughput
  3355. * and preserve service guarantees when bfq_better_to_idle itself
  3356. * returns true.
  3357. */
  3358. static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
  3359. {
  3360. return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
  3361. }
  3362. static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
  3363. {
  3364. struct bfq_queue *bfqq;
  3365. /*
  3366. * A linear search; but, with a high probability, very few
  3367. * steps are needed to find a candidate queue, i.e., a queue
  3368. * with enough budget left for its next request. In fact:
  3369. * - BFQ dynamically updates the budget of every queue so as
  3370. * to accommodate the expected backlog of the queue;
  3371. * - if a queue gets all its requests dispatched as injected
  3372. * service, then the queue is removed from the active list
  3373. * (and re-added only if it gets new requests, but with
  3374. * enough budget for its new backlog).
  3375. */
  3376. list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
  3377. if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
  3378. bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
  3379. bfq_bfqq_budget_left(bfqq))
  3380. return bfqq;
  3381. return NULL;
  3382. }
  3383. /*
  3384. * Select a queue for service. If we have a current queue in service,
  3385. * check whether to continue servicing it, or retrieve and set a new one.
  3386. */
  3387. static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
  3388. {
  3389. struct bfq_queue *bfqq;
  3390. struct request *next_rq;
  3391. enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
  3392. bfqq = bfqd->in_service_queue;
  3393. if (!bfqq)
  3394. goto new_queue;
  3395. bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
  3396. /*
  3397. * Do not expire bfqq for budget timeout if bfqq may be about
  3398. * to enjoy device idling. The reason why, in this case, we
  3399. * prevent bfqq from expiring is the same as in the comments
  3400. * on the case where bfq_bfqq_must_idle() returns true, in
  3401. * bfq_completed_request().
  3402. */
  3403. if (bfq_may_expire_for_budg_timeout(bfqq) &&
  3404. !bfq_bfqq_must_idle(bfqq))
  3405. goto expire;
  3406. check_queue:
  3407. /*
  3408. * This loop is rarely executed more than once. Even when it
  3409. * happens, it is much more convenient to re-execute this loop
  3410. * than to return NULL and trigger a new dispatch to get a
  3411. * request served.
  3412. */
  3413. next_rq = bfqq->next_rq;
  3414. /*
  3415. * If bfqq has requests queued and it has enough budget left to
  3416. * serve them, keep the queue, otherwise expire it.
  3417. */
  3418. if (next_rq) {
  3419. if (bfq_serv_to_charge(next_rq, bfqq) >
  3420. bfq_bfqq_budget_left(bfqq)) {
  3421. /*
  3422. * Expire the queue for budget exhaustion,
  3423. * which makes sure that the next budget is
  3424. * enough to serve the next request, even if
  3425. * it comes from the fifo expired path.
  3426. */
  3427. reason = BFQQE_BUDGET_EXHAUSTED;
  3428. goto expire;
  3429. } else {
  3430. /*
  3431. * The idle timer may be pending because we may
  3432. * not disable disk idling even when a new request
  3433. * arrives.
  3434. */
  3435. if (bfq_bfqq_wait_request(bfqq)) {
  3436. /*
  3437. * If we get here: 1) at least a new request
  3438. * has arrived but we have not disabled the
  3439. * timer because the request was too small,
  3440. * 2) then the block layer has unplugged
  3441. * the device, causing the dispatch to be
  3442. * invoked.
  3443. *
  3444. * Since the device is unplugged, now the
  3445. * requests are probably large enough to
  3446. * provide a reasonable throughput.
  3447. * So we disable idling.
  3448. */
  3449. bfq_clear_bfqq_wait_request(bfqq);
  3450. hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
  3451. }
  3452. goto keep_queue;
  3453. }
  3454. }
  3455. /*
  3456. * No requests pending. However, if the in-service queue is idling
  3457. * for a new request, or has requests waiting for a completion and
  3458. * may idle after their completion, then keep it anyway.
  3459. *
  3460. * Yet, to boost throughput, inject service from other queues if
  3461. * possible.
  3462. */
  3463. if (bfq_bfqq_wait_request(bfqq) ||
  3464. (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
  3465. if (bfq_bfqq_injectable(bfqq) &&
  3466. bfqq->injected_service * bfqq->inject_coeff <
  3467. bfqq->entity.service * 10)
  3468. bfqq = bfq_choose_bfqq_for_injection(bfqd);
  3469. else
  3470. bfqq = NULL;
  3471. goto keep_queue;
  3472. }
  3473. reason = BFQQE_NO_MORE_REQUESTS;
  3474. expire:
  3475. bfq_bfqq_expire(bfqd, bfqq, false, reason);
  3476. new_queue:
  3477. bfqq = bfq_set_in_service_queue(bfqd);
  3478. if (bfqq) {
  3479. bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
  3480. goto check_queue;
  3481. }
  3482. keep_queue:
  3483. if (bfqq)
  3484. bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
  3485. else
  3486. bfq_log(bfqd, "select_queue: no queue returned");
  3487. return bfqq;
  3488. }
  3489. static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  3490. {
  3491. struct bfq_entity *entity = &bfqq->entity;
  3492. if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
  3493. bfq_log_bfqq(bfqd, bfqq,
  3494. "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
  3495. jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
  3496. jiffies_to_msecs(bfqq->wr_cur_max_time),
  3497. bfqq->wr_coeff,
  3498. bfqq->entity.weight, bfqq->entity.orig_weight);
  3499. if (entity->prio_changed)
  3500. bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
  3501. /*
  3502. * If the queue was activated in a burst, or too much
  3503. * time has elapsed from the beginning of this
  3504. * weight-raising period, then end weight raising.
  3505. */
  3506. if (bfq_bfqq_in_large_burst(bfqq))
  3507. bfq_bfqq_end_wr(bfqq);
  3508. else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
  3509. bfqq->wr_cur_max_time)) {
  3510. if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
  3511. time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
  3512. bfq_wr_duration(bfqd)))
  3513. bfq_bfqq_end_wr(bfqq);
  3514. else {
  3515. switch_back_to_interactive_wr(bfqq, bfqd);
  3516. bfqq->entity.prio_changed = 1;
  3517. }
  3518. }
  3519. if (bfqq->wr_coeff > 1 &&
  3520. bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
  3521. bfqq->service_from_wr > max_service_from_wr) {
  3522. /* see comments on max_service_from_wr */
  3523. bfq_bfqq_end_wr(bfqq);
  3524. }
  3525. }
  3526. /*
  3527. * To improve latency (for this or other queues), immediately
  3528. * update weight both if it must be raised and if it must be
  3529. * lowered. Since, entity may be on some active tree here, and
  3530. * might have a pending change of its ioprio class, invoke
  3531. * next function with the last parameter unset (see the
  3532. * comments on the function).
  3533. */
  3534. if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
  3535. __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
  3536. entity, false);
  3537. }
  3538. /*
  3539. * Dispatch next request from bfqq.
  3540. */
  3541. static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
  3542. struct bfq_queue *bfqq)
  3543. {
  3544. struct request *rq = bfqq->next_rq;
  3545. unsigned long service_to_charge;
  3546. service_to_charge = bfq_serv_to_charge(rq, bfqq);
  3547. bfq_bfqq_served(bfqq, service_to_charge);
  3548. bfq_dispatch_remove(bfqd->queue, rq);
  3549. if (bfqq != bfqd->in_service_queue) {
  3550. if (likely(bfqd->in_service_queue))
  3551. bfqd->in_service_queue->injected_service +=
  3552. bfq_serv_to_charge(rq, bfqq);
  3553. goto return_rq;
  3554. }
  3555. /*
  3556. * If weight raising has to terminate for bfqq, then next
  3557. * function causes an immediate update of bfqq's weight,
  3558. * without waiting for next activation. As a consequence, on
  3559. * expiration, bfqq will be timestamped as if has never been
  3560. * weight-raised during this service slot, even if it has
  3561. * received part or even most of the service as a
  3562. * weight-raised queue. This inflates bfqq's timestamps, which
  3563. * is beneficial, as bfqq is then more willing to leave the
  3564. * device immediately to possible other weight-raised queues.
  3565. */
  3566. bfq_update_wr_data(bfqd, bfqq);
  3567. /*
  3568. * Expire bfqq, pretending that its budget expired, if bfqq
  3569. * belongs to CLASS_IDLE and other queues are waiting for
  3570. * service.
  3571. */
  3572. if (!(bfqd->busy_queues > 1 && bfq_class_idle(bfqq)))
  3573. goto return_rq;
  3574. bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
  3575. return_rq:
  3576. return rq;
  3577. }
  3578. static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
  3579. {
  3580. struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
  3581. /*
  3582. * Avoiding lock: a race on bfqd->busy_queues should cause at
  3583. * most a call to dispatch for nothing
  3584. */
  3585. return !list_empty_careful(&bfqd->dispatch) ||
  3586. bfqd->busy_queues > 0;
  3587. }
  3588. static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
  3589. {
  3590. struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
  3591. struct request *rq = NULL;
  3592. struct bfq_queue *bfqq = NULL;
  3593. if (!list_empty(&bfqd->dispatch)) {
  3594. rq = list_first_entry(&bfqd->dispatch, struct request,
  3595. queuelist);
  3596. list_del_init(&rq->queuelist);
  3597. bfqq = RQ_BFQQ(rq);
  3598. if (bfqq) {
  3599. /*
  3600. * Increment counters here, because this
  3601. * dispatch does not follow the standard
  3602. * dispatch flow (where counters are
  3603. * incremented)
  3604. */
  3605. bfqq->dispatched++;
  3606. goto inc_in_driver_start_rq;
  3607. }
  3608. /*
  3609. * We exploit the bfq_finish_requeue_request hook to
  3610. * decrement rq_in_driver, but
  3611. * bfq_finish_requeue_request will not be invoked on
  3612. * this request. So, to avoid unbalance, just start
  3613. * this request, without incrementing rq_in_driver. As
  3614. * a negative consequence, rq_in_driver is deceptively
  3615. * lower than it should be while this request is in
  3616. * service. This may cause bfq_schedule_dispatch to be
  3617. * invoked uselessly.
  3618. *
  3619. * As for implementing an exact solution, the
  3620. * bfq_finish_requeue_request hook, if defined, is
  3621. * probably invoked also on this request. So, by
  3622. * exploiting this hook, we could 1) increment
  3623. * rq_in_driver here, and 2) decrement it in
  3624. * bfq_finish_requeue_request. Such a solution would
  3625. * let the value of the counter be always accurate,
  3626. * but it would entail using an extra interface
  3627. * function. This cost seems higher than the benefit,
  3628. * being the frequency of non-elevator-private
  3629. * requests very low.
  3630. */
  3631. goto start_rq;
  3632. }
  3633. bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
  3634. if (bfqd->busy_queues == 0)
  3635. goto exit;
  3636. /*
  3637. * Force device to serve one request at a time if
  3638. * strict_guarantees is true. Forcing this service scheme is
  3639. * currently the ONLY way to guarantee that the request
  3640. * service order enforced by the scheduler is respected by a
  3641. * queueing device. Otherwise the device is free even to make
  3642. * some unlucky request wait for as long as the device
  3643. * wishes.
  3644. *
  3645. * Of course, serving one request at at time may cause loss of
  3646. * throughput.
  3647. */
  3648. if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
  3649. goto exit;
  3650. bfqq = bfq_select_queue(bfqd);
  3651. if (!bfqq)
  3652. goto exit;
  3653. rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
  3654. if (rq) {
  3655. inc_in_driver_start_rq:
  3656. bfqd->rq_in_driver++;
  3657. start_rq:
  3658. rq->rq_flags |= RQF_STARTED;
  3659. }
  3660. exit:
  3661. return rq;
  3662. }
  3663. #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
  3664. static void bfq_update_dispatch_stats(struct request_queue *q,
  3665. struct request *rq,
  3666. struct bfq_queue *in_serv_queue,
  3667. bool idle_timer_disabled)
  3668. {
  3669. struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
  3670. if (!idle_timer_disabled && !bfqq)
  3671. return;
  3672. /*
  3673. * rq and bfqq are guaranteed to exist until this function
  3674. * ends, for the following reasons. First, rq can be
  3675. * dispatched to the device, and then can be completed and
  3676. * freed, only after this function ends. Second, rq cannot be
  3677. * merged (and thus freed because of a merge) any longer,
  3678. * because it has already started. Thus rq cannot be freed
  3679. * before this function ends, and, since rq has a reference to
  3680. * bfqq, the same guarantee holds for bfqq too.
  3681. *
  3682. * In addition, the following queue lock guarantees that
  3683. * bfqq_group(bfqq) exists as well.
  3684. */
  3685. spin_lock_irq(q->queue_lock);
  3686. if (idle_timer_disabled)
  3687. /*
  3688. * Since the idle timer has been disabled,
  3689. * in_serv_queue contained some request when
  3690. * __bfq_dispatch_request was invoked above, which
  3691. * implies that rq was picked exactly from
  3692. * in_serv_queue. Thus in_serv_queue == bfqq, and is
  3693. * therefore guaranteed to exist because of the above
  3694. * arguments.
  3695. */
  3696. bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
  3697. if (bfqq) {
  3698. struct bfq_group *bfqg = bfqq_group(bfqq);
  3699. bfqg_stats_update_avg_queue_size(bfqg);
  3700. bfqg_stats_set_start_empty_time(bfqg);
  3701. bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
  3702. }
  3703. spin_unlock_irq(q->queue_lock);
  3704. }
  3705. #else
  3706. static inline void bfq_update_dispatch_stats(struct request_queue *q,
  3707. struct request *rq,
  3708. struct bfq_queue *in_serv_queue,
  3709. bool idle_timer_disabled) {}
  3710. #endif
  3711. static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
  3712. {
  3713. struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
  3714. struct request *rq;
  3715. struct bfq_queue *in_serv_queue;
  3716. bool waiting_rq, idle_timer_disabled;
  3717. spin_lock_irq(&bfqd->lock);
  3718. in_serv_queue = bfqd->in_service_queue;
  3719. waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
  3720. rq = __bfq_dispatch_request(hctx);
  3721. idle_timer_disabled =
  3722. waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
  3723. spin_unlock_irq(&bfqd->lock);
  3724. bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
  3725. idle_timer_disabled);
  3726. return rq;
  3727. }
  3728. /*
  3729. * Task holds one reference to the queue, dropped when task exits. Each rq
  3730. * in-flight on this queue also holds a reference, dropped when rq is freed.
  3731. *
  3732. * Scheduler lock must be held here. Recall not to use bfqq after calling
  3733. * this function on it.
  3734. */
  3735. void bfq_put_queue(struct bfq_queue *bfqq)
  3736. {
  3737. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  3738. struct bfq_group *bfqg = bfqq_group(bfqq);
  3739. #endif
  3740. if (bfqq->bfqd)
  3741. bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
  3742. bfqq, bfqq->ref);
  3743. bfqq->ref--;
  3744. if (bfqq->ref)
  3745. return;
  3746. if (!hlist_unhashed(&bfqq->burst_list_node)) {
  3747. hlist_del_init(&bfqq->burst_list_node);
  3748. /*
  3749. * Decrement also burst size after the removal, if the
  3750. * process associated with bfqq is exiting, and thus
  3751. * does not contribute to the burst any longer. This
  3752. * decrement helps filter out false positives of large
  3753. * bursts, when some short-lived process (often due to
  3754. * the execution of commands by some service) happens
  3755. * to start and exit while a complex application is
  3756. * starting, and thus spawning several processes that
  3757. * do I/O (and that *must not* be treated as a large
  3758. * burst, see comments on bfq_handle_burst).
  3759. *
  3760. * In particular, the decrement is performed only if:
  3761. * 1) bfqq is not a merged queue, because, if it is,
  3762. * then this free of bfqq is not triggered by the exit
  3763. * of the process bfqq is associated with, but exactly
  3764. * by the fact that bfqq has just been merged.
  3765. * 2) burst_size is greater than 0, to handle
  3766. * unbalanced decrements. Unbalanced decrements may
  3767. * happen in te following case: bfqq is inserted into
  3768. * the current burst list--without incrementing
  3769. * bust_size--because of a split, but the current
  3770. * burst list is not the burst list bfqq belonged to
  3771. * (see comments on the case of a split in
  3772. * bfq_set_request).
  3773. */
  3774. if (bfqq->bic && bfqq->bfqd->burst_size > 0)
  3775. bfqq->bfqd->burst_size--;
  3776. }
  3777. kmem_cache_free(bfq_pool, bfqq);
  3778. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  3779. bfqg_and_blkg_put(bfqg);
  3780. #endif
  3781. }
  3782. static void bfq_put_cooperator(struct bfq_queue *bfqq)
  3783. {
  3784. struct bfq_queue *__bfqq, *next;
  3785. /*
  3786. * If this queue was scheduled to merge with another queue, be
  3787. * sure to drop the reference taken on that queue (and others in
  3788. * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
  3789. */
  3790. __bfqq = bfqq->new_bfqq;
  3791. while (__bfqq) {
  3792. if (__bfqq == bfqq)
  3793. break;
  3794. next = __bfqq->new_bfqq;
  3795. bfq_put_queue(__bfqq);
  3796. __bfqq = next;
  3797. }
  3798. }
  3799. static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  3800. {
  3801. if (bfqq == bfqd->in_service_queue) {
  3802. __bfq_bfqq_expire(bfqd, bfqq);
  3803. bfq_schedule_dispatch(bfqd);
  3804. }
  3805. bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
  3806. bfq_put_cooperator(bfqq);
  3807. bfq_put_queue(bfqq); /* release process reference */
  3808. }
  3809. static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
  3810. {
  3811. struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
  3812. struct bfq_data *bfqd;
  3813. if (bfqq)
  3814. bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
  3815. if (bfqq && bfqd) {
  3816. unsigned long flags;
  3817. spin_lock_irqsave(&bfqd->lock, flags);
  3818. bfq_exit_bfqq(bfqd, bfqq);
  3819. bic_set_bfqq(bic, NULL, is_sync);
  3820. spin_unlock_irqrestore(&bfqd->lock, flags);
  3821. }
  3822. }
  3823. static void bfq_exit_icq(struct io_cq *icq)
  3824. {
  3825. struct bfq_io_cq *bic = icq_to_bic(icq);
  3826. bfq_exit_icq_bfqq(bic, true);
  3827. bfq_exit_icq_bfqq(bic, false);
  3828. }
  3829. /*
  3830. * Update the entity prio values; note that the new values will not
  3831. * be used until the next (re)activation.
  3832. */
  3833. static void
  3834. bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
  3835. {
  3836. struct task_struct *tsk = current;
  3837. int ioprio_class;
  3838. struct bfq_data *bfqd = bfqq->bfqd;
  3839. if (!bfqd)
  3840. return;
  3841. ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
  3842. switch (ioprio_class) {
  3843. default:
  3844. dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
  3845. "bfq: bad prio class %d\n", ioprio_class);
  3846. /* fall through */
  3847. case IOPRIO_CLASS_NONE:
  3848. /*
  3849. * No prio set, inherit CPU scheduling settings.
  3850. */
  3851. bfqq->new_ioprio = task_nice_ioprio(tsk);
  3852. bfqq->new_ioprio_class = task_nice_ioclass(tsk);
  3853. break;
  3854. case IOPRIO_CLASS_RT:
  3855. bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
  3856. bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
  3857. break;
  3858. case IOPRIO_CLASS_BE:
  3859. bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
  3860. bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
  3861. break;
  3862. case IOPRIO_CLASS_IDLE:
  3863. bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
  3864. bfqq->new_ioprio = 7;
  3865. break;
  3866. }
  3867. if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
  3868. pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
  3869. bfqq->new_ioprio);
  3870. bfqq->new_ioprio = IOPRIO_BE_NR;
  3871. }
  3872. bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
  3873. bfqq->entity.prio_changed = 1;
  3874. }
  3875. static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
  3876. struct bio *bio, bool is_sync,
  3877. struct bfq_io_cq *bic);
  3878. static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
  3879. {
  3880. struct bfq_data *bfqd = bic_to_bfqd(bic);
  3881. struct bfq_queue *bfqq;
  3882. int ioprio = bic->icq.ioc->ioprio;
  3883. /*
  3884. * This condition may trigger on a newly created bic, be sure to
  3885. * drop the lock before returning.
  3886. */
  3887. if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
  3888. return;
  3889. bic->ioprio = ioprio;
  3890. bfqq = bic_to_bfqq(bic, false);
  3891. if (bfqq) {
  3892. /* release process reference on this queue */
  3893. bfq_put_queue(bfqq);
  3894. bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
  3895. bic_set_bfqq(bic, bfqq, false);
  3896. }
  3897. bfqq = bic_to_bfqq(bic, true);
  3898. if (bfqq)
  3899. bfq_set_next_ioprio_data(bfqq, bic);
  3900. }
  3901. static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  3902. struct bfq_io_cq *bic, pid_t pid, int is_sync)
  3903. {
  3904. RB_CLEAR_NODE(&bfqq->entity.rb_node);
  3905. INIT_LIST_HEAD(&bfqq->fifo);
  3906. INIT_HLIST_NODE(&bfqq->burst_list_node);
  3907. bfqq->ref = 0;
  3908. bfqq->bfqd = bfqd;
  3909. if (bic)
  3910. bfq_set_next_ioprio_data(bfqq, bic);
  3911. if (is_sync) {
  3912. /*
  3913. * No need to mark as has_short_ttime if in
  3914. * idle_class, because no device idling is performed
  3915. * for queues in idle class
  3916. */
  3917. if (!bfq_class_idle(bfqq))
  3918. /* tentatively mark as has_short_ttime */
  3919. bfq_mark_bfqq_has_short_ttime(bfqq);
  3920. bfq_mark_bfqq_sync(bfqq);
  3921. bfq_mark_bfqq_just_created(bfqq);
  3922. /*
  3923. * Aggressively inject a lot of service: up to 90%.
  3924. * This coefficient remains constant during bfqq life,
  3925. * but this behavior might be changed, after enough
  3926. * testing and tuning.
  3927. */
  3928. bfqq->inject_coeff = 1;
  3929. } else
  3930. bfq_clear_bfqq_sync(bfqq);
  3931. /* set end request to minus infinity from now */
  3932. bfqq->ttime.last_end_request = ktime_get_ns() + 1;
  3933. bfq_mark_bfqq_IO_bound(bfqq);
  3934. bfqq->pid = pid;
  3935. /* Tentative initial value to trade off between thr and lat */
  3936. bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
  3937. bfqq->budget_timeout = bfq_smallest_from_now();
  3938. bfqq->wr_coeff = 1;
  3939. bfqq->last_wr_start_finish = jiffies;
  3940. bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
  3941. bfqq->split_time = bfq_smallest_from_now();
  3942. /*
  3943. * To not forget the possibly high bandwidth consumed by a
  3944. * process/queue in the recent past,
  3945. * bfq_bfqq_softrt_next_start() returns a value at least equal
  3946. * to the current value of bfqq->soft_rt_next_start (see
  3947. * comments on bfq_bfqq_softrt_next_start). Set
  3948. * soft_rt_next_start to now, to mean that bfqq has consumed
  3949. * no bandwidth so far.
  3950. */
  3951. bfqq->soft_rt_next_start = jiffies;
  3952. /* first request is almost certainly seeky */
  3953. bfqq->seek_history = 1;
  3954. }
  3955. static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
  3956. struct bfq_group *bfqg,
  3957. int ioprio_class, int ioprio)
  3958. {
  3959. switch (ioprio_class) {
  3960. case IOPRIO_CLASS_RT:
  3961. return &bfqg->async_bfqq[0][ioprio];
  3962. case IOPRIO_CLASS_NONE:
  3963. ioprio = IOPRIO_NORM;
  3964. /* fall through */
  3965. case IOPRIO_CLASS_BE:
  3966. return &bfqg->async_bfqq[1][ioprio];
  3967. case IOPRIO_CLASS_IDLE:
  3968. return &bfqg->async_idle_bfqq;
  3969. default:
  3970. return NULL;
  3971. }
  3972. }
  3973. static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
  3974. struct bio *bio, bool is_sync,
  3975. struct bfq_io_cq *bic)
  3976. {
  3977. const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
  3978. const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
  3979. struct bfq_queue **async_bfqq = NULL;
  3980. struct bfq_queue *bfqq;
  3981. struct bfq_group *bfqg;
  3982. rcu_read_lock();
  3983. bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
  3984. if (!bfqg) {
  3985. bfqq = &bfqd->oom_bfqq;
  3986. goto out;
  3987. }
  3988. if (!is_sync) {
  3989. async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
  3990. ioprio);
  3991. bfqq = *async_bfqq;
  3992. if (bfqq)
  3993. goto out;
  3994. }
  3995. bfqq = kmem_cache_alloc_node(bfq_pool,
  3996. GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
  3997. bfqd->queue->node);
  3998. if (bfqq) {
  3999. bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
  4000. is_sync);
  4001. bfq_init_entity(&bfqq->entity, bfqg);
  4002. bfq_log_bfqq(bfqd, bfqq, "allocated");
  4003. } else {
  4004. bfqq = &bfqd->oom_bfqq;
  4005. bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
  4006. goto out;
  4007. }
  4008. /*
  4009. * Pin the queue now that it's allocated, scheduler exit will
  4010. * prune it.
  4011. */
  4012. if (async_bfqq) {
  4013. bfqq->ref++; /*
  4014. * Extra group reference, w.r.t. sync
  4015. * queue. This extra reference is removed
  4016. * only if bfqq->bfqg disappears, to
  4017. * guarantee that this queue is not freed
  4018. * until its group goes away.
  4019. */
  4020. bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
  4021. bfqq, bfqq->ref);
  4022. *async_bfqq = bfqq;
  4023. }
  4024. out:
  4025. bfqq->ref++; /* get a process reference to this queue */
  4026. bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
  4027. rcu_read_unlock();
  4028. return bfqq;
  4029. }
  4030. static void bfq_update_io_thinktime(struct bfq_data *bfqd,
  4031. struct bfq_queue *bfqq)
  4032. {
  4033. struct bfq_ttime *ttime = &bfqq->ttime;
  4034. u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
  4035. elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
  4036. ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
  4037. ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
  4038. ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
  4039. ttime->ttime_samples);
  4040. }
  4041. static void
  4042. bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  4043. struct request *rq)
  4044. {
  4045. bfqq->seek_history <<= 1;
  4046. bfqq->seek_history |=
  4047. get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
  4048. (!blk_queue_nonrot(bfqd->queue) ||
  4049. blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
  4050. }
  4051. static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
  4052. struct bfq_queue *bfqq,
  4053. struct bfq_io_cq *bic)
  4054. {
  4055. bool has_short_ttime = true;
  4056. /*
  4057. * No need to update has_short_ttime if bfqq is async or in
  4058. * idle io prio class, or if bfq_slice_idle is zero, because
  4059. * no device idling is performed for bfqq in this case.
  4060. */
  4061. if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
  4062. bfqd->bfq_slice_idle == 0)
  4063. return;
  4064. /* Idle window just restored, statistics are meaningless. */
  4065. if (time_is_after_eq_jiffies(bfqq->split_time +
  4066. bfqd->bfq_wr_min_idle_time))
  4067. return;
  4068. /* Think time is infinite if no process is linked to
  4069. * bfqq. Otherwise check average think time to
  4070. * decide whether to mark as has_short_ttime
  4071. */
  4072. if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
  4073. (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
  4074. bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
  4075. has_short_ttime = false;
  4076. bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
  4077. has_short_ttime);
  4078. if (has_short_ttime)
  4079. bfq_mark_bfqq_has_short_ttime(bfqq);
  4080. else
  4081. bfq_clear_bfqq_has_short_ttime(bfqq);
  4082. }
  4083. /*
  4084. * Called when a new fs request (rq) is added to bfqq. Check if there's
  4085. * something we should do about it.
  4086. */
  4087. static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  4088. struct request *rq)
  4089. {
  4090. struct bfq_io_cq *bic = RQ_BIC(rq);
  4091. if (rq->cmd_flags & REQ_META)
  4092. bfqq->meta_pending++;
  4093. bfq_update_io_thinktime(bfqd, bfqq);
  4094. bfq_update_has_short_ttime(bfqd, bfqq, bic);
  4095. bfq_update_io_seektime(bfqd, bfqq, rq);
  4096. bfq_log_bfqq(bfqd, bfqq,
  4097. "rq_enqueued: has_short_ttime=%d (seeky %d)",
  4098. bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
  4099. bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  4100. if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
  4101. bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
  4102. blk_rq_sectors(rq) < 32;
  4103. bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
  4104. /*
  4105. * There is just this request queued: if the request
  4106. * is small and the queue is not to be expired, then
  4107. * just exit.
  4108. *
  4109. * In this way, if the device is being idled to wait
  4110. * for a new request from the in-service queue, we
  4111. * avoid unplugging the device and committing the
  4112. * device to serve just a small request. On the
  4113. * contrary, we wait for the block layer to decide
  4114. * when to unplug the device: hopefully, new requests
  4115. * will be merged to this one quickly, then the device
  4116. * will be unplugged and larger requests will be
  4117. * dispatched.
  4118. */
  4119. if (small_req && !budget_timeout)
  4120. return;
  4121. /*
  4122. * A large enough request arrived, or the queue is to
  4123. * be expired: in both cases disk idling is to be
  4124. * stopped, so clear wait_request flag and reset
  4125. * timer.
  4126. */
  4127. bfq_clear_bfqq_wait_request(bfqq);
  4128. hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
  4129. /*
  4130. * The queue is not empty, because a new request just
  4131. * arrived. Hence we can safely expire the queue, in
  4132. * case of budget timeout, without risking that the
  4133. * timestamps of the queue are not updated correctly.
  4134. * See [1] for more details.
  4135. */
  4136. if (budget_timeout)
  4137. bfq_bfqq_expire(bfqd, bfqq, false,
  4138. BFQQE_BUDGET_TIMEOUT);
  4139. }
  4140. }
  4141. /* returns true if it causes the idle timer to be disabled */
  4142. static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
  4143. {
  4144. struct bfq_queue *bfqq = RQ_BFQQ(rq),
  4145. *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
  4146. bool waiting, idle_timer_disabled = false;
  4147. if (new_bfqq) {
  4148. if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
  4149. new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
  4150. /*
  4151. * Release the request's reference to the old bfqq
  4152. * and make sure one is taken to the shared queue.
  4153. */
  4154. new_bfqq->allocated++;
  4155. bfqq->allocated--;
  4156. new_bfqq->ref++;
  4157. /*
  4158. * If the bic associated with the process
  4159. * issuing this request still points to bfqq
  4160. * (and thus has not been already redirected
  4161. * to new_bfqq or even some other bfq_queue),
  4162. * then complete the merge and redirect it to
  4163. * new_bfqq.
  4164. */
  4165. if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
  4166. bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
  4167. bfqq, new_bfqq);
  4168. bfq_clear_bfqq_just_created(bfqq);
  4169. /*
  4170. * rq is about to be enqueued into new_bfqq,
  4171. * release rq reference on bfqq
  4172. */
  4173. bfq_put_queue(bfqq);
  4174. rq->elv.priv[1] = new_bfqq;
  4175. bfqq = new_bfqq;
  4176. }
  4177. waiting = bfqq && bfq_bfqq_wait_request(bfqq);
  4178. bfq_add_request(rq);
  4179. idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
  4180. rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
  4181. list_add_tail(&rq->queuelist, &bfqq->fifo);
  4182. bfq_rq_enqueued(bfqd, bfqq, rq);
  4183. return idle_timer_disabled;
  4184. }
  4185. #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
  4186. static void bfq_update_insert_stats(struct request_queue *q,
  4187. struct bfq_queue *bfqq,
  4188. bool idle_timer_disabled,
  4189. unsigned int cmd_flags)
  4190. {
  4191. if (!bfqq)
  4192. return;
  4193. /*
  4194. * bfqq still exists, because it can disappear only after
  4195. * either it is merged with another queue, or the process it
  4196. * is associated with exits. But both actions must be taken by
  4197. * the same process currently executing this flow of
  4198. * instructions.
  4199. *
  4200. * In addition, the following queue lock guarantees that
  4201. * bfqq_group(bfqq) exists as well.
  4202. */
  4203. spin_lock_irq(q->queue_lock);
  4204. bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
  4205. if (idle_timer_disabled)
  4206. bfqg_stats_update_idle_time(bfqq_group(bfqq));
  4207. spin_unlock_irq(q->queue_lock);
  4208. }
  4209. #else
  4210. static inline void bfq_update_insert_stats(struct request_queue *q,
  4211. struct bfq_queue *bfqq,
  4212. bool idle_timer_disabled,
  4213. unsigned int cmd_flags) {}
  4214. #endif
  4215. static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
  4216. bool at_head)
  4217. {
  4218. struct request_queue *q = hctx->queue;
  4219. struct bfq_data *bfqd = q->elevator->elevator_data;
  4220. struct bfq_queue *bfqq;
  4221. bool idle_timer_disabled = false;
  4222. unsigned int cmd_flags;
  4223. spin_lock_irq(&bfqd->lock);
  4224. if (blk_mq_sched_try_insert_merge(q, rq)) {
  4225. spin_unlock_irq(&bfqd->lock);
  4226. return;
  4227. }
  4228. spin_unlock_irq(&bfqd->lock);
  4229. blk_mq_sched_request_inserted(rq);
  4230. spin_lock_irq(&bfqd->lock);
  4231. bfqq = bfq_init_rq(rq);
  4232. if (at_head || blk_rq_is_passthrough(rq)) {
  4233. if (at_head)
  4234. list_add(&rq->queuelist, &bfqd->dispatch);
  4235. else
  4236. list_add_tail(&rq->queuelist, &bfqd->dispatch);
  4237. } else { /* bfqq is assumed to be non null here */
  4238. idle_timer_disabled = __bfq_insert_request(bfqd, rq);
  4239. /*
  4240. * Update bfqq, because, if a queue merge has occurred
  4241. * in __bfq_insert_request, then rq has been
  4242. * redirected into a new queue.
  4243. */
  4244. bfqq = RQ_BFQQ(rq);
  4245. if (rq_mergeable(rq)) {
  4246. elv_rqhash_add(q, rq);
  4247. if (!q->last_merge)
  4248. q->last_merge = rq;
  4249. }
  4250. }
  4251. /*
  4252. * Cache cmd_flags before releasing scheduler lock, because rq
  4253. * may disappear afterwards (for example, because of a request
  4254. * merge).
  4255. */
  4256. cmd_flags = rq->cmd_flags;
  4257. spin_unlock_irq(&bfqd->lock);
  4258. bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
  4259. cmd_flags);
  4260. }
  4261. static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
  4262. struct list_head *list, bool at_head)
  4263. {
  4264. while (!list_empty(list)) {
  4265. struct request *rq;
  4266. rq = list_first_entry(list, struct request, queuelist);
  4267. list_del_init(&rq->queuelist);
  4268. bfq_insert_request(hctx, rq, at_head);
  4269. }
  4270. }
  4271. static void bfq_update_hw_tag(struct bfq_data *bfqd)
  4272. {
  4273. bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
  4274. bfqd->rq_in_driver);
  4275. if (bfqd->hw_tag == 1)
  4276. return;
  4277. /*
  4278. * This sample is valid if the number of outstanding requests
  4279. * is large enough to allow a queueing behavior. Note that the
  4280. * sum is not exact, as it's not taking into account deactivated
  4281. * requests.
  4282. */
  4283. if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
  4284. return;
  4285. if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
  4286. return;
  4287. bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
  4288. bfqd->max_rq_in_driver = 0;
  4289. bfqd->hw_tag_samples = 0;
  4290. }
  4291. static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
  4292. {
  4293. u64 now_ns;
  4294. u32 delta_us;
  4295. bfq_update_hw_tag(bfqd);
  4296. bfqd->rq_in_driver--;
  4297. bfqq->dispatched--;
  4298. if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
  4299. /*
  4300. * Set budget_timeout (which we overload to store the
  4301. * time at which the queue remains with no backlog and
  4302. * no outstanding request; used by the weight-raising
  4303. * mechanism).
  4304. */
  4305. bfqq->budget_timeout = jiffies;
  4306. bfq_weights_tree_remove(bfqd, bfqq);
  4307. }
  4308. now_ns = ktime_get_ns();
  4309. bfqq->ttime.last_end_request = now_ns;
  4310. /*
  4311. * Using us instead of ns, to get a reasonable precision in
  4312. * computing rate in next check.
  4313. */
  4314. delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
  4315. /*
  4316. * If the request took rather long to complete, and, according
  4317. * to the maximum request size recorded, this completion latency
  4318. * implies that the request was certainly served at a very low
  4319. * rate (less than 1M sectors/sec), then the whole observation
  4320. * interval that lasts up to this time instant cannot be a
  4321. * valid time interval for computing a new peak rate. Invoke
  4322. * bfq_update_rate_reset to have the following three steps
  4323. * taken:
  4324. * - close the observation interval at the last (previous)
  4325. * request dispatch or completion
  4326. * - compute rate, if possible, for that observation interval
  4327. * - reset to zero samples, which will trigger a proper
  4328. * re-initialization of the observation interval on next
  4329. * dispatch
  4330. */
  4331. if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
  4332. (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
  4333. 1UL<<(BFQ_RATE_SHIFT - 10))
  4334. bfq_update_rate_reset(bfqd, NULL);
  4335. bfqd->last_completion = now_ns;
  4336. /*
  4337. * If we are waiting to discover whether the request pattern
  4338. * of the task associated with the queue is actually
  4339. * isochronous, and both requisites for this condition to hold
  4340. * are now satisfied, then compute soft_rt_next_start (see the
  4341. * comments on the function bfq_bfqq_softrt_next_start()). We
  4342. * schedule this delayed check when bfqq expires, if it still
  4343. * has in-flight requests.
  4344. */
  4345. if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
  4346. RB_EMPTY_ROOT(&bfqq->sort_list))
  4347. bfqq->soft_rt_next_start =
  4348. bfq_bfqq_softrt_next_start(bfqd, bfqq);
  4349. /*
  4350. * If this is the in-service queue, check if it needs to be expired,
  4351. * or if we want to idle in case it has no pending requests.
  4352. */
  4353. if (bfqd->in_service_queue == bfqq) {
  4354. if (bfq_bfqq_must_idle(bfqq)) {
  4355. if (bfqq->dispatched == 0)
  4356. bfq_arm_slice_timer(bfqd);
  4357. /*
  4358. * If we get here, we do not expire bfqq, even
  4359. * if bfqq was in budget timeout or had no
  4360. * more requests (as controlled in the next
  4361. * conditional instructions). The reason for
  4362. * not expiring bfqq is as follows.
  4363. *
  4364. * Here bfqq->dispatched > 0 holds, but
  4365. * bfq_bfqq_must_idle() returned true. This
  4366. * implies that, even if no request arrives
  4367. * for bfqq before bfqq->dispatched reaches 0,
  4368. * bfqq will, however, not be expired on the
  4369. * completion event that causes bfqq->dispatch
  4370. * to reach zero. In contrast, on this event,
  4371. * bfqq will start enjoying device idling
  4372. * (I/O-dispatch plugging).
  4373. *
  4374. * But, if we expired bfqq here, bfqq would
  4375. * not have the chance to enjoy device idling
  4376. * when bfqq->dispatched finally reaches
  4377. * zero. This would expose bfqq to violation
  4378. * of its reserved service guarantees.
  4379. */
  4380. return;
  4381. } else if (bfq_may_expire_for_budg_timeout(bfqq))
  4382. bfq_bfqq_expire(bfqd, bfqq, false,
  4383. BFQQE_BUDGET_TIMEOUT);
  4384. else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
  4385. (bfqq->dispatched == 0 ||
  4386. !bfq_better_to_idle(bfqq)))
  4387. bfq_bfqq_expire(bfqd, bfqq, false,
  4388. BFQQE_NO_MORE_REQUESTS);
  4389. }
  4390. if (!bfqd->rq_in_driver)
  4391. bfq_schedule_dispatch(bfqd);
  4392. }
  4393. static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
  4394. {
  4395. bfqq->allocated--;
  4396. bfq_put_queue(bfqq);
  4397. }
  4398. /*
  4399. * Handle either a requeue or a finish for rq. The things to do are
  4400. * the same in both cases: all references to rq are to be dropped. In
  4401. * particular, rq is considered completed from the point of view of
  4402. * the scheduler.
  4403. */
  4404. static void bfq_finish_requeue_request(struct request *rq)
  4405. {
  4406. struct bfq_queue *bfqq = RQ_BFQQ(rq);
  4407. struct bfq_data *bfqd;
  4408. /*
  4409. * Requeue and finish hooks are invoked in blk-mq without
  4410. * checking whether the involved request is actually still
  4411. * referenced in the scheduler. To handle this fact, the
  4412. * following two checks make this function exit in case of
  4413. * spurious invocations, for which there is nothing to do.
  4414. *
  4415. * First, check whether rq has nothing to do with an elevator.
  4416. */
  4417. if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
  4418. return;
  4419. /*
  4420. * rq either is not associated with any icq, or is an already
  4421. * requeued request that has not (yet) been re-inserted into
  4422. * a bfq_queue.
  4423. */
  4424. if (!rq->elv.icq || !bfqq)
  4425. return;
  4426. bfqd = bfqq->bfqd;
  4427. if (rq->rq_flags & RQF_STARTED)
  4428. bfqg_stats_update_completion(bfqq_group(bfqq),
  4429. rq->start_time_ns,
  4430. rq->io_start_time_ns,
  4431. rq->cmd_flags);
  4432. if (likely(rq->rq_flags & RQF_STARTED)) {
  4433. unsigned long flags;
  4434. spin_lock_irqsave(&bfqd->lock, flags);
  4435. bfq_completed_request(bfqq, bfqd);
  4436. bfq_finish_requeue_request_body(bfqq);
  4437. spin_unlock_irqrestore(&bfqd->lock, flags);
  4438. } else {
  4439. /*
  4440. * Request rq may be still/already in the scheduler,
  4441. * in which case we need to remove it (this should
  4442. * never happen in case of requeue). And we cannot
  4443. * defer such a check and removal, to avoid
  4444. * inconsistencies in the time interval from the end
  4445. * of this function to the start of the deferred work.
  4446. * This situation seems to occur only in process
  4447. * context, as a consequence of a merge. In the
  4448. * current version of the code, this implies that the
  4449. * lock is held.
  4450. */
  4451. if (!RB_EMPTY_NODE(&rq->rb_node)) {
  4452. bfq_remove_request(rq->q, rq);
  4453. bfqg_stats_update_io_remove(bfqq_group(bfqq),
  4454. rq->cmd_flags);
  4455. }
  4456. bfq_finish_requeue_request_body(bfqq);
  4457. }
  4458. /*
  4459. * Reset private fields. In case of a requeue, this allows
  4460. * this function to correctly do nothing if it is spuriously
  4461. * invoked again on this same request (see the check at the
  4462. * beginning of the function). Probably, a better general
  4463. * design would be to prevent blk-mq from invoking the requeue
  4464. * or finish hooks of an elevator, for a request that is not
  4465. * referred by that elevator.
  4466. *
  4467. * Resetting the following fields would break the
  4468. * request-insertion logic if rq is re-inserted into a bfq
  4469. * internal queue, without a re-preparation. Here we assume
  4470. * that re-insertions of requeued requests, without
  4471. * re-preparation, can happen only for pass_through or at_head
  4472. * requests (which are not re-inserted into bfq internal
  4473. * queues).
  4474. */
  4475. rq->elv.priv[0] = NULL;
  4476. rq->elv.priv[1] = NULL;
  4477. }
  4478. /*
  4479. * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
  4480. * was the last process referring to that bfqq.
  4481. */
  4482. static struct bfq_queue *
  4483. bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
  4484. {
  4485. bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
  4486. if (bfqq_process_refs(bfqq) == 1) {
  4487. bfqq->pid = current->pid;
  4488. bfq_clear_bfqq_coop(bfqq);
  4489. bfq_clear_bfqq_split_coop(bfqq);
  4490. return bfqq;
  4491. }
  4492. bic_set_bfqq(bic, NULL, 1);
  4493. bfq_put_cooperator(bfqq);
  4494. bfq_put_queue(bfqq);
  4495. return NULL;
  4496. }
  4497. static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
  4498. struct bfq_io_cq *bic,
  4499. struct bio *bio,
  4500. bool split, bool is_sync,
  4501. bool *new_queue)
  4502. {
  4503. struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
  4504. if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
  4505. return bfqq;
  4506. if (new_queue)
  4507. *new_queue = true;
  4508. if (bfqq)
  4509. bfq_put_queue(bfqq);
  4510. bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
  4511. bic_set_bfqq(bic, bfqq, is_sync);
  4512. if (split && is_sync) {
  4513. if ((bic->was_in_burst_list && bfqd->large_burst) ||
  4514. bic->saved_in_large_burst)
  4515. bfq_mark_bfqq_in_large_burst(bfqq);
  4516. else {
  4517. bfq_clear_bfqq_in_large_burst(bfqq);
  4518. if (bic->was_in_burst_list)
  4519. /*
  4520. * If bfqq was in the current
  4521. * burst list before being
  4522. * merged, then we have to add
  4523. * it back. And we do not need
  4524. * to increase burst_size, as
  4525. * we did not decrement
  4526. * burst_size when we removed
  4527. * bfqq from the burst list as
  4528. * a consequence of a merge
  4529. * (see comments in
  4530. * bfq_put_queue). In this
  4531. * respect, it would be rather
  4532. * costly to know whether the
  4533. * current burst list is still
  4534. * the same burst list from
  4535. * which bfqq was removed on
  4536. * the merge. To avoid this
  4537. * cost, if bfqq was in a
  4538. * burst list, then we add
  4539. * bfqq to the current burst
  4540. * list without any further
  4541. * check. This can cause
  4542. * inappropriate insertions,
  4543. * but rarely enough to not
  4544. * harm the detection of large
  4545. * bursts significantly.
  4546. */
  4547. hlist_add_head(&bfqq->burst_list_node,
  4548. &bfqd->burst_list);
  4549. }
  4550. bfqq->split_time = jiffies;
  4551. }
  4552. return bfqq;
  4553. }
  4554. /*
  4555. * Only reset private fields. The actual request preparation will be
  4556. * performed by bfq_init_rq, when rq is either inserted or merged. See
  4557. * comments on bfq_init_rq for the reason behind this delayed
  4558. * preparation.
  4559. */
  4560. static void bfq_prepare_request(struct request *rq, struct bio *bio)
  4561. {
  4562. /*
  4563. * Regardless of whether we have an icq attached, we have to
  4564. * clear the scheduler pointers, as they might point to
  4565. * previously allocated bic/bfqq structs.
  4566. */
  4567. rq->elv.priv[0] = rq->elv.priv[1] = NULL;
  4568. }
  4569. /*
  4570. * If needed, init rq, allocate bfq data structures associated with
  4571. * rq, and increment reference counters in the destination bfq_queue
  4572. * for rq. Return the destination bfq_queue for rq, or NULL is rq is
  4573. * not associated with any bfq_queue.
  4574. *
  4575. * This function is invoked by the functions that perform rq insertion
  4576. * or merging. One may have expected the above preparation operations
  4577. * to be performed in bfq_prepare_request, and not delayed to when rq
  4578. * is inserted or merged. The rationale behind this delayed
  4579. * preparation is that, after the prepare_request hook is invoked for
  4580. * rq, rq may still be transformed into a request with no icq, i.e., a
  4581. * request not associated with any queue. No bfq hook is invoked to
  4582. * signal this tranformation. As a consequence, should these
  4583. * preparation operations be performed when the prepare_request hook
  4584. * is invoked, and should rq be transformed one moment later, bfq
  4585. * would end up in an inconsistent state, because it would have
  4586. * incremented some queue counters for an rq destined to
  4587. * transformation, without any chance to correctly lower these
  4588. * counters back. In contrast, no transformation can still happen for
  4589. * rq after rq has been inserted or merged. So, it is safe to execute
  4590. * these preparation operations when rq is finally inserted or merged.
  4591. */
  4592. static struct bfq_queue *bfq_init_rq(struct request *rq)
  4593. {
  4594. struct request_queue *q = rq->q;
  4595. struct bio *bio = rq->bio;
  4596. struct bfq_data *bfqd = q->elevator->elevator_data;
  4597. struct bfq_io_cq *bic;
  4598. const int is_sync = rq_is_sync(rq);
  4599. struct bfq_queue *bfqq;
  4600. bool new_queue = false;
  4601. bool bfqq_already_existing = false, split = false;
  4602. if (unlikely(!rq->elv.icq))
  4603. return NULL;
  4604. /*
  4605. * Assuming that elv.priv[1] is set only if everything is set
  4606. * for this rq. This holds true, because this function is
  4607. * invoked only for insertion or merging, and, after such
  4608. * events, a request cannot be manipulated any longer before
  4609. * being removed from bfq.
  4610. */
  4611. if (rq->elv.priv[1])
  4612. return rq->elv.priv[1];
  4613. bic = icq_to_bic(rq->elv.icq);
  4614. bfq_check_ioprio_change(bic, bio);
  4615. bfq_bic_update_cgroup(bic, bio);
  4616. bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
  4617. &new_queue);
  4618. if (likely(!new_queue)) {
  4619. /* If the queue was seeky for too long, break it apart. */
  4620. if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
  4621. bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
  4622. /* Update bic before losing reference to bfqq */
  4623. if (bfq_bfqq_in_large_burst(bfqq))
  4624. bic->saved_in_large_burst = true;
  4625. bfqq = bfq_split_bfqq(bic, bfqq);
  4626. split = true;
  4627. if (!bfqq)
  4628. bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
  4629. true, is_sync,
  4630. NULL);
  4631. else
  4632. bfqq_already_existing = true;
  4633. }
  4634. }
  4635. bfqq->allocated++;
  4636. bfqq->ref++;
  4637. bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
  4638. rq, bfqq, bfqq->ref);
  4639. rq->elv.priv[0] = bic;
  4640. rq->elv.priv[1] = bfqq;
  4641. /*
  4642. * If a bfq_queue has only one process reference, it is owned
  4643. * by only this bic: we can then set bfqq->bic = bic. in
  4644. * addition, if the queue has also just been split, we have to
  4645. * resume its state.
  4646. */
  4647. if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
  4648. bfqq->bic = bic;
  4649. if (split) {
  4650. /*
  4651. * The queue has just been split from a shared
  4652. * queue: restore the idle window and the
  4653. * possible weight raising period.
  4654. */
  4655. bfq_bfqq_resume_state(bfqq, bfqd, bic,
  4656. bfqq_already_existing);
  4657. }
  4658. }
  4659. if (unlikely(bfq_bfqq_just_created(bfqq)))
  4660. bfq_handle_burst(bfqd, bfqq);
  4661. return bfqq;
  4662. }
  4663. static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
  4664. {
  4665. struct bfq_data *bfqd = bfqq->bfqd;
  4666. enum bfqq_expiration reason;
  4667. unsigned long flags;
  4668. spin_lock_irqsave(&bfqd->lock, flags);
  4669. bfq_clear_bfqq_wait_request(bfqq);
  4670. if (bfqq != bfqd->in_service_queue) {
  4671. spin_unlock_irqrestore(&bfqd->lock, flags);
  4672. return;
  4673. }
  4674. if (bfq_bfqq_budget_timeout(bfqq))
  4675. /*
  4676. * Also here the queue can be safely expired
  4677. * for budget timeout without wasting
  4678. * guarantees
  4679. */
  4680. reason = BFQQE_BUDGET_TIMEOUT;
  4681. else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
  4682. /*
  4683. * The queue may not be empty upon timer expiration,
  4684. * because we may not disable the timer when the
  4685. * first request of the in-service queue arrives
  4686. * during disk idling.
  4687. */
  4688. reason = BFQQE_TOO_IDLE;
  4689. else
  4690. goto schedule_dispatch;
  4691. bfq_bfqq_expire(bfqd, bfqq, true, reason);
  4692. schedule_dispatch:
  4693. spin_unlock_irqrestore(&bfqd->lock, flags);
  4694. bfq_schedule_dispatch(bfqd);
  4695. }
  4696. /*
  4697. * Handler of the expiration of the timer running if the in-service queue
  4698. * is idling inside its time slice.
  4699. */
  4700. static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
  4701. {
  4702. struct bfq_data *bfqd = container_of(timer, struct bfq_data,
  4703. idle_slice_timer);
  4704. struct bfq_queue *bfqq = bfqd->in_service_queue;
  4705. /*
  4706. * Theoretical race here: the in-service queue can be NULL or
  4707. * different from the queue that was idling if a new request
  4708. * arrives for the current queue and there is a full dispatch
  4709. * cycle that changes the in-service queue. This can hardly
  4710. * happen, but in the worst case we just expire a queue too
  4711. * early.
  4712. */
  4713. if (bfqq)
  4714. bfq_idle_slice_timer_body(bfqq);
  4715. return HRTIMER_NORESTART;
  4716. }
  4717. static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
  4718. struct bfq_queue **bfqq_ptr)
  4719. {
  4720. struct bfq_queue *bfqq = *bfqq_ptr;
  4721. bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
  4722. if (bfqq) {
  4723. bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
  4724. bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
  4725. bfqq, bfqq->ref);
  4726. bfq_put_queue(bfqq);
  4727. *bfqq_ptr = NULL;
  4728. }
  4729. }
  4730. /*
  4731. * Release all the bfqg references to its async queues. If we are
  4732. * deallocating the group these queues may still contain requests, so
  4733. * we reparent them to the root cgroup (i.e., the only one that will
  4734. * exist for sure until all the requests on a device are gone).
  4735. */
  4736. void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
  4737. {
  4738. int i, j;
  4739. for (i = 0; i < 2; i++)
  4740. for (j = 0; j < IOPRIO_BE_NR; j++)
  4741. __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
  4742. __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
  4743. }
  4744. /*
  4745. * See the comments on bfq_limit_depth for the purpose of
  4746. * the depths set in the function. Return minimum shallow depth we'll use.
  4747. */
  4748. static unsigned int bfq_update_depths(struct bfq_data *bfqd,
  4749. struct sbitmap_queue *bt)
  4750. {
  4751. unsigned int i, j, min_shallow = UINT_MAX;
  4752. /*
  4753. * In-word depths if no bfq_queue is being weight-raised:
  4754. * leaving 25% of tags only for sync reads.
  4755. *
  4756. * In next formulas, right-shift the value
  4757. * (1U<<bt->sb.shift), instead of computing directly
  4758. * (1U<<(bt->sb.shift - something)), to be robust against
  4759. * any possible value of bt->sb.shift, without having to
  4760. * limit 'something'.
  4761. */
  4762. /* no more than 50% of tags for async I/O */
  4763. bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
  4764. /*
  4765. * no more than 75% of tags for sync writes (25% extra tags
  4766. * w.r.t. async I/O, to prevent async I/O from starving sync
  4767. * writes)
  4768. */
  4769. bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
  4770. /*
  4771. * In-word depths in case some bfq_queue is being weight-
  4772. * raised: leaving ~63% of tags for sync reads. This is the
  4773. * highest percentage for which, in our tests, application
  4774. * start-up times didn't suffer from any regression due to tag
  4775. * shortage.
  4776. */
  4777. /* no more than ~18% of tags for async I/O */
  4778. bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
  4779. /* no more than ~37% of tags for sync writes (~20% extra tags) */
  4780. bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
  4781. for (i = 0; i < 2; i++)
  4782. for (j = 0; j < 2; j++)
  4783. min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
  4784. return min_shallow;
  4785. }
  4786. static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
  4787. {
  4788. struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
  4789. struct blk_mq_tags *tags = hctx->sched_tags;
  4790. unsigned int min_shallow;
  4791. min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
  4792. sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
  4793. return 0;
  4794. }
  4795. static void bfq_exit_queue(struct elevator_queue *e)
  4796. {
  4797. struct bfq_data *bfqd = e->elevator_data;
  4798. struct bfq_queue *bfqq, *n;
  4799. hrtimer_cancel(&bfqd->idle_slice_timer);
  4800. spin_lock_irq(&bfqd->lock);
  4801. list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
  4802. bfq_deactivate_bfqq(bfqd, bfqq, false, false);
  4803. spin_unlock_irq(&bfqd->lock);
  4804. hrtimer_cancel(&bfqd->idle_slice_timer);
  4805. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  4806. /* release oom-queue reference to root group */
  4807. bfqg_and_blkg_put(bfqd->root_group);
  4808. blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
  4809. #else
  4810. spin_lock_irq(&bfqd->lock);
  4811. bfq_put_async_queues(bfqd, bfqd->root_group);
  4812. kfree(bfqd->root_group);
  4813. spin_unlock_irq(&bfqd->lock);
  4814. #endif
  4815. kfree(bfqd);
  4816. }
  4817. static void bfq_init_root_group(struct bfq_group *root_group,
  4818. struct bfq_data *bfqd)
  4819. {
  4820. int i;
  4821. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  4822. root_group->entity.parent = NULL;
  4823. root_group->my_entity = NULL;
  4824. root_group->bfqd = bfqd;
  4825. #endif
  4826. root_group->rq_pos_tree = RB_ROOT;
  4827. for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
  4828. root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
  4829. root_group->sched_data.bfq_class_idle_last_service = jiffies;
  4830. }
  4831. static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
  4832. {
  4833. struct bfq_data *bfqd;
  4834. struct elevator_queue *eq;
  4835. eq = elevator_alloc(q, e);
  4836. if (!eq)
  4837. return -ENOMEM;
  4838. bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
  4839. if (!bfqd) {
  4840. kobject_put(&eq->kobj);
  4841. return -ENOMEM;
  4842. }
  4843. eq->elevator_data = bfqd;
  4844. spin_lock_irq(q->queue_lock);
  4845. q->elevator = eq;
  4846. spin_unlock_irq(q->queue_lock);
  4847. /*
  4848. * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
  4849. * Grab a permanent reference to it, so that the normal code flow
  4850. * will not attempt to free it.
  4851. */
  4852. bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
  4853. bfqd->oom_bfqq.ref++;
  4854. bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
  4855. bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
  4856. bfqd->oom_bfqq.entity.new_weight =
  4857. bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
  4858. /* oom_bfqq does not participate to bursts */
  4859. bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
  4860. /*
  4861. * Trigger weight initialization, according to ioprio, at the
  4862. * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
  4863. * class won't be changed any more.
  4864. */
  4865. bfqd->oom_bfqq.entity.prio_changed = 1;
  4866. bfqd->queue = q;
  4867. INIT_LIST_HEAD(&bfqd->dispatch);
  4868. hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
  4869. HRTIMER_MODE_REL);
  4870. bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
  4871. bfqd->queue_weights_tree = RB_ROOT;
  4872. bfqd->num_groups_with_pending_reqs = 0;
  4873. INIT_LIST_HEAD(&bfqd->active_list);
  4874. INIT_LIST_HEAD(&bfqd->idle_list);
  4875. INIT_HLIST_HEAD(&bfqd->burst_list);
  4876. bfqd->hw_tag = -1;
  4877. bfqd->bfq_max_budget = bfq_default_max_budget;
  4878. bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
  4879. bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
  4880. bfqd->bfq_back_max = bfq_back_max;
  4881. bfqd->bfq_back_penalty = bfq_back_penalty;
  4882. bfqd->bfq_slice_idle = bfq_slice_idle;
  4883. bfqd->bfq_timeout = bfq_timeout;
  4884. bfqd->bfq_requests_within_timer = 120;
  4885. bfqd->bfq_large_burst_thresh = 8;
  4886. bfqd->bfq_burst_interval = msecs_to_jiffies(180);
  4887. bfqd->low_latency = true;
  4888. /*
  4889. * Trade-off between responsiveness and fairness.
  4890. */
  4891. bfqd->bfq_wr_coeff = 30;
  4892. bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
  4893. bfqd->bfq_wr_max_time = 0;
  4894. bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
  4895. bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
  4896. bfqd->bfq_wr_max_softrt_rate = 7000; /*
  4897. * Approximate rate required
  4898. * to playback or record a
  4899. * high-definition compressed
  4900. * video.
  4901. */
  4902. bfqd->wr_busy_queues = 0;
  4903. /*
  4904. * Begin by assuming, optimistically, that the device peak
  4905. * rate is equal to 2/3 of the highest reference rate.
  4906. */
  4907. bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
  4908. ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
  4909. bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
  4910. spin_lock_init(&bfqd->lock);
  4911. /*
  4912. * The invocation of the next bfq_create_group_hierarchy
  4913. * function is the head of a chain of function calls
  4914. * (bfq_create_group_hierarchy->blkcg_activate_policy->
  4915. * blk_mq_freeze_queue) that may lead to the invocation of the
  4916. * has_work hook function. For this reason,
  4917. * bfq_create_group_hierarchy is invoked only after all
  4918. * scheduler data has been initialized, apart from the fields
  4919. * that can be initialized only after invoking
  4920. * bfq_create_group_hierarchy. This, in particular, enables
  4921. * has_work to correctly return false. Of course, to avoid
  4922. * other inconsistencies, the blk-mq stack must then refrain
  4923. * from invoking further scheduler hooks before this init
  4924. * function is finished.
  4925. */
  4926. bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
  4927. if (!bfqd->root_group)
  4928. goto out_free;
  4929. bfq_init_root_group(bfqd->root_group, bfqd);
  4930. bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
  4931. wbt_disable_default(q);
  4932. return 0;
  4933. out_free:
  4934. kfree(bfqd);
  4935. kobject_put(&eq->kobj);
  4936. return -ENOMEM;
  4937. }
  4938. static void bfq_slab_kill(void)
  4939. {
  4940. kmem_cache_destroy(bfq_pool);
  4941. }
  4942. static int __init bfq_slab_setup(void)
  4943. {
  4944. bfq_pool = KMEM_CACHE(bfq_queue, 0);
  4945. if (!bfq_pool)
  4946. return -ENOMEM;
  4947. return 0;
  4948. }
  4949. static ssize_t bfq_var_show(unsigned int var, char *page)
  4950. {
  4951. return sprintf(page, "%u\n", var);
  4952. }
  4953. static int bfq_var_store(unsigned long *var, const char *page)
  4954. {
  4955. unsigned long new_val;
  4956. int ret = kstrtoul(page, 10, &new_val);
  4957. if (ret)
  4958. return ret;
  4959. *var = new_val;
  4960. return 0;
  4961. }
  4962. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  4963. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  4964. { \
  4965. struct bfq_data *bfqd = e->elevator_data; \
  4966. u64 __data = __VAR; \
  4967. if (__CONV == 1) \
  4968. __data = jiffies_to_msecs(__data); \
  4969. else if (__CONV == 2) \
  4970. __data = div_u64(__data, NSEC_PER_MSEC); \
  4971. return bfq_var_show(__data, (page)); \
  4972. }
  4973. SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
  4974. SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
  4975. SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
  4976. SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
  4977. SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
  4978. SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
  4979. SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
  4980. SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
  4981. SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
  4982. #undef SHOW_FUNCTION
  4983. #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
  4984. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  4985. { \
  4986. struct bfq_data *bfqd = e->elevator_data; \
  4987. u64 __data = __VAR; \
  4988. __data = div_u64(__data, NSEC_PER_USEC); \
  4989. return bfq_var_show(__data, (page)); \
  4990. }
  4991. USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
  4992. #undef USEC_SHOW_FUNCTION
  4993. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  4994. static ssize_t \
  4995. __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  4996. { \
  4997. struct bfq_data *bfqd = e->elevator_data; \
  4998. unsigned long __data, __min = (MIN), __max = (MAX); \
  4999. int ret; \
  5000. \
  5001. ret = bfq_var_store(&__data, (page)); \
  5002. if (ret) \
  5003. return ret; \
  5004. if (__data < __min) \
  5005. __data = __min; \
  5006. else if (__data > __max) \
  5007. __data = __max; \
  5008. if (__CONV == 1) \
  5009. *(__PTR) = msecs_to_jiffies(__data); \
  5010. else if (__CONV == 2) \
  5011. *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
  5012. else \
  5013. *(__PTR) = __data; \
  5014. return count; \
  5015. }
  5016. STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
  5017. INT_MAX, 2);
  5018. STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
  5019. INT_MAX, 2);
  5020. STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
  5021. STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
  5022. INT_MAX, 0);
  5023. STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
  5024. #undef STORE_FUNCTION
  5025. #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
  5026. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
  5027. { \
  5028. struct bfq_data *bfqd = e->elevator_data; \
  5029. unsigned long __data, __min = (MIN), __max = (MAX); \
  5030. int ret; \
  5031. \
  5032. ret = bfq_var_store(&__data, (page)); \
  5033. if (ret) \
  5034. return ret; \
  5035. if (__data < __min) \
  5036. __data = __min; \
  5037. else if (__data > __max) \
  5038. __data = __max; \
  5039. *(__PTR) = (u64)__data * NSEC_PER_USEC; \
  5040. return count; \
  5041. }
  5042. USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
  5043. UINT_MAX);
  5044. #undef USEC_STORE_FUNCTION
  5045. static ssize_t bfq_max_budget_store(struct elevator_queue *e,
  5046. const char *page, size_t count)
  5047. {
  5048. struct bfq_data *bfqd = e->elevator_data;
  5049. unsigned long __data;
  5050. int ret;
  5051. ret = bfq_var_store(&__data, (page));
  5052. if (ret)
  5053. return ret;
  5054. if (__data == 0)
  5055. bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
  5056. else {
  5057. if (__data > INT_MAX)
  5058. __data = INT_MAX;
  5059. bfqd->bfq_max_budget = __data;
  5060. }
  5061. bfqd->bfq_user_max_budget = __data;
  5062. return count;
  5063. }
  5064. /*
  5065. * Leaving this name to preserve name compatibility with cfq
  5066. * parameters, but this timeout is used for both sync and async.
  5067. */
  5068. static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
  5069. const char *page, size_t count)
  5070. {
  5071. struct bfq_data *bfqd = e->elevator_data;
  5072. unsigned long __data;
  5073. int ret;
  5074. ret = bfq_var_store(&__data, (page));
  5075. if (ret)
  5076. return ret;
  5077. if (__data < 1)
  5078. __data = 1;
  5079. else if (__data > INT_MAX)
  5080. __data = INT_MAX;
  5081. bfqd->bfq_timeout = msecs_to_jiffies(__data);
  5082. if (bfqd->bfq_user_max_budget == 0)
  5083. bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
  5084. return count;
  5085. }
  5086. static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
  5087. const char *page, size_t count)
  5088. {
  5089. struct bfq_data *bfqd = e->elevator_data;
  5090. unsigned long __data;
  5091. int ret;
  5092. ret = bfq_var_store(&__data, (page));
  5093. if (ret)
  5094. return ret;
  5095. if (__data > 1)
  5096. __data = 1;
  5097. if (!bfqd->strict_guarantees && __data == 1
  5098. && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
  5099. bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
  5100. bfqd->strict_guarantees = __data;
  5101. return count;
  5102. }
  5103. static ssize_t bfq_low_latency_store(struct elevator_queue *e,
  5104. const char *page, size_t count)
  5105. {
  5106. struct bfq_data *bfqd = e->elevator_data;
  5107. unsigned long __data;
  5108. int ret;
  5109. ret = bfq_var_store(&__data, (page));
  5110. if (ret)
  5111. return ret;
  5112. if (__data > 1)
  5113. __data = 1;
  5114. if (__data == 0 && bfqd->low_latency != 0)
  5115. bfq_end_wr(bfqd);
  5116. bfqd->low_latency = __data;
  5117. return count;
  5118. }
  5119. #define BFQ_ATTR(name) \
  5120. __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
  5121. static struct elv_fs_entry bfq_attrs[] = {
  5122. BFQ_ATTR(fifo_expire_sync),
  5123. BFQ_ATTR(fifo_expire_async),
  5124. BFQ_ATTR(back_seek_max),
  5125. BFQ_ATTR(back_seek_penalty),
  5126. BFQ_ATTR(slice_idle),
  5127. BFQ_ATTR(slice_idle_us),
  5128. BFQ_ATTR(max_budget),
  5129. BFQ_ATTR(timeout_sync),
  5130. BFQ_ATTR(strict_guarantees),
  5131. BFQ_ATTR(low_latency),
  5132. __ATTR_NULL
  5133. };
  5134. static struct elevator_type iosched_bfq_mq = {
  5135. .ops.mq = {
  5136. .limit_depth = bfq_limit_depth,
  5137. .prepare_request = bfq_prepare_request,
  5138. .requeue_request = bfq_finish_requeue_request,
  5139. .finish_request = bfq_finish_requeue_request,
  5140. .exit_icq = bfq_exit_icq,
  5141. .insert_requests = bfq_insert_requests,
  5142. .dispatch_request = bfq_dispatch_request,
  5143. .next_request = elv_rb_latter_request,
  5144. .former_request = elv_rb_former_request,
  5145. .allow_merge = bfq_allow_bio_merge,
  5146. .bio_merge = bfq_bio_merge,
  5147. .request_merge = bfq_request_merge,
  5148. .requests_merged = bfq_requests_merged,
  5149. .request_merged = bfq_request_merged,
  5150. .has_work = bfq_has_work,
  5151. .init_hctx = bfq_init_hctx,
  5152. .init_sched = bfq_init_queue,
  5153. .exit_sched = bfq_exit_queue,
  5154. },
  5155. .uses_mq = true,
  5156. .icq_size = sizeof(struct bfq_io_cq),
  5157. .icq_align = __alignof__(struct bfq_io_cq),
  5158. .elevator_attrs = bfq_attrs,
  5159. .elevator_name = "bfq",
  5160. .elevator_owner = THIS_MODULE,
  5161. };
  5162. MODULE_ALIAS("bfq-iosched");
  5163. static int __init bfq_init(void)
  5164. {
  5165. int ret;
  5166. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  5167. ret = blkcg_policy_register(&blkcg_policy_bfq);
  5168. if (ret)
  5169. return ret;
  5170. #endif
  5171. ret = -ENOMEM;
  5172. if (bfq_slab_setup())
  5173. goto err_pol_unreg;
  5174. /*
  5175. * Times to load large popular applications for the typical
  5176. * systems installed on the reference devices (see the
  5177. * comments before the definition of the next
  5178. * array). Actually, we use slightly lower values, as the
  5179. * estimated peak rate tends to be smaller than the actual
  5180. * peak rate. The reason for this last fact is that estimates
  5181. * are computed over much shorter time intervals than the long
  5182. * intervals typically used for benchmarking. Why? First, to
  5183. * adapt more quickly to variations. Second, because an I/O
  5184. * scheduler cannot rely on a peak-rate-evaluation workload to
  5185. * be run for a long time.
  5186. */
  5187. ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
  5188. ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
  5189. ret = elv_register(&iosched_bfq_mq);
  5190. if (ret)
  5191. goto slab_kill;
  5192. return 0;
  5193. slab_kill:
  5194. bfq_slab_kill();
  5195. err_pol_unreg:
  5196. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  5197. blkcg_policy_unregister(&blkcg_policy_bfq);
  5198. #endif
  5199. return ret;
  5200. }
  5201. static void __exit bfq_exit(void)
  5202. {
  5203. elv_unregister(&iosched_bfq_mq);
  5204. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  5205. blkcg_policy_unregister(&blkcg_policy_bfq);
  5206. #endif
  5207. bfq_slab_kill();
  5208. }
  5209. module_init(bfq_init);
  5210. module_exit(bfq_exit);
  5211. MODULE_AUTHOR("Paolo Valente");
  5212. MODULE_LICENSE("GPL");
  5213. MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");