pmu.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/types.h>
  3. #include <linux/interrupt.h>
  4. #include <asm/xen/hypercall.h>
  5. #include <xen/xen.h>
  6. #include <xen/page.h>
  7. #include <xen/interface/xen.h>
  8. #include <xen/interface/vcpu.h>
  9. #include <xen/interface/xenpmu.h>
  10. #include "xen-ops.h"
  11. #include "pmu.h"
  12. /* x86_pmu.handle_irq definition */
  13. #include "../events/perf_event.h"
  14. #define XENPMU_IRQ_PROCESSING 1
  15. struct xenpmu {
  16. /* Shared page between hypervisor and domain */
  17. struct xen_pmu_data *xenpmu_data;
  18. uint8_t flags;
  19. };
  20. static DEFINE_PER_CPU(struct xenpmu, xenpmu_shared);
  21. #define get_xenpmu_data() (this_cpu_ptr(&xenpmu_shared)->xenpmu_data)
  22. #define get_xenpmu_flags() (this_cpu_ptr(&xenpmu_shared)->flags)
  23. /* Macro for computing address of a PMU MSR bank */
  24. #define field_offset(ctxt, field) ((void *)((uintptr_t)ctxt + \
  25. (uintptr_t)ctxt->field))
  26. /* AMD PMU */
  27. #define F15H_NUM_COUNTERS 6
  28. #define F10H_NUM_COUNTERS 4
  29. static __read_mostly uint32_t amd_counters_base;
  30. static __read_mostly uint32_t amd_ctrls_base;
  31. static __read_mostly int amd_msr_step;
  32. static __read_mostly int k7_counters_mirrored;
  33. static __read_mostly int amd_num_counters;
  34. /* Intel PMU */
  35. #define MSR_TYPE_COUNTER 0
  36. #define MSR_TYPE_CTRL 1
  37. #define MSR_TYPE_GLOBAL 2
  38. #define MSR_TYPE_ARCH_COUNTER 3
  39. #define MSR_TYPE_ARCH_CTRL 4
  40. /* Number of general pmu registers (CPUID.EAX[0xa].EAX[8..15]) */
  41. #define PMU_GENERAL_NR_SHIFT 8
  42. #define PMU_GENERAL_NR_BITS 8
  43. #define PMU_GENERAL_NR_MASK (((1 << PMU_GENERAL_NR_BITS) - 1) \
  44. << PMU_GENERAL_NR_SHIFT)
  45. /* Number of fixed pmu registers (CPUID.EDX[0xa].EDX[0..4]) */
  46. #define PMU_FIXED_NR_SHIFT 0
  47. #define PMU_FIXED_NR_BITS 5
  48. #define PMU_FIXED_NR_MASK (((1 << PMU_FIXED_NR_BITS) - 1) \
  49. << PMU_FIXED_NR_SHIFT)
  50. /* Alias registers (0x4c1) for full-width writes to PMCs */
  51. #define MSR_PMC_ALIAS_MASK (~(MSR_IA32_PERFCTR0 ^ MSR_IA32_PMC0))
  52. #define INTEL_PMC_TYPE_SHIFT 30
  53. static __read_mostly int intel_num_arch_counters, intel_num_fixed_counters;
  54. static void xen_pmu_arch_init(void)
  55. {
  56. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
  57. switch (boot_cpu_data.x86) {
  58. case 0x15:
  59. amd_num_counters = F15H_NUM_COUNTERS;
  60. amd_counters_base = MSR_F15H_PERF_CTR;
  61. amd_ctrls_base = MSR_F15H_PERF_CTL;
  62. amd_msr_step = 2;
  63. k7_counters_mirrored = 1;
  64. break;
  65. case 0x10:
  66. case 0x12:
  67. case 0x14:
  68. case 0x16:
  69. default:
  70. amd_num_counters = F10H_NUM_COUNTERS;
  71. amd_counters_base = MSR_K7_PERFCTR0;
  72. amd_ctrls_base = MSR_K7_EVNTSEL0;
  73. amd_msr_step = 1;
  74. k7_counters_mirrored = 0;
  75. break;
  76. }
  77. } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
  78. amd_num_counters = F10H_NUM_COUNTERS;
  79. amd_counters_base = MSR_K7_PERFCTR0;
  80. amd_ctrls_base = MSR_K7_EVNTSEL0;
  81. amd_msr_step = 1;
  82. k7_counters_mirrored = 0;
  83. } else {
  84. uint32_t eax, ebx, ecx, edx;
  85. cpuid(0xa, &eax, &ebx, &ecx, &edx);
  86. intel_num_arch_counters = (eax & PMU_GENERAL_NR_MASK) >>
  87. PMU_GENERAL_NR_SHIFT;
  88. intel_num_fixed_counters = (edx & PMU_FIXED_NR_MASK) >>
  89. PMU_FIXED_NR_SHIFT;
  90. }
  91. }
  92. static inline uint32_t get_fam15h_addr(u32 addr)
  93. {
  94. switch (addr) {
  95. case MSR_K7_PERFCTR0:
  96. case MSR_K7_PERFCTR1:
  97. case MSR_K7_PERFCTR2:
  98. case MSR_K7_PERFCTR3:
  99. return MSR_F15H_PERF_CTR + (addr - MSR_K7_PERFCTR0);
  100. case MSR_K7_EVNTSEL0:
  101. case MSR_K7_EVNTSEL1:
  102. case MSR_K7_EVNTSEL2:
  103. case MSR_K7_EVNTSEL3:
  104. return MSR_F15H_PERF_CTL + (addr - MSR_K7_EVNTSEL0);
  105. default:
  106. break;
  107. }
  108. return addr;
  109. }
  110. static inline bool is_amd_pmu_msr(unsigned int msr)
  111. {
  112. if ((msr >= MSR_F15H_PERF_CTL &&
  113. msr < MSR_F15H_PERF_CTR + (amd_num_counters * 2)) ||
  114. (msr >= MSR_K7_EVNTSEL0 &&
  115. msr < MSR_K7_PERFCTR0 + amd_num_counters))
  116. return true;
  117. return false;
  118. }
  119. static int is_intel_pmu_msr(u32 msr_index, int *type, int *index)
  120. {
  121. u32 msr_index_pmc;
  122. switch (msr_index) {
  123. case MSR_CORE_PERF_FIXED_CTR_CTRL:
  124. case MSR_IA32_DS_AREA:
  125. case MSR_IA32_PEBS_ENABLE:
  126. *type = MSR_TYPE_CTRL;
  127. return true;
  128. case MSR_CORE_PERF_GLOBAL_CTRL:
  129. case MSR_CORE_PERF_GLOBAL_STATUS:
  130. case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
  131. *type = MSR_TYPE_GLOBAL;
  132. return true;
  133. default:
  134. if ((msr_index >= MSR_CORE_PERF_FIXED_CTR0) &&
  135. (msr_index < MSR_CORE_PERF_FIXED_CTR0 +
  136. intel_num_fixed_counters)) {
  137. *index = msr_index - MSR_CORE_PERF_FIXED_CTR0;
  138. *type = MSR_TYPE_COUNTER;
  139. return true;
  140. }
  141. if ((msr_index >= MSR_P6_EVNTSEL0) &&
  142. (msr_index < MSR_P6_EVNTSEL0 + intel_num_arch_counters)) {
  143. *index = msr_index - MSR_P6_EVNTSEL0;
  144. *type = MSR_TYPE_ARCH_CTRL;
  145. return true;
  146. }
  147. msr_index_pmc = msr_index & MSR_PMC_ALIAS_MASK;
  148. if ((msr_index_pmc >= MSR_IA32_PERFCTR0) &&
  149. (msr_index_pmc < MSR_IA32_PERFCTR0 +
  150. intel_num_arch_counters)) {
  151. *type = MSR_TYPE_ARCH_COUNTER;
  152. *index = msr_index_pmc - MSR_IA32_PERFCTR0;
  153. return true;
  154. }
  155. return false;
  156. }
  157. }
  158. static bool xen_intel_pmu_emulate(unsigned int msr, u64 *val, int type,
  159. int index, bool is_read)
  160. {
  161. uint64_t *reg = NULL;
  162. struct xen_pmu_intel_ctxt *ctxt;
  163. uint64_t *fix_counters;
  164. struct xen_pmu_cntr_pair *arch_cntr_pair;
  165. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  166. uint8_t xenpmu_flags = get_xenpmu_flags();
  167. if (!xenpmu_data || !(xenpmu_flags & XENPMU_IRQ_PROCESSING))
  168. return false;
  169. ctxt = &xenpmu_data->pmu.c.intel;
  170. switch (msr) {
  171. case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
  172. reg = &ctxt->global_ovf_ctrl;
  173. break;
  174. case MSR_CORE_PERF_GLOBAL_STATUS:
  175. reg = &ctxt->global_status;
  176. break;
  177. case MSR_CORE_PERF_GLOBAL_CTRL:
  178. reg = &ctxt->global_ctrl;
  179. break;
  180. case MSR_CORE_PERF_FIXED_CTR_CTRL:
  181. reg = &ctxt->fixed_ctrl;
  182. break;
  183. default:
  184. switch (type) {
  185. case MSR_TYPE_COUNTER:
  186. fix_counters = field_offset(ctxt, fixed_counters);
  187. reg = &fix_counters[index];
  188. break;
  189. case MSR_TYPE_ARCH_COUNTER:
  190. arch_cntr_pair = field_offset(ctxt, arch_counters);
  191. reg = &arch_cntr_pair[index].counter;
  192. break;
  193. case MSR_TYPE_ARCH_CTRL:
  194. arch_cntr_pair = field_offset(ctxt, arch_counters);
  195. reg = &arch_cntr_pair[index].control;
  196. break;
  197. default:
  198. return false;
  199. }
  200. }
  201. if (reg) {
  202. if (is_read)
  203. *val = *reg;
  204. else {
  205. *reg = *val;
  206. if (msr == MSR_CORE_PERF_GLOBAL_OVF_CTRL)
  207. ctxt->global_status &= (~(*val));
  208. }
  209. return true;
  210. }
  211. return false;
  212. }
  213. static bool xen_amd_pmu_emulate(unsigned int msr, u64 *val, bool is_read)
  214. {
  215. uint64_t *reg = NULL;
  216. int i, off = 0;
  217. struct xen_pmu_amd_ctxt *ctxt;
  218. uint64_t *counter_regs, *ctrl_regs;
  219. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  220. uint8_t xenpmu_flags = get_xenpmu_flags();
  221. if (!xenpmu_data || !(xenpmu_flags & XENPMU_IRQ_PROCESSING))
  222. return false;
  223. if (k7_counters_mirrored &&
  224. ((msr >= MSR_K7_EVNTSEL0) && (msr <= MSR_K7_PERFCTR3)))
  225. msr = get_fam15h_addr(msr);
  226. ctxt = &xenpmu_data->pmu.c.amd;
  227. for (i = 0; i < amd_num_counters; i++) {
  228. if (msr == amd_ctrls_base + off) {
  229. ctrl_regs = field_offset(ctxt, ctrls);
  230. reg = &ctrl_regs[i];
  231. break;
  232. } else if (msr == amd_counters_base + off) {
  233. counter_regs = field_offset(ctxt, counters);
  234. reg = &counter_regs[i];
  235. break;
  236. }
  237. off += amd_msr_step;
  238. }
  239. if (reg) {
  240. if (is_read)
  241. *val = *reg;
  242. else
  243. *reg = *val;
  244. return true;
  245. }
  246. return false;
  247. }
  248. bool pmu_msr_read(unsigned int msr, uint64_t *val, int *err)
  249. {
  250. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  251. if (is_amd_pmu_msr(msr)) {
  252. if (!xen_amd_pmu_emulate(msr, val, 1))
  253. *val = native_read_msr_safe(msr, err);
  254. return true;
  255. }
  256. } else {
  257. int type, index;
  258. if (is_intel_pmu_msr(msr, &type, &index)) {
  259. if (!xen_intel_pmu_emulate(msr, val, type, index, 1))
  260. *val = native_read_msr_safe(msr, err);
  261. return true;
  262. }
  263. }
  264. return false;
  265. }
  266. bool pmu_msr_write(unsigned int msr, uint32_t low, uint32_t high, int *err)
  267. {
  268. uint64_t val = ((uint64_t)high << 32) | low;
  269. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  270. if (is_amd_pmu_msr(msr)) {
  271. if (!xen_amd_pmu_emulate(msr, &val, 0))
  272. *err = native_write_msr_safe(msr, low, high);
  273. return true;
  274. }
  275. } else {
  276. int type, index;
  277. if (is_intel_pmu_msr(msr, &type, &index)) {
  278. if (!xen_intel_pmu_emulate(msr, &val, type, index, 0))
  279. *err = native_write_msr_safe(msr, low, high);
  280. return true;
  281. }
  282. }
  283. return false;
  284. }
  285. static unsigned long long xen_amd_read_pmc(int counter)
  286. {
  287. struct xen_pmu_amd_ctxt *ctxt;
  288. uint64_t *counter_regs;
  289. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  290. uint8_t xenpmu_flags = get_xenpmu_flags();
  291. if (!xenpmu_data || !(xenpmu_flags & XENPMU_IRQ_PROCESSING)) {
  292. uint32_t msr;
  293. int err;
  294. msr = amd_counters_base + (counter * amd_msr_step);
  295. return native_read_msr_safe(msr, &err);
  296. }
  297. ctxt = &xenpmu_data->pmu.c.amd;
  298. counter_regs = field_offset(ctxt, counters);
  299. return counter_regs[counter];
  300. }
  301. static unsigned long long xen_intel_read_pmc(int counter)
  302. {
  303. struct xen_pmu_intel_ctxt *ctxt;
  304. uint64_t *fixed_counters;
  305. struct xen_pmu_cntr_pair *arch_cntr_pair;
  306. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  307. uint8_t xenpmu_flags = get_xenpmu_flags();
  308. if (!xenpmu_data || !(xenpmu_flags & XENPMU_IRQ_PROCESSING)) {
  309. uint32_t msr;
  310. int err;
  311. if (counter & (1 << INTEL_PMC_TYPE_SHIFT))
  312. msr = MSR_CORE_PERF_FIXED_CTR0 + (counter & 0xffff);
  313. else
  314. msr = MSR_IA32_PERFCTR0 + counter;
  315. return native_read_msr_safe(msr, &err);
  316. }
  317. ctxt = &xenpmu_data->pmu.c.intel;
  318. if (counter & (1 << INTEL_PMC_TYPE_SHIFT)) {
  319. fixed_counters = field_offset(ctxt, fixed_counters);
  320. return fixed_counters[counter & 0xffff];
  321. }
  322. arch_cntr_pair = field_offset(ctxt, arch_counters);
  323. return arch_cntr_pair[counter].counter;
  324. }
  325. unsigned long long xen_read_pmc(int counter)
  326. {
  327. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  328. return xen_amd_read_pmc(counter);
  329. else
  330. return xen_intel_read_pmc(counter);
  331. }
  332. int pmu_apic_update(uint32_t val)
  333. {
  334. int ret;
  335. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  336. if (!xenpmu_data) {
  337. pr_warn_once("%s: pmudata not initialized\n", __func__);
  338. return -EINVAL;
  339. }
  340. xenpmu_data->pmu.l.lapic_lvtpc = val;
  341. if (get_xenpmu_flags() & XENPMU_IRQ_PROCESSING)
  342. return 0;
  343. ret = HYPERVISOR_xenpmu_op(XENPMU_lvtpc_set, NULL);
  344. return ret;
  345. }
  346. /* perf callbacks */
  347. static int xen_is_in_guest(void)
  348. {
  349. const struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  350. if (!xenpmu_data) {
  351. pr_warn_once("%s: pmudata not initialized\n", __func__);
  352. return 0;
  353. }
  354. if (!xen_initial_domain() || (xenpmu_data->domain_id >= DOMID_SELF))
  355. return 0;
  356. return 1;
  357. }
  358. static int xen_is_user_mode(void)
  359. {
  360. const struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  361. if (!xenpmu_data) {
  362. pr_warn_once("%s: pmudata not initialized\n", __func__);
  363. return 0;
  364. }
  365. if (xenpmu_data->pmu.pmu_flags & PMU_SAMPLE_PV)
  366. return (xenpmu_data->pmu.pmu_flags & PMU_SAMPLE_USER);
  367. else
  368. return !!(xenpmu_data->pmu.r.regs.cpl & 3);
  369. }
  370. static unsigned long xen_get_guest_ip(void)
  371. {
  372. const struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  373. if (!xenpmu_data) {
  374. pr_warn_once("%s: pmudata not initialized\n", __func__);
  375. return 0;
  376. }
  377. return xenpmu_data->pmu.r.regs.ip;
  378. }
  379. static struct perf_guest_info_callbacks xen_guest_cbs = {
  380. .is_in_guest = xen_is_in_guest,
  381. .is_user_mode = xen_is_user_mode,
  382. .get_guest_ip = xen_get_guest_ip,
  383. };
  384. /* Convert registers from Xen's format to Linux' */
  385. static void xen_convert_regs(const struct xen_pmu_regs *xen_regs,
  386. struct pt_regs *regs, uint64_t pmu_flags)
  387. {
  388. regs->ip = xen_regs->ip;
  389. regs->cs = xen_regs->cs;
  390. regs->sp = xen_regs->sp;
  391. if (pmu_flags & PMU_SAMPLE_PV) {
  392. if (pmu_flags & PMU_SAMPLE_USER)
  393. regs->cs |= 3;
  394. else
  395. regs->cs &= ~3;
  396. } else {
  397. if (xen_regs->cpl)
  398. regs->cs |= 3;
  399. else
  400. regs->cs &= ~3;
  401. }
  402. }
  403. irqreturn_t xen_pmu_irq_handler(int irq, void *dev_id)
  404. {
  405. int err, ret = IRQ_NONE;
  406. struct pt_regs regs = {0};
  407. const struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  408. uint8_t xenpmu_flags = get_xenpmu_flags();
  409. if (!xenpmu_data) {
  410. pr_warn_once("%s: pmudata not initialized\n", __func__);
  411. return ret;
  412. }
  413. this_cpu_ptr(&xenpmu_shared)->flags =
  414. xenpmu_flags | XENPMU_IRQ_PROCESSING;
  415. xen_convert_regs(&xenpmu_data->pmu.r.regs, &regs,
  416. xenpmu_data->pmu.pmu_flags);
  417. if (x86_pmu.handle_irq(&regs))
  418. ret = IRQ_HANDLED;
  419. /* Write out cached context to HW */
  420. err = HYPERVISOR_xenpmu_op(XENPMU_flush, NULL);
  421. this_cpu_ptr(&xenpmu_shared)->flags = xenpmu_flags;
  422. if (err) {
  423. pr_warn_once("%s: failed hypercall, err: %d\n", __func__, err);
  424. return IRQ_NONE;
  425. }
  426. return ret;
  427. }
  428. bool is_xen_pmu(int cpu)
  429. {
  430. return (get_xenpmu_data() != NULL);
  431. }
  432. void xen_pmu_init(int cpu)
  433. {
  434. int err;
  435. struct xen_pmu_params xp;
  436. unsigned long pfn;
  437. struct xen_pmu_data *xenpmu_data;
  438. BUILD_BUG_ON(sizeof(struct xen_pmu_data) > PAGE_SIZE);
  439. if (xen_hvm_domain())
  440. return;
  441. xenpmu_data = (struct xen_pmu_data *)get_zeroed_page(GFP_KERNEL);
  442. if (!xenpmu_data) {
  443. pr_err("VPMU init: No memory\n");
  444. return;
  445. }
  446. pfn = virt_to_pfn(xenpmu_data);
  447. xp.val = pfn_to_mfn(pfn);
  448. xp.vcpu = cpu;
  449. xp.version.maj = XENPMU_VER_MAJ;
  450. xp.version.min = XENPMU_VER_MIN;
  451. err = HYPERVISOR_xenpmu_op(XENPMU_init, &xp);
  452. if (err)
  453. goto fail;
  454. per_cpu(xenpmu_shared, cpu).xenpmu_data = xenpmu_data;
  455. per_cpu(xenpmu_shared, cpu).flags = 0;
  456. if (cpu == 0) {
  457. perf_register_guest_info_callbacks(&xen_guest_cbs);
  458. xen_pmu_arch_init();
  459. }
  460. return;
  461. fail:
  462. if (err == -EOPNOTSUPP || err == -ENOSYS)
  463. pr_info_once("VPMU disabled by hypervisor.\n");
  464. else
  465. pr_info_once("Could not initialize VPMU for cpu %d, error %d\n",
  466. cpu, err);
  467. free_pages((unsigned long)xenpmu_data, 0);
  468. }
  469. void xen_pmu_finish(int cpu)
  470. {
  471. struct xen_pmu_params xp;
  472. if (xen_hvm_domain())
  473. return;
  474. xp.vcpu = cpu;
  475. xp.version.maj = XENPMU_VER_MAJ;
  476. xp.version.min = XENPMU_VER_MIN;
  477. (void)HYPERVISOR_xenpmu_op(XENPMU_finish, &xp);
  478. free_pages((unsigned long)per_cpu(xenpmu_shared, cpu).xenpmu_data, 0);
  479. per_cpu(xenpmu_shared, cpu).xenpmu_data = NULL;
  480. }