hibernate_32.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. /*
  2. * Hibernation support specific for i386 - temporary page tables
  3. *
  4. * Distribute under GPLv2
  5. *
  6. * Copyright (c) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  7. */
  8. #include <linux/gfp.h>
  9. #include <linux/suspend.h>
  10. #include <linux/memblock.h>
  11. #include <asm/page.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/mmzone.h>
  14. #include <asm/sections.h>
  15. #include <asm/suspend.h>
  16. /* Pointer to the temporary resume page tables */
  17. pgd_t *resume_pg_dir;
  18. /* The following three functions are based on the analogous code in
  19. * arch/x86/mm/init_32.c
  20. */
  21. /*
  22. * Create a middle page table on a resume-safe page and put a pointer to it in
  23. * the given global directory entry. This only returns the gd entry
  24. * in non-PAE compilation mode, since the middle layer is folded.
  25. */
  26. static pmd_t *resume_one_md_table_init(pgd_t *pgd)
  27. {
  28. p4d_t *p4d;
  29. pud_t *pud;
  30. pmd_t *pmd_table;
  31. #ifdef CONFIG_X86_PAE
  32. pmd_table = (pmd_t *)get_safe_page(GFP_ATOMIC);
  33. if (!pmd_table)
  34. return NULL;
  35. set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT));
  36. p4d = p4d_offset(pgd, 0);
  37. pud = pud_offset(p4d, 0);
  38. BUG_ON(pmd_table != pmd_offset(pud, 0));
  39. #else
  40. p4d = p4d_offset(pgd, 0);
  41. pud = pud_offset(p4d, 0);
  42. pmd_table = pmd_offset(pud, 0);
  43. #endif
  44. return pmd_table;
  45. }
  46. /*
  47. * Create a page table on a resume-safe page and place a pointer to it in
  48. * a middle page directory entry.
  49. */
  50. static pte_t *resume_one_page_table_init(pmd_t *pmd)
  51. {
  52. if (pmd_none(*pmd)) {
  53. pte_t *page_table = (pte_t *)get_safe_page(GFP_ATOMIC);
  54. if (!page_table)
  55. return NULL;
  56. set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE));
  57. BUG_ON(page_table != pte_offset_kernel(pmd, 0));
  58. return page_table;
  59. }
  60. return pte_offset_kernel(pmd, 0);
  61. }
  62. /*
  63. * This maps the physical memory to kernel virtual address space, a total
  64. * of max_low_pfn pages, by creating page tables starting from address
  65. * PAGE_OFFSET. The page tables are allocated out of resume-safe pages.
  66. */
  67. static int resume_physical_mapping_init(pgd_t *pgd_base)
  68. {
  69. unsigned long pfn;
  70. pgd_t *pgd;
  71. pmd_t *pmd;
  72. pte_t *pte;
  73. int pgd_idx, pmd_idx;
  74. pgd_idx = pgd_index(PAGE_OFFSET);
  75. pgd = pgd_base + pgd_idx;
  76. pfn = 0;
  77. for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) {
  78. pmd = resume_one_md_table_init(pgd);
  79. if (!pmd)
  80. return -ENOMEM;
  81. if (pfn >= max_low_pfn)
  82. continue;
  83. for (pmd_idx = 0; pmd_idx < PTRS_PER_PMD; pmd++, pmd_idx++) {
  84. if (pfn >= max_low_pfn)
  85. break;
  86. /* Map with big pages if possible, otherwise create
  87. * normal page tables.
  88. * NOTE: We can mark everything as executable here
  89. */
  90. if (boot_cpu_has(X86_FEATURE_PSE)) {
  91. set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE_EXEC));
  92. pfn += PTRS_PER_PTE;
  93. } else {
  94. pte_t *max_pte;
  95. pte = resume_one_page_table_init(pmd);
  96. if (!pte)
  97. return -ENOMEM;
  98. max_pte = pte + PTRS_PER_PTE;
  99. for (; pte < max_pte; pte++, pfn++) {
  100. if (pfn >= max_low_pfn)
  101. break;
  102. set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
  103. }
  104. }
  105. }
  106. }
  107. return 0;
  108. }
  109. static inline void resume_init_first_level_page_table(pgd_t *pg_dir)
  110. {
  111. #ifdef CONFIG_X86_PAE
  112. int i;
  113. /* Init entries of the first-level page table to the zero page */
  114. for (i = 0; i < PTRS_PER_PGD; i++)
  115. set_pgd(pg_dir + i,
  116. __pgd(__pa(empty_zero_page) | _PAGE_PRESENT));
  117. #endif
  118. }
  119. static int set_up_temporary_text_mapping(pgd_t *pgd_base)
  120. {
  121. pgd_t *pgd;
  122. pmd_t *pmd;
  123. pte_t *pte;
  124. pgd = pgd_base + pgd_index(restore_jump_address);
  125. pmd = resume_one_md_table_init(pgd);
  126. if (!pmd)
  127. return -ENOMEM;
  128. if (boot_cpu_has(X86_FEATURE_PSE)) {
  129. set_pmd(pmd + pmd_index(restore_jump_address),
  130. __pmd((jump_address_phys & PMD_MASK) | pgprot_val(PAGE_KERNEL_LARGE_EXEC)));
  131. } else {
  132. pte = resume_one_page_table_init(pmd);
  133. if (!pte)
  134. return -ENOMEM;
  135. set_pte(pte + pte_index(restore_jump_address),
  136. __pte((jump_address_phys & PAGE_MASK) | pgprot_val(PAGE_KERNEL_EXEC)));
  137. }
  138. return 0;
  139. }
  140. asmlinkage int swsusp_arch_resume(void)
  141. {
  142. int error;
  143. resume_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
  144. if (!resume_pg_dir)
  145. return -ENOMEM;
  146. resume_init_first_level_page_table(resume_pg_dir);
  147. error = set_up_temporary_text_mapping(resume_pg_dir);
  148. if (error)
  149. return error;
  150. error = resume_physical_mapping_init(resume_pg_dir);
  151. if (error)
  152. return error;
  153. temp_pgt = __pa(resume_pg_dir);
  154. error = relocate_restore_code();
  155. if (error)
  156. return error;
  157. /* We have got enough memory and from now on we cannot recover */
  158. restore_image();
  159. return 0;
  160. }